Optimal and/or efficient three treatment crossover designs for five carryover models
The additional benefits in the analysis of crossover designs with two active treatments and a placebo motivated us to study these kinds of designs. These designs have been studied through a computer search algorithm, called 5M balanced algorithm, in two to four periods for different number of units,...
Saved in:
Published in | Journal of biopharmaceutical statistics Vol. 30; no. 3; pp. 445 - 461 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
03.05.2020
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1054-3406 1520-5711 1520-5711 |
DOI | 10.1080/10543406.2019.1684311 |
Cover
Abstract | The additional benefits in the analysis of crossover designs with two active treatments and a placebo motivated us to study these kinds of designs. These designs have been studied through a computer search algorithm, called 5M balanced algorithm, in two to four periods for different number of units, which resulted in optimal and/or efficient crossover designs. The new two periods crossover designs having two active treatments and a placebo, enables the estimation of treatment contrasts, unlike the classic two treatments two periods crossover which fails to estimate the treatment contrasts under self and mixed carryover model. The crossover designs having three or four periods in two active treatments and a placebo, estimate treatment contrasts more efficiently under self and mixed carryover model than the usual two treatments crossover designs. An exhaustive list of optimal and/or efficient crossover designs has been provided for designs in two periods having 6-21 subjects, three periods having 3-20 subjects and four periods having 3-14 subjects. In this list, 35 new designs are optimal for one of the established carryover models and 26 new designs are optimal and/or efficient to all four plausible carryover models. |
---|---|
AbstractList | The additional benefits in the analysis of crossover designs with two active treatments and a placebo motivated us to study these kinds of designs. These designs have been studied through a computer search algorithm, called 5M balanced algorithm, in two to four periods for different number of units, which resulted in optimal and/or efficient crossover designs. The new two periods crossover designs having two active treatments and a placebo, enables the estimation of treatment contrasts, unlike the classic two treatments two periods crossover which fails to estimate the treatment contrasts under self and mixed carryover model. The crossover designs having three or four periods in two active treatments and a placebo, estimate treatment contrasts more efficiently under self and mixed carryover model than the usual two treatments crossover designs. An exhaustive list of optimal and/or efficient crossover designs has been provided for designs in two periods having 6–21 subjects, three periods having 3–20 subjects and four periods having 3–14 subjects. In this list, 35 new designs are optimal for one of the established carryover models and 26 new designs are optimal and/or efficient to all four plausible carryover models. The additional benefits in the analysis of crossover designs with two active treatments and a placebo motivated us to study these kinds of designs. These designs have been studied through a computer search algorithm, called 5M balanced algorithm, in two to four periods for different number of units, which resulted in optimal and/or efficient crossover designs. The new two periods crossover designs having two active treatments and a placebo, enables the estimation of treatment contrasts, unlike the classic two treatments two periods crossover which fails to estimate the treatment contrasts under self and mixed carryover model. The crossover designs having three or four periods in two active treatments and a placebo, estimate treatment contrasts more efficiently under self and mixed carryover model than the usual two treatments crossover designs. An exhaustive list of optimal and/or efficient crossover designs has been provided for designs in two periods having 6-21 subjects, three periods having 3-20 subjects and four periods having 3-14 subjects. In this list, 35 new designs are optimal for one of the established carryover models and 26 new designs are optimal and/or efficient to all four plausible carryover models.The additional benefits in the analysis of crossover designs with two active treatments and a placebo motivated us to study these kinds of designs. These designs have been studied through a computer search algorithm, called 5M balanced algorithm, in two to four periods for different number of units, which resulted in optimal and/or efficient crossover designs. The new two periods crossover designs having two active treatments and a placebo, enables the estimation of treatment contrasts, unlike the classic two treatments two periods crossover which fails to estimate the treatment contrasts under self and mixed carryover model. The crossover designs having three or four periods in two active treatments and a placebo, estimate treatment contrasts more efficiently under self and mixed carryover model than the usual two treatments crossover designs. An exhaustive list of optimal and/or efficient crossover designs has been provided for designs in two periods having 6-21 subjects, three periods having 3-20 subjects and four periods having 3-14 subjects. In this list, 35 new designs are optimal for one of the established carryover models and 26 new designs are optimal and/or efficient to all four plausible carryover models. |
Author | Gondaliya, Jigneshkumar Divecha, Jyoti |
Author_xml | – sequence: 1 givenname: Jigneshkumar surname: Gondaliya fullname: Gondaliya, Jigneshkumar email: jjgondaliya@gmail.com organization: Gujarat Commerce College, Gujarat University – sequence: 2 givenname: Jyoti surname: Divecha fullname: Divecha, Jyoti organization: Department of Statistics, Sardar Patel University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31721628$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9vGyEQxVGVqvn7EVqt1Esu6zCwLFi9tIrSplKkXNIzYtmhJdoFF3Aif_vi2L7kkJ4YxO_NMO-dkqMQAxLyEegCqKJXQEXHO9ovGIXlAnrVcYB35AQEo62QAEe1rky7hY7Jac6PlIKQqvtAjjlIBj1TJ-ThflX8bKbGhPEqpgad89ZjKE35kxCbktCUeXu3KeYcnzA1I2b_O-TGVd75J2ysSWnz8jTHEad8Tt47M2W82J9n5Nf3m4fr2_bu_sfP6293reXLrrSKKQsDpUL1PR9MN8qBg8KB9aNznIoBpQSxFLRnQw98lLK3A7eCVdQpw_gZudz1XaX4d4256Nlni9NkAsZ11oxDJwSTglf08yv0Ma5TqL_TnCopaFfdrNSnPbUeZhz1KlVv0kYf_KrAlx3w4kZCp60vpvgYSjJ-0kD1Nh19SEdv09H7dKpavFIfBvxP93Wn86F6PpvnmKZRF7OZYnLJBOvrFm-3-AfzGqRh |
CitedBy_id | crossref_primary_10_1080_03610926_2024_2353370 crossref_primary_10_1007_s12561_021_09319_1 |
Cites_doi | 10.1198/016214502388618681 10.1081/BIP-120022771 10.1515/ijb-2018-0001 10.1080/03610926.2011.563010 10.1111/bcpt.1990.67.issue-1 10.1002/(SICI)1097-0258(19981230)17:24<2849::AID-SIM955>3.0.CO;2-O 10.1198/016214508000000760 10.1016/S0378-3758(02)00227-6 10.1002/(ISSN)1097-0258 10.1002/sim.v29:24 10.1016/j.jspi.2007.05.005 |
ContentType | Journal Article |
Copyright | 2019 Taylor & Francis Group, LLC 2019 2019 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2019 Taylor & Francis Group, LLC 2019 – notice: 2019 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1080/10543406.2019.1684311 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1520-5711 |
EndPage | 461 |
ExternalDocumentID | 31721628 10_1080_10543406_2019_1684311 1684311 |
Genre | Article Journal Article |
GroupedDBID | --- .7F .QJ 0BK 0R~ 29K 30N 36B 4.4 53G 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AHQJS AIJEM AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 D-I DGEBU DKSSO DU5 EAP EBC EBD EBR EBS EBU EHE EMB EMK EMOBN EPL EST ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G KYCEM LJTGL M4Z MK0 ML~ NA5 NY~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF SV3 TBQAZ TDBHL TEJ TFL TFT TFW TH9 TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION NPM TASJS 7X8 |
ID | FETCH-LOGICAL-c394t-828c1b0058663ba4d7b318eb26dff305be771595062b613d776cb3c52a4df8a23 |
ISSN | 1054-3406 1520-5711 |
IngestDate | Fri Sep 05 09:06:25 EDT 2025 Sat Jul 26 02:07:52 EDT 2025 Thu Apr 03 07:06:01 EDT 2025 Thu Apr 24 22:54:46 EDT 2025 Tue Jul 01 00:59:08 EDT 2025 Wed Dec 25 09:08:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | optimal design placebo treatment washout period Self and mixed carryover effect active treatment |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c394t-828c1b0058663ba4d7b318eb26dff305be771595062b613d776cb3c52a4df8a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 31721628 |
PQID | 3087504434 |
PQPubID | 196226 |
PageCount | 17 |
ParticipantIDs | pubmed_primary_31721628 proquest_miscellaneous_2314552753 crossref_citationtrail_10_1080_10543406_2019_1684311 informaworld_taylorfrancis_310_1080_10543406_2019_1684311 proquest_journals_3087504434 crossref_primary_10_1080_10543406_2019_1684311 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-03 |
PublicationDateYYYYMMDD | 2020-05-03 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Philadelphia |
PublicationTitle | Journal of biopharmaceutical statistics |
PublicationTitleAlternate | J Biopharm Stat |
PublicationYear | 2020 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | FDA (CIT0003) 2001 Senn S. (CIT0015) 2003 CIT0010 CIT0001 CIT0012 Tsoy A. (CIT0018) 1990; 3 Laurell H. (CIT0011) 1986; 58 CIT0014 CIT0013 CIT0005 CIT0016 CIT0004 CIT0007 CIT0006 CIT0017 CIT0009 CIT0008 CIT0019 |
References_xml | – ident: CIT0009 doi: 10.1198/016214502388618681 – volume: 3 start-page: 235s year: 1990 ident: CIT0018 publication-title: European Respiratory Journal – volume-title: Cross-over trials in clinical research year: 2003 ident: CIT0015 – volume: 58 start-page: 182 issue: 3 year: 1986 ident: CIT0011 publication-title: Basic and Clinical Pharmacology and Toxicology – ident: CIT0005 doi: 10.1081/BIP-120022771 – ident: CIT0004 doi: 10.1515/ijb-2018-0001 – ident: CIT0013 doi: 10.1080/03610926.2011.563010 – ident: CIT0017 doi: 10.1111/bcpt.1990.67.issue-1 – ident: CIT0016 doi: 10.1002/(SICI)1097-0258(19981230)17:24<2849::AID-SIM955>3.0.CO;2-O – ident: CIT0010 doi: 10.1198/016214508000000760 – volume-title: Guidance for industry: Statistical approaches to establishing bioequivalence year: 2001 ident: CIT0003 – ident: CIT0001 doi: 10.1016/S0378-3758(02)00227-6 – ident: CIT0006 doi: 10.1002/(ISSN)1097-0258 – ident: CIT0012 doi: 10.1002/sim.v29:24 – ident: CIT0007 doi: 10.1002/(ISSN)1097-0258 – ident: CIT0008 doi: 10.1002/(ISSN)1097-0258 – ident: CIT0019 doi: 10.1016/j.jspi.2007.05.005 – ident: CIT0014 doi: 10.1002/(ISSN)1097-0258 |
SSID | ssj0015784 |
Score | 2.2185373 |
Snippet | The additional benefits in the analysis of crossover designs with two active treatments and a placebo motivated us to study these kinds of designs. These... |
SourceID | proquest pubmed crossref informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 445 |
SubjectTerms | active treatment optimal design placebo treatment Self and mixed carryover effect washout period |
Title | Optimal and/or efficient three treatment crossover designs for five carryover models |
URI | https://www.tandfonline.com/doi/abs/10.1080/10543406.2019.1684311 https://www.ncbi.nlm.nih.gov/pubmed/31721628 https://www.proquest.com/docview/3087504434 https://www.proquest.com/docview/2314552753 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLY2eOFlGuzWjU2eNPECKUns3B7RBqoQA6SlWrUXK3YcUcEa1IaH8Ot3fImbakWwvUSVU-f2fT4-9rkh9KWM06gQceiFgiewQCHCK4Is84Rf-DJISEl01ZLv5_FoTE8n0aQrcW-jSxo-FPdr40r-B1VoA1xVlOw_IOsuCg3wG_CFIyAMxydhfAHj_bcJ9oeLqNzdOiGEMu83gJHsuZHr2VC5a-6X2mdDp2HYr5TfkCjm81af0mVxFg_oq3xa316tbICrYCST59l58dSwwr-ZtsYBF24jF1fXyonb6ctwQ2FsTKdt3Uz7mw6htpf7pC8noS1KrJyUa9qscLVGl2l_7a0lJTVZJP-S4MblEbQ-SkDXUL532TCIU9BzguWU1Znpzy_YyfjsjOXHk_w52gyTRJnqN49G3379dLYkkEnat6B7vC6OK_UP195mRUNZyV_78CpEayP5S_TCwoKPDCe20TM520F7lwaf9gDny7C6xQHew5fLDOXtDtr64ZB7hXLLIgwsOqzn2HEIaw5hxyHsOIQthzA8NFYcwo5D2HDoNRqfHOdfR56tteEJktFGZRMQgRLJKaigvKBlwkHaSx7GZVXBnMAlfNsoi_w45KABlkkSC05EFMJfq7QIyRu0Matn8h3CqQx8GOE84T6lGcnSWMRFRgoVQh3xigwQ7b4vEzYRvaqHcsMCm6-2g4UpWJiFZYCGrtutycTyWIesDx5r9BZYZerVMPJI390OaWYHPHRR1R_gnQgdoM_uNIhjZWMrZrK-WzBYLlGV1DCC13xrGOKelqjtljhM3z-h9we0tRx3u2ijmd_Jj6D-NvyT5fcftRWrfg |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6t4LBclseyS3l6JdQT6SZx4iRHhEBlty09FImbZTvOZZcWtemh_HpmnAcPCXHg1EM6kT0Zj7-xZ74BOM1FGisjQi80OsEAhRtPBVnmGV_5Nkh4zl3XkuFI9G-jP3fx3YtaGEqrpBi6qIginK-mxU2H0U1KHP5SQaRPGQZB1gtEirsgRkDrMWJ3snLuj9qbBLRId7OMIh7JNFU8773m1f70ir30fQzq9qKrTTDNLKoUlH-9Zal75vENwePnprkF32qoys4r29qGL3a6A91xxXW9OmOT59KtxRnrsvEzC_ZqBzYIxlYs0N9hcoOe6R5fhoP5PZsz64grcL9jJdqSZW26O3NaobRSlrvckgVD1bACfTIzaj5fuUeufc9iF26vLicXfa_u5-AZnkUlVaybgJZ9ijBHqyhPNHoUDO1FXhTod7RNEkRXsS9CjSgjTxJhNDdxiH8tUhXyH7A2nU3tHrDUBj5akU60H0UZz1JhhMq4ojLdWBe8A1HzFaWpyc6p58Z_GdScqI1yJSlX1srtQK8Ve6jYPj4SyF6aiCzdMUtR9USR_APZw8aeZO04UIQ6DOCceNSBX-1jXPJ0j6OmdrZcSITkERHnxTjNn5UdtqPlFNKLMN3_xMBO4Gt_MhzIwfXo7wFshHTCQCme_BDWyvnSHiEMK_WxW2dP4bwgyg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hKiEu0PJcSsFIFSeyJHHiJMeqZbW0dLuHReJm2Y5zadlFm-xh-fXMOA-gEuKwpxySiezJeDwTf_MNwNdcpLEyIvRCoxNMULjxVJBlnvGVb4OE59x1Lfk9EsPb6Odd3KIJywZWSTl0URNFOF9Ni_shL1pEHF6pHtIngEGQ9QOR4iaICdAHgeEJofq4P-oOEtAg3cEyingk0xbxvPWaV9vTK_LSt0NQtxUNtkG3k6gRKH_7i0r3zeN__I4rzfIjbDWBKvtWW9YnWLPTHTgf10zXyws2eS7cKi_YORs_c2Avd2CTgtiaA3oXJn_QL93jy3Asl7M5s462Anc7VqElWdaB3ZlTCoFKWe6QJSVDzbACPTIzaj5fuluueU-5B7eDq8n3odd0c_AMz6KK6tVNQIs-xSBHqyhPNPoTTOxFXhTodbRNEoytYl-EGmOMPEmE0dzEIT5apCrk-7A-nU3tIbDUBj7akE60H0UZz1JhhMq4oiLdWBe8B1H7EaVpqM6p48Y_GTSMqK1yJSlXNsrtQb8Te6i5Pt4TyF5aiKzcT5ai7ogi-Tuyx605ycZtoAj1F8A58agHZ91tXPB0iqOmdrYoJQbkEdHmxTjNg9oMu9FySuhFmB6tMLBT2Bj_GMib69Gvz7AZ0u8FwnfyY1iv5gv7BWOwSp-4VfYEJ3sfbg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+and%2For+efficient+three+treatment+crossover+designs+for+five+carryover+models&rft.jtitle=Journal+of+biopharmaceutical+statistics&rft.au=Gondaliya%2C+Jigneshkumar&rft.au=Divecha%2C+Jyoti&rft.date=2020-05-03&rft.issn=1520-5711&rft.eissn=1520-5711&rft.volume=30&rft.issue=3&rft.spage=445&rft_id=info:doi/10.1080%2F10543406.2019.1684311&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1054-3406&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1054-3406&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1054-3406&client=summon |