Optimal and/or efficient three treatment crossover designs for five carryover models

The additional benefits in the analysis of crossover designs with two active treatments and a placebo motivated us to study these kinds of designs. These designs have been studied through a computer search algorithm, called 5M balanced algorithm, in two to four periods for different number of units,...

Full description

Saved in:
Bibliographic Details
Published inJournal of biopharmaceutical statistics Vol. 30; no. 3; pp. 445 - 461
Main Authors Gondaliya, Jigneshkumar, Divecha, Jyoti
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 03.05.2020
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1054-3406
1520-5711
1520-5711
DOI10.1080/10543406.2019.1684311

Cover

Abstract The additional benefits in the analysis of crossover designs with two active treatments and a placebo motivated us to study these kinds of designs. These designs have been studied through a computer search algorithm, called 5M balanced algorithm, in two to four periods for different number of units, which resulted in optimal and/or efficient crossover designs. The new two periods crossover designs having two active treatments and a placebo, enables the estimation of treatment contrasts, unlike the classic two treatments two periods crossover which fails to estimate the treatment contrasts under self and mixed carryover model. The crossover designs having three or four periods in two active treatments and a placebo, estimate treatment contrasts more efficiently under self and mixed carryover model than the usual two treatments crossover designs. An exhaustive list of optimal and/or efficient crossover designs has been provided for designs in two periods having 6-21 subjects, three periods having 3-20 subjects and four periods having 3-14 subjects. In this list, 35 new designs are optimal for one of the established carryover models and 26 new designs are optimal and/or efficient to all four plausible carryover models.
AbstractList The additional benefits in the analysis of crossover designs with two active treatments and a placebo motivated us to study these kinds of designs. These designs have been studied through a computer search algorithm, called 5M balanced algorithm, in two to four periods for different number of units, which resulted in optimal and/or efficient crossover designs. The new two periods crossover designs having two active treatments and a placebo, enables the estimation of treatment contrasts, unlike the classic two treatments two periods crossover which fails to estimate the treatment contrasts under self and mixed carryover model. The crossover designs having three or four periods in two active treatments and a placebo, estimate treatment contrasts more efficiently under self and mixed carryover model than the usual two treatments crossover designs. An exhaustive list of optimal and/or efficient crossover designs has been provided for designs in two periods having 6–21 subjects, three periods having 3–20 subjects and four periods having 3–14 subjects. In this list, 35 new designs are optimal for one of the established carryover models and 26 new designs are optimal and/or efficient to all four plausible carryover models.
The additional benefits in the analysis of crossover designs with two active treatments and a placebo motivated us to study these kinds of designs. These designs have been studied through a computer search algorithm, called 5M balanced algorithm, in two to four periods for different number of units, which resulted in optimal and/or efficient crossover designs. The new two periods crossover designs having two active treatments and a placebo, enables the estimation of treatment contrasts, unlike the classic two treatments two periods crossover which fails to estimate the treatment contrasts under self and mixed carryover model. The crossover designs having three or four periods in two active treatments and a placebo, estimate treatment contrasts more efficiently under self and mixed carryover model than the usual two treatments crossover designs. An exhaustive list of optimal and/or efficient crossover designs has been provided for designs in two periods having 6-21 subjects, three periods having 3-20 subjects and four periods having 3-14 subjects. In this list, 35 new designs are optimal for one of the established carryover models and 26 new designs are optimal and/or efficient to all four plausible carryover models.The additional benefits in the analysis of crossover designs with two active treatments and a placebo motivated us to study these kinds of designs. These designs have been studied through a computer search algorithm, called 5M balanced algorithm, in two to four periods for different number of units, which resulted in optimal and/or efficient crossover designs. The new two periods crossover designs having two active treatments and a placebo, enables the estimation of treatment contrasts, unlike the classic two treatments two periods crossover which fails to estimate the treatment contrasts under self and mixed carryover model. The crossover designs having three or four periods in two active treatments and a placebo, estimate treatment contrasts more efficiently under self and mixed carryover model than the usual two treatments crossover designs. An exhaustive list of optimal and/or efficient crossover designs has been provided for designs in two periods having 6-21 subjects, three periods having 3-20 subjects and four periods having 3-14 subjects. In this list, 35 new designs are optimal for one of the established carryover models and 26 new designs are optimal and/or efficient to all four plausible carryover models.
Author Gondaliya, Jigneshkumar
Divecha, Jyoti
Author_xml – sequence: 1
  givenname: Jigneshkumar
  surname: Gondaliya
  fullname: Gondaliya, Jigneshkumar
  email: jjgondaliya@gmail.com
  organization: Gujarat Commerce College, Gujarat University
– sequence: 2
  givenname: Jyoti
  surname: Divecha
  fullname: Divecha, Jyoti
  organization: Department of Statistics, Sardar Patel University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31721628$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9vGyEQxVGVqvn7EVqt1Esu6zCwLFi9tIrSplKkXNIzYtmhJdoFF3Aif_vi2L7kkJ4YxO_NMO-dkqMQAxLyEegCqKJXQEXHO9ovGIXlAnrVcYB35AQEo62QAEe1rky7hY7Jac6PlIKQqvtAjjlIBj1TJ-ThflX8bKbGhPEqpgad89ZjKE35kxCbktCUeXu3KeYcnzA1I2b_O-TGVd75J2ysSWnz8jTHEad8Tt47M2W82J9n5Nf3m4fr2_bu_sfP6293reXLrrSKKQsDpUL1PR9MN8qBg8KB9aNznIoBpQSxFLRnQw98lLK3A7eCVdQpw_gZudz1XaX4d4256Nlni9NkAsZ11oxDJwSTglf08yv0Ma5TqL_TnCopaFfdrNSnPbUeZhz1KlVv0kYf_KrAlx3w4kZCp60vpvgYSjJ-0kD1Nh19SEdv09H7dKpavFIfBvxP93Wn86F6PpvnmKZRF7OZYnLJBOvrFm-3-AfzGqRh
CitedBy_id crossref_primary_10_1080_03610926_2024_2353370
crossref_primary_10_1007_s12561_021_09319_1
Cites_doi 10.1198/016214502388618681
10.1081/BIP-120022771
10.1515/ijb-2018-0001
10.1080/03610926.2011.563010
10.1111/bcpt.1990.67.issue-1
10.1002/(SICI)1097-0258(19981230)17:24<2849::AID-SIM955>3.0.CO;2-O
10.1198/016214508000000760
10.1016/S0378-3758(02)00227-6
10.1002/(ISSN)1097-0258
10.1002/sim.v29:24
10.1016/j.jspi.2007.05.005
ContentType Journal Article
Copyright 2019 Taylor & Francis Group, LLC 2019
2019 Taylor & Francis Group, LLC
Copyright_xml – notice: 2019 Taylor & Francis Group, LLC 2019
– notice: 2019 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1080/10543406.2019.1684311
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Pharmacy, Therapeutics, & Pharmacology
EISSN 1520-5711
EndPage 461
ExternalDocumentID 31721628
10_1080_10543406_2019_1684311
1684311
Genre Article
Journal Article
GroupedDBID ---
.7F
.QJ
0BK
0R~
29K
30N
36B
4.4
53G
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AHQJS
AIJEM
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
D-I
DGEBU
DKSSO
DU5
EAP
EBC
EBD
EBR
EBS
EBU
EHE
EMB
EMK
EMOBN
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
MK0
ML~
NA5
NY~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
SV3
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TH9
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
NPM
TASJS
7X8
ID FETCH-LOGICAL-c394t-828c1b0058663ba4d7b318eb26dff305be771595062b613d776cb3c52a4df8a23
ISSN 1054-3406
1520-5711
IngestDate Fri Sep 05 09:06:25 EDT 2025
Sat Jul 26 02:07:52 EDT 2025
Thu Apr 03 07:06:01 EDT 2025
Thu Apr 24 22:54:46 EDT 2025
Tue Jul 01 00:59:08 EDT 2025
Wed Dec 25 09:08:15 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords optimal design
placebo treatment
washout period
Self and mixed carryover effect
active treatment
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c394t-828c1b0058663ba4d7b318eb26dff305be771595062b613d776cb3c52a4df8a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31721628
PQID 3087504434
PQPubID 196226
PageCount 17
ParticipantIDs pubmed_primary_31721628
proquest_miscellaneous_2314552753
crossref_citationtrail_10_1080_10543406_2019_1684311
informaworld_taylorfrancis_310_1080_10543406_2019_1684311
proquest_journals_3087504434
crossref_primary_10_1080_10543406_2019_1684311
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-03
PublicationDateYYYYMMDD 2020-05-03
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-03
  day: 03
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Philadelphia
PublicationTitle Journal of biopharmaceutical statistics
PublicationTitleAlternate J Biopharm Stat
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References FDA (CIT0003) 2001
Senn S. (CIT0015) 2003
CIT0010
CIT0001
CIT0012
Tsoy A. (CIT0018) 1990; 3
Laurell H. (CIT0011) 1986; 58
CIT0014
CIT0013
CIT0005
CIT0016
CIT0004
CIT0007
CIT0006
CIT0017
CIT0009
CIT0008
CIT0019
References_xml – ident: CIT0009
  doi: 10.1198/016214502388618681
– volume: 3
  start-page: 235s
  year: 1990
  ident: CIT0018
  publication-title: European Respiratory Journal
– volume-title: Cross-over trials in clinical research
  year: 2003
  ident: CIT0015
– volume: 58
  start-page: 182
  issue: 3
  year: 1986
  ident: CIT0011
  publication-title: Basic and Clinical Pharmacology and Toxicology
– ident: CIT0005
  doi: 10.1081/BIP-120022771
– ident: CIT0004
  doi: 10.1515/ijb-2018-0001
– ident: CIT0013
  doi: 10.1080/03610926.2011.563010
– ident: CIT0017
  doi: 10.1111/bcpt.1990.67.issue-1
– ident: CIT0016
  doi: 10.1002/(SICI)1097-0258(19981230)17:24<2849::AID-SIM955>3.0.CO;2-O
– ident: CIT0010
  doi: 10.1198/016214508000000760
– volume-title: Guidance for industry: Statistical approaches to establishing bioequivalence
  year: 2001
  ident: CIT0003
– ident: CIT0001
  doi: 10.1016/S0378-3758(02)00227-6
– ident: CIT0006
  doi: 10.1002/(ISSN)1097-0258
– ident: CIT0012
  doi: 10.1002/sim.v29:24
– ident: CIT0007
  doi: 10.1002/(ISSN)1097-0258
– ident: CIT0008
  doi: 10.1002/(ISSN)1097-0258
– ident: CIT0019
  doi: 10.1016/j.jspi.2007.05.005
– ident: CIT0014
  doi: 10.1002/(ISSN)1097-0258
SSID ssj0015784
Score 2.2185373
Snippet The additional benefits in the analysis of crossover designs with two active treatments and a placebo motivated us to study these kinds of designs. These...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 445
SubjectTerms active treatment
optimal design
placebo treatment
Self and mixed carryover effect
washout period
Title Optimal and/or efficient three treatment crossover designs for five carryover models
URI https://www.tandfonline.com/doi/abs/10.1080/10543406.2019.1684311
https://www.ncbi.nlm.nih.gov/pubmed/31721628
https://www.proquest.com/docview/3087504434
https://www.proquest.com/docview/2314552753
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLY2eOFlGuzWjU2eNPECKUns3B7RBqoQA6SlWrUXK3YcUcEa1IaH8Ot3fImbakWwvUSVU-f2fT4-9rkh9KWM06gQceiFgiewQCHCK4Is84Rf-DJISEl01ZLv5_FoTE8n0aQrcW-jSxo-FPdr40r-B1VoA1xVlOw_IOsuCg3wG_CFIyAMxydhfAHj_bcJ9oeLqNzdOiGEMu83gJHsuZHr2VC5a-6X2mdDp2HYr5TfkCjm81af0mVxFg_oq3xa316tbICrYCST59l58dSwwr-ZtsYBF24jF1fXyonb6ctwQ2FsTKdt3Uz7mw6htpf7pC8noS1KrJyUa9qscLVGl2l_7a0lJTVZJP-S4MblEbQ-SkDXUL532TCIU9BzguWU1Znpzy_YyfjsjOXHk_w52gyTRJnqN49G3379dLYkkEnat6B7vC6OK_UP195mRUNZyV_78CpEayP5S_TCwoKPDCe20TM520F7lwaf9gDny7C6xQHew5fLDOXtDtr64ZB7hXLLIgwsOqzn2HEIaw5hxyHsOIQthzA8NFYcwo5D2HDoNRqfHOdfR56tteEJktFGZRMQgRLJKaigvKBlwkHaSx7GZVXBnMAlfNsoi_w45KABlkkSC05EFMJfq7QIyRu0Matn8h3CqQx8GOE84T6lGcnSWMRFRgoVQh3xigwQ7b4vEzYRvaqHcsMCm6-2g4UpWJiFZYCGrtutycTyWIesDx5r9BZYZerVMPJI390OaWYHPHRR1R_gnQgdoM_uNIhjZWMrZrK-WzBYLlGV1DCC13xrGOKelqjtljhM3z-h9we0tRx3u2ijmd_Jj6D-NvyT5fcftRWrfg
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6t4LBclseyS3l6JdQT6SZx4iRHhEBlty09FImbZTvOZZcWtemh_HpmnAcPCXHg1EM6kT0Zj7-xZ74BOM1FGisjQi80OsEAhRtPBVnmGV_5Nkh4zl3XkuFI9G-jP3fx3YtaGEqrpBi6qIginK-mxU2H0U1KHP5SQaRPGQZB1gtEirsgRkDrMWJ3snLuj9qbBLRId7OMIh7JNFU8773m1f70ir30fQzq9qKrTTDNLKoUlH-9Zal75vENwePnprkF32qoys4r29qGL3a6A91xxXW9OmOT59KtxRnrsvEzC_ZqBzYIxlYs0N9hcoOe6R5fhoP5PZsz64grcL9jJdqSZW26O3NaobRSlrvckgVD1bACfTIzaj5fuUeufc9iF26vLicXfa_u5-AZnkUlVaybgJZ9ijBHqyhPNHoUDO1FXhTod7RNEkRXsS9CjSgjTxJhNDdxiH8tUhXyH7A2nU3tHrDUBj5akU60H0UZz1JhhMq4ojLdWBe8A1HzFaWpyc6p58Z_GdScqI1yJSlX1srtQK8Ve6jYPj4SyF6aiCzdMUtR9USR_APZw8aeZO04UIQ6DOCceNSBX-1jXPJ0j6OmdrZcSITkERHnxTjNn5UdtqPlFNKLMN3_xMBO4Gt_MhzIwfXo7wFshHTCQCme_BDWyvnSHiEMK_WxW2dP4bwgyg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hKiEu0PJcSsFIFSeyJHHiJMeqZbW0dLuHReJm2Y5zadlFm-xh-fXMOA-gEuKwpxySiezJeDwTf_MNwNdcpLEyIvRCoxNMULjxVJBlnvGVb4OE59x1Lfk9EsPb6Odd3KIJywZWSTl0URNFOF9Ni_shL1pEHF6pHtIngEGQ9QOR4iaICdAHgeEJofq4P-oOEtAg3cEyingk0xbxvPWaV9vTK_LSt0NQtxUNtkG3k6gRKH_7i0r3zeN__I4rzfIjbDWBKvtWW9YnWLPTHTgf10zXyws2eS7cKi_YORs_c2Avd2CTgtiaA3oXJn_QL93jy3Asl7M5s462Anc7VqElWdaB3ZlTCoFKWe6QJSVDzbACPTIzaj5fuluueU-5B7eDq8n3odd0c_AMz6KK6tVNQIs-xSBHqyhPNPoTTOxFXhTodbRNEoytYl-EGmOMPEmE0dzEIT5apCrk-7A-nU3tIbDUBj7akE60H0UZz1JhhMq4oiLdWBe8B1H7EaVpqM6p48Y_GTSMqK1yJSlXNsrtQb8Te6i5Pt4TyF5aiKzcT5ai7ogi-Tuyx605ycZtoAj1F8A58agHZ91tXPB0iqOmdrYoJQbkEdHmxTjNg9oMu9FySuhFmB6tMLBT2Bj_GMib69Gvz7AZ0u8FwnfyY1iv5gv7BWOwSp-4VfYEJ3sfbg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+and%2For+efficient+three+treatment+crossover+designs+for+five+carryover+models&rft.jtitle=Journal+of+biopharmaceutical+statistics&rft.au=Gondaliya%2C+Jigneshkumar&rft.au=Divecha%2C+Jyoti&rft.date=2020-05-03&rft.issn=1520-5711&rft.eissn=1520-5711&rft.volume=30&rft.issue=3&rft.spage=445&rft_id=info:doi/10.1080%2F10543406.2019.1684311&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1054-3406&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1054-3406&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1054-3406&client=summon