Biodegradable electrospun PLA-PHB fibers plasticized with oligomeric lactic acid
In this paper flexible electrospun mats based on poly(lactic acid) (PLA) blended with 25 wt% of poly(hydroxibutyrate) (PHB) and further plasticized with three different concentration of oligomeric lactic acid (OLA) were developed. The morphological, structural, thermal and mechanical performance of...
Saved in:
Published in | Polymer degradation and stability Vol. 179; p. 109226 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier Ltd
01.09.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper flexible electrospun mats based on poly(lactic acid) (PLA) blended with 25 wt% of poly(hydroxibutyrate) (PHB) and further plasticized with three different concentration of oligomeric lactic acid (OLA) were developed. The morphological, structural, thermal and mechanical performance of electrospun mats was evaluated. OLA improves the crystallization rate of PLA presenting better interaction with PLA than with PHB. The incorporation of OLA to PLA-PHB blends produced a decrease on the viscosity of the polymeric solutions, leading to a reduction of the fibers diameters by increasing the amount of OLA plasticizer in the final blends. The highest amount of OLA of 20 wt% respect to PLA-PHB blend produced some bead defects in the fibers, which leads to a reduction of the mechanical performance of woven no-woven electrospun mats. Furthermore, all the electrospun mats were disintegrated in composting conditions showing their interest as compostable materials. The ternary system PLA-PHB-OLA15, showed the best results in term of structural and mechanical properties as well as appropriate disintegration in compost suggesting their potential applications as agricultural mulch films.
•Woven no-woven plasticized electrospun fibers have been successfully obtained.•Blends of PLA-PHB with different plasticizer composition have been obtained by electrospinning techniques.•The mechanical response can be tuned with the different amount of plasticizer.•Biodegradable electrospun mats for potential application in agriculture have been studied. |
---|---|
AbstractList | In this paper flexible electrospun mats based on poly(lactic acid) (PLA) blended with 25 wt% of poly(hydroxibutyrate) (PHB) and further plasticized with three different concentration of oligomeric lactic acid (OLA) were developed. The morphological, structural, thermal and mechanical performance of electrospun mats was evaluated. OLA improves the crystallization rate of PLA presenting better interaction with PLA than with PHB. The incorporation of OLA to PLA-PHB blends produced a decrease on the viscosity of the polymeric solutions, leading to a reduction of the fibers diameters by increasing the amount of OLA plasticizer in the final blends. The highest amount of OLA of 20 wt% respect to PLA-PHB blend produced some bead defects in the fibers, which leads to a reduction of the mechanical performance of woven no-woven electrospun mats. Furthermore, all the electrospun mats were disintegrated in composting conditions showing their interest as compostable materials. The ternary system PLA-PHB-OLA15, showed the best results in term of structural and mechanical properties as well as appropriate disintegration in compost suggesting their potential applications as agricultural mulch films. In this paper flexible electrospun mats based on poly(lactic acid) (PLA) blended with 25 wt% of poly(hydroxibutyrate) (PHB) and further plasticized with three different concentration of oligomeric lactic acid (OLA) were developed. The morphological, structural, thermal and mechanical performance of electrospun mats was evaluated. OLA improves the crystallization rate of PLA presenting better interaction with PLA than with PHB. The incorporation of OLA to PLA-PHB blends produced a decrease on the viscosity of the polymeric solutions, leading to a reduction of the fibers diameters by increasing the amount of OLA plasticizer in the final blends. The highest amount of OLA of 20 wt% respect to PLA-PHB blend produced some bead defects in the fibers, which leads to a reduction of the mechanical performance of woven no-woven electrospun mats. Furthermore, all the electrospun mats were disintegrated in composting conditions showing their interest as compostable materials. The ternary system PLA-PHB-OLA15, showed the best results in term of structural and mechanical properties as well as appropriate disintegration in compost suggesting their potential applications as agricultural mulch films. •Woven no-woven plasticized electrospun fibers have been successfully obtained.•Blends of PLA-PHB with different plasticizer composition have been obtained by electrospinning techniques.•The mechanical response can be tuned with the different amount of plasticizer.•Biodegradable electrospun mats for potential application in agriculture have been studied. |
ArticleNumber | 109226 |
Author | Arrieta, Marina P. Kenny, José María Fiori, Stefano Peponi, Laura Perdiguero, Miguel |
Author_xml | – sequence: 1 givenname: Marina P. surname: Arrieta fullname: Arrieta, Marina P. email: marrie06@ucm.es organization: Institute of Polymer Science and Technology, ICTP-CSIC, Madrid, Spain – sequence: 2 givenname: Miguel surname: Perdiguero fullname: Perdiguero, Miguel organization: Institute of Polymer Science and Technology, ICTP-CSIC, Madrid, Spain – sequence: 3 givenname: Stefano surname: Fiori fullname: Fiori, Stefano organization: Condensia Química S.A, R&D Department, c/ La Cierva 8, 08184, Barcelona, Spain – sequence: 4 givenname: José María surname: Kenny fullname: Kenny, José María organization: Institute of Polymer Science and Technology, ICTP-CSIC, Madrid, Spain – sequence: 5 givenname: Laura surname: Peponi fullname: Peponi, Laura email: lpeponi@ictp.csic.es organization: Institute of Polymer Science and Technology, ICTP-CSIC, Madrid, Spain |
BookMark | eNqNkU1PGzEQhq2KSg20_2GlqhKXDR7b-3XgABEFpEjkAGfLa89SR856sR0Q_HocbU85MRcf5p1HM49PycnoRyTkD9AlUKgvtsvJu_edweegTEyqXzLKDr2OsfobWUDb8JJxBidkQUFAyTugP8hpjFuaS1SwIJtr62eA6h0W6FCn4OO0H4vN-qrc3F0Xg-0xxGJyKiar7Qea4s2mf4V39tnvMFhdOKVzq1Damp_k-6BcxF__3zPy9PfmcXVXrh9u71dX61LzTqSyZbXADqpaQGsUKmh0BYozRUUj-k5xCsAGrppKD3Vram7yWRSqxgxd3w2Un5HzmTsF_7LHmOTORo3OqRH9PkpWMcEYtLTO0d9H0a3fhzFvJ5kQHWtpyw_A1ZzS-f4YcJDaJpWsH1NQ1kmg8mBdbuWRdXmwLmfrmXJ5RJmC3anw_uX523kes7tXi0FGbXHUaGzIXyONt18kfQJsJapR |
CitedBy_id | crossref_primary_10_3390_polym15051240 crossref_primary_10_4995_jarte_2021_14772 crossref_primary_10_1016_j_ijbiomac_2022_02_185 crossref_primary_10_1016_j_jclepro_2021_128555 crossref_primary_10_1007_s13726_024_01393_8 crossref_primary_10_3390_molecules29225452 crossref_primary_10_3390_molecules26164925 crossref_primary_10_1002_app_56756 crossref_primary_10_3390_ijms24097979 crossref_primary_10_3390_polym12122975 crossref_primary_10_1016_j_ijbiomac_2023_124730 crossref_primary_10_1134_S1995421222030224 crossref_primary_10_1016_j_ijbiomac_2022_07_139 crossref_primary_10_1016_j_ijbiomac_2023_125487 crossref_primary_10_1016_j_envres_2023_116144 crossref_primary_10_3390_polym14122307 crossref_primary_10_1007_s42824_021_00038_y crossref_primary_10_3390_polym13060941 crossref_primary_10_1016_j_scp_2024_101536 crossref_primary_10_3390_polym12061325 crossref_primary_10_1016_j_polymdegradstab_2023_110619 crossref_primary_10_1016_j_eurpolymj_2022_111505 crossref_primary_10_3390_polym16172449 crossref_primary_10_1016_j_indcrop_2023_116516 crossref_primary_10_3390_polym12112523 crossref_primary_10_3390_polym14235062 crossref_primary_10_1002_app_51839 crossref_primary_10_1016_j_ijbiomac_2023_127793 crossref_primary_10_3390_polym14091681 crossref_primary_10_3390_polym16081142 crossref_primary_10_1007_s10570_023_05417_z crossref_primary_10_3390_polym14061216 crossref_primary_10_1016_j_eti_2021_101812 crossref_primary_10_1021_acsomega_3c10027 crossref_primary_10_26701_ems_1590916 crossref_primary_10_1016_j_eurpolymj_2024_112926 crossref_primary_10_3390_jfb14080412 crossref_primary_10_3390_nano10081524 crossref_primary_10_1016_j_ijbiomac_2024_130366 crossref_primary_10_3390_antiox12030755 crossref_primary_10_1021_acsabm_4c00010 crossref_primary_10_3390_polym16212969 crossref_primary_10_1016_j_clema_2024_100253 crossref_primary_10_1016_j_ijbiomac_2023_126076 crossref_primary_10_1016_j_ijbiomac_2023_127001 crossref_primary_10_1002_app_55408 crossref_primary_10_3390_polym15020285 crossref_primary_10_3390_polym14204394 crossref_primary_10_3390_polym14225049 crossref_primary_10_1007_s10924_022_02694_w crossref_primary_10_1016_j_micromeso_2021_111260 crossref_primary_10_3390_molecules29010169 crossref_primary_10_1007_s10965_024_03930_8 crossref_primary_10_1002_pts_2553 crossref_primary_10_1021_acsapm_3c01730 crossref_primary_10_3390_molecules26051353 crossref_primary_10_3390_polym15234534 crossref_primary_10_1021_acssuschemeng_4c02303 crossref_primary_10_3390_polym14245357 crossref_primary_10_1002_app_54886 crossref_primary_10_1016_j_indcrop_2023_116971 crossref_primary_10_1080_19440049_2022_2122589 crossref_primary_10_1039_D2RA03513H crossref_primary_10_3390_polym17050675 |
Cites_doi | 10.1023/B:JOOE.0000010052.86786.ef 10.1016/j.eurpolymj.2019.05.014 10.1016/j.polymdegradstab.2012.05.036 10.1016/j.lwt.2015.06.032 10.1002/pi.5142 10.1111/1541-4337.12128 10.1002/pen.24274 10.1002/(SICI)1097-4628(19971121)66:8<1507::AID-APP11>3.0.CO;2-0 10.1007/s11947-015-1623-8 10.3390/app9030533 10.1111/jfpp.14044 10.1016/j.eurpolymj.2015.10.036 10.1002/mabi.200400043 10.1016/j.fpsl.2019.100357 10.1002/jsfa.7737 10.1016/S0079-6700(02)00012-6 10.3390/nano9020227 10.1007/s11947-016-1846-3 10.1002/adv.20235 10.1002/pi.3211 10.1007/s10924-013-0628-5 10.7569/JRM.2013.634130 10.3390/polym11122099 10.1007/s00289-018-2475-y 10.1007/s10924-014-0654-y 10.1007/s10853-014-8547-y 10.1016/j.carbpol.2019.115131 10.1002/app.10954 10.1016/j.polymdegradstab.2016.09.018 10.1016/j.indcrop.2015.12.058 10.3390/ma10091008 10.1016/j.polymdegradstab.2007.01.024 10.1016/j.msec.2014.01.046 10.1007/s10924-005-5529-9 10.3144/expresspolymlett.2015.55 10.1016/j.eurpolymj.2018.04.012 10.1002/macp.200800022 10.1016/j.carbpol.2014.12.056 10.1002/app.29784 10.1080/09205063.2015.1116885 10.1016/j.polymdegradstab.2016.02.027 10.1016/j.ifset.2018.04.007 10.1016/j.polymdegradstab.2009.11.045 10.1016/j.jfoodeng.2013.11.022 10.1016/j.indcrop.2017.10.042 10.1002/anie.200604646 10.3390/nano9030346 10.1016/j.trac.2017.04.004 10.1016/j.carbpol.2012.05.042 10.1016/j.eurpolymj.2013.11.009 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Sep 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Sep 2020 |
DBID | AAYXX CITATION 7SR 8FD JG9 7S9 L.6 |
DOI | 10.1016/j.polymdegradstab.2020.109226 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-2321 |
ExternalDocumentID | 10_1016_j_polymdegradstab_2020_109226 S0141391020301580 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SMS SPC SPCBC SSK SSM SSZ T5K WH7 WUQ XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 8FD EFKBS JG9 7S9 L.6 |
ID | FETCH-LOGICAL-c394t-8264e9156418daea17c51a32a0474b9a30112f3a75cf68d63d1090157df9b9f03 |
IEDL.DBID | .~1 |
ISSN | 0141-3910 |
IngestDate | Fri Jul 11 10:01:50 EDT 2025 Fri Jul 25 06:31:06 EDT 2025 Tue Jul 01 02:29:50 EDT 2025 Thu Apr 24 23:00:11 EDT 2025 Fri Feb 23 02:46:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Oligomeric lactic acid (OLA) Electrospinning Plasticizer Biodegradable poly(lactic acid) (PLA) poly(hydroxibutyrate) (PHB) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-8264e9156418daea17c51a32a0474b9a30112f3a75cf68d63d1090157df9b9f03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2449280830 |
PQPubID | 2045418 |
ParticipantIDs | proquest_miscellaneous_2524221806 proquest_journals_2449280830 crossref_citationtrail_10_1016_j_polymdegradstab_2020_109226 crossref_primary_10_1016_j_polymdegradstab_2020_109226 elsevier_sciencedirect_doi_10_1016_j_polymdegradstab_2020_109226 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Polymer degradation and stability |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Leonés, Sonseca, López, Fiori, Peponi (bib29) 2019; 117 Arrieta, García, López, Fiori, Peponi (bib9) 2019; 9 Fiori, Ara (bib33) 2009 Abdelwahab, Flynn, Chiou, Imam, Orts, Chiellini (bib24) 2012; 97 Briassoulis (bib49) 2007; 92 Arrieta, Fortunati, Dominici, López, Kenny (bib41) 2015; 121 Södergård, Stolt (bib36) 2002; 27 Arrieta, López, López, Kenny, Peponi (bib27) 2016; 93 Ramier, Bouderlique, Stoilova, Manolova, Rashkov, Langlois (bib26) 2014; 38 Feuilloley, Cesar, Benguigui, Grohens, Pillin, Bewa (bib51) 2005; 13 Garcia-Campo, Quiles-Carrillo, Sanchez-Nacher, Balart, Montanes (bib16) 2019; 76 Burgos, Tolaguera, Fiori, Jiménez (bib20) 2014; 22 Mujica-Garcia, Navarro-Baena, Kenny, Peponi (bib5) 2014; 2 Hauser, Peñaloza, Guarda, Galotto, Bruna, Rodríguez (bib50) 2016; 9 Muller, Jiménez, González-Martínez, Chiralt (bib47) 2016; 65 López de Dicastillo, López-Carballo, Gavara, Muriel Galet, Guarda, Galotto (bib11) 2019 Noruzi (bib53) 2016; 96 De Jong, Van Nostrum, Kroon-Batenburg, Kettenes-van den Bosch, Hennink (bib48) 2002; 86 Quiles-Carrillo, Montanes, Lagaron, Balart, Torres-Giner (bib13) 2019; 9 Armentano, Fortunati, Burgos, Dominici, Luzi, Fiori (bib45) 2015; 9 Briassoulis (bib52) 2004; 12 Beltrán, Lorenzo, de la Orden, Martínez-Urreaga (bib37) 2016; 133 Luzi, Dominici, Armentano, Fortunati, Burgos, Fiori (bib21) 2019; 223 Busolo, Torres-Giner, Prieto, Lagaron (bib10) 2019; 51 Bordes, Pollet, Bourbigot, Averous (bib23) 2008; 209 Martino, Jiménez, Ruseckaite (bib22) 2009; 112 Garcia-Garcia, Fenollar, Fombuena, Lopez-Martinez, Balart (bib18) 2017 Peponi, Arrieta, Mujica-Garcia, López (bib2) 2017 Rezaei, Nasirpour, Fathi (bib4) 2015; 14 Zhang, Thomas (bib25) 2011; 30 Armentano, Fortunati, Burgos, Dominici, Luzi, Fiori (bib42) 2015; 64 Arrieta, López, López, Kenny, Peponi (bib1) 2015; 73 UNE-EN ISO-20200 (bib34) 2016 Arrieta, López, Hernández, Rayón (bib39) 2014; 50 Mercante, Scagion, Migliorini, Mattoso, Correa (bib54) 2017; 91 Calvão, Chenal, Gauthier, Demarquette, Bogner, Cavaille (bib31) 2012; 61 Arrieta, López de Dicastillo, Garrido, Roa, Galotto (bib12) 2018; 103 Arrieta, López, López, Kenny, Peponi (bib28) 2016; 132 Carrasco, Pagès, Gámez-Pérez, Santana, Maspoch (bib35) 2010; 95 Melendez-Rodriguez, Figueroa-Lopez, Bernardos, Martínez-Máñez, Cabedo, Torres-Giner (bib17) 2019; 9 Burgos, Armentano, Fortunati, Dominici, Luzi, Fiori (bib30) 2017; 10 Shi, Zhou, Yue, Guo, Wu, Wu (bib38) 2012; 90 Arrieta, Peponi, López, Fernández-García (bib19) 2018; 111 Labrecque, Kumar, Dave, Gross, McCarthy (bib44) 1997; 66 Lascano, Moraga, Ivorra-Martinez, Rojas-Lema, Torres-Giner, Balart (bib46) 2019; 11 Villarreal-Gómez, Cornejo-Bravo, Vera-Graziano, Grande (bib6) 2016; 27 Rodríguez-Tobías, Morales, Ledezma, Romero, Grande (bib32) 2014; 49 Arrieta, Samper, López, Jiménez (bib40) 2014; 22 Fabra, Lopez-Rubio, Lagaron (bib8) 2014; 127 Greiner, Wendorff (bib7) 2007; 46 Auras, Harte, Selke (bib14) 2004; 4 Arrieta, Samper, Aldas, López (bib15) 2017; 10 Radusin, Torres-Giner, Stupar, Ristic, Miletic, Novakovic (bib43) 2019; 21 Torres-Giner, Pérez-Masiá, Lagaron (bib3) 2016; 56 Arrieta (10.1016/j.polymdegradstab.2020.109226_bib40) 2014; 22 López de Dicastillo (10.1016/j.polymdegradstab.2020.109226_bib11) 2019 Auras (10.1016/j.polymdegradstab.2020.109226_bib14) 2004; 4 Hauser (10.1016/j.polymdegradstab.2020.109226_bib50) 2016; 9 Mercante (10.1016/j.polymdegradstab.2020.109226_bib54) 2017; 91 Burgos (10.1016/j.polymdegradstab.2020.109226_bib30) 2017; 10 Shi (10.1016/j.polymdegradstab.2020.109226_bib38) 2012; 90 Bordes (10.1016/j.polymdegradstab.2020.109226_bib23) 2008; 209 Labrecque (10.1016/j.polymdegradstab.2020.109226_bib44) 1997; 66 Arrieta (10.1016/j.polymdegradstab.2020.109226_bib28) 2016; 132 Garcia-Garcia (10.1016/j.polymdegradstab.2020.109226_bib18) 2017 Beltrán (10.1016/j.polymdegradstab.2020.109226_bib37) 2016; 133 Luzi (10.1016/j.polymdegradstab.2020.109226_bib21) 2019; 223 Fabra (10.1016/j.polymdegradstab.2020.109226_bib8) 2014; 127 Quiles-Carrillo (10.1016/j.polymdegradstab.2020.109226_bib13) 2019; 9 Melendez-Rodriguez (10.1016/j.polymdegradstab.2020.109226_bib17) 2019; 9 Arrieta (10.1016/j.polymdegradstab.2020.109226_bib12) 2018; 103 Villarreal-Gómez (10.1016/j.polymdegradstab.2020.109226_bib6) 2016; 27 Burgos (10.1016/j.polymdegradstab.2020.109226_bib20) 2014; 22 Carrasco (10.1016/j.polymdegradstab.2020.109226_bib35) 2010; 95 Abdelwahab (10.1016/j.polymdegradstab.2020.109226_bib24) 2012; 97 Lascano (10.1016/j.polymdegradstab.2020.109226_bib46) 2019; 11 Armentano (10.1016/j.polymdegradstab.2020.109226_bib45) 2015; 9 Arrieta (10.1016/j.polymdegradstab.2020.109226_bib9) 2019; 9 Feuilloley (10.1016/j.polymdegradstab.2020.109226_bib51) 2005; 13 Rodríguez-Tobías (10.1016/j.polymdegradstab.2020.109226_bib32) 2014; 49 Arrieta (10.1016/j.polymdegradstab.2020.109226_bib27) 2016; 93 Calvão (10.1016/j.polymdegradstab.2020.109226_bib31) 2012; 61 Muller (10.1016/j.polymdegradstab.2020.109226_bib47) 2016; 65 Torres-Giner (10.1016/j.polymdegradstab.2020.109226_bib3) 2016; 56 Briassoulis (10.1016/j.polymdegradstab.2020.109226_bib49) 2007; 92 Busolo (10.1016/j.polymdegradstab.2020.109226_bib10) 2019; 51 Ramier (10.1016/j.polymdegradstab.2020.109226_bib26) 2014; 38 Rezaei (10.1016/j.polymdegradstab.2020.109226_bib4) 2015; 14 Fiori (10.1016/j.polymdegradstab.2020.109226_bib33) 2009 Leonés (10.1016/j.polymdegradstab.2020.109226_bib29) 2019; 117 Noruzi (10.1016/j.polymdegradstab.2020.109226_bib53) 2016; 96 Martino (10.1016/j.polymdegradstab.2020.109226_bib22) 2009; 112 Södergård (10.1016/j.polymdegradstab.2020.109226_bib36) 2002; 27 Arrieta (10.1016/j.polymdegradstab.2020.109226_bib19) 2018; 111 Peponi (10.1016/j.polymdegradstab.2020.109226_bib2) 2017 Mujica-Garcia (10.1016/j.polymdegradstab.2020.109226_bib5) 2014; 2 UNE-EN ISO-20200 (10.1016/j.polymdegradstab.2020.109226_bib34) 2016 Radusin (10.1016/j.polymdegradstab.2020.109226_bib43) 2019; 21 Briassoulis (10.1016/j.polymdegradstab.2020.109226_bib52) 2004; 12 De Jong (10.1016/j.polymdegradstab.2020.109226_bib48) 2002; 86 Armentano (10.1016/j.polymdegradstab.2020.109226_bib42) 2015; 64 Arrieta (10.1016/j.polymdegradstab.2020.109226_bib1) 2015; 73 Greiner (10.1016/j.polymdegradstab.2020.109226_bib7) 2007; 46 Garcia-Campo (10.1016/j.polymdegradstab.2020.109226_bib16) 2019; 76 Arrieta (10.1016/j.polymdegradstab.2020.109226_bib41) 2015; 121 Arrieta (10.1016/j.polymdegradstab.2020.109226_bib39) 2014; 50 Zhang (10.1016/j.polymdegradstab.2020.109226_bib25) 2011; 30 Arrieta (10.1016/j.polymdegradstab.2020.109226_bib15) 2017; 10 |
References_xml | – volume: 65 start-page: 970 year: 2016 end-page: 978 ident: bib47 article-title: Influence of plasticizers on thermal properties and crystallization behaviour of poly (lactic acid) films obtained by compression moulding publication-title: Polym. Int. – volume: 51 start-page: 12 year: 2019 end-page: 19 ident: bib10 article-title: Electrospraying assisted by pressurized gas as an innovative high-throughput process for the microencapsulation and stabilization of docosahexaenoic acid-enriched fish oil in zein prolamine publication-title: Innovat. Food Sci. Emerg. Technol. – volume: 127 start-page: 1 year: 2014 end-page: 9 ident: bib8 article-title: Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters publication-title: J. Food Eng. – volume: 76 start-page: 1839 year: 2019 end-page: 1859 ident: bib16 article-title: High toughness poly(lactic acid) (PLA) formulations obtained by ternary blends with poly(3-hydroxybutyrate) (PHB) and flexible polyesters from succinic acid publication-title: Polym. Bull. – volume: 64 start-page: 980 year: 2015 end-page: 988 ident: bib42 article-title: Bio-based PLA_PHB plasticized blend films: processing and structural characterization publication-title: LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) – volume: 90 start-page: 301 year: 2012 end-page: 308 ident: bib38 article-title: Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals publication-title: Carbohydr. Polym. – volume: 121 start-page: 265 year: 2015 end-page: 275 ident: bib41 article-title: Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends publication-title: Carbohydr. Polym. – volume: 61 start-page: 434 year: 2012 end-page: 441 ident: bib31 article-title: Understanding the mechanical and biodegradation behaviour of poly (hydroxybutyrate)/rubber blends in relation to their morphology publication-title: Polym. Int. – volume: 50 start-page: 255 year: 2014 end-page: 270 ident: bib39 article-title: Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications publication-title: Eur. Polym. J. – volume: 27 start-page: 1123 year: 2002 end-page: 1163 ident: bib36 article-title: Properties of lactic acid based polymers and their correlation with composition publication-title: Prog. Polym. Sci. – volume: 92 start-page: 1115 year: 2007 end-page: 1132 ident: bib49 article-title: Analysis of the mechanical and degradation performances of optimised agricultural biodegradable films publication-title: Polym. Degrad. Stabil. – volume: 112 start-page: 2010 year: 2009 end-page: 2018 ident: bib22 article-title: Processing and characterization of poly (lactic acid) films plasticized with commercial adipates publication-title: J. Appl. Polym. Sci. – volume: 73 start-page: 433 year: 2015 end-page: 446 ident: bib1 article-title: Development of flexible materials based on plasticized electrospun PLA–PHB blends: structural, thermal, mechanical and disintegration properties publication-title: Eur. Polym. J. – year: 2019 ident: bib11 article-title: Improving polyphenolic thermal stability of Aristotelia Chilensis fruit extract by encapsulation within electrospun cyclodextrin capsules publication-title: J. Food Process. Preserv. – start-page: 131 year: 2017 end-page: 154 ident: bib2 article-title: Smart Polymers. Modification of Polymer Properties – volume: 132 start-page: 145 year: 2016 end-page: 156 ident: bib28 article-title: Effect of chitosan and catechin addition on the structural, thermal, mechanical and disintegration properties of plasticized electrospun PLA-PHB biocomposites publication-title: Polym. Degrad. Stabil. – volume: 9 year: 2019 ident: bib13 article-title: Bioactive multilayer polylactide films with controlled release capacity of gallic acid accomplished by incorporating electrospun nanostructured coatings and interlayers publication-title: Appl. Sci. – volume: 10 start-page: 1008 year: 2017 ident: bib15 article-title: On the use of PLA-PHB blends for sustainable food packaging applications publication-title: Materials – volume: 11 start-page: 2099 year: 2019 ident: bib46 article-title: Development of injection-molded polylactide pieces with high toughness by the addition of lactic acid oligomer and characterization of their shape memory behavior publication-title: Polymers – volume: 111 start-page: 317 year: 2018 end-page: 328 ident: bib19 article-title: Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films publication-title: Ind. Crop. Prod. – volume: 93 start-page: 290 year: 2016 end-page: 301 ident: bib27 article-title: Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals publication-title: Ind. Crop. Prod. – volume: 66 start-page: 1507 year: 1997 end-page: 1513 ident: bib44 article-title: Citrate esters as plasticizers for poly (lactic acid) publication-title: J. Appl. Polym. Sci. – volume: 56 start-page: 500 year: 2016 end-page: 527 ident: bib3 article-title: A review on electrospun polymer nanostructures as advanced bioactive platforms publication-title: Polym. Eng. Sci. – volume: 12 start-page: 65 year: 2004 end-page: 81 ident: bib52 article-title: An overview on the mechanical behaviour of biodegradable agricultural films publication-title: J. Polym. Environ. – volume: 4 start-page: 835 year: 2004 end-page: 864 ident: bib14 article-title: An overview of polylactides as packaging materials publication-title: Macromol. Biosci. – volume: 96 start-page: 4663 year: 2016 end-page: 4678 ident: bib53 article-title: Electrospun nanofibres in agriculture and the food industry: a review publication-title: J. Sci. Food Agric. – volume: 30 start-page: 67 year: 2011 end-page: 79 ident: bib25 article-title: Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties publication-title: Adv. Polym. Technol. – volume: 223 start-page: 115131 year: 2019 ident: bib21 article-title: Combined effect of cellulose nanocrystals, carvacrol and oligomeric lactic acid in PLA_PHB polymeric films publication-title: Carbohydr. Polym. – volume: 91 start-page: 91 year: 2017 end-page: 103 ident: bib54 article-title: Electrospinning-based (bio)sensors for food and agricultural applications: a review publication-title: Trac. Trends Anal. Chem. – year: 2009 ident: bib33 article-title: Method for Plasticizing Lactic Acid Polymers – volume: 9 start-page: 298 year: 2016 end-page: 307 ident: bib50 article-title: Development of an active packaging film based on a methylcellulose coating containing murta (ugni molinae turcz) leaf extract publication-title: Food Bioprocess Technol. – volume: 95 start-page: 116 year: 2010 end-page: 125 ident: bib35 article-title: Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties publication-title: Polym. Degrad. Stabil. – volume: 2 start-page: 23 year: 2014 end-page: 34 ident: bib5 article-title: Influence of the processing parameters on the electrospinning of biopolymeric fibers publication-title: J. Renew. Mater. – volume: 103 start-page: 145 year: 2018 end-page: 157 ident: bib12 article-title: Electrospun PVA fibers loaded with antioxidant fillers extracted from Durvillaea Antarctica algae and their effect on plasticized PLA bionanocomposites publication-title: Eur. Polym. J. – volume: 13 start-page: 349 year: 2005 end-page: 355 ident: bib51 article-title: Degradation of polyethylene designed for agricultural purposes publication-title: J. Polym. Environ. – volume: 38 start-page: 161 year: 2014 end-page: 169 ident: bib26 article-title: Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications publication-title: Mater. Sci. Eng. C – year: 2016 ident: bib34 article-title: Determination of the Degree of Disintegration of Plastic Materials under Simulated Composting Conditions in a Laboratory-Scale Test – volume: 9 start-page: 227 year: 2019 ident: bib17 article-title: Electrospun antimicrobial films of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) containing eugenol essential oil encapsulated in mesoporous silica nanoparticles publication-title: Nanomaterials – volume: 117 start-page: 217 year: 2019 end-page: 226 ident: bib29 article-title: Shape memory effect on electrospun PLA-based fibers tailoring their thermal response publication-title: Eur. Polym. J. – volume: 10 start-page: 770 year: 2017 end-page: 780 ident: bib30 article-title: Functional properties of plasticized bio-based poly (lactic acid) _poly (hydroxybutyrate)(PLA_PHB) films for active food packaging publication-title: Food Bioprocess Technol. – volume: 49 start-page: 8373 year: 2014 end-page: 8385 ident: bib32 article-title: Novel antibacterial electrospun mats based on poly(D,L-lactide) nanofibers and zinc oxide nanoparticles publication-title: J. Mater. Sci. – volume: 22 start-page: 227 year: 2014 end-page: 235 ident: bib20 article-title: Synthesis and characterization of lactic acid oligomers: evaluation of performance as poly (lactic acid) plasticizers publication-title: J. Polym. Environ. – start-page: 302 year: 2017 ident: bib18 article-title: Improvement of mechanical ductile properties of poly(3-hydroxybutyrate) by using vegetable oil derivatives publication-title: Macromol. Mater. Eng. – volume: 22 start-page: 460 year: 2014 end-page: 470 ident: bib40 article-title: Combined effect of poly(hydroxybutyrate) and plasticizers on polylactic acid properties for film intended for food packaging publication-title: J. Polym. Environ. – volume: 97 start-page: 1822 year: 2012 end-page: 1828 ident: bib24 article-title: Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends publication-title: Polym. Degrad. Stabil. – volume: 133 start-page: 339 year: 2016 end-page: 348 ident: bib37 article-title: Effect of different mechanical recycling processes on the hydrolytic degradation of poly (l-lactic acid) publication-title: Polym. Degrad. Stabil. – volume: 86 start-page: 289 year: 2002 end-page: 293 ident: bib48 article-title: Oligolactate-grafted dextran hydrogels: detection of stereocomplex crosslinks by X-ray diffraction publication-title: J. Appl. Polym. Sci. – volume: 209 start-page: 1473 year: 2008 end-page: 1484 ident: bib23 article-title: Structure and properties of PHA/clay nano-biocomposites prepared by melt intercalation publication-title: Macromol. Chem. Phys. – volume: 14 start-page: 269 year: 2015 end-page: 284 ident: bib4 article-title: Application of cellulosic nanofibers in food science using electrospinning and its potential risk publication-title: Compr. Rev. Food Sci. Food Saf. – volume: 9 start-page: 583 year: 2015 end-page: 596 ident: bib45 article-title: Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems publication-title: Express Polym. Lett. – volume: 9 year: 2019 ident: bib9 article-title: Antioxidant bilayers based on PHBV and plasticized electrospun PLA-PHB fibers encapsulating catechin publication-title: Nanomaterials – volume: 21 start-page: 100357 year: 2019 ident: bib43 article-title: Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract publication-title: Food Package Shelf Life – volume: 46 start-page: 5670 year: 2007 end-page: 5703 ident: bib7 article-title: Electrospinning: a fascinating method for the preparation of ultrathin fibers publication-title: Angew. Chem. Int. Ed. – volume: 27 start-page: 157 year: 2016 end-page: 176 ident: bib6 article-title: Electrospinning as a powerful technique for biomedical applications: a critically selected survey publication-title: J. Biomater. Sci. Polym. Ed. – volume: 12 start-page: 65 year: 2004 ident: 10.1016/j.polymdegradstab.2020.109226_bib52 article-title: An overview on the mechanical behaviour of biodegradable agricultural films publication-title: J. Polym. Environ. doi: 10.1023/B:JOOE.0000010052.86786.ef – volume: 117 start-page: 217 year: 2019 ident: 10.1016/j.polymdegradstab.2020.109226_bib29 article-title: Shape memory effect on electrospun PLA-based fibers tailoring their thermal response publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2019.05.014 – volume: 97 start-page: 1822 year: 2012 ident: 10.1016/j.polymdegradstab.2020.109226_bib24 article-title: Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2012.05.036 – volume: 64 start-page: 980 year: 2015 ident: 10.1016/j.polymdegradstab.2020.109226_bib42 article-title: Bio-based PLA_PHB plasticized blend films: processing and structural characterization publication-title: LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) doi: 10.1016/j.lwt.2015.06.032 – volume: 65 start-page: 970 year: 2016 ident: 10.1016/j.polymdegradstab.2020.109226_bib47 article-title: Influence of plasticizers on thermal properties and crystallization behaviour of poly (lactic acid) films obtained by compression moulding publication-title: Polym. Int. doi: 10.1002/pi.5142 – volume: 14 start-page: 269 year: 2015 ident: 10.1016/j.polymdegradstab.2020.109226_bib4 article-title: Application of cellulosic nanofibers in food science using electrospinning and its potential risk publication-title: Compr. Rev. Food Sci. Food Saf. doi: 10.1111/1541-4337.12128 – volume: 56 start-page: 500 year: 2016 ident: 10.1016/j.polymdegradstab.2020.109226_bib3 article-title: A review on electrospun polymer nanostructures as advanced bioactive platforms publication-title: Polym. Eng. Sci. doi: 10.1002/pen.24274 – volume: 66 start-page: 1507 year: 1997 ident: 10.1016/j.polymdegradstab.2020.109226_bib44 article-title: Citrate esters as plasticizers for poly (lactic acid) publication-title: J. Appl. Polym. Sci. doi: 10.1002/(SICI)1097-4628(19971121)66:8<1507::AID-APP11>3.0.CO;2-0 – volume: 9 start-page: 298 year: 2016 ident: 10.1016/j.polymdegradstab.2020.109226_bib50 article-title: Development of an active packaging film based on a methylcellulose coating containing murta (ugni molinae turcz) leaf extract publication-title: Food Bioprocess Technol. doi: 10.1007/s11947-015-1623-8 – volume: 9 year: 2019 ident: 10.1016/j.polymdegradstab.2020.109226_bib13 article-title: Bioactive multilayer polylactide films with controlled release capacity of gallic acid accomplished by incorporating electrospun nanostructured coatings and interlayers publication-title: Appl. Sci. doi: 10.3390/app9030533 – year: 2019 ident: 10.1016/j.polymdegradstab.2020.109226_bib11 article-title: Improving polyphenolic thermal stability of Aristotelia Chilensis fruit extract by encapsulation within electrospun cyclodextrin capsules publication-title: J. Food Process. Preserv. doi: 10.1111/jfpp.14044 – volume: 73 start-page: 433 year: 2015 ident: 10.1016/j.polymdegradstab.2020.109226_bib1 article-title: Development of flexible materials based on plasticized electrospun PLA–PHB blends: structural, thermal, mechanical and disintegration properties publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2015.10.036 – volume: 4 start-page: 835 year: 2004 ident: 10.1016/j.polymdegradstab.2020.109226_bib14 article-title: An overview of polylactides as packaging materials publication-title: Macromol. Biosci. doi: 10.1002/mabi.200400043 – volume: 21 start-page: 100357 year: 2019 ident: 10.1016/j.polymdegradstab.2020.109226_bib43 article-title: Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract publication-title: Food Package Shelf Life doi: 10.1016/j.fpsl.2019.100357 – volume: 96 start-page: 4663 year: 2016 ident: 10.1016/j.polymdegradstab.2020.109226_bib53 article-title: Electrospun nanofibres in agriculture and the food industry: a review publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.7737 – volume: 27 start-page: 1123 year: 2002 ident: 10.1016/j.polymdegradstab.2020.109226_bib36 article-title: Properties of lactic acid based polymers and their correlation with composition publication-title: Prog. Polym. Sci. doi: 10.1016/S0079-6700(02)00012-6 – volume: 9 start-page: 227 year: 2019 ident: 10.1016/j.polymdegradstab.2020.109226_bib17 article-title: Electrospun antimicrobial films of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) containing eugenol essential oil encapsulated in mesoporous silica nanoparticles publication-title: Nanomaterials doi: 10.3390/nano9020227 – start-page: 302 year: 2017 ident: 10.1016/j.polymdegradstab.2020.109226_bib18 article-title: Improvement of mechanical ductile properties of poly(3-hydroxybutyrate) by using vegetable oil derivatives publication-title: Macromol. Mater. Eng. – volume: 10 start-page: 770 year: 2017 ident: 10.1016/j.polymdegradstab.2020.109226_bib30 article-title: Functional properties of plasticized bio-based poly (lactic acid) _poly (hydroxybutyrate)(PLA_PHB) films for active food packaging publication-title: Food Bioprocess Technol. doi: 10.1007/s11947-016-1846-3 – volume: 30 start-page: 67 year: 2011 ident: 10.1016/j.polymdegradstab.2020.109226_bib25 article-title: Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties publication-title: Adv. Polym. Technol. doi: 10.1002/adv.20235 – volume: 61 start-page: 434 year: 2012 ident: 10.1016/j.polymdegradstab.2020.109226_bib31 article-title: Understanding the mechanical and biodegradation behaviour of poly (hydroxybutyrate)/rubber blends in relation to their morphology publication-title: Polym. Int. doi: 10.1002/pi.3211 – volume: 22 start-page: 227 year: 2014 ident: 10.1016/j.polymdegradstab.2020.109226_bib20 article-title: Synthesis and characterization of lactic acid oligomers: evaluation of performance as poly (lactic acid) plasticizers publication-title: J. Polym. Environ. doi: 10.1007/s10924-013-0628-5 – volume: 2 start-page: 23 year: 2014 ident: 10.1016/j.polymdegradstab.2020.109226_bib5 article-title: Influence of the processing parameters on the electrospinning of biopolymeric fibers publication-title: J. Renew. Mater. doi: 10.7569/JRM.2013.634130 – volume: 11 start-page: 2099 year: 2019 ident: 10.1016/j.polymdegradstab.2020.109226_bib46 article-title: Development of injection-molded polylactide pieces with high toughness by the addition of lactic acid oligomer and characterization of their shape memory behavior publication-title: Polymers doi: 10.3390/polym11122099 – volume: 76 start-page: 1839 year: 2019 ident: 10.1016/j.polymdegradstab.2020.109226_bib16 article-title: High toughness poly(lactic acid) (PLA) formulations obtained by ternary blends with poly(3-hydroxybutyrate) (PHB) and flexible polyesters from succinic acid publication-title: Polym. Bull. doi: 10.1007/s00289-018-2475-y – year: 2009 ident: 10.1016/j.polymdegradstab.2020.109226_bib33 – volume: 22 start-page: 460 year: 2014 ident: 10.1016/j.polymdegradstab.2020.109226_bib40 article-title: Combined effect of poly(hydroxybutyrate) and plasticizers on polylactic acid properties for film intended for food packaging publication-title: J. Polym. Environ. doi: 10.1007/s10924-014-0654-y – volume: 49 start-page: 8373 year: 2014 ident: 10.1016/j.polymdegradstab.2020.109226_bib32 article-title: Novel antibacterial electrospun mats based on poly(D,L-lactide) nanofibers and zinc oxide nanoparticles publication-title: J. Mater. Sci. doi: 10.1007/s10853-014-8547-y – volume: 223 start-page: 115131 year: 2019 ident: 10.1016/j.polymdegradstab.2020.109226_bib21 article-title: Combined effect of cellulose nanocrystals, carvacrol and oligomeric lactic acid in PLA_PHB polymeric films publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2019.115131 – volume: 86 start-page: 289 year: 2002 ident: 10.1016/j.polymdegradstab.2020.109226_bib48 article-title: Oligolactate-grafted dextran hydrogels: detection of stereocomplex crosslinks by X-ray diffraction publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.10954 – volume: 133 start-page: 339 year: 2016 ident: 10.1016/j.polymdegradstab.2020.109226_bib37 article-title: Effect of different mechanical recycling processes on the hydrolytic degradation of poly (l-lactic acid) publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2016.09.018 – volume: 93 start-page: 290 year: 2016 ident: 10.1016/j.polymdegradstab.2020.109226_bib27 article-title: Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2015.12.058 – volume: 10 start-page: 1008 year: 2017 ident: 10.1016/j.polymdegradstab.2020.109226_bib15 article-title: On the use of PLA-PHB blends for sustainable food packaging applications publication-title: Materials doi: 10.3390/ma10091008 – volume: 92 start-page: 1115 year: 2007 ident: 10.1016/j.polymdegradstab.2020.109226_bib49 article-title: Analysis of the mechanical and degradation performances of optimised agricultural biodegradable films publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2007.01.024 – volume: 38 start-page: 161 year: 2014 ident: 10.1016/j.polymdegradstab.2020.109226_bib26 article-title: Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2014.01.046 – volume: 13 start-page: 349 year: 2005 ident: 10.1016/j.polymdegradstab.2020.109226_bib51 article-title: Degradation of polyethylene designed for agricultural purposes publication-title: J. Polym. Environ. doi: 10.1007/s10924-005-5529-9 – volume: 9 start-page: 583 issue: 7 year: 2015 ident: 10.1016/j.polymdegradstab.2020.109226_bib45 article-title: Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems publication-title: Express Polym. Lett. doi: 10.3144/expresspolymlett.2015.55 – volume: 103 start-page: 145 year: 2018 ident: 10.1016/j.polymdegradstab.2020.109226_bib12 article-title: Electrospun PVA fibers loaded with antioxidant fillers extracted from Durvillaea Antarctica algae and their effect on plasticized PLA bionanocomposites publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2018.04.012 – volume: 209 start-page: 1473 year: 2008 ident: 10.1016/j.polymdegradstab.2020.109226_bib23 article-title: Structure and properties of PHA/clay nano-biocomposites prepared by melt intercalation publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.200800022 – start-page: 131 year: 2017 ident: 10.1016/j.polymdegradstab.2020.109226_bib2 – volume: 121 start-page: 265 year: 2015 ident: 10.1016/j.polymdegradstab.2020.109226_bib41 article-title: Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2014.12.056 – volume: 112 start-page: 2010 year: 2009 ident: 10.1016/j.polymdegradstab.2020.109226_bib22 article-title: Processing and characterization of poly (lactic acid) films plasticized with commercial adipates publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.29784 – volume: 27 start-page: 157 year: 2016 ident: 10.1016/j.polymdegradstab.2020.109226_bib6 article-title: Electrospinning as a powerful technique for biomedical applications: a critically selected survey publication-title: J. Biomater. Sci. Polym. Ed. doi: 10.1080/09205063.2015.1116885 – volume: 132 start-page: 145 year: 2016 ident: 10.1016/j.polymdegradstab.2020.109226_bib28 article-title: Effect of chitosan and catechin addition on the structural, thermal, mechanical and disintegration properties of plasticized electrospun PLA-PHB biocomposites publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2016.02.027 – volume: 51 start-page: 12 year: 2019 ident: 10.1016/j.polymdegradstab.2020.109226_bib10 article-title: Electrospraying assisted by pressurized gas as an innovative high-throughput process for the microencapsulation and stabilization of docosahexaenoic acid-enriched fish oil in zein prolamine publication-title: Innovat. Food Sci. Emerg. Technol. doi: 10.1016/j.ifset.2018.04.007 – volume: 95 start-page: 116 year: 2010 ident: 10.1016/j.polymdegradstab.2020.109226_bib35 article-title: Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2009.11.045 – volume: 127 start-page: 1 year: 2014 ident: 10.1016/j.polymdegradstab.2020.109226_bib8 article-title: Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2013.11.022 – volume: 111 start-page: 317 year: 2018 ident: 10.1016/j.polymdegradstab.2020.109226_bib19 article-title: Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2017.10.042 – volume: 46 start-page: 5670 year: 2007 ident: 10.1016/j.polymdegradstab.2020.109226_bib7 article-title: Electrospinning: a fascinating method for the preparation of ultrathin fibers publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200604646 – year: 2016 ident: 10.1016/j.polymdegradstab.2020.109226_bib34 – volume: 9 year: 2019 ident: 10.1016/j.polymdegradstab.2020.109226_bib9 article-title: Antioxidant bilayers based on PHBV and plasticized electrospun PLA-PHB fibers encapsulating catechin publication-title: Nanomaterials doi: 10.3390/nano9030346 – volume: 91 start-page: 91 year: 2017 ident: 10.1016/j.polymdegradstab.2020.109226_bib54 article-title: Electrospinning-based (bio)sensors for food and agricultural applications: a review publication-title: Trac. Trends Anal. Chem. doi: 10.1016/j.trac.2017.04.004 – volume: 90 start-page: 301 year: 2012 ident: 10.1016/j.polymdegradstab.2020.109226_bib38 article-title: Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2012.05.042 – volume: 50 start-page: 255 year: 2014 ident: 10.1016/j.polymdegradstab.2020.109226_bib39 article-title: Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2013.11.009 |
SSID | ssj0000451 |
Score | 2.5428083 |
Snippet | In this paper flexible electrospun mats based on poly(lactic acid) (PLA) blended with 25 wt% of poly(hydroxibutyrate) (PHB) and further plasticized with three... In this paper flexible electrospun mats based on poly(lactic acid) (PLA) blended with 25 wt% of poly(hydroxibutyrate) (PHB) and further plasticized with three... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 109226 |
SubjectTerms | Acids Biodegradability Biodegradable Biodegradable materials Composting composts Crystal defects Crystallization degradation Disintegration Electrospinning Fibers Mats Mechanical properties mulches Oligomeric lactic acid (OLA) Plasticizer plasticizers poly(hydroxibutyrate) (PHB) poly(lactic acid) (PLA) Polyhydroxybutyrate Polylactic acid Polymer blends Reduction Studies Ternary systems viscosity |
Title | Biodegradable electrospun PLA-PHB fibers plasticized with oligomeric lactic acid |
URI | https://dx.doi.org/10.1016/j.polymdegradstab.2020.109226 https://www.proquest.com/docview/2449280830 https://www.proquest.com/docview/2524221806 |
Volume | 179 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1VILEcEKsoS2UkOIZmcTaJA6WiKqt6AImb5cQ2CipJRNsDHPh2PFkKVBwqcUxiO9bYnnm238wAHAee8qgUphFxERtU6Q1KhIc46MSpHJe7KkYH57t7r_9Ir5_cpwZ0a18YpFVWur_U6YW2rt60K2m28yRpIy1JwxcLr9K0TQtw306pj7P89POb5oHxU0oao2Vg6SU4-eZ45dnw_VVgVAYxQg8FWzeGAZZsjLXwt52a0diFGeqtw1qFH0mn7OIGNGS6CcvdOm3bJqz-iDC4BYOLJCv_jC5SpEp6M8onKRncdoxB_4Io5IyMSK5hNDKsP6QgeDhLsmHynBX3OWRYeFIRHidiGx57lw_dvlElUTBiJ6RjQ28fqAwxJIwVCC655ceuxR2bm9SnUchxgdvK4b4bKy8QniOQqmm5vlBhFCrT2YGFNEvlLhAZWIoKUwilUVbgicgNhWlLKmRAtcKlTTirRcbiKsI4JroYsppK9sJmJM5Q4qyUeBO8afW8DLUxb8XzenzYr7nDtFmYt4mDelxZtYhHTCOf0A40RjWbcDT9rIcT71R4KrOJLuNqjKNhkunt_b8X-7CCTyWF7QAWxm8TeagxzzhqFZO6BYudq5v-_RdqVwNK |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH5CRRrbAW3ARDcYnjSOUfPDThOJA6UaCqNUPYDEzXJiGwV1SbS2h-2v33uNAxvigMQ1jp3o2X7-bH_vewDfktjG3Gjfy5UuPG5xg5LTIQ4FcdpIKGELCnC-msbZDf9xK243YNzFwhCt0vn-1qevvbV7MnDWHDRlOSBaEsKXgK7ScE1LcN--SepUogebo4vLbProkLlo0xLywKMKb-D4kebV1PPfPzUJM-gFBSmE2B5pLIUkt_D8UvXEaa9XovP3sO0gJBu1f_kBNky1A1vjLnPbDrz7R2RwF2ZnZd1-maKkmMt7s2hWFZtNRt4sO2OWaCML1iCSJpL1H6MZnc-yel7e1esrHTZfB1MxVZR6D27Ov1-PM8_lUfCKKOVLD3cQ3KSkChMkWhkVDAsRqChUPh_yPFU0x0MbqaEobJzoONLE1gzEUNs0T60ffYReVVdmH5hJAsu1r7VFoJXEOhep9kPDtUk4-lzeh5POZLJwIuOU62IuOzbZvXxicUkWl63F-xA_VG9atY2XVjzt-kf-N3wkrgwvbeKg61fp5vFCIvhJwwRhqt-Hrw_F2J10raIqU6_wHYEwB5GSH396_V8cwVZ2fTWRk4vp5Wd4SyUto-0AestfK3OIEGiZf3FD_C9BLwX7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biodegradable+electrospun+PLA-PHB+fibers+plasticized+with+oligomeric+lactic+acid&rft.jtitle=Polymer+degradation+and+stability&rft.au=Arrieta%2C+Marina+P.&rft.au=Perdiguero%2C+Miguel&rft.au=Fiori%2C+Stefano&rft.au=Kenny%2C+Jos%C3%A9+Mar%C3%ADa&rft.date=2020-09-01&rft.pub=Elsevier+Ltd&rft.issn=0141-3910&rft.eissn=1873-2321&rft.volume=179&rft_id=info:doi/10.1016%2Fj.polymdegradstab.2020.109226&rft.externalDocID=S0141391020301580 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-3910&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-3910&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-3910&client=summon |