Multi-task artificial neural networks and their extrapolation capabilities to predict full-body 3D human posture during one- and two-handed load-handling activities

Machine-learning based human posture-prediction tools can potentially be robust alternatives to motion capture measurements. Existing posture-prediction approaches are confined to two-handed load-handling activities performed at heights below 120 cm from the floor and to predicting a limited number...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 162; p. 111884
Main Authors Mohseni, Mahdi, Zargarzadeh, Sadra, Arjmand, Navid
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.01.2024
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Machine-learning based human posture-prediction tools can potentially be robust alternatives to motion capture measurements. Existing posture-prediction approaches are confined to two-handed load-handling activities performed at heights below 120 cm from the floor and to predicting a limited number of body-joint coordinates/angles. Moreover, the extrapolating power of these tools beyond the range of the input dataset they were trained for (e.g., for underweight, overweight, or left-handed individuals) has not been investigated. In this study, we trained/validated/tested two posture-prediction (for full-body joint coordinates and angles) artificial neural networks (ANNs) using both 70%/15%/15% random-hold-out and leave-one-subject-out methods, based on a comprehensive kinematic dataset of forty-one full-body skin markers collected from twenty right-handed normal-weight (BMI = 18–26 kg/m2) subjects. Subjects performed 204 one- and two-handed unloaded activities at different vertical (0 to 180 cm from the floor) and horizontal (up to 60 cm lateral and/or anterior) destinations. Subsequently, the extrapolation capability of the trained/validated/tested ANNs was evaluated using data collected from fifteen additional subjects (unseen by the ANNs); three individuals in five groups: underweight, overweight, obese, left-handed individuals, and subjects with a hand-load. Results indicated that the ANNs predicted body joint coordinates and angles during various activities with errors of ∼ 25 mm and ∼ 10°, respectively; considerable improvements when compared to previous posture-prediction ANNs. Extrapolation errors of our ANNs generally remained within the error range of existing ANNs with obesity and being left-handed having, respectively, the most and least compromising effects on their accuracy. These easy-to-use ANNs appear, therefore, to be robust alternatives to common posture-measurement approaches.
AbstractList Machine-learning based human posture-prediction tools can potentially be robust alternatives to motion capture measurements. Existing posture-prediction approaches are confined to two-handed load-handling activities performed at heights below 120 cm from the floor and to predicting a limited number of body-joint coordinates/angles. Moreover, the extrapolating power of these tools beyond the range of the input dataset they were trained for (e.g., for underweight, overweight, or left-handed individuals) has not been investigated. In this study, we trained/validated/tested two posture-prediction (for full-body joint coordinates and angles) artificial neural networks (ANNs) using both 70%/15%/15% random-hold-out and leave-one-subject-out methods, based on a comprehensive kinematic dataset of forty-one full-body skin markers collected from twenty right-handed normal-weight (BMI = 18-26 kg/m2) subjects. Subjects performed 204 one- and two-handed unloaded activities at different vertical (0 to 180 cm from the floor) and horizontal (up to 60 cm lateral and/or anterior) destinations. Subsequently, the extrapolation capability of the trained/validated/tested ANNs was evaluated using data collected from fifteen additional subjects (unseen by the ANNs); three individuals in five groups: underweight, overweight, obese, left-handed individuals, and subjects with a hand-load. Results indicated that the ANNs predicted body joint coordinates and angles during various activities with errors of ∼ 25 mm and ∼ 10°, respectively; considerable improvements when compared to previous posture-prediction ANNs. Extrapolation errors of our ANNs generally remained within the error range of existing ANNs with obesity and being left-handed having, respectively, the most and least compromising effects on their accuracy. These easy-to-use ANNs appear, therefore, to be robust alternatives to common posture-measurement approaches.Machine-learning based human posture-prediction tools can potentially be robust alternatives to motion capture measurements. Existing posture-prediction approaches are confined to two-handed load-handling activities performed at heights below 120 cm from the floor and to predicting a limited number of body-joint coordinates/angles. Moreover, the extrapolating power of these tools beyond the range of the input dataset they were trained for (e.g., for underweight, overweight, or left-handed individuals) has not been investigated. In this study, we trained/validated/tested two posture-prediction (for full-body joint coordinates and angles) artificial neural networks (ANNs) using both 70%/15%/15% random-hold-out and leave-one-subject-out methods, based on a comprehensive kinematic dataset of forty-one full-body skin markers collected from twenty right-handed normal-weight (BMI = 18-26 kg/m2) subjects. Subjects performed 204 one- and two-handed unloaded activities at different vertical (0 to 180 cm from the floor) and horizontal (up to 60 cm lateral and/or anterior) destinations. Subsequently, the extrapolation capability of the trained/validated/tested ANNs was evaluated using data collected from fifteen additional subjects (unseen by the ANNs); three individuals in five groups: underweight, overweight, obese, left-handed individuals, and subjects with a hand-load. Results indicated that the ANNs predicted body joint coordinates and angles during various activities with errors of ∼ 25 mm and ∼ 10°, respectively; considerable improvements when compared to previous posture-prediction ANNs. Extrapolation errors of our ANNs generally remained within the error range of existing ANNs with obesity and being left-handed having, respectively, the most and least compromising effects on their accuracy. These easy-to-use ANNs appear, therefore, to be robust alternatives to common posture-measurement approaches.
Machine-learning based human posture-prediction tools can potentially be robust alternatives to motion capture measurements. Existing posture-prediction approaches are confined to two-handed load-handling activities performed at heights below 120 cm from the floor and to predicting a limited number of body-joint coordinates/angles. Moreover, the extrapolating power of these tools beyond the range of the input dataset they were trained for (e.g., for underweight, overweight, or left-handed individuals) has not been investigated. In this study, we trained/validated/tested two posture-prediction (for full-body joint coordinates and angles) artificial neural networks (ANNs) using both 70%/15%/15% random-hold-out and leave-one-subject-out methods, based on a comprehensive kinematic dataset of forty-one full-body skin markers collected from twenty right-handed normal-weight (BMI = 18-26 kg/m ) subjects. Subjects performed 204 one- and two-handed unloaded activities at different vertical (0 to 180 cm from the floor) and horizontal (up to 60 cm lateral and/or anterior) destinations. Subsequently, the extrapolation capability of the trained/validated/tested ANNs was evaluated using data collected from fifteen additional subjects (unseen by the ANNs); three individuals in five groups: underweight, overweight, obese, left-handed individuals, and subjects with a hand-load. Results indicated that the ANNs predicted body joint coordinates and angles during various activities with errors of ∼ 25 mm and ∼ 10°, respectively; considerable improvements when compared to previous posture-prediction ANNs. Extrapolation errors of our ANNs generally remained within the error range of existing ANNs with obesity and being left-handed having, respectively, the most and least compromising effects on their accuracy. These easy-to-use ANNs appear, therefore, to be robust alternatives to common posture-measurement approaches.
Machine-learning based human posture-prediction tools can potentially be robust alternatives to motion capture measurements. Existing posture-prediction approaches are confined to two-handed load-handling activities performed at heights below 120 cm from the floor and to predicting a limited number of body-joint coordinates/angles. Moreover, the extrapolating power of these tools beyond the range of the input dataset they were trained for (e.g., for underweight, overweight, or left-handed individuals) has not been investigated. In this study, we trained/validated/tested two posture-prediction (for full-body joint coordinates and angles) artificial neural networks (ANNs) using both 70%/15%/15% random-hold-out and leave-one-subject-out methods, based on a comprehensive kinematic dataset of forty-one full-body skin markers collected from twenty right-handed normal-weight (BMI = 18–26 kg/m2) subjects. Subjects performed 204 one- and two-handed unloaded activities at different vertical (0 to 180 cm from the floor) and horizontal (up to 60 cm lateral and/or anterior) destinations. Subsequently, the extrapolation capability of the trained/validated/tested ANNs was evaluated using data collected from fifteen additional subjects (unseen by the ANNs); three individuals in five groups: underweight, overweight, obese, left-handed individuals, and subjects with a hand-load. Results indicated that the ANNs predicted body joint coordinates and angles during various activities with errors of ∼ 25 mm and ∼ 10°, respectively; considerable improvements when compared to previous posture-prediction ANNs. Extrapolation errors of our ANNs generally remained within the error range of existing ANNs with obesity and being left-handed having, respectively, the most and least compromising effects on their accuracy. These easy-to-use ANNs appear, therefore, to be robust alternatives to common posture-measurement approaches.
Machine-learning based human posture-prediction tools can potentially be robust alternatives to motion capture measurements. Existing posture-prediction approaches are confined to two-handed load-handling activities performed at heights below 120 cm from the floor and to predicting a limited number of body-joint coordinates/angles. Moreover, the extrapolating power of these tools beyond the range of the input dataset they were trained for (e.g., for underweight, overweight, or left-handed individuals) has not been investigated. In this study, we trained/validated/tested two posture-prediction (for full-body joint coordinates and angles) artificial neural networks (ANNs) using both 70%/15%/15% random-hold-out and leave-one-subject-out methods, based on a comprehensive kinematic dataset of forty-one full-body skin markers collected from twenty right-handed normal-weight (BMI = 18–26 kg/m2) subjects. Subjects performed 204 one- and two-handed unloaded activities at different vertical (0 to 180 cm from the floor) and horizontal (up to 60 cm lateral and/or anterior) destinations. Subsequently, the extrapolation capability of the trained/validated/tested ANNs was evaluated using data collected from fifteen additional subjects (unseen by the ANNs); three individuals in five groups: underweight, overweight, obese, left-handed individuals, and subjects with a hand-load. Results indicated that the ANNs predicted body joint coordinates and angles during various activities with errors of ∼ 25 mm and ∼ 10°, respectively; considerable improvements when compared to previous posture-prediction ANNs. Extrapolation errors of our ANNs generally remained within the error range of existing ANNs with obesity and being left-handed having, respectively, the most and least compromising effects on their accuracy. These easy-to-use ANNs appear, therefore, to be robust alternatives to common posture-measurement approaches.
ArticleNumber 111884
Author Arjmand, Navid
Zargarzadeh, Sadra
Mohseni, Mahdi
Author_xml – sequence: 1
  givenname: Mahdi
  surname: Mohseni
  fullname: Mohseni, Mahdi
– sequence: 2
  givenname: Sadra
  surname: Zargarzadeh
  fullname: Zargarzadeh, Sadra
– sequence: 3
  givenname: Navid
  orcidid: 0000-0001-7972-042X
  surname: Arjmand
  fullname: Arjmand, Navid
  email: arjmand@sharif.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38043495$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS1URNPCK1SW2LCZ4J_JZCwhJFSgRSpiA2vrjueaOHHGg-1pyfvwoDhJs-mmq3slf-fYPueCnA1hQEKuOJtzxpv36_m6c2GLZjUXTMg557xt6xdkxtulrIRs2RmZMSZ4pYRi5-QipTVjbFkv1StyXo5rWavFjPz7PvnsqgxpQyFmZ51x4OmAUzyM_BDiJlEYeppX6CLFvznCGDxkFwZqYITOeZcdJpoDHSP2zmRqJ--rLvQ7Kj_T1bSFgY4h5Ski7afoht-0fKc62j6EalUW7KkP0B92vyfAZHd_cH5NXlrwCd88zkvy6-uXn9e31d2Pm2_Xn-4qI1Wdq5bb2jKlGkCsUVkUxooGpJC17JemaWwPwlrsUBpulDRGAFjbdguzaJQEeUneHX3HGP5MmLLeumTQexgwTEmLVi3rVkmxKOjbJ-g6THEor9NCcVkvhJJNoa4eqanbYq_H6LYQd_qUfwE-HAETQ0oRrTYuH6ItKTuvOdP7uvVan-rW-7r1se4ib57ITzc8K_x4FGKJ895h1KZk7gz4De50H9xzBv8BWjnLwA
CitedBy_id crossref_primary_10_1109_THMS_2024_3472548
crossref_primary_10_1016_j_jbiomech_2025_112560
crossref_primary_10_1016_j_jbiomech_2023_111896
crossref_primary_10_1016_j_jbiomech_2024_111974
Cites_doi 10.1016/j.jbiomech.2021.110539
10.1186/1471-2474-15-283
10.1016/j.clinbiomech.2011.12.015
10.1016/S0167-9457(96)00034-6
10.1186/s12877-019-1096-0
10.21203/rs.3.rs-3239200/v1
10.1016/j.ergon.2010.02.003
10.1016/j.medengphy.2022.103876
10.1038/s41598-023-30773-y
10.1109/ICBME54433.2021.9750385
10.1093/occmed/kqh091
10.1016/j.jbiomech.2016.07.008
10.1371/journal.pone.0270596
10.1177/00187208221141652
10.1016/j.apergo.2011.09.011
10.1109/ICASSP49357.2023.10095964
10.1016/j.jbiomech.2016.09.026
10.1109/ACCESS.2021.3138778
10.1016/j.jbiomech.2017.09.025
10.1145/2159616.2159632
10.1016/j.jbiomech.2013.02.026
10.1016/j.jbiomech.2017.03.011
10.1016/0268-0033(95)00043-7
10.1016/j.jbiomech.2021.110860
10.1109/FG.2018.00078
10.1016/j.clinbiomech.2009.05.008
10.1016/j.jbiomech.2015.09.003
10.1016/j.jbiomech.2021.110921
10.1038/s41598-022-21540-6
10.1016/j.jbiomech.2019.109332
10.1109/EMBC.2015.7318553
10.1016/j.jbiomech.2020.110043
10.1016/j.gaitpost.2012.03.033
10.1111/j.1467-8659.2009.01591.x
10.1016/j.jbiomech.2004.11.030
10.36076/ppj.2000/3/167
10.1016/S0731-7085(99)00272-1
10.1080/00140130802220570
10.3390/math8050662
10.1007/s12206-020-0740-0
10.1016/j.jbiomech.2015.12.038
10.1109/CVPR.2019.00363
10.1109/THMS.2021.3102511
10.1016/j.jbiomech.2018.08.015
10.1007/s10439-017-1868-7
10.1016/j.protcy.2013.12.159
10.1016/j.clinbiomech.2022.105667
10.3390/s20010130
10.1016/j.apergo.2014.11.002
10.1007/978-981-10-7563-6_53
10.1016/j.jhsa.2019.10.003
10.1016/j.jbiomech.2010.08.028
10.1016/j.gaitpost.2013.09.018
10.1016/j.jbiomech.2019.109550
10.1016/j.jbiomech.2017.06.017
10.1016/j.patcog.2019.04.023
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
2023. Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
– notice: 2023. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
DOI 10.1016/j.jbiomech.2023.111884
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library (ProQuest)
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Research Library Prep

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
ExternalDocumentID 38043495
10_1016_j_jbiomech_2023_111884
S0021929023004554
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBD
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HEE
HMCUK
HMK
HMO
HVGLF
HZ~
H~9
I-F
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
ML~
MO0
MVM
N9A
O-L
O9-
OAUVE
OH.
OHT
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
VH1
WUQ
X7M
XOL
XPP
YQT
Z5R
ZGI
ZMT
~G-
AAYXX
AFCTW
AGRNS
ALIPV
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
ID FETCH-LOGICAL-c394t-81f4f0996aee4e9fe2cf26a32343d7c66fda2ffebe3c1c93cc2aaff8b5c5693a3
IEDL.DBID 7X7
ISSN 0021-9290
1873-2380
IngestDate Fri Jul 11 16:01:53 EDT 2025
Wed Aug 13 09:35:38 EDT 2025
Mon Jul 21 06:01:08 EDT 2025
Tue Jul 01 00:44:24 EDT 2025
Thu Apr 24 23:06:56 EDT 2025
Tue Aug 26 16:32:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Body mass index
Lifting techniques
Posture prediction
Motion analysis
Machine learning
Extrapolation capability
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-81f4f0996aee4e9fe2cf26a32343d7c66fda2ffebe3c1c93cc2aaff8b5c5693a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7972-042X
PMID 38043495
PQID 2913452936
PQPubID 1226346
ParticipantIDs proquest_miscellaneous_2897489325
proquest_journals_2913452936
pubmed_primary_38043495
crossref_citationtrail_10_1016_j_jbiomech_2023_111884
crossref_primary_10_1016_j_jbiomech_2023_111884
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2023_111884
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Arjmand, Plamondon, Shirazi-Adl, Larivière, Parnianpour (b0025) 2011; 44
Mousavi, Sayyaadi, Arjmand (b0185) 2020; 34
Aghazadeh, Arjmand, Nasrabadi (b0010) 2020; 102
Mehrizi, R., Peng, X., Tang, Z., Xu, X., Metaxas, D., Li, K., 2018. Toward Marker-Free 3D Pose Estimation in Lifting: A Deep Multi-View Solution. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018). pp. 485–491.
Pejsa, Pandzic (b0205) 2010; 29
Vinutha, H.P., Poornima, B., Sagar, B.M., 2018. Detection of Outliers Using Interquartile Range Technique from Intrusion Dataset. In: Satapathy, S.C., Tavares, J.M.R.S., Bhateja, V., Mohanty, J.R. (Eds.), Springer Singapore, Singapore, pp. 511–518.
Bonnechère, Jansen, Salvia, Bouzahouene, Omelina, Moiseev, Sholukha, Cornelis, Rooze, Van Sint Jan (b0060) 2014; 39
Shah, Middleton, Gurdezi, Horwitz, Kedgley (b0235) 2017; 60
Dutta (b0085) 2012; 43
Arjmand, Shirazi-Adl (b0040) 2006; 39
Gholipour, Arjmand (b0120) 2016; 49
Thiese, Hegmann, Wood, Garg, Moore, Kapellusch, Foster, Ott (b0255) 2014; 15
Bahramian, Arjmand, El-Rich, Parnianpour (b0050) 2023; 111770
Nasrabadi, Eslaminia, Bakhshayesh, Ejtehadi, Alibiglou, Behzadipour (b0190) 2022; 108
Plamondon, Gagnon, Desjardins (b0220) 1996; 11
Vicon®, 2002. Plug-in-Gait modelling instructions. Vicon® Manual, Vicon®612 Motion Systems. Oxford Metrics Ltd., Oxford, UK.
Lim, Kim, Park (b0165) 2019; 20
Agatonovic-Kustrin, Beresford (b0005) 2000; 22
Dehghan, Arjmand (b0075) 2022
Huu, Thi, Ngoc (b0140) 2022; 10
Papaioannidis, C., Mademlis, I., Pitas, I., 2023. Fast Single-Person 2D Human Pose Estimation Using Multi-Task Convolutional Neural Networks. In: ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 1–5.
Apte, Karami, Vallat, Gremeaux, Aminian (b0015) 2023; 13
Shah, Middleton, Gurdezi, Horwitz, Kedgley (b0240) 2020; 45
Arjmand, Gagnon, Plamondon, Shirazi-Adl, Larivière (b0020) 2009; 24
Hajibozorgi, Arjmand (b0130) 2016; 49
Postolka, Taylor, List, Fucentese, Koch, Schütz (b0225) 2022; 96
Rajaee, Arjmand, Shirazi-Adl, Plamondon, Schmidt (b0230) 2015; 48
Spüler, M., Sarasola-Sanz, A., Birbaumer, N., Rosenstiel, W., Ramos-Murguialday, A., 2015. Comparing metrics to evaluate performance of regression methods for decoding of neural signals. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp. 1083–1086.
Shahabpoor, Pavic (b0245) 2018; 79
Zhang, F., Zhu, X., Ye, M., 2019. Fast human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3517–3526.
Arjmand, Plamondon, Shirazi-Adl, Parnianpour, Larivière (b0030) 2012; 27
Gong, Sun, Yang, Pang, Chen, Qi, Gu, Zhang, Zhang (b0125) 2019; 19
Ghezelbash, Shirazi-Adl, Plamondon, Arjmand, Parnianpour (b0110) 2017; 45
Arjmand, Ekrami, Shirazi-Adl, Plamondon, Parnianpour (b0035) 2013; 46
Feng, A.W., Xu, Y., Shapiro, A., 2012. An Example-Based Motion Synthesis Technique for Locomotion and Object Manipulation. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’12. Association for Computing Machinery, New York, NY, USA, pp. 95–102.
Ghezelbash, Shirazi-Adl, Arjmand, El-Ouaaid, Plamondon, Meakin (b0105) 2016; 49
Li, Prabhu, Xie, Wang, Lu, Xu (b0160) 2021; 51
Kingma, de Looze, Toussaint, Klijnsma, Bruijnen (b0150) 1996; 15
Zanjani-Pour, Meakin, Breen, Breen (b0285) 2018; 70
Bahramian, M., Shayestehpour, M.A., Yavari, M., Mehrabi, H., Arjmand, N., 2021. Musculoskeletal injury risk assessment in a car dashboard assembly line using various quantitative and qualitative tools. In: 2021 28th National and 6th International Iranian Conference on Biomedical Engineering (ICBME). IEEE, pp. 310–316.
Ghezelbash, Shirazi-Adl, El Ouaaid, Plamondon, Arjmand (b0115) 2020; 102
Hulleck, A.A., Mohseni, M., Hantash, M.K.A., Katmah, R., Almadani, M., Arjmand, N., Khalaf, K., El Rich, M., 2023. Accuracy of Computer Vision-Based Pose Estimation Algorithms in Predicting Joint Kinematics During Gait. Res Sq. https://doi.org/10.21203/rs.3.rs-3239200/v1.
Van Nieuwenhuyse (b0260) 2004; 54
Zhang, Huang, Wang, Yu (b0300) 2019; 93
Perez, Tah (b0215) 2020; 8
Kumar, Jain, Kumar (b0155) 2023; 15
Perez, Nussbaum (b0210) 2008; 51
Vogl, Schütz, Postolka, List, Taylor (b0275) 2022; 17
Nawi, Atomi, Rehman (b0195) 2013; 11
Manchikanti (b0170) 2000; 3
Zhang, Horváth, Molenbroek, Snijders (b0295) 2010; 40
Clark, Pua, Fortin, Ritchie, Webster, Denehy, Bryant (b0065) 2012; 36
Asadi, Arjmand (b0045) 2020; 112
Eskandari, Arjmand, Shirazi-Adl, Farahmand (b0090) 2017; 57
Katz (b0145) 2006; 88
Wang, Xie, Lu, Li, Xu (b0280) 2021; 129
Dreischarf, Shirazi-Adl, Arjmand, Rohlmann, Schmidt (b0080) 2016; 49
Dehaghani, Nourani, Arjmand (b0070) 2022; 12
Ghasemi, Arjmand (b0100) 2021; 123
Mohseni, Aghazadeh, Arjmand (b0180) 2022; 131
Perez (10.1016/j.jbiomech.2023.111884_b0215) 2020; 8
Bonnechère (10.1016/j.jbiomech.2023.111884_b0060) 2014; 39
10.1016/j.jbiomech.2023.111884_b0200
Ghezelbash (10.1016/j.jbiomech.2023.111884_b0110) 2017; 45
Shahabpoor (10.1016/j.jbiomech.2023.111884_b0245) 2018; 79
Gong (10.1016/j.jbiomech.2023.111884_b0125) 2019; 19
Wang (10.1016/j.jbiomech.2023.111884_b0280) 2021; 129
Arjmand (10.1016/j.jbiomech.2023.111884_b0040) 2006; 39
10.1016/j.jbiomech.2023.111884_b0290
10.1016/j.jbiomech.2023.111884_b0250
Apte (10.1016/j.jbiomech.2023.111884_b0015) 2023; 13
10.1016/j.jbiomech.2023.111884_b0095
10.1016/j.jbiomech.2023.111884_b0175
10.1016/j.jbiomech.2023.111884_b0055
10.1016/j.jbiomech.2023.111884_b0135
Huu (10.1016/j.jbiomech.2023.111884_b0140) 2022; 10
Dehghan (10.1016/j.jbiomech.2023.111884_b0075) 2022
Shah (10.1016/j.jbiomech.2023.111884_b0240) 2020; 45
Manchikanti (10.1016/j.jbiomech.2023.111884_b0170) 2000; 3
Ghasemi (10.1016/j.jbiomech.2023.111884_b0100) 2021; 123
Pejsa (10.1016/j.jbiomech.2023.111884_b0205) 2010; 29
Zanjani-Pour (10.1016/j.jbiomech.2023.111884_b0285) 2018; 70
Li (10.1016/j.jbiomech.2023.111884_b0160) 2021; 51
Dehaghani (10.1016/j.jbiomech.2023.111884_b0070) 2022; 12
Ghezelbash (10.1016/j.jbiomech.2023.111884_b0115) 2020; 102
Lim (10.1016/j.jbiomech.2023.111884_b0165) 2019; 20
Clark (10.1016/j.jbiomech.2023.111884_b0065) 2012; 36
Dreischarf (10.1016/j.jbiomech.2023.111884_b0080) 2016; 49
Perez (10.1016/j.jbiomech.2023.111884_b0210) 2008; 51
10.1016/j.jbiomech.2023.111884_b0265
Postolka (10.1016/j.jbiomech.2023.111884_b0225) 2022; 96
Arjmand (10.1016/j.jbiomech.2023.111884_b0035) 2013; 46
Mohseni (10.1016/j.jbiomech.2023.111884_b0180) 2022; 131
Eskandari (10.1016/j.jbiomech.2023.111884_b0090) 2017; 57
Arjmand (10.1016/j.jbiomech.2023.111884_b0030) 2012; 27
Bahramian (10.1016/j.jbiomech.2023.111884_b0050) 2023; 111770
Shah (10.1016/j.jbiomech.2023.111884_b0235) 2017; 60
Katz (10.1016/j.jbiomech.2023.111884_b0145) 2006; 88
Kumar (10.1016/j.jbiomech.2023.111884_b0155) 2023; 15
Nasrabadi (10.1016/j.jbiomech.2023.111884_b0190) 2022; 108
Asadi (10.1016/j.jbiomech.2023.111884_b0045) 2020; 112
Arjmand (10.1016/j.jbiomech.2023.111884_b0025) 2011; 44
Mousavi (10.1016/j.jbiomech.2023.111884_b0185) 2020; 34
Zhang (10.1016/j.jbiomech.2023.111884_b0295) 2010; 40
Ghezelbash (10.1016/j.jbiomech.2023.111884_b0105) 2016; 49
Gholipour (10.1016/j.jbiomech.2023.111884_b0120) 2016; 49
Agatonovic-Kustrin (10.1016/j.jbiomech.2023.111884_b0005) 2000; 22
10.1016/j.jbiomech.2023.111884_b0270
Vogl (10.1016/j.jbiomech.2023.111884_b0275) 2022; 17
Plamondon (10.1016/j.jbiomech.2023.111884_b0220) 1996; 11
Rajaee (10.1016/j.jbiomech.2023.111884_b0230) 2015; 48
Thiese (10.1016/j.jbiomech.2023.111884_b0255) 2014; 15
Nawi (10.1016/j.jbiomech.2023.111884_b0195) 2013; 11
Kingma (10.1016/j.jbiomech.2023.111884_b0150) 1996; 15
Arjmand (10.1016/j.jbiomech.2023.111884_b0020) 2009; 24
Aghazadeh (10.1016/j.jbiomech.2023.111884_b0010) 2020; 102
Dutta (10.1016/j.jbiomech.2023.111884_b0085) 2012; 43
Van Nieuwenhuyse (10.1016/j.jbiomech.2023.111884_b0260) 2004; 54
Hajibozorgi (10.1016/j.jbiomech.2023.111884_b0130) 2016; 49
Zhang (10.1016/j.jbiomech.2023.111884_b0300) 2019; 93
References_xml – volume: 11
  start-page: 101
  year: 1996
  end-page: 110
  ident: b0220
  article-title: Validation of two 3-D segment models to calculate the net reaction forces and moments at the L5S1 joint in lifting
  publication-title: Clin. Biomech.
– reference: Zhang, F., Zhu, X., Ye, M., 2019. Fast human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3517–3526.
– volume: 102
  year: 2020
  ident: b0010
  article-title: Coupled artificial neural networks to estimate 3D whole-body posture, lumbosacral moments, and spinal loads during load-handling activities
  publication-title: J. Biomech.
– volume: 108
  year: 2022
  ident: b0190
  article-title: A new scheme for the development of IMU-based activity recognition systems for telerehabilitation
  publication-title: Med. Eng. Phys.
– reference: Feng, A.W., Xu, Y., Shapiro, A., 2012. An Example-Based Motion Synthesis Technique for Locomotion and Object Manipulation. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’12. Association for Computing Machinery, New York, NY, USA, pp. 95–102.
– volume: 51
  start-page: 1549
  year: 2008
  end-page: 1564
  ident: b0210
  article-title: A neural network model for predicting postures during non-repetitive manual materials handling tasks
  publication-title: Ergonomics
– volume: 46
  start-page: 1454
  year: 2013
  end-page: 1462
  ident: b0035
  article-title: Relative performances of artificial neural network and regression mapping tools in evaluation of spinal loads and muscle forces during static lifting
  publication-title: J. Biomech.
– volume: 51
  start-page: 494
  year: 2021
  end-page: 503
  ident: b0160
  article-title: Lifting Posture Prediction With Generative Models for Improving Occupational Safety
  publication-title: IEEE Trans Hum Mach Syst
– volume: 3
  start-page: 167
  year: 2000
  end-page: 192
  ident: b0170
  article-title: Epidemiology of low back pain
  publication-title: Pain Physician
– volume: 45
  start-page: 2373
  year: 2017
  end-page: 2382
  ident: b0110
  article-title: Obesity and Obesity Shape Markedly Influence Spine Biomechanics: A Subject-Specific Risk Assessment Model
  publication-title: Ann. Biomed. Eng.
– year: 2022
  ident: b0075
  article-title: The National Institute for Occupational Safety and Health (NIOSH) Recommended Weight Generates Different Spine Loads in Load-Handling Activity Performed Using Stoop, Semi-squat and Full-Squat Techniques; a Full-Body Musculoskeletal Model Study
  publication-title: Human Factors: J. Human Factors Ergonom. Soc.
– volume: 131
  year: 2022
  ident: b0180
  article-title: Improved artificial neural networks for 3D body posture and lumbosacral moment predictions during manual material handling activities
  publication-title: J. Biomech.
– volume: 8
  start-page: 662
  year: 2020
  ident: b0215
  article-title: Improving the accuracy of convolutional neural networks by identifying and removing outlier images in datasets using t-SNE
  publication-title: Mathematics
– volume: 15
  start-page: 1005
  year: 2023
  end-page: 1014
  ident: b0155
  article-title: Face and gait biometrics authentication system based on simplified deep neural networks
  publication-title: Int. J. Inf. Technol.
– volume: 10
  start-page: 1839
  year: 2022
  end-page: 1849
  ident: b0140
  article-title: Proposing Posture Recognition System Combining MobilenetV2 and LSTM for Medical Surveillance
  publication-title: IEEE Access
– volume: 12
  start-page: 18326
  year: 2022
  ident: b0070
  article-title: Effects of auxetic shoe on lumbar spine kinematics and kinetics during gait and drop vertical jump by a combined in vivo and modeling investigation
  publication-title: Sci. Rep.
– volume: 88
  start-page: 21
  year: 2006
  end-page: 24
  ident: b0145
  article-title: Lumbar disc disorders and low-back pain: socioeconomic factors and consequences
  publication-title: JBJS
– volume: 36
  start-page: 372
  year: 2012
  end-page: 377
  ident: b0065
  article-title: Validity of the Microsoft Kinect for assessment of postural control
  publication-title: Gait Posture
– volume: 60
  start-page: 232
  year: 2017
  end-page: 237
  ident: b0235
  article-title: The effects of wrist motion and hand orientation on muscle forces: A physiologic wrist simulator study
  publication-title: J. Biomech.
– volume: 57
  start-page: 18
  year: 2017
  end-page: 26
  ident: b0090
  article-title: Subject-specific 2D/3D image registration and kinematics-driven musculoskeletal model of the spine
  publication-title: J. Biomech.
– volume: 39
  start-page: 510
  year: 2006
  end-page: 521
  ident: b0040
  article-title: Model and in vivo studies on human trunk load partitioning and stability in isometric forward flexions
  publication-title: J. Biomech.
– volume: 11
  start-page: 32
  year: 2013
  end-page: 39
  ident: b0195
  article-title: The Effect of Data Pre-processing on Optimized Training of Artificial Neural Networks
  publication-title: Procedia Technol.
– volume: 40
  start-page: 414
  year: 2010
  end-page: 424
  ident: b0295
  article-title: Using artificial neural networks for human body posture prediction
  publication-title: Int. J. Ind. Ergon.
– volume: 49
  start-page: 913
  year: 2016
  end-page: 918
  ident: b0130
  article-title: Sagittal range of motion of the thoracic spine using inertial tracking device and effect of measurement errors on model predictions
  publication-title: J. Biomech.
– volume: 45
  start-page: 389
  year: 2020
  end-page: 398
  ident: b0240
  article-title: The Effect of Surgical Treatments for Trapeziometacarpal Osteoarthritis on Wrist Biomechanics: A Cadaver Study
  publication-title: J. Hand Surg. Am.
– volume: 48
  start-page: 22
  year: 2015
  end-page: 32
  ident: b0230
  article-title: Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities
  publication-title: Appl. Ergon.
– volume: 15
  start-page: 283
  year: 2014
  ident: b0255
  article-title: Prevalence of low back pain by anatomic location and intensity in an occupational population
  publication-title: BMC Musculoskelet. Disord.
– volume: 102
  year: 2020
  ident: b0115
  article-title: Subject-specific regression equations to estimate lower spinal loads during symmetric and asymmetric static lifting
  publication-title: J. Biomech.
– volume: 20
  start-page: 130
  year: 2019
  ident: b0165
  article-title: Prediction of lower limb kinetics and kinematics during walking by a single IMU on the lower back using machine learning
  publication-title: Sensors
– reference: Spüler, M., Sarasola-Sanz, A., Birbaumer, N., Rosenstiel, W., Ramos-Murguialday, A., 2015. Comparing metrics to evaluate performance of regression methods for decoding of neural signals. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp. 1083–1086.
– volume: 96
  year: 2022
  ident: b0225
  article-title: ISB clinical biomechanics award winner 2021: Tibio-femoral kinematics of natural versus replaced knees – A comparison using dynamic videofluoroscopy
  publication-title: Clin. Biomech.
– volume: 17
  start-page: e0270596
  year: 2022
  ident: b0275
  article-title: Personalised pose estimation from single-plane moving fluoroscope images using deep convolutional neural networks
  publication-title: PLoS One
– volume: 19
  start-page: 71
  year: 2019
  ident: b0125
  article-title: Changes of upright body posture in the sagittal plane of men and women occurring with aging – a cross sectional study
  publication-title: BMC Geriatr.
– volume: 22
  start-page: 717
  year: 2000
  end-page: 727
  ident: b0005
  article-title: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research
  publication-title: J. Pharm. Biomed. Anal.
– volume: 29
  start-page: 202
  year: 2010
  end-page: 226
  ident: b0205
  article-title: State of the Art in Example-Based Motion Synthesis for Virtual Characters in Interactive Applications
  publication-title: Comput. Graphics Forum
– volume: 44
  start-page: 84
  year: 2011
  end-page: 91
  ident: b0025
  article-title: Predictive equations to estimate spinal loads in symmetric lifting tasks
  publication-title: J. Biomech.
– reference: Bahramian, M., Shayestehpour, M.A., Yavari, M., Mehrabi, H., Arjmand, N., 2021. Musculoskeletal injury risk assessment in a car dashboard assembly line using various quantitative and qualitative tools. In: 2021 28th National and 6th International Iranian Conference on Biomedical Engineering (ICBME). IEEE, pp. 310–316.
– volume: 93
  start-page: 228
  year: 2019
  end-page: 236
  ident: b0300
  article-title: A comprehensive study on gait biometrics using a joint CNN-based method
  publication-title: Pattern Recogn.
– volume: 54
  start-page: 513
  year: 2004
  end-page: 519
  ident: b0260
  article-title: Risk factors for first-ever low back pain among workers in their first employment
  publication-title: Occup. Med. (Chic Ill)
– volume: 15
  start-page: 833
  year: 1996
  end-page: 860
  ident: b0150
  article-title: Validation of a full body 3-D dynamic linked segment model
  publication-title: Hum. Mov. Sci.
– volume: 123
  year: 2021
  ident: b0100
  article-title: Spinal segment ranges of motion, movement coordination, and three-dimensional kinematics during occupational activities in normal-weight and obese individuals
  publication-title: J. Biomech.
– volume: 111770
  year: 2023
  ident: b0050
  article-title: Effect of obesity on spinal loads during load-reaching activities: A subject- and kinematics-specific musculoskeletal modeling approach
  publication-title: J. Biomech.
– reference: Mehrizi, R., Peng, X., Tang, Z., Xu, X., Metaxas, D., Li, K., 2018. Toward Marker-Free 3D Pose Estimation in Lifting: A Deep Multi-View Solution. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018). pp. 485–491.
– volume: 70
  start-page: 134
  year: 2018
  end-page: 139
  ident: b0285
  article-title: Estimation of in vivo inter-vertebral loading during motion using fluoroscopic and magnetic resonance image informed finite element models
  publication-title: J. Biomech.
– volume: 49
  start-page: 3492
  year: 2016
  end-page: 3501
  ident: b0105
  article-title: Effects of sex, age, body height and body weight on spinal loads: Sensitivity analyses in a subject-specific trunk musculoskeletal model
  publication-title: J. Biomech.
– volume: 79
  start-page: 181
  year: 2018
  end-page: 190
  ident: b0245
  article-title: Estimation of vertical walking ground reaction force in real-life environments using single IMU sensor
  publication-title: J. Biomech.
– volume: 49
  start-page: 2946
  year: 2016
  end-page: 2952
  ident: b0120
  article-title: Artificial neural networks to predict 3D spinal posture in reaching and lifting activities; Applications in biomechanical models
  publication-title: J. Biomech.
– reference: Vinutha, H.P., Poornima, B., Sagar, B.M., 2018. Detection of Outliers Using Interquartile Range Technique from Intrusion Dataset. In: Satapathy, S.C., Tavares, J.M.R.S., Bhateja, V., Mohanty, J.R. (Eds.), Springer Singapore, Singapore, pp. 511–518.
– volume: 49
  start-page: 833
  year: 2016
  end-page: 845
  ident: b0080
  article-title: Estimation of loads on human lumbar spine: A review of in vivo and computational model studies
  publication-title: J. Biomech.
– volume: 34
  start-page: 3481
  year: 2020
  end-page: 3485
  ident: b0185
  article-title: Prediction of the thorax/pelvis orientations and L5–S1 disc loads during various static activities using neuro-fuzzy
  publication-title: J. Mech. Sci. Technol.
– volume: 112
  year: 2020
  ident: b0045
  article-title: Marker-less versus marker-based driven musculoskeletal models of the spine during static load-handling activities
  publication-title: J. Biomech.
– volume: 43
  start-page: 645
  year: 2012
  end-page: 649
  ident: b0085
  article-title: Evaluation of the Kinect
  publication-title: Appl. Ergon.
– reference: Vicon®, 2002. Plug-in-Gait modelling instructions. Vicon® Manual, Vicon®612 Motion Systems. Oxford Metrics Ltd., Oxford, UK.
– volume: 39
  start-page: 593
  year: 2014
  end-page: 598
  ident: b0060
  article-title: Validity and reliability of the Kinect within functional assessment activities: Comparison with standard stereophotogrammetry
  publication-title: Gait Posture
– volume: 24
  start-page: 533
  year: 2009
  end-page: 541
  ident: b0020
  article-title: Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models
  publication-title: Clin. Biomech.
– reference: Papaioannidis, C., Mademlis, I., Pitas, I., 2023. Fast Single-Person 2D Human Pose Estimation Using Multi-Task Convolutional Neural Networks. In: ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 1–5.
– reference: Hulleck, A.A., Mohseni, M., Hantash, M.K.A., Katmah, R., Almadani, M., Arjmand, N., Khalaf, K., El Rich, M., 2023. Accuracy of Computer Vision-Based Pose Estimation Algorithms in Predicting Joint Kinematics During Gait. Res Sq. https://doi.org/10.21203/rs.3.rs-3239200/v1.
– volume: 13
  start-page: 4518
  year: 2023
  ident: b0015
  article-title: In-field assessment of change-of-direction ability with a single wearable sensor
  publication-title: Sci. Rep.
– volume: 27
  start-page: 537
  year: 2012
  end-page: 544
  ident: b0030
  article-title: Predictive equations for lumbar spine loads in load-dependent asymmetric one- and two-handed lifting activities
  publication-title: Clin. Biomech.
– volume: 129
  year: 2021
  ident: b0280
  article-title: A computer-vision method to estimate joint angles and L5/S1 moments during lifting tasks through a single camera
  publication-title: J. Biomech.
– volume: 123
  year: 2021
  ident: 10.1016/j.jbiomech.2023.111884_b0100
  article-title: Spinal segment ranges of motion, movement coordination, and three-dimensional kinematics during occupational activities in normal-weight and obese individuals
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2021.110539
– volume: 15
  start-page: 283
  year: 2014
  ident: 10.1016/j.jbiomech.2023.111884_b0255
  article-title: Prevalence of low back pain by anatomic location and intensity in an occupational population
  publication-title: BMC Musculoskelet. Disord.
  doi: 10.1186/1471-2474-15-283
– volume: 27
  start-page: 537
  year: 2012
  ident: 10.1016/j.jbiomech.2023.111884_b0030
  article-title: Predictive equations for lumbar spine loads in load-dependent asymmetric one- and two-handed lifting activities
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2011.12.015
– volume: 15
  start-page: 833
  year: 1996
  ident: 10.1016/j.jbiomech.2023.111884_b0150
  article-title: Validation of a full body 3-D dynamic linked segment model
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/S0167-9457(96)00034-6
– volume: 19
  start-page: 71
  year: 2019
  ident: 10.1016/j.jbiomech.2023.111884_b0125
  article-title: Changes of upright body posture in the sagittal plane of men and women occurring with aging – a cross sectional study
  publication-title: BMC Geriatr.
  doi: 10.1186/s12877-019-1096-0
– volume: 88
  start-page: 21
  year: 2006
  ident: 10.1016/j.jbiomech.2023.111884_b0145
  article-title: Lumbar disc disorders and low-back pain: socioeconomic factors and consequences
  publication-title: JBJS
– ident: 10.1016/j.jbiomech.2023.111884_b0135
  doi: 10.21203/rs.3.rs-3239200/v1
– volume: 40
  start-page: 414
  year: 2010
  ident: 10.1016/j.jbiomech.2023.111884_b0295
  article-title: Using artificial neural networks for human body posture prediction
  publication-title: Int. J. Ind. Ergon.
  doi: 10.1016/j.ergon.2010.02.003
– volume: 108
  year: 2022
  ident: 10.1016/j.jbiomech.2023.111884_b0190
  article-title: A new scheme for the development of IMU-based activity recognition systems for telerehabilitation
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2022.103876
– volume: 13
  start-page: 4518
  year: 2023
  ident: 10.1016/j.jbiomech.2023.111884_b0015
  article-title: In-field assessment of change-of-direction ability with a single wearable sensor
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-30773-y
– ident: 10.1016/j.jbiomech.2023.111884_b0055
  doi: 10.1109/ICBME54433.2021.9750385
– volume: 54
  start-page: 513
  year: 2004
  ident: 10.1016/j.jbiomech.2023.111884_b0260
  article-title: Risk factors for first-ever low back pain among workers in their first employment
  publication-title: Occup. Med. (Chic Ill)
  doi: 10.1093/occmed/kqh091
– volume: 49
  start-page: 2946
  year: 2016
  ident: 10.1016/j.jbiomech.2023.111884_b0120
  article-title: Artificial neural networks to predict 3D spinal posture in reaching and lifting activities; Applications in biomechanical models
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.07.008
– volume: 17
  start-page: e0270596
  year: 2022
  ident: 10.1016/j.jbiomech.2023.111884_b0275
  article-title: Personalised pose estimation from single-plane moving fluoroscope images using deep convolutional neural networks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0270596
– year: 2022
  ident: 10.1016/j.jbiomech.2023.111884_b0075
  article-title: The National Institute for Occupational Safety and Health (NIOSH) Recommended Weight Generates Different Spine Loads in Load-Handling Activity Performed Using Stoop, Semi-squat and Full-Squat Techniques; a Full-Body Musculoskeletal Model Study
  publication-title: Human Factors: J. Human Factors Ergonom. Soc.
  doi: 10.1177/00187208221141652
– volume: 15
  start-page: 1005
  year: 2023
  ident: 10.1016/j.jbiomech.2023.111884_b0155
  article-title: Face and gait biometrics authentication system based on simplified deep neural networks
  publication-title: Int. J. Inf. Technol.
– volume: 43
  start-page: 645
  year: 2012
  ident: 10.1016/j.jbiomech.2023.111884_b0085
  article-title: Evaluation of the KinectTM sensor for 3-D kinematic measurement in the workplace
  publication-title: Appl. Ergon.
  doi: 10.1016/j.apergo.2011.09.011
– ident: 10.1016/j.jbiomech.2023.111884_b0200
  doi: 10.1109/ICASSP49357.2023.10095964
– volume: 49
  start-page: 3492
  year: 2016
  ident: 10.1016/j.jbiomech.2023.111884_b0105
  article-title: Effects of sex, age, body height and body weight on spinal loads: Sensitivity analyses in a subject-specific trunk musculoskeletal model
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.09.026
– volume: 111770
  year: 2023
  ident: 10.1016/j.jbiomech.2023.111884_b0050
  article-title: Effect of obesity on spinal loads during load-reaching activities: A subject- and kinematics-specific musculoskeletal modeling approach
  publication-title: J. Biomech.
– volume: 10
  start-page: 1839
  year: 2022
  ident: 10.1016/j.jbiomech.2023.111884_b0140
  article-title: Proposing Posture Recognition System Combining MobilenetV2 and LSTM for Medical Surveillance
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3138778
– volume: 70
  start-page: 134
  year: 2018
  ident: 10.1016/j.jbiomech.2023.111884_b0285
  article-title: Estimation of in vivo inter-vertebral loading during motion using fluoroscopic and magnetic resonance image informed finite element models
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.09.025
– ident: 10.1016/j.jbiomech.2023.111884_b0095
  doi: 10.1145/2159616.2159632
– volume: 46
  start-page: 1454
  year: 2013
  ident: 10.1016/j.jbiomech.2023.111884_b0035
  article-title: Relative performances of artificial neural network and regression mapping tools in evaluation of spinal loads and muscle forces during static lifting
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.02.026
– volume: 57
  start-page: 18
  year: 2017
  ident: 10.1016/j.jbiomech.2023.111884_b0090
  article-title: Subject-specific 2D/3D image registration and kinematics-driven musculoskeletal model of the spine
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.03.011
– volume: 11
  start-page: 101
  year: 1996
  ident: 10.1016/j.jbiomech.2023.111884_b0220
  article-title: Validation of two 3-D segment models to calculate the net reaction forces and moments at the L5S1 joint in lifting
  publication-title: Clin. Biomech.
  doi: 10.1016/0268-0033(95)00043-7
– volume: 129
  year: 2021
  ident: 10.1016/j.jbiomech.2023.111884_b0280
  article-title: A computer-vision method to estimate joint angles and L5/S1 moments during lifting tasks through a single camera
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2021.110860
– ident: 10.1016/j.jbiomech.2023.111884_b0175
  doi: 10.1109/FG.2018.00078
– volume: 24
  start-page: 533
  year: 2009
  ident: 10.1016/j.jbiomech.2023.111884_b0020
  article-title: Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2009.05.008
– volume: 49
  start-page: 913
  year: 2016
  ident: 10.1016/j.jbiomech.2023.111884_b0130
  article-title: Sagittal range of motion of the thoracic spine using inertial tracking device and effect of measurement errors on model predictions
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.09.003
– volume: 131
  year: 2022
  ident: 10.1016/j.jbiomech.2023.111884_b0180
  article-title: Improved artificial neural networks for 3D body posture and lumbosacral moment predictions during manual material handling activities
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2021.110921
– volume: 12
  start-page: 18326
  year: 2022
  ident: 10.1016/j.jbiomech.2023.111884_b0070
  article-title: Effects of auxetic shoe on lumbar spine kinematics and kinetics during gait and drop vertical jump by a combined in vivo and modeling investigation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-21540-6
– volume: 102
  year: 2020
  ident: 10.1016/j.jbiomech.2023.111884_b0010
  article-title: Coupled artificial neural networks to estimate 3D whole-body posture, lumbosacral moments, and spinal loads during load-handling activities
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2019.109332
– ident: 10.1016/j.jbiomech.2023.111884_b0250
  doi: 10.1109/EMBC.2015.7318553
– volume: 112
  year: 2020
  ident: 10.1016/j.jbiomech.2023.111884_b0045
  article-title: Marker-less versus marker-based driven musculoskeletal models of the spine during static load-handling activities
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2020.110043
– volume: 36
  start-page: 372
  year: 2012
  ident: 10.1016/j.jbiomech.2023.111884_b0065
  article-title: Validity of the Microsoft Kinect for assessment of postural control
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2012.03.033
– volume: 29
  start-page: 202
  year: 2010
  ident: 10.1016/j.jbiomech.2023.111884_b0205
  article-title: State of the Art in Example-Based Motion Synthesis for Virtual Characters in Interactive Applications
  publication-title: Comput. Graphics Forum
  doi: 10.1111/j.1467-8659.2009.01591.x
– volume: 39
  start-page: 510
  year: 2006
  ident: 10.1016/j.jbiomech.2023.111884_b0040
  article-title: Model and in vivo studies on human trunk load partitioning and stability in isometric forward flexions
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.11.030
– volume: 3
  start-page: 167
  year: 2000
  ident: 10.1016/j.jbiomech.2023.111884_b0170
  article-title: Epidemiology of low back pain
  publication-title: Pain Physician
  doi: 10.36076/ppj.2000/3/167
– volume: 22
  start-page: 717
  year: 2000
  ident: 10.1016/j.jbiomech.2023.111884_b0005
  article-title: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/S0731-7085(99)00272-1
– volume: 51
  start-page: 1549
  year: 2008
  ident: 10.1016/j.jbiomech.2023.111884_b0210
  article-title: A neural network model for predicting postures during non-repetitive manual materials handling tasks
  publication-title: Ergonomics
  doi: 10.1080/00140130802220570
– volume: 8
  start-page: 662
  year: 2020
  ident: 10.1016/j.jbiomech.2023.111884_b0215
  article-title: Improving the accuracy of convolutional neural networks by identifying and removing outlier images in datasets using t-SNE
  publication-title: Mathematics
  doi: 10.3390/math8050662
– volume: 34
  start-page: 3481
  year: 2020
  ident: 10.1016/j.jbiomech.2023.111884_b0185
  article-title: Prediction of the thorax/pelvis orientations and L5–S1 disc loads during various static activities using neuro-fuzzy
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-020-0740-0
– volume: 49
  start-page: 833
  year: 2016
  ident: 10.1016/j.jbiomech.2023.111884_b0080
  article-title: Estimation of loads on human lumbar spine: A review of in vivo and computational model studies
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.12.038
– ident: 10.1016/j.jbiomech.2023.111884_b0290
  doi: 10.1109/CVPR.2019.00363
– volume: 51
  start-page: 494
  year: 2021
  ident: 10.1016/j.jbiomech.2023.111884_b0160
  article-title: Lifting Posture Prediction With Generative Models for Improving Occupational Safety
  publication-title: IEEE Trans Hum Mach Syst
  doi: 10.1109/THMS.2021.3102511
– volume: 79
  start-page: 181
  year: 2018
  ident: 10.1016/j.jbiomech.2023.111884_b0245
  article-title: Estimation of vertical walking ground reaction force in real-life environments using single IMU sensor
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2018.08.015
– ident: 10.1016/j.jbiomech.2023.111884_b0265
– volume: 45
  start-page: 2373
  year: 2017
  ident: 10.1016/j.jbiomech.2023.111884_b0110
  article-title: Obesity and Obesity Shape Markedly Influence Spine Biomechanics: A Subject-Specific Risk Assessment Model
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-017-1868-7
– volume: 11
  start-page: 32
  year: 2013
  ident: 10.1016/j.jbiomech.2023.111884_b0195
  article-title: The Effect of Data Pre-processing on Optimized Training of Artificial Neural Networks
  publication-title: Procedia Technol.
  doi: 10.1016/j.protcy.2013.12.159
– volume: 96
  year: 2022
  ident: 10.1016/j.jbiomech.2023.111884_b0225
  article-title: ISB clinical biomechanics award winner 2021: Tibio-femoral kinematics of natural versus replaced knees – A comparison using dynamic videofluoroscopy
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2022.105667
– volume: 20
  start-page: 130
  year: 2019
  ident: 10.1016/j.jbiomech.2023.111884_b0165
  article-title: Prediction of lower limb kinetics and kinematics during walking by a single IMU on the lower back using machine learning
  publication-title: Sensors
  doi: 10.3390/s20010130
– volume: 48
  start-page: 22
  year: 2015
  ident: 10.1016/j.jbiomech.2023.111884_b0230
  article-title: Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities
  publication-title: Appl. Ergon.
  doi: 10.1016/j.apergo.2014.11.002
– ident: 10.1016/j.jbiomech.2023.111884_b0270
  doi: 10.1007/978-981-10-7563-6_53
– volume: 45
  start-page: 389
  year: 2020
  ident: 10.1016/j.jbiomech.2023.111884_b0240
  article-title: The Effect of Surgical Treatments for Trapeziometacarpal Osteoarthritis on Wrist Biomechanics: A Cadaver Study
  publication-title: J. Hand Surg. Am.
  doi: 10.1016/j.jhsa.2019.10.003
– volume: 44
  start-page: 84
  year: 2011
  ident: 10.1016/j.jbiomech.2023.111884_b0025
  article-title: Predictive equations to estimate spinal loads in symmetric lifting tasks
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.08.028
– volume: 39
  start-page: 593
  year: 2014
  ident: 10.1016/j.jbiomech.2023.111884_b0060
  article-title: Validity and reliability of the Kinect within functional assessment activities: Comparison with standard stereophotogrammetry
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2013.09.018
– volume: 102
  year: 2020
  ident: 10.1016/j.jbiomech.2023.111884_b0115
  article-title: Subject-specific regression equations to estimate lower spinal loads during symmetric and asymmetric static lifting
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2019.109550
– volume: 60
  start-page: 232
  year: 2017
  ident: 10.1016/j.jbiomech.2023.111884_b0235
  article-title: The effects of wrist motion and hand orientation on muscle forces: A physiologic wrist simulator study
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.06.017
– volume: 93
  start-page: 228
  year: 2019
  ident: 10.1016/j.jbiomech.2023.111884_b0300
  article-title: A comprehensive study on gait biometrics using a joint CNN-based method
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2019.04.023
SSID ssj0007479
Score 2.4724607
Snippet Machine-learning based human posture-prediction tools can potentially be robust alternatives to motion capture measurements. Existing posture-prediction...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 111884
SubjectTerms Algorithms
Artificial neural networks
Back pain
Biomechanics
Body mass index
Body weight
Datasets
Ergonomics
Errors
Extrapolation
Extrapolation capability
Hand
Handedness
Humans
Kinematics
Lifting techniques
Machine learning
Motion analysis
Motion capture
Musculoskeletal diseases
Neural networks
Neural Networks, Computer
Obesity
Overweight
Posture
Posture prediction
Predictions
Robustness
Skin
Thinness
Underweight
Title Multi-task artificial neural networks and their extrapolation capabilities to predict full-body 3D human posture during one- and two-handed load-handling activities
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929023004554
https://www.ncbi.nlm.nih.gov/pubmed/38043495
https://www.proquest.com/docview/2913452936
https://www.proquest.com/docview/2897489325
Volume 162
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Na9VAEB-0BdGD6KsfT2sZQbytbbKbfclJqrYUoUXEwruFzX4cnjWJL6nS_8c_1JlN8uyl9pRAssPCzM7MzsdvAN5UpPer2I2Tay0UuW-icgsvXIjgKM5Iwxnd0zN9cq4-L7PlGHDrxrLKSSdGRe0ayzHy_ZRTxBkZJ_2-_Sl4ahRnV8cRGndhm6HLuKRrsdxcuBgbfizxSAS5AQfXOoRX71axvz0mJFLJmiPP1U3G6SbnMxqh40fwcPQe8XBg92O44-sZ7BzWdHP-cYVvMdZzxkD5DB5cgxqcwb3TMYm-A39i063oTfcdWXAGDAlkZMv4iHXhHZraYUwjIOnvtWmboWoOLZnXWFFLd2zsG2zXTLlHDuSLqnFXKD9hHP2HbdNxggKHXkhsai8Gsr8bwRF77_CiMS6-c1s8cpfFr0j5CZwfH337eCLGYQ3CykL1Ik-CCuRuauO98kXwqQ2pNjKVSrqF1To4k4ZAMiNtYgtpbWpMCHmV2UwX0sinsFXTPp4DFuQUGmeDKXIitdBV4khle1fIxCkrzRyyiUulHZHMeaDGRTmVrK3Kibslc7ccuDuH_c26dsDyuHXFYhKCcupUJd1akrm5deXuJDPlqBW68p8Mz-H15jOdZ07SmNo3l_RPXkRAoDSbw7NB1jablfmBknSjffF_4i_hPu1EDYGiXdjq15f-FblOfbUXz8cebH84Ovvy9S_IHR02
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVOJxQJDyCBQYJOC2tPauHfuAUKGtUtpECLVSb-56H4e0tU3iUuX_cOY3Mru2Qy-lp54cydnRWjM7j_3mAfAuJ72f-2qcJI6ZIPeN5XpomLa-OYqWXDpEdzyJR0fi23F0vAJ_uloYl1bZ6USvqHWp3B35Rugg4oiMU_y5-snc1CiHrnYjNBqx2DeLSwrZ5p_2tom_78Nwd-fw64i1UwWY4qmoWRJYYckviqUxwqTWhMqGseQhF1wPVRxbLUNr6eO4ClTKlQqltDbJIxXFKZec6N6BVcEplOnB6pedyfcfS91PznmbVBIwcjw2r9QkTz9OfUW9h0BC7nRVkojrzOF17q43e7uP4GHrr-JWI2CPYcUUfVjbKihWP1_gB_QZpP5qvg8PrjQ37MPdcQvbr8FvX-bLajk_RSeqTdcKdL00_cNnos9RFho9cIFkMWayKps8PVRk0H0OL0X1WJdYzRzlGh10wPJSL5Bvox82iFU5d5AINtWXWBaGNWQvS-YwAqPxrJTa_3aF-OjqOn55yk_g6FYY-RR6Be3jOWBKbqjUyso0IVLDOA80GQmjUx5oobgcQNRxKVNt73Q3wuMs65LkplnH3cxxN2u4O4CN5bqq6R5y44phJwRZVxtL2jwjA3fjyvVOZrJWD82zf6dmAG-Xr0mDOFhIFqa8oP8kqW9BFEYDeNbI2nKzPNkUnGLoF_8n_gbujQ7HB9nB3mT_JdynXYnmmmodevXswrwix63OX7enBeHktg_oX-teXME
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlVwQJBCCRQYJOC2pPauXweEKkLUUlpxoFJuZr2PQyi2iV2q_B9-Bb-O2bUdeik99eRIzo7WmufuNw-AVwXZ_cJX46RxzASFb6zQiWHa-uYoWnLpEN3jk_jgVHyaR_MN-DPUwri0ysEmekOtK-XuyCehg4gjck7xxPZpEV-ms_f1T-YmSDmkdRin0YnIkVld0PGteXc4JV6_DsPZx68fDlg_YYApnomWpYEVlmKkWBojTGZNqGwYSx5ywXWi4thqGVpLH8pVoDKuVCiltWkRqSjOuORE9xbcTngUOB1L5uvDnutL36eXBIxCkL1L1cmLtwtfW-_BkJA7q5Wm4irHeFXg6x3g7D7c6yNX3O9E7QFsmHIE2_slndp_rPAN-lxSf0k_gruX2hyOYOu4B_C34bcv-GWtbL6jE9qufwW6rpr-4XPSG5SlRg9hIDFgKeuqy9hDRa7dZ_PS-R7bCuulo9yi4xUrKr1CPkU_dhDrqnHgCHZ1mFiVhnVkLyrm0AKj8ayS2v92JfnoKjx-ecoP4fRG2PgINkvax2PAjAJSqZWVWUqkkrgINLkLozMeaKG4HEM0cClXfRd1N8zjLB_S5Rb5wN3ccTfvuDuGyXpd3fURuXZFMghBPlTJkl3PydVdu3J3kJm8t0hN_k9_xvBy_ZpsiQOIZGmqc_pPmvlmRGE0hp1O1tab5eme4HSafvJ_4i9gi9Qy_3x4cvQU7tCmRHdftQub7fLcPKMIri2ee1VB-HbTuvkX7exfkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-task+artificial+neural+networks+and+their+extrapolation+capabilities+to+predict+full-body+3D+human+posture+during+one-+and+two-handed+load-handling+activities&rft.jtitle=Journal+of+biomechanics&rft.au=Mohseni%2C+Mahdi&rft.au=Zargarzadeh%2C+Sadra&rft.au=Arjmand%2C+Navid&rft.date=2024-01-01&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.volume=162&rft_id=info:doi/10.1016%2Fj.jbiomech.2023.111884&rft.externalDocID=S0021929023004554
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon