Biodegradable electrospun PLA-PHB fibers plasticized with oligomeric lactic acid

In this paper flexible electrospun mats based on poly(lactic acid) (PLA) blended with 25 wt% of poly(hydroxibutyrate) (PHB) and further plasticized with three different concentration of oligomeric lactic acid (OLA) were developed. The morphological, structural, thermal and mechanical performance of...

Full description

Saved in:
Bibliographic Details
Published inPolymer degradation and stability Vol. 179; p. 109226
Main Authors Arrieta, Marina P., Perdiguero, Miguel, Fiori, Stefano, Kenny, José María, Peponi, Laura
Format Journal Article
LanguageEnglish
Published London Elsevier Ltd 01.09.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper flexible electrospun mats based on poly(lactic acid) (PLA) blended with 25 wt% of poly(hydroxibutyrate) (PHB) and further plasticized with three different concentration of oligomeric lactic acid (OLA) were developed. The morphological, structural, thermal and mechanical performance of electrospun mats was evaluated. OLA improves the crystallization rate of PLA presenting better interaction with PLA than with PHB. The incorporation of OLA to PLA-PHB blends produced a decrease on the viscosity of the polymeric solutions, leading to a reduction of the fibers diameters by increasing the amount of OLA plasticizer in the final blends. The highest amount of OLA of 20 wt% respect to PLA-PHB blend produced some bead defects in the fibers, which leads to a reduction of the mechanical performance of woven no-woven electrospun mats. Furthermore, all the electrospun mats were disintegrated in composting conditions showing their interest as compostable materials. The ternary system PLA-PHB-OLA15, showed the best results in term of structural and mechanical properties as well as appropriate disintegration in compost suggesting their potential applications as agricultural mulch films. •Woven no-woven plasticized electrospun fibers have been successfully obtained.•Blends of PLA-PHB with different plasticizer composition have been obtained by electrospinning techniques.•The mechanical response can be tuned with the different amount of plasticizer.•Biodegradable electrospun mats for potential application in agriculture have been studied.
AbstractList In this paper flexible electrospun mats based on poly(lactic acid) (PLA) blended with 25 wt% of poly(hydroxibutyrate) (PHB) and further plasticized with three different concentration of oligomeric lactic acid (OLA) were developed. The morphological, structural, thermal and mechanical performance of electrospun mats was evaluated. OLA improves the crystallization rate of PLA presenting better interaction with PLA than with PHB. The incorporation of OLA to PLA-PHB blends produced a decrease on the viscosity of the polymeric solutions, leading to a reduction of the fibers diameters by increasing the amount of OLA plasticizer in the final blends. The highest amount of OLA of 20 wt% respect to PLA-PHB blend produced some bead defects in the fibers, which leads to a reduction of the mechanical performance of woven no-woven electrospun mats. Furthermore, all the electrospun mats were disintegrated in composting conditions showing their interest as compostable materials. The ternary system PLA-PHB-OLA15, showed the best results in term of structural and mechanical properties as well as appropriate disintegration in compost suggesting their potential applications as agricultural mulch films.
In this paper flexible electrospun mats based on poly(lactic acid) (PLA) blended with 25 wt% of poly(hydroxibutyrate) (PHB) and further plasticized with three different concentration of oligomeric lactic acid (OLA) were developed. The morphological, structural, thermal and mechanical performance of electrospun mats was evaluated. OLA improves the crystallization rate of PLA presenting better interaction with PLA than with PHB. The incorporation of OLA to PLA-PHB blends produced a decrease on the viscosity of the polymeric solutions, leading to a reduction of the fibers diameters by increasing the amount of OLA plasticizer in the final blends. The highest amount of OLA of 20 wt% respect to PLA-PHB blend produced some bead defects in the fibers, which leads to a reduction of the mechanical performance of woven no-woven electrospun mats. Furthermore, all the electrospun mats were disintegrated in composting conditions showing their interest as compostable materials. The ternary system PLA-PHB-OLA15, showed the best results in term of structural and mechanical properties as well as appropriate disintegration in compost suggesting their potential applications as agricultural mulch films. •Woven no-woven plasticized electrospun fibers have been successfully obtained.•Blends of PLA-PHB with different plasticizer composition have been obtained by electrospinning techniques.•The mechanical response can be tuned with the different amount of plasticizer.•Biodegradable electrospun mats for potential application in agriculture have been studied.
ArticleNumber 109226
Author Arrieta, Marina P.
Kenny, José María
Fiori, Stefano
Peponi, Laura
Perdiguero, Miguel
Author_xml – sequence: 1
  givenname: Marina P.
  surname: Arrieta
  fullname: Arrieta, Marina P.
  email: marrie06@ucm.es
  organization: Institute of Polymer Science and Technology, ICTP-CSIC, Madrid, Spain
– sequence: 2
  givenname: Miguel
  surname: Perdiguero
  fullname: Perdiguero, Miguel
  organization: Institute of Polymer Science and Technology, ICTP-CSIC, Madrid, Spain
– sequence: 3
  givenname: Stefano
  surname: Fiori
  fullname: Fiori, Stefano
  organization: Condensia Química S.A, R&D Department, c/ La Cierva 8, 08184, Barcelona, Spain
– sequence: 4
  givenname: José María
  surname: Kenny
  fullname: Kenny, José María
  organization: Institute of Polymer Science and Technology, ICTP-CSIC, Madrid, Spain
– sequence: 5
  givenname: Laura
  surname: Peponi
  fullname: Peponi, Laura
  email: lpeponi@ictp.csic.es
  organization: Institute of Polymer Science and Technology, ICTP-CSIC, Madrid, Spain
BookMark eNqNkU1PGzEQhq2KSg20_2GlqhKXDR7b-3XgABEFpEjkAGfLa89SR856sR0Q_HocbU85MRcf5p1HM49PycnoRyTkD9AlUKgvtsvJu_edweegTEyqXzLKDr2OsfobWUDb8JJxBidkQUFAyTugP8hpjFuaS1SwIJtr62eA6h0W6FCn4OO0H4vN-qrc3F0Xg-0xxGJyKiar7Qea4s2mf4V39tnvMFhdOKVzq1Damp_k-6BcxF__3zPy9PfmcXVXrh9u71dX61LzTqSyZbXADqpaQGsUKmh0BYozRUUj-k5xCsAGrppKD3Vram7yWRSqxgxd3w2Un5HzmTsF_7LHmOTORo3OqRH9PkpWMcEYtLTO0d9H0a3fhzFvJ5kQHWtpyw_A1ZzS-f4YcJDaJpWsH1NQ1kmg8mBdbuWRdXmwLmfrmXJ5RJmC3anw_uX523kes7tXi0FGbXHUaGzIXyONt18kfQJsJapR
CitedBy_id crossref_primary_10_3390_polym15051240
crossref_primary_10_4995_jarte_2021_14772
crossref_primary_10_1016_j_ijbiomac_2022_02_185
crossref_primary_10_1016_j_jclepro_2021_128555
crossref_primary_10_1007_s13726_024_01393_8
crossref_primary_10_3390_molecules29225452
crossref_primary_10_3390_molecules26164925
crossref_primary_10_1002_app_56756
crossref_primary_10_3390_ijms24097979
crossref_primary_10_3390_polym12122975
crossref_primary_10_1016_j_ijbiomac_2023_124730
crossref_primary_10_1134_S1995421222030224
crossref_primary_10_1016_j_ijbiomac_2022_07_139
crossref_primary_10_1016_j_ijbiomac_2023_125487
crossref_primary_10_1016_j_envres_2023_116144
crossref_primary_10_3390_polym14122307
crossref_primary_10_1007_s42824_021_00038_y
crossref_primary_10_3390_polym13060941
crossref_primary_10_1016_j_scp_2024_101536
crossref_primary_10_3390_polym12061325
crossref_primary_10_1016_j_polymdegradstab_2023_110619
crossref_primary_10_1016_j_eurpolymj_2022_111505
crossref_primary_10_3390_polym16172449
crossref_primary_10_1016_j_indcrop_2023_116516
crossref_primary_10_3390_polym12112523
crossref_primary_10_3390_polym14235062
crossref_primary_10_1002_app_51839
crossref_primary_10_1016_j_ijbiomac_2023_127793
crossref_primary_10_3390_polym14091681
crossref_primary_10_3390_polym16081142
crossref_primary_10_1007_s10570_023_05417_z
crossref_primary_10_3390_polym14061216
crossref_primary_10_1016_j_eti_2021_101812
crossref_primary_10_1021_acsomega_3c10027
crossref_primary_10_26701_ems_1590916
crossref_primary_10_1016_j_eurpolymj_2024_112926
crossref_primary_10_3390_jfb14080412
crossref_primary_10_3390_nano10081524
crossref_primary_10_1016_j_ijbiomac_2024_130366
crossref_primary_10_3390_antiox12030755
crossref_primary_10_1021_acsabm_4c00010
crossref_primary_10_3390_polym16212969
crossref_primary_10_1016_j_clema_2024_100253
crossref_primary_10_1016_j_ijbiomac_2023_126076
crossref_primary_10_1016_j_ijbiomac_2023_127001
crossref_primary_10_1002_app_55408
crossref_primary_10_3390_polym15020285
crossref_primary_10_3390_polym14204394
crossref_primary_10_3390_polym14225049
crossref_primary_10_1007_s10924_022_02694_w
crossref_primary_10_1016_j_micromeso_2021_111260
crossref_primary_10_3390_molecules29010169
crossref_primary_10_1007_s10965_024_03930_8
crossref_primary_10_1002_pts_2553
crossref_primary_10_1021_acsapm_3c01730
crossref_primary_10_3390_molecules26051353
crossref_primary_10_3390_polym15234534
crossref_primary_10_1021_acssuschemeng_4c02303
crossref_primary_10_3390_polym14245357
crossref_primary_10_1002_app_54886
crossref_primary_10_1016_j_indcrop_2023_116971
crossref_primary_10_1080_19440049_2022_2122589
crossref_primary_10_1039_D2RA03513H
crossref_primary_10_3390_polym17050675
Cites_doi 10.1023/B:JOOE.0000010052.86786.ef
10.1016/j.eurpolymj.2019.05.014
10.1016/j.polymdegradstab.2012.05.036
10.1016/j.lwt.2015.06.032
10.1002/pi.5142
10.1111/1541-4337.12128
10.1002/pen.24274
10.1002/(SICI)1097-4628(19971121)66:8<1507::AID-APP11>3.0.CO;2-0
10.1007/s11947-015-1623-8
10.3390/app9030533
10.1111/jfpp.14044
10.1016/j.eurpolymj.2015.10.036
10.1002/mabi.200400043
10.1016/j.fpsl.2019.100357
10.1002/jsfa.7737
10.1016/S0079-6700(02)00012-6
10.3390/nano9020227
10.1007/s11947-016-1846-3
10.1002/adv.20235
10.1002/pi.3211
10.1007/s10924-013-0628-5
10.7569/JRM.2013.634130
10.3390/polym11122099
10.1007/s00289-018-2475-y
10.1007/s10924-014-0654-y
10.1007/s10853-014-8547-y
10.1016/j.carbpol.2019.115131
10.1002/app.10954
10.1016/j.polymdegradstab.2016.09.018
10.1016/j.indcrop.2015.12.058
10.3390/ma10091008
10.1016/j.polymdegradstab.2007.01.024
10.1016/j.msec.2014.01.046
10.1007/s10924-005-5529-9
10.3144/expresspolymlett.2015.55
10.1016/j.eurpolymj.2018.04.012
10.1002/macp.200800022
10.1016/j.carbpol.2014.12.056
10.1002/app.29784
10.1080/09205063.2015.1116885
10.1016/j.polymdegradstab.2016.02.027
10.1016/j.ifset.2018.04.007
10.1016/j.polymdegradstab.2009.11.045
10.1016/j.jfoodeng.2013.11.022
10.1016/j.indcrop.2017.10.042
10.1002/anie.200604646
10.3390/nano9030346
10.1016/j.trac.2017.04.004
10.1016/j.carbpol.2012.05.042
10.1016/j.eurpolymj.2013.11.009
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Sep 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Sep 2020
DBID AAYXX
CITATION
7SR
8FD
JG9
7S9
L.6
DOI 10.1016/j.polymdegradstab.2020.109226
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-2321
ExternalDocumentID 10_1016_j_polymdegradstab_2020_109226
S0141391020301580
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSK
SSM
SSZ
T5K
WH7
WUQ
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
8FD
EFKBS
JG9
7S9
L.6
ID FETCH-LOGICAL-c394t-8264e9156418daea17c51a32a0474b9a30112f3a75cf68d63d1090157df9b9f03
IEDL.DBID .~1
ISSN 0141-3910
IngestDate Fri Jul 11 10:01:50 EDT 2025
Fri Jul 25 06:31:06 EDT 2025
Tue Jul 01 02:29:50 EDT 2025
Thu Apr 24 23:00:11 EDT 2025
Fri Feb 23 02:46:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Oligomeric lactic acid (OLA)
Electrospinning
Plasticizer
Biodegradable
poly(lactic acid) (PLA)
poly(hydroxibutyrate) (PHB)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-8264e9156418daea17c51a32a0474b9a30112f3a75cf68d63d1090157df9b9f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2449280830
PQPubID 2045418
ParticipantIDs proquest_miscellaneous_2524221806
proquest_journals_2449280830
crossref_citationtrail_10_1016_j_polymdegradstab_2020_109226
crossref_primary_10_1016_j_polymdegradstab_2020_109226
elsevier_sciencedirect_doi_10_1016_j_polymdegradstab_2020_109226
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Polymer degradation and stability
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Leonés, Sonseca, López, Fiori, Peponi (bib29) 2019; 117
Arrieta, García, López, Fiori, Peponi (bib9) 2019; 9
Fiori, Ara (bib33) 2009
Abdelwahab, Flynn, Chiou, Imam, Orts, Chiellini (bib24) 2012; 97
Briassoulis (bib49) 2007; 92
Arrieta, Fortunati, Dominici, López, Kenny (bib41) 2015; 121
Södergård, Stolt (bib36) 2002; 27
Arrieta, López, López, Kenny, Peponi (bib27) 2016; 93
Ramier, Bouderlique, Stoilova, Manolova, Rashkov, Langlois (bib26) 2014; 38
Feuilloley, Cesar, Benguigui, Grohens, Pillin, Bewa (bib51) 2005; 13
Garcia-Campo, Quiles-Carrillo, Sanchez-Nacher, Balart, Montanes (bib16) 2019; 76
Burgos, Tolaguera, Fiori, Jiménez (bib20) 2014; 22
Mujica-Garcia, Navarro-Baena, Kenny, Peponi (bib5) 2014; 2
Hauser, Peñaloza, Guarda, Galotto, Bruna, Rodríguez (bib50) 2016; 9
Muller, Jiménez, González-Martínez, Chiralt (bib47) 2016; 65
López de Dicastillo, López-Carballo, Gavara, Muriel Galet, Guarda, Galotto (bib11) 2019
Noruzi (bib53) 2016; 96
De Jong, Van Nostrum, Kroon-Batenburg, Kettenes-van den Bosch, Hennink (bib48) 2002; 86
Quiles-Carrillo, Montanes, Lagaron, Balart, Torres-Giner (bib13) 2019; 9
Armentano, Fortunati, Burgos, Dominici, Luzi, Fiori (bib45) 2015; 9
Briassoulis (bib52) 2004; 12
Beltrán, Lorenzo, de la Orden, Martínez-Urreaga (bib37) 2016; 133
Luzi, Dominici, Armentano, Fortunati, Burgos, Fiori (bib21) 2019; 223
Busolo, Torres-Giner, Prieto, Lagaron (bib10) 2019; 51
Bordes, Pollet, Bourbigot, Averous (bib23) 2008; 209
Martino, Jiménez, Ruseckaite (bib22) 2009; 112
Garcia-Garcia, Fenollar, Fombuena, Lopez-Martinez, Balart (bib18) 2017
Peponi, Arrieta, Mujica-Garcia, López (bib2) 2017
Rezaei, Nasirpour, Fathi (bib4) 2015; 14
Zhang, Thomas (bib25) 2011; 30
Armentano, Fortunati, Burgos, Dominici, Luzi, Fiori (bib42) 2015; 64
Arrieta, López, López, Kenny, Peponi (bib1) 2015; 73
UNE-EN ISO-20200 (bib34) 2016
Arrieta, López, Hernández, Rayón (bib39) 2014; 50
Mercante, Scagion, Migliorini, Mattoso, Correa (bib54) 2017; 91
Calvão, Chenal, Gauthier, Demarquette, Bogner, Cavaille (bib31) 2012; 61
Arrieta, López de Dicastillo, Garrido, Roa, Galotto (bib12) 2018; 103
Arrieta, López, López, Kenny, Peponi (bib28) 2016; 132
Carrasco, Pagès, Gámez-Pérez, Santana, Maspoch (bib35) 2010; 95
Melendez-Rodriguez, Figueroa-Lopez, Bernardos, Martínez-Máñez, Cabedo, Torres-Giner (bib17) 2019; 9
Burgos, Armentano, Fortunati, Dominici, Luzi, Fiori (bib30) 2017; 10
Shi, Zhou, Yue, Guo, Wu, Wu (bib38) 2012; 90
Arrieta, Peponi, López, Fernández-García (bib19) 2018; 111
Labrecque, Kumar, Dave, Gross, McCarthy (bib44) 1997; 66
Lascano, Moraga, Ivorra-Martinez, Rojas-Lema, Torres-Giner, Balart (bib46) 2019; 11
Villarreal-Gómez, Cornejo-Bravo, Vera-Graziano, Grande (bib6) 2016; 27
Rodríguez-Tobías, Morales, Ledezma, Romero, Grande (bib32) 2014; 49
Arrieta, Samper, López, Jiménez (bib40) 2014; 22
Fabra, Lopez-Rubio, Lagaron (bib8) 2014; 127
Greiner, Wendorff (bib7) 2007; 46
Auras, Harte, Selke (bib14) 2004; 4
Arrieta, Samper, Aldas, López (bib15) 2017; 10
Radusin, Torres-Giner, Stupar, Ristic, Miletic, Novakovic (bib43) 2019; 21
Torres-Giner, Pérez-Masiá, Lagaron (bib3) 2016; 56
Arrieta (10.1016/j.polymdegradstab.2020.109226_bib40) 2014; 22
López de Dicastillo (10.1016/j.polymdegradstab.2020.109226_bib11) 2019
Auras (10.1016/j.polymdegradstab.2020.109226_bib14) 2004; 4
Hauser (10.1016/j.polymdegradstab.2020.109226_bib50) 2016; 9
Mercante (10.1016/j.polymdegradstab.2020.109226_bib54) 2017; 91
Burgos (10.1016/j.polymdegradstab.2020.109226_bib30) 2017; 10
Shi (10.1016/j.polymdegradstab.2020.109226_bib38) 2012; 90
Bordes (10.1016/j.polymdegradstab.2020.109226_bib23) 2008; 209
Labrecque (10.1016/j.polymdegradstab.2020.109226_bib44) 1997; 66
Arrieta (10.1016/j.polymdegradstab.2020.109226_bib28) 2016; 132
Garcia-Garcia (10.1016/j.polymdegradstab.2020.109226_bib18) 2017
Beltrán (10.1016/j.polymdegradstab.2020.109226_bib37) 2016; 133
Luzi (10.1016/j.polymdegradstab.2020.109226_bib21) 2019; 223
Fabra (10.1016/j.polymdegradstab.2020.109226_bib8) 2014; 127
Quiles-Carrillo (10.1016/j.polymdegradstab.2020.109226_bib13) 2019; 9
Melendez-Rodriguez (10.1016/j.polymdegradstab.2020.109226_bib17) 2019; 9
Arrieta (10.1016/j.polymdegradstab.2020.109226_bib12) 2018; 103
Villarreal-Gómez (10.1016/j.polymdegradstab.2020.109226_bib6) 2016; 27
Burgos (10.1016/j.polymdegradstab.2020.109226_bib20) 2014; 22
Carrasco (10.1016/j.polymdegradstab.2020.109226_bib35) 2010; 95
Abdelwahab (10.1016/j.polymdegradstab.2020.109226_bib24) 2012; 97
Lascano (10.1016/j.polymdegradstab.2020.109226_bib46) 2019; 11
Armentano (10.1016/j.polymdegradstab.2020.109226_bib45) 2015; 9
Arrieta (10.1016/j.polymdegradstab.2020.109226_bib9) 2019; 9
Feuilloley (10.1016/j.polymdegradstab.2020.109226_bib51) 2005; 13
Rodríguez-Tobías (10.1016/j.polymdegradstab.2020.109226_bib32) 2014; 49
Arrieta (10.1016/j.polymdegradstab.2020.109226_bib27) 2016; 93
Calvão (10.1016/j.polymdegradstab.2020.109226_bib31) 2012; 61
Muller (10.1016/j.polymdegradstab.2020.109226_bib47) 2016; 65
Torres-Giner (10.1016/j.polymdegradstab.2020.109226_bib3) 2016; 56
Briassoulis (10.1016/j.polymdegradstab.2020.109226_bib49) 2007; 92
Busolo (10.1016/j.polymdegradstab.2020.109226_bib10) 2019; 51
Ramier (10.1016/j.polymdegradstab.2020.109226_bib26) 2014; 38
Rezaei (10.1016/j.polymdegradstab.2020.109226_bib4) 2015; 14
Fiori (10.1016/j.polymdegradstab.2020.109226_bib33) 2009
Leonés (10.1016/j.polymdegradstab.2020.109226_bib29) 2019; 117
Noruzi (10.1016/j.polymdegradstab.2020.109226_bib53) 2016; 96
Martino (10.1016/j.polymdegradstab.2020.109226_bib22) 2009; 112
Södergård (10.1016/j.polymdegradstab.2020.109226_bib36) 2002; 27
Arrieta (10.1016/j.polymdegradstab.2020.109226_bib19) 2018; 111
Peponi (10.1016/j.polymdegradstab.2020.109226_bib2) 2017
Mujica-Garcia (10.1016/j.polymdegradstab.2020.109226_bib5) 2014; 2
UNE-EN ISO-20200 (10.1016/j.polymdegradstab.2020.109226_bib34) 2016
Radusin (10.1016/j.polymdegradstab.2020.109226_bib43) 2019; 21
Briassoulis (10.1016/j.polymdegradstab.2020.109226_bib52) 2004; 12
De Jong (10.1016/j.polymdegradstab.2020.109226_bib48) 2002; 86
Armentano (10.1016/j.polymdegradstab.2020.109226_bib42) 2015; 64
Arrieta (10.1016/j.polymdegradstab.2020.109226_bib1) 2015; 73
Greiner (10.1016/j.polymdegradstab.2020.109226_bib7) 2007; 46
Garcia-Campo (10.1016/j.polymdegradstab.2020.109226_bib16) 2019; 76
Arrieta (10.1016/j.polymdegradstab.2020.109226_bib41) 2015; 121
Arrieta (10.1016/j.polymdegradstab.2020.109226_bib39) 2014; 50
Zhang (10.1016/j.polymdegradstab.2020.109226_bib25) 2011; 30
Arrieta (10.1016/j.polymdegradstab.2020.109226_bib15) 2017; 10
References_xml – volume: 65
  start-page: 970
  year: 2016
  end-page: 978
  ident: bib47
  article-title: Influence of plasticizers on thermal properties and crystallization behaviour of poly (lactic acid) films obtained by compression moulding
  publication-title: Polym. Int.
– volume: 51
  start-page: 12
  year: 2019
  end-page: 19
  ident: bib10
  article-title: Electrospraying assisted by pressurized gas as an innovative high-throughput process for the microencapsulation and stabilization of docosahexaenoic acid-enriched fish oil in zein prolamine
  publication-title: Innovat. Food Sci. Emerg. Technol.
– volume: 127
  start-page: 1
  year: 2014
  end-page: 9
  ident: bib8
  article-title: Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters
  publication-title: J. Food Eng.
– volume: 76
  start-page: 1839
  year: 2019
  end-page: 1859
  ident: bib16
  article-title: High toughness poly(lactic acid) (PLA) formulations obtained by ternary blends with poly(3-hydroxybutyrate) (PHB) and flexible polyesters from succinic acid
  publication-title: Polym. Bull.
– volume: 64
  start-page: 980
  year: 2015
  end-page: 988
  ident: bib42
  article-title: Bio-based PLA_PHB plasticized blend films: processing and structural characterization
  publication-title: LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.)
– volume: 90
  start-page: 301
  year: 2012
  end-page: 308
  ident: bib38
  article-title: Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals
  publication-title: Carbohydr. Polym.
– volume: 121
  start-page: 265
  year: 2015
  end-page: 275
  ident: bib41
  article-title: Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends
  publication-title: Carbohydr. Polym.
– volume: 61
  start-page: 434
  year: 2012
  end-page: 441
  ident: bib31
  article-title: Understanding the mechanical and biodegradation behaviour of poly (hydroxybutyrate)/rubber blends in relation to their morphology
  publication-title: Polym. Int.
– volume: 50
  start-page: 255
  year: 2014
  end-page: 270
  ident: bib39
  article-title: Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications
  publication-title: Eur. Polym. J.
– volume: 27
  start-page: 1123
  year: 2002
  end-page: 1163
  ident: bib36
  article-title: Properties of lactic acid based polymers and their correlation with composition
  publication-title: Prog. Polym. Sci.
– volume: 92
  start-page: 1115
  year: 2007
  end-page: 1132
  ident: bib49
  article-title: Analysis of the mechanical and degradation performances of optimised agricultural biodegradable films
  publication-title: Polym. Degrad. Stabil.
– volume: 112
  start-page: 2010
  year: 2009
  end-page: 2018
  ident: bib22
  article-title: Processing and characterization of poly (lactic acid) films plasticized with commercial adipates
  publication-title: J. Appl. Polym. Sci.
– volume: 73
  start-page: 433
  year: 2015
  end-page: 446
  ident: bib1
  article-title: Development of flexible materials based on plasticized electrospun PLA–PHB blends: structural, thermal, mechanical and disintegration properties
  publication-title: Eur. Polym. J.
– year: 2019
  ident: bib11
  article-title: Improving polyphenolic thermal stability of Aristotelia Chilensis fruit extract by encapsulation within electrospun cyclodextrin capsules
  publication-title: J. Food Process. Preserv.
– start-page: 131
  year: 2017
  end-page: 154
  ident: bib2
  article-title: Smart Polymers. Modification of Polymer Properties
– volume: 132
  start-page: 145
  year: 2016
  end-page: 156
  ident: bib28
  article-title: Effect of chitosan and catechin addition on the structural, thermal, mechanical and disintegration properties of plasticized electrospun PLA-PHB biocomposites
  publication-title: Polym. Degrad. Stabil.
– volume: 9
  year: 2019
  ident: bib13
  article-title: Bioactive multilayer polylactide films with controlled release capacity of gallic acid accomplished by incorporating electrospun nanostructured coatings and interlayers
  publication-title: Appl. Sci.
– volume: 10
  start-page: 1008
  year: 2017
  ident: bib15
  article-title: On the use of PLA-PHB blends for sustainable food packaging applications
  publication-title: Materials
– volume: 11
  start-page: 2099
  year: 2019
  ident: bib46
  article-title: Development of injection-molded polylactide pieces with high toughness by the addition of lactic acid oligomer and characterization of their shape memory behavior
  publication-title: Polymers
– volume: 111
  start-page: 317
  year: 2018
  end-page: 328
  ident: bib19
  article-title: Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films
  publication-title: Ind. Crop. Prod.
– volume: 93
  start-page: 290
  year: 2016
  end-page: 301
  ident: bib27
  article-title: Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals
  publication-title: Ind. Crop. Prod.
– volume: 66
  start-page: 1507
  year: 1997
  end-page: 1513
  ident: bib44
  article-title: Citrate esters as plasticizers for poly (lactic acid)
  publication-title: J. Appl. Polym. Sci.
– volume: 56
  start-page: 500
  year: 2016
  end-page: 527
  ident: bib3
  article-title: A review on electrospun polymer nanostructures as advanced bioactive platforms
  publication-title: Polym. Eng. Sci.
– volume: 12
  start-page: 65
  year: 2004
  end-page: 81
  ident: bib52
  article-title: An overview on the mechanical behaviour of biodegradable agricultural films
  publication-title: J. Polym. Environ.
– volume: 4
  start-page: 835
  year: 2004
  end-page: 864
  ident: bib14
  article-title: An overview of polylactides as packaging materials
  publication-title: Macromol. Biosci.
– volume: 96
  start-page: 4663
  year: 2016
  end-page: 4678
  ident: bib53
  article-title: Electrospun nanofibres in agriculture and the food industry: a review
  publication-title: J. Sci. Food Agric.
– volume: 30
  start-page: 67
  year: 2011
  end-page: 79
  ident: bib25
  article-title: Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties
  publication-title: Adv. Polym. Technol.
– volume: 223
  start-page: 115131
  year: 2019
  ident: bib21
  article-title: Combined effect of cellulose nanocrystals, carvacrol and oligomeric lactic acid in PLA_PHB polymeric films
  publication-title: Carbohydr. Polym.
– volume: 91
  start-page: 91
  year: 2017
  end-page: 103
  ident: bib54
  article-title: Electrospinning-based (bio)sensors for food and agricultural applications: a review
  publication-title: Trac. Trends Anal. Chem.
– year: 2009
  ident: bib33
  article-title: Method for Plasticizing Lactic Acid Polymers
– volume: 9
  start-page: 298
  year: 2016
  end-page: 307
  ident: bib50
  article-title: Development of an active packaging film based on a methylcellulose coating containing murta (ugni molinae turcz) leaf extract
  publication-title: Food Bioprocess Technol.
– volume: 95
  start-page: 116
  year: 2010
  end-page: 125
  ident: bib35
  article-title: Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties
  publication-title: Polym. Degrad. Stabil.
– volume: 2
  start-page: 23
  year: 2014
  end-page: 34
  ident: bib5
  article-title: Influence of the processing parameters on the electrospinning of biopolymeric fibers
  publication-title: J. Renew. Mater.
– volume: 103
  start-page: 145
  year: 2018
  end-page: 157
  ident: bib12
  article-title: Electrospun PVA fibers loaded with antioxidant fillers extracted from Durvillaea Antarctica algae and their effect on plasticized PLA bionanocomposites
  publication-title: Eur. Polym. J.
– volume: 13
  start-page: 349
  year: 2005
  end-page: 355
  ident: bib51
  article-title: Degradation of polyethylene designed for agricultural purposes
  publication-title: J. Polym. Environ.
– volume: 38
  start-page: 161
  year: 2014
  end-page: 169
  ident: bib26
  article-title: Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications
  publication-title: Mater. Sci. Eng. C
– year: 2016
  ident: bib34
  article-title: Determination of the Degree of Disintegration of Plastic Materials under Simulated Composting Conditions in a Laboratory-Scale Test
– volume: 9
  start-page: 227
  year: 2019
  ident: bib17
  article-title: Electrospun antimicrobial films of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) containing eugenol essential oil encapsulated in mesoporous silica nanoparticles
  publication-title: Nanomaterials
– volume: 117
  start-page: 217
  year: 2019
  end-page: 226
  ident: bib29
  article-title: Shape memory effect on electrospun PLA-based fibers tailoring their thermal response
  publication-title: Eur. Polym. J.
– volume: 10
  start-page: 770
  year: 2017
  end-page: 780
  ident: bib30
  article-title: Functional properties of plasticized bio-based poly (lactic acid) _poly (hydroxybutyrate)(PLA_PHB) films for active food packaging
  publication-title: Food Bioprocess Technol.
– volume: 49
  start-page: 8373
  year: 2014
  end-page: 8385
  ident: bib32
  article-title: Novel antibacterial electrospun mats based on poly(D,L-lactide) nanofibers and zinc oxide nanoparticles
  publication-title: J. Mater. Sci.
– volume: 22
  start-page: 227
  year: 2014
  end-page: 235
  ident: bib20
  article-title: Synthesis and characterization of lactic acid oligomers: evaluation of performance as poly (lactic acid) plasticizers
  publication-title: J. Polym. Environ.
– start-page: 302
  year: 2017
  ident: bib18
  article-title: Improvement of mechanical ductile properties of poly(3-hydroxybutyrate) by using vegetable oil derivatives
  publication-title: Macromol. Mater. Eng.
– volume: 22
  start-page: 460
  year: 2014
  end-page: 470
  ident: bib40
  article-title: Combined effect of poly(hydroxybutyrate) and plasticizers on polylactic acid properties for film intended for food packaging
  publication-title: J. Polym. Environ.
– volume: 97
  start-page: 1822
  year: 2012
  end-page: 1828
  ident: bib24
  article-title: Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends
  publication-title: Polym. Degrad. Stabil.
– volume: 133
  start-page: 339
  year: 2016
  end-page: 348
  ident: bib37
  article-title: Effect of different mechanical recycling processes on the hydrolytic degradation of poly (l-lactic acid)
  publication-title: Polym. Degrad. Stabil.
– volume: 86
  start-page: 289
  year: 2002
  end-page: 293
  ident: bib48
  article-title: Oligolactate-grafted dextran hydrogels: detection of stereocomplex crosslinks by X-ray diffraction
  publication-title: J. Appl. Polym. Sci.
– volume: 209
  start-page: 1473
  year: 2008
  end-page: 1484
  ident: bib23
  article-title: Structure and properties of PHA/clay nano-biocomposites prepared by melt intercalation
  publication-title: Macromol. Chem. Phys.
– volume: 14
  start-page: 269
  year: 2015
  end-page: 284
  ident: bib4
  article-title: Application of cellulosic nanofibers in food science using electrospinning and its potential risk
  publication-title: Compr. Rev. Food Sci. Food Saf.
– volume: 9
  start-page: 583
  year: 2015
  end-page: 596
  ident: bib45
  article-title: Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems
  publication-title: Express Polym. Lett.
– volume: 9
  year: 2019
  ident: bib9
  article-title: Antioxidant bilayers based on PHBV and plasticized electrospun PLA-PHB fibers encapsulating catechin
  publication-title: Nanomaterials
– volume: 21
  start-page: 100357
  year: 2019
  ident: bib43
  article-title: Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract
  publication-title: Food Package Shelf Life
– volume: 46
  start-page: 5670
  year: 2007
  end-page: 5703
  ident: bib7
  article-title: Electrospinning: a fascinating method for the preparation of ultrathin fibers
  publication-title: Angew. Chem. Int. Ed.
– volume: 27
  start-page: 157
  year: 2016
  end-page: 176
  ident: bib6
  article-title: Electrospinning as a powerful technique for biomedical applications: a critically selected survey
  publication-title: J. Biomater. Sci. Polym. Ed.
– volume: 12
  start-page: 65
  year: 2004
  ident: 10.1016/j.polymdegradstab.2020.109226_bib52
  article-title: An overview on the mechanical behaviour of biodegradable agricultural films
  publication-title: J. Polym. Environ.
  doi: 10.1023/B:JOOE.0000010052.86786.ef
– volume: 117
  start-page: 217
  year: 2019
  ident: 10.1016/j.polymdegradstab.2020.109226_bib29
  article-title: Shape memory effect on electrospun PLA-based fibers tailoring their thermal response
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2019.05.014
– volume: 97
  start-page: 1822
  year: 2012
  ident: 10.1016/j.polymdegradstab.2020.109226_bib24
  article-title: Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2012.05.036
– volume: 64
  start-page: 980
  year: 2015
  ident: 10.1016/j.polymdegradstab.2020.109226_bib42
  article-title: Bio-based PLA_PHB plasticized blend films: processing and structural characterization
  publication-title: LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.)
  doi: 10.1016/j.lwt.2015.06.032
– volume: 65
  start-page: 970
  year: 2016
  ident: 10.1016/j.polymdegradstab.2020.109226_bib47
  article-title: Influence of plasticizers on thermal properties and crystallization behaviour of poly (lactic acid) films obtained by compression moulding
  publication-title: Polym. Int.
  doi: 10.1002/pi.5142
– volume: 14
  start-page: 269
  year: 2015
  ident: 10.1016/j.polymdegradstab.2020.109226_bib4
  article-title: Application of cellulosic nanofibers in food science using electrospinning and its potential risk
  publication-title: Compr. Rev. Food Sci. Food Saf.
  doi: 10.1111/1541-4337.12128
– volume: 56
  start-page: 500
  year: 2016
  ident: 10.1016/j.polymdegradstab.2020.109226_bib3
  article-title: A review on electrospun polymer nanostructures as advanced bioactive platforms
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.24274
– volume: 66
  start-page: 1507
  year: 1997
  ident: 10.1016/j.polymdegradstab.2020.109226_bib44
  article-title: Citrate esters as plasticizers for poly (lactic acid)
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/(SICI)1097-4628(19971121)66:8<1507::AID-APP11>3.0.CO;2-0
– volume: 9
  start-page: 298
  year: 2016
  ident: 10.1016/j.polymdegradstab.2020.109226_bib50
  article-title: Development of an active packaging film based on a methylcellulose coating containing murta (ugni molinae turcz) leaf extract
  publication-title: Food Bioprocess Technol.
  doi: 10.1007/s11947-015-1623-8
– volume: 9
  year: 2019
  ident: 10.1016/j.polymdegradstab.2020.109226_bib13
  article-title: Bioactive multilayer polylactide films with controlled release capacity of gallic acid accomplished by incorporating electrospun nanostructured coatings and interlayers
  publication-title: Appl. Sci.
  doi: 10.3390/app9030533
– year: 2019
  ident: 10.1016/j.polymdegradstab.2020.109226_bib11
  article-title: Improving polyphenolic thermal stability of Aristotelia Chilensis fruit extract by encapsulation within electrospun cyclodextrin capsules
  publication-title: J. Food Process. Preserv.
  doi: 10.1111/jfpp.14044
– volume: 73
  start-page: 433
  year: 2015
  ident: 10.1016/j.polymdegradstab.2020.109226_bib1
  article-title: Development of flexible materials based on plasticized electrospun PLA–PHB blends: structural, thermal, mechanical and disintegration properties
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2015.10.036
– volume: 4
  start-page: 835
  year: 2004
  ident: 10.1016/j.polymdegradstab.2020.109226_bib14
  article-title: An overview of polylactides as packaging materials
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.200400043
– volume: 21
  start-page: 100357
  year: 2019
  ident: 10.1016/j.polymdegradstab.2020.109226_bib43
  article-title: Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract
  publication-title: Food Package Shelf Life
  doi: 10.1016/j.fpsl.2019.100357
– volume: 96
  start-page: 4663
  year: 2016
  ident: 10.1016/j.polymdegradstab.2020.109226_bib53
  article-title: Electrospun nanofibres in agriculture and the food industry: a review
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.7737
– volume: 27
  start-page: 1123
  year: 2002
  ident: 10.1016/j.polymdegradstab.2020.109226_bib36
  article-title: Properties of lactic acid based polymers and their correlation with composition
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/S0079-6700(02)00012-6
– volume: 9
  start-page: 227
  year: 2019
  ident: 10.1016/j.polymdegradstab.2020.109226_bib17
  article-title: Electrospun antimicrobial films of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) containing eugenol essential oil encapsulated in mesoporous silica nanoparticles
  publication-title: Nanomaterials
  doi: 10.3390/nano9020227
– start-page: 302
  year: 2017
  ident: 10.1016/j.polymdegradstab.2020.109226_bib18
  article-title: Improvement of mechanical ductile properties of poly(3-hydroxybutyrate) by using vegetable oil derivatives
  publication-title: Macromol. Mater. Eng.
– volume: 10
  start-page: 770
  year: 2017
  ident: 10.1016/j.polymdegradstab.2020.109226_bib30
  article-title: Functional properties of plasticized bio-based poly (lactic acid) _poly (hydroxybutyrate)(PLA_PHB) films for active food packaging
  publication-title: Food Bioprocess Technol.
  doi: 10.1007/s11947-016-1846-3
– volume: 30
  start-page: 67
  year: 2011
  ident: 10.1016/j.polymdegradstab.2020.109226_bib25
  article-title: Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties
  publication-title: Adv. Polym. Technol.
  doi: 10.1002/adv.20235
– volume: 61
  start-page: 434
  year: 2012
  ident: 10.1016/j.polymdegradstab.2020.109226_bib31
  article-title: Understanding the mechanical and biodegradation behaviour of poly (hydroxybutyrate)/rubber blends in relation to their morphology
  publication-title: Polym. Int.
  doi: 10.1002/pi.3211
– volume: 22
  start-page: 227
  year: 2014
  ident: 10.1016/j.polymdegradstab.2020.109226_bib20
  article-title: Synthesis and characterization of lactic acid oligomers: evaluation of performance as poly (lactic acid) plasticizers
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-013-0628-5
– volume: 2
  start-page: 23
  year: 2014
  ident: 10.1016/j.polymdegradstab.2020.109226_bib5
  article-title: Influence of the processing parameters on the electrospinning of biopolymeric fibers
  publication-title: J. Renew. Mater.
  doi: 10.7569/JRM.2013.634130
– volume: 11
  start-page: 2099
  year: 2019
  ident: 10.1016/j.polymdegradstab.2020.109226_bib46
  article-title: Development of injection-molded polylactide pieces with high toughness by the addition of lactic acid oligomer and characterization of their shape memory behavior
  publication-title: Polymers
  doi: 10.3390/polym11122099
– volume: 76
  start-page: 1839
  year: 2019
  ident: 10.1016/j.polymdegradstab.2020.109226_bib16
  article-title: High toughness poly(lactic acid) (PLA) formulations obtained by ternary blends with poly(3-hydroxybutyrate) (PHB) and flexible polyesters from succinic acid
  publication-title: Polym. Bull.
  doi: 10.1007/s00289-018-2475-y
– year: 2009
  ident: 10.1016/j.polymdegradstab.2020.109226_bib33
– volume: 22
  start-page: 460
  year: 2014
  ident: 10.1016/j.polymdegradstab.2020.109226_bib40
  article-title: Combined effect of poly(hydroxybutyrate) and plasticizers on polylactic acid properties for film intended for food packaging
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-014-0654-y
– volume: 49
  start-page: 8373
  year: 2014
  ident: 10.1016/j.polymdegradstab.2020.109226_bib32
  article-title: Novel antibacterial electrospun mats based on poly(D,L-lactide) nanofibers and zinc oxide nanoparticles
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-014-8547-y
– volume: 223
  start-page: 115131
  year: 2019
  ident: 10.1016/j.polymdegradstab.2020.109226_bib21
  article-title: Combined effect of cellulose nanocrystals, carvacrol and oligomeric lactic acid in PLA_PHB polymeric films
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2019.115131
– volume: 86
  start-page: 289
  year: 2002
  ident: 10.1016/j.polymdegradstab.2020.109226_bib48
  article-title: Oligolactate-grafted dextran hydrogels: detection of stereocomplex crosslinks by X-ray diffraction
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.10954
– volume: 133
  start-page: 339
  year: 2016
  ident: 10.1016/j.polymdegradstab.2020.109226_bib37
  article-title: Effect of different mechanical recycling processes on the hydrolytic degradation of poly (l-lactic acid)
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2016.09.018
– volume: 93
  start-page: 290
  year: 2016
  ident: 10.1016/j.polymdegradstab.2020.109226_bib27
  article-title: Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2015.12.058
– volume: 10
  start-page: 1008
  year: 2017
  ident: 10.1016/j.polymdegradstab.2020.109226_bib15
  article-title: On the use of PLA-PHB blends for sustainable food packaging applications
  publication-title: Materials
  doi: 10.3390/ma10091008
– volume: 92
  start-page: 1115
  year: 2007
  ident: 10.1016/j.polymdegradstab.2020.109226_bib49
  article-title: Analysis of the mechanical and degradation performances of optimised agricultural biodegradable films
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2007.01.024
– volume: 38
  start-page: 161
  year: 2014
  ident: 10.1016/j.polymdegradstab.2020.109226_bib26
  article-title: Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2014.01.046
– volume: 13
  start-page: 349
  year: 2005
  ident: 10.1016/j.polymdegradstab.2020.109226_bib51
  article-title: Degradation of polyethylene designed for agricultural purposes
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-005-5529-9
– volume: 9
  start-page: 583
  issue: 7
  year: 2015
  ident: 10.1016/j.polymdegradstab.2020.109226_bib45
  article-title: Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems
  publication-title: Express Polym. Lett.
  doi: 10.3144/expresspolymlett.2015.55
– volume: 103
  start-page: 145
  year: 2018
  ident: 10.1016/j.polymdegradstab.2020.109226_bib12
  article-title: Electrospun PVA fibers loaded with antioxidant fillers extracted from Durvillaea Antarctica algae and their effect on plasticized PLA bionanocomposites
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2018.04.012
– volume: 209
  start-page: 1473
  year: 2008
  ident: 10.1016/j.polymdegradstab.2020.109226_bib23
  article-title: Structure and properties of PHA/clay nano-biocomposites prepared by melt intercalation
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.200800022
– start-page: 131
  year: 2017
  ident: 10.1016/j.polymdegradstab.2020.109226_bib2
– volume: 121
  start-page: 265
  year: 2015
  ident: 10.1016/j.polymdegradstab.2020.109226_bib41
  article-title: Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2014.12.056
– volume: 112
  start-page: 2010
  year: 2009
  ident: 10.1016/j.polymdegradstab.2020.109226_bib22
  article-title: Processing and characterization of poly (lactic acid) films plasticized with commercial adipates
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.29784
– volume: 27
  start-page: 157
  year: 2016
  ident: 10.1016/j.polymdegradstab.2020.109226_bib6
  article-title: Electrospinning as a powerful technique for biomedical applications: a critically selected survey
  publication-title: J. Biomater. Sci. Polym. Ed.
  doi: 10.1080/09205063.2015.1116885
– volume: 132
  start-page: 145
  year: 2016
  ident: 10.1016/j.polymdegradstab.2020.109226_bib28
  article-title: Effect of chitosan and catechin addition on the structural, thermal, mechanical and disintegration properties of plasticized electrospun PLA-PHB biocomposites
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2016.02.027
– volume: 51
  start-page: 12
  year: 2019
  ident: 10.1016/j.polymdegradstab.2020.109226_bib10
  article-title: Electrospraying assisted by pressurized gas as an innovative high-throughput process for the microencapsulation and stabilization of docosahexaenoic acid-enriched fish oil in zein prolamine
  publication-title: Innovat. Food Sci. Emerg. Technol.
  doi: 10.1016/j.ifset.2018.04.007
– volume: 95
  start-page: 116
  year: 2010
  ident: 10.1016/j.polymdegradstab.2020.109226_bib35
  article-title: Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2009.11.045
– volume: 127
  start-page: 1
  year: 2014
  ident: 10.1016/j.polymdegradstab.2020.109226_bib8
  article-title: Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2013.11.022
– volume: 111
  start-page: 317
  year: 2018
  ident: 10.1016/j.polymdegradstab.2020.109226_bib19
  article-title: Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2017.10.042
– volume: 46
  start-page: 5670
  year: 2007
  ident: 10.1016/j.polymdegradstab.2020.109226_bib7
  article-title: Electrospinning: a fascinating method for the preparation of ultrathin fibers
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200604646
– year: 2016
  ident: 10.1016/j.polymdegradstab.2020.109226_bib34
– volume: 9
  year: 2019
  ident: 10.1016/j.polymdegradstab.2020.109226_bib9
  article-title: Antioxidant bilayers based on PHBV and plasticized electrospun PLA-PHB fibers encapsulating catechin
  publication-title: Nanomaterials
  doi: 10.3390/nano9030346
– volume: 91
  start-page: 91
  year: 2017
  ident: 10.1016/j.polymdegradstab.2020.109226_bib54
  article-title: Electrospinning-based (bio)sensors for food and agricultural applications: a review
  publication-title: Trac. Trends Anal. Chem.
  doi: 10.1016/j.trac.2017.04.004
– volume: 90
  start-page: 301
  year: 2012
  ident: 10.1016/j.polymdegradstab.2020.109226_bib38
  article-title: Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2012.05.042
– volume: 50
  start-page: 255
  year: 2014
  ident: 10.1016/j.polymdegradstab.2020.109226_bib39
  article-title: Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2013.11.009
SSID ssj0000451
Score 2.5428083
Snippet In this paper flexible electrospun mats based on poly(lactic acid) (PLA) blended with 25 wt% of poly(hydroxibutyrate) (PHB) and further plasticized with three...
In this paper flexible electrospun mats based on poly(lactic acid) (PLA) blended with 25 wt% of poly(hydroxibutyrate) (PHB) and further plasticized with three...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109226
SubjectTerms Acids
Biodegradability
Biodegradable
Biodegradable materials
Composting
composts
Crystal defects
Crystallization
degradation
Disintegration
Electrospinning
Fibers
Mats
Mechanical properties
mulches
Oligomeric lactic acid (OLA)
Plasticizer
plasticizers
poly(hydroxibutyrate) (PHB)
poly(lactic acid) (PLA)
Polyhydroxybutyrate
Polylactic acid
Polymer blends
Reduction
Studies
Ternary systems
viscosity
Title Biodegradable electrospun PLA-PHB fibers plasticized with oligomeric lactic acid
URI https://dx.doi.org/10.1016/j.polymdegradstab.2020.109226
https://www.proquest.com/docview/2449280830
https://www.proquest.com/docview/2524221806
Volume 179
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1VILEcEKsoS2UkOIZmcTaJA6WiKqt6AImb5cQ2CipJRNsDHPh2PFkKVBwqcUxiO9bYnnm238wAHAee8qgUphFxERtU6Q1KhIc46MSpHJe7KkYH57t7r_9Ir5_cpwZ0a18YpFVWur_U6YW2rt60K2m28yRpIy1JwxcLr9K0TQtw306pj7P89POb5oHxU0oao2Vg6SU4-eZ45dnw_VVgVAYxQg8FWzeGAZZsjLXwt52a0diFGeqtw1qFH0mn7OIGNGS6CcvdOm3bJqz-iDC4BYOLJCv_jC5SpEp6M8onKRncdoxB_4Io5IyMSK5hNDKsP6QgeDhLsmHynBX3OWRYeFIRHidiGx57lw_dvlElUTBiJ6RjQ28fqAwxJIwVCC655ceuxR2bm9SnUchxgdvK4b4bKy8QniOQqmm5vlBhFCrT2YGFNEvlLhAZWIoKUwilUVbgicgNhWlLKmRAtcKlTTirRcbiKsI4JroYsppK9sJmJM5Q4qyUeBO8afW8DLUxb8XzenzYr7nDtFmYt4mDelxZtYhHTCOf0A40RjWbcDT9rIcT71R4KrOJLuNqjKNhkunt_b8X-7CCTyWF7QAWxm8TeagxzzhqFZO6BYudq5v-_RdqVwNK
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH5CRRrbAW3ARDcYnjSOUfPDThOJA6UaCqNUPYDEzXJiGwV1SbS2h-2v33uNAxvigMQ1jp3o2X7-bH_vewDfktjG3Gjfy5UuPG5xg5LTIQ4FcdpIKGELCnC-msbZDf9xK243YNzFwhCt0vn-1qevvbV7MnDWHDRlOSBaEsKXgK7ScE1LcN--SepUogebo4vLbProkLlo0xLywKMKb-D4kebV1PPfPzUJM-gFBSmE2B5pLIUkt_D8UvXEaa9XovP3sO0gJBu1f_kBNky1A1vjLnPbDrz7R2RwF2ZnZd1-maKkmMt7s2hWFZtNRt4sO2OWaCML1iCSJpL1H6MZnc-yel7e1esrHTZfB1MxVZR6D27Ov1-PM8_lUfCKKOVLD3cQ3KSkChMkWhkVDAsRqChUPh_yPFU0x0MbqaEobJzoONLE1gzEUNs0T60ffYReVVdmH5hJAsu1r7VFoJXEOhep9kPDtUk4-lzeh5POZLJwIuOU62IuOzbZvXxicUkWl63F-xA_VG9atY2XVjzt-kf-N3wkrgwvbeKg61fp5vFCIvhJwwRhqt-Hrw_F2J10raIqU6_wHYEwB5GSH396_V8cwVZ2fTWRk4vp5Wd4SyUto-0AestfK3OIEGiZf3FD_C9BLwX7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biodegradable+electrospun+PLA-PHB+fibers+plasticized+with+oligomeric+lactic+acid&rft.jtitle=Polymer+degradation+and+stability&rft.au=Arrieta%2C+Marina+P.&rft.au=Perdiguero%2C+Miguel&rft.au=Fiori%2C+Stefano&rft.au=Kenny%2C+Jos%C3%A9+Mar%C3%ADa&rft.date=2020-09-01&rft.pub=Elsevier+Ltd&rft.issn=0141-3910&rft.eissn=1873-2321&rft.volume=179&rft_id=info:doi/10.1016%2Fj.polymdegradstab.2020.109226&rft.externalDocID=S0141391020301580
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-3910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-3910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-3910&client=summon