Multi-task artificial neural networks and their extrapolation capabilities to predict full-body 3D human posture during one- and two-handed load-handling activities
Machine-learning based human posture-prediction tools can potentially be robust alternatives to motion capture measurements. Existing posture-prediction approaches are confined to two-handed load-handling activities performed at heights below 120 cm from the floor and to predicting a limited number...
Saved in:
Published in | Journal of biomechanics Vol. 162; p. 111884 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.01.2024
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Machine-learning based human posture-prediction tools can potentially be robust alternatives to motion capture measurements. Existing posture-prediction approaches are confined to two-handed load-handling activities performed at heights below 120 cm from the floor and to predicting a limited number of body-joint coordinates/angles. Moreover, the extrapolating power of these tools beyond the range of the input dataset they were trained for (e.g., for underweight, overweight, or left-handed individuals) has not been investigated. In this study, we trained/validated/tested two posture-prediction (for full-body joint coordinates and angles) artificial neural networks (ANNs) using both 70%/15%/15% random-hold-out and leave-one-subject-out methods, based on a comprehensive kinematic dataset of forty-one full-body skin markers collected from twenty right-handed normal-weight (BMI = 18–26 kg/m2) subjects. Subjects performed 204 one- and two-handed unloaded activities at different vertical (0 to 180 cm from the floor) and horizontal (up to 60 cm lateral and/or anterior) destinations. Subsequently, the extrapolation capability of the trained/validated/tested ANNs was evaluated using data collected from fifteen additional subjects (unseen by the ANNs); three individuals in five groups: underweight, overweight, obese, left-handed individuals, and subjects with a hand-load. Results indicated that the ANNs predicted body joint coordinates and angles during various activities with errors of ∼ 25 mm and ∼ 10°, respectively; considerable improvements when compared to previous posture-prediction ANNs. Extrapolation errors of our ANNs generally remained within the error range of existing ANNs with obesity and being left-handed having, respectively, the most and least compromising effects on their accuracy. These easy-to-use ANNs appear, therefore, to be robust alternatives to common posture-measurement approaches. |
---|---|
AbstractList | Machine-learning based human posture-prediction tools can potentially be robust alternatives to motion capture measurements. Existing posture-prediction approaches are confined to two-handed load-handling activities performed at heights below 120 cm from the floor and to predicting a limited number of body-joint coordinates/angles. Moreover, the extrapolating power of these tools beyond the range of the input dataset they were trained for (e.g., for underweight, overweight, or left-handed individuals) has not been investigated. In this study, we trained/validated/tested two posture-prediction (for full-body joint coordinates and angles) artificial neural networks (ANNs) using both 70%/15%/15% random-hold-out and leave-one-subject-out methods, based on a comprehensive kinematic dataset of forty-one full-body skin markers collected from twenty right-handed normal-weight (BMI = 18-26 kg/m2) subjects. Subjects performed 204 one- and two-handed unloaded activities at different vertical (0 to 180 cm from the floor) and horizontal (up to 60 cm lateral and/or anterior) destinations. Subsequently, the extrapolation capability of the trained/validated/tested ANNs was evaluated using data collected from fifteen additional subjects (unseen by the ANNs); three individuals in five groups: underweight, overweight, obese, left-handed individuals, and subjects with a hand-load. Results indicated that the ANNs predicted body joint coordinates and angles during various activities with errors of ∼ 25 mm and ∼ 10°, respectively; considerable improvements when compared to previous posture-prediction ANNs. Extrapolation errors of our ANNs generally remained within the error range of existing ANNs with obesity and being left-handed having, respectively, the most and least compromising effects on their accuracy. These easy-to-use ANNs appear, therefore, to be robust alternatives to common posture-measurement approaches.Machine-learning based human posture-prediction tools can potentially be robust alternatives to motion capture measurements. Existing posture-prediction approaches are confined to two-handed load-handling activities performed at heights below 120 cm from the floor and to predicting a limited number of body-joint coordinates/angles. Moreover, the extrapolating power of these tools beyond the range of the input dataset they were trained for (e.g., for underweight, overweight, or left-handed individuals) has not been investigated. In this study, we trained/validated/tested two posture-prediction (for full-body joint coordinates and angles) artificial neural networks (ANNs) using both 70%/15%/15% random-hold-out and leave-one-subject-out methods, based on a comprehensive kinematic dataset of forty-one full-body skin markers collected from twenty right-handed normal-weight (BMI = 18-26 kg/m2) subjects. Subjects performed 204 one- and two-handed unloaded activities at different vertical (0 to 180 cm from the floor) and horizontal (up to 60 cm lateral and/or anterior) destinations. Subsequently, the extrapolation capability of the trained/validated/tested ANNs was evaluated using data collected from fifteen additional subjects (unseen by the ANNs); three individuals in five groups: underweight, overweight, obese, left-handed individuals, and subjects with a hand-load. Results indicated that the ANNs predicted body joint coordinates and angles during various activities with errors of ∼ 25 mm and ∼ 10°, respectively; considerable improvements when compared to previous posture-prediction ANNs. Extrapolation errors of our ANNs generally remained within the error range of existing ANNs with obesity and being left-handed having, respectively, the most and least compromising effects on their accuracy. These easy-to-use ANNs appear, therefore, to be robust alternatives to common posture-measurement approaches. Machine-learning based human posture-prediction tools can potentially be robust alternatives to motion capture measurements. Existing posture-prediction approaches are confined to two-handed load-handling activities performed at heights below 120 cm from the floor and to predicting a limited number of body-joint coordinates/angles. Moreover, the extrapolating power of these tools beyond the range of the input dataset they were trained for (e.g., for underweight, overweight, or left-handed individuals) has not been investigated. In this study, we trained/validated/tested two posture-prediction (for full-body joint coordinates and angles) artificial neural networks (ANNs) using both 70%/15%/15% random-hold-out and leave-one-subject-out methods, based on a comprehensive kinematic dataset of forty-one full-body skin markers collected from twenty right-handed normal-weight (BMI = 18-26 kg/m ) subjects. Subjects performed 204 one- and two-handed unloaded activities at different vertical (0 to 180 cm from the floor) and horizontal (up to 60 cm lateral and/or anterior) destinations. Subsequently, the extrapolation capability of the trained/validated/tested ANNs was evaluated using data collected from fifteen additional subjects (unseen by the ANNs); three individuals in five groups: underweight, overweight, obese, left-handed individuals, and subjects with a hand-load. Results indicated that the ANNs predicted body joint coordinates and angles during various activities with errors of ∼ 25 mm and ∼ 10°, respectively; considerable improvements when compared to previous posture-prediction ANNs. Extrapolation errors of our ANNs generally remained within the error range of existing ANNs with obesity and being left-handed having, respectively, the most and least compromising effects on their accuracy. These easy-to-use ANNs appear, therefore, to be robust alternatives to common posture-measurement approaches. Machine-learning based human posture-prediction tools can potentially be robust alternatives to motion capture measurements. Existing posture-prediction approaches are confined to two-handed load-handling activities performed at heights below 120 cm from the floor and to predicting a limited number of body-joint coordinates/angles. Moreover, the extrapolating power of these tools beyond the range of the input dataset they were trained for (e.g., for underweight, overweight, or left-handed individuals) has not been investigated. In this study, we trained/validated/tested two posture-prediction (for full-body joint coordinates and angles) artificial neural networks (ANNs) using both 70%/15%/15% random-hold-out and leave-one-subject-out methods, based on a comprehensive kinematic dataset of forty-one full-body skin markers collected from twenty right-handed normal-weight (BMI = 18–26 kg/m2) subjects. Subjects performed 204 one- and two-handed unloaded activities at different vertical (0 to 180 cm from the floor) and horizontal (up to 60 cm lateral and/or anterior) destinations. Subsequently, the extrapolation capability of the trained/validated/tested ANNs was evaluated using data collected from fifteen additional subjects (unseen by the ANNs); three individuals in five groups: underweight, overweight, obese, left-handed individuals, and subjects with a hand-load. Results indicated that the ANNs predicted body joint coordinates and angles during various activities with errors of ∼ 25 mm and ∼ 10°, respectively; considerable improvements when compared to previous posture-prediction ANNs. Extrapolation errors of our ANNs generally remained within the error range of existing ANNs with obesity and being left-handed having, respectively, the most and least compromising effects on their accuracy. These easy-to-use ANNs appear, therefore, to be robust alternatives to common posture-measurement approaches. Machine-learning based human posture-prediction tools can potentially be robust alternatives to motion capture measurements. Existing posture-prediction approaches are confined to two-handed load-handling activities performed at heights below 120 cm from the floor and to predicting a limited number of body-joint coordinates/angles. Moreover, the extrapolating power of these tools beyond the range of the input dataset they were trained for (e.g., for underweight, overweight, or left-handed individuals) has not been investigated. In this study, we trained/validated/tested two posture-prediction (for full-body joint coordinates and angles) artificial neural networks (ANNs) using both 70%/15%/15% random-hold-out and leave-one-subject-out methods, based on a comprehensive kinematic dataset of forty-one full-body skin markers collected from twenty right-handed normal-weight (BMI = 18–26 kg/m2) subjects. Subjects performed 204 one- and two-handed unloaded activities at different vertical (0 to 180 cm from the floor) and horizontal (up to 60 cm lateral and/or anterior) destinations. Subsequently, the extrapolation capability of the trained/validated/tested ANNs was evaluated using data collected from fifteen additional subjects (unseen by the ANNs); three individuals in five groups: underweight, overweight, obese, left-handed individuals, and subjects with a hand-load. Results indicated that the ANNs predicted body joint coordinates and angles during various activities with errors of ∼ 25 mm and ∼ 10°, respectively; considerable improvements when compared to previous posture-prediction ANNs. Extrapolation errors of our ANNs generally remained within the error range of existing ANNs with obesity and being left-handed having, respectively, the most and least compromising effects on their accuracy. These easy-to-use ANNs appear, therefore, to be robust alternatives to common posture-measurement approaches. |
ArticleNumber | 111884 |
Author | Arjmand, Navid Zargarzadeh, Sadra Mohseni, Mahdi |
Author_xml | – sequence: 1 givenname: Mahdi surname: Mohseni fullname: Mohseni, Mahdi – sequence: 2 givenname: Sadra surname: Zargarzadeh fullname: Zargarzadeh, Sadra – sequence: 3 givenname: Navid orcidid: 0000-0001-7972-042X surname: Arjmand fullname: Arjmand, Navid email: arjmand@sharif.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38043495$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEUhS1URNPCK1SW2LCZ4J_JZCwhJFSgRSpiA2vrjueaOHHGg-1pyfvwoDhJs-mmq3slf-fYPueCnA1hQEKuOJtzxpv36_m6c2GLZjUXTMg557xt6xdkxtulrIRs2RmZMSZ4pYRi5-QipTVjbFkv1StyXo5rWavFjPz7PvnsqgxpQyFmZ51x4OmAUzyM_BDiJlEYeppX6CLFvznCGDxkFwZqYITOeZcdJpoDHSP2zmRqJ--rLvQ7Kj_T1bSFgY4h5Ski7afoht-0fKc62j6EalUW7KkP0B92vyfAZHd_cH5NXlrwCd88zkvy6-uXn9e31d2Pm2_Xn-4qI1Wdq5bb2jKlGkCsUVkUxooGpJC17JemaWwPwlrsUBpulDRGAFjbdguzaJQEeUneHX3HGP5MmLLeumTQexgwTEmLVi3rVkmxKOjbJ-g6THEor9NCcVkvhJJNoa4eqanbYq_H6LYQd_qUfwE-HAETQ0oRrTYuH6ItKTuvOdP7uvVan-rW-7r1se4ib57ITzc8K_x4FGKJ895h1KZk7gz4De50H9xzBv8BWjnLwA |
CitedBy_id | crossref_primary_10_1109_THMS_2024_3472548 crossref_primary_10_1016_j_jbiomech_2025_112560 crossref_primary_10_1016_j_jbiomech_2023_111896 crossref_primary_10_1016_j_jbiomech_2024_111974 |
Cites_doi | 10.1016/j.jbiomech.2021.110539 10.1186/1471-2474-15-283 10.1016/j.clinbiomech.2011.12.015 10.1016/S0167-9457(96)00034-6 10.1186/s12877-019-1096-0 10.21203/rs.3.rs-3239200/v1 10.1016/j.ergon.2010.02.003 10.1016/j.medengphy.2022.103876 10.1038/s41598-023-30773-y 10.1109/ICBME54433.2021.9750385 10.1093/occmed/kqh091 10.1016/j.jbiomech.2016.07.008 10.1371/journal.pone.0270596 10.1177/00187208221141652 10.1016/j.apergo.2011.09.011 10.1109/ICASSP49357.2023.10095964 10.1016/j.jbiomech.2016.09.026 10.1109/ACCESS.2021.3138778 10.1016/j.jbiomech.2017.09.025 10.1145/2159616.2159632 10.1016/j.jbiomech.2013.02.026 10.1016/j.jbiomech.2017.03.011 10.1016/0268-0033(95)00043-7 10.1016/j.jbiomech.2021.110860 10.1109/FG.2018.00078 10.1016/j.clinbiomech.2009.05.008 10.1016/j.jbiomech.2015.09.003 10.1016/j.jbiomech.2021.110921 10.1038/s41598-022-21540-6 10.1016/j.jbiomech.2019.109332 10.1109/EMBC.2015.7318553 10.1016/j.jbiomech.2020.110043 10.1016/j.gaitpost.2012.03.033 10.1111/j.1467-8659.2009.01591.x 10.1016/j.jbiomech.2004.11.030 10.36076/ppj.2000/3/167 10.1016/S0731-7085(99)00272-1 10.1080/00140130802220570 10.3390/math8050662 10.1007/s12206-020-0740-0 10.1016/j.jbiomech.2015.12.038 10.1109/CVPR.2019.00363 10.1109/THMS.2021.3102511 10.1016/j.jbiomech.2018.08.015 10.1007/s10439-017-1868-7 10.1016/j.protcy.2013.12.159 10.1016/j.clinbiomech.2022.105667 10.3390/s20010130 10.1016/j.apergo.2014.11.002 10.1007/978-981-10-7563-6_53 10.1016/j.jhsa.2019.10.003 10.1016/j.jbiomech.2010.08.028 10.1016/j.gaitpost.2013.09.018 10.1016/j.jbiomech.2019.109550 10.1016/j.jbiomech.2017.06.017 10.1016/j.patcog.2019.04.023 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. 2023. Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. – notice: 2023. Elsevier Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 |
DOI | 10.1016/j.jbiomech.2023.111884 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library (ProQuest) Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
ExternalDocumentID | 38043495 10_1016_j_jbiomech_2023_111884 S0021929023004554 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHMBA AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBD EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GUQSH HCIFZ HEE HMCUK HMK HMO HVGLF HZ~ H~9 I-F IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P ML~ MO0 MVM N9A O-L O9- OAUVE OH. OHT OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT VH1 WUQ X7M XOL XPP YQT Z5R ZGI ZMT ~G- AAYXX AFCTW AGRNS ALIPV CITATION RIG CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI Q9U 7X8 |
ID | FETCH-LOGICAL-c394t-81f4f0996aee4e9fe2cf26a32343d7c66fda2ffebe3c1c93cc2aaff8b5c5693a3 |
IEDL.DBID | 7X7 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Fri Jul 11 16:01:53 EDT 2025 Wed Aug 13 09:35:38 EDT 2025 Mon Jul 21 06:01:08 EDT 2025 Tue Jul 01 00:44:24 EDT 2025 Thu Apr 24 23:06:56 EDT 2025 Tue Aug 26 16:32:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Body mass index Lifting techniques Posture prediction Motion analysis Machine learning Extrapolation capability |
Language | English |
License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-81f4f0996aee4e9fe2cf26a32343d7c66fda2ffebe3c1c93cc2aaff8b5c5693a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7972-042X |
PMID | 38043495 |
PQID | 2913452936 |
PQPubID | 1226346 |
ParticipantIDs | proquest_miscellaneous_2897489325 proquest_journals_2913452936 pubmed_primary_38043495 crossref_citationtrail_10_1016_j_jbiomech_2023_111884 crossref_primary_10_1016_j_jbiomech_2023_111884 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2023_111884 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2024 2024-01-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2024 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Arjmand, Plamondon, Shirazi-Adl, Larivière, Parnianpour (b0025) 2011; 44 Mousavi, Sayyaadi, Arjmand (b0185) 2020; 34 Aghazadeh, Arjmand, Nasrabadi (b0010) 2020; 102 Mehrizi, R., Peng, X., Tang, Z., Xu, X., Metaxas, D., Li, K., 2018. Toward Marker-Free 3D Pose Estimation in Lifting: A Deep Multi-View Solution. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018). pp. 485–491. Pejsa, Pandzic (b0205) 2010; 29 Vinutha, H.P., Poornima, B., Sagar, B.M., 2018. Detection of Outliers Using Interquartile Range Technique from Intrusion Dataset. In: Satapathy, S.C., Tavares, J.M.R.S., Bhateja, V., Mohanty, J.R. (Eds.), Springer Singapore, Singapore, pp. 511–518. Bonnechère, Jansen, Salvia, Bouzahouene, Omelina, Moiseev, Sholukha, Cornelis, Rooze, Van Sint Jan (b0060) 2014; 39 Shah, Middleton, Gurdezi, Horwitz, Kedgley (b0235) 2017; 60 Dutta (b0085) 2012; 43 Arjmand, Shirazi-Adl (b0040) 2006; 39 Gholipour, Arjmand (b0120) 2016; 49 Thiese, Hegmann, Wood, Garg, Moore, Kapellusch, Foster, Ott (b0255) 2014; 15 Bahramian, Arjmand, El-Rich, Parnianpour (b0050) 2023; 111770 Nasrabadi, Eslaminia, Bakhshayesh, Ejtehadi, Alibiglou, Behzadipour (b0190) 2022; 108 Plamondon, Gagnon, Desjardins (b0220) 1996; 11 Vicon®, 2002. Plug-in-Gait modelling instructions. Vicon® Manual, Vicon®612 Motion Systems. Oxford Metrics Ltd., Oxford, UK. Lim, Kim, Park (b0165) 2019; 20 Agatonovic-Kustrin, Beresford (b0005) 2000; 22 Dehghan, Arjmand (b0075) 2022 Huu, Thi, Ngoc (b0140) 2022; 10 Papaioannidis, C., Mademlis, I., Pitas, I., 2023. Fast Single-Person 2D Human Pose Estimation Using Multi-Task Convolutional Neural Networks. In: ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 1–5. Apte, Karami, Vallat, Gremeaux, Aminian (b0015) 2023; 13 Shah, Middleton, Gurdezi, Horwitz, Kedgley (b0240) 2020; 45 Arjmand, Gagnon, Plamondon, Shirazi-Adl, Larivière (b0020) 2009; 24 Hajibozorgi, Arjmand (b0130) 2016; 49 Postolka, Taylor, List, Fucentese, Koch, Schütz (b0225) 2022; 96 Rajaee, Arjmand, Shirazi-Adl, Plamondon, Schmidt (b0230) 2015; 48 Spüler, M., Sarasola-Sanz, A., Birbaumer, N., Rosenstiel, W., Ramos-Murguialday, A., 2015. Comparing metrics to evaluate performance of regression methods for decoding of neural signals. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp. 1083–1086. Shahabpoor, Pavic (b0245) 2018; 79 Zhang, F., Zhu, X., Ye, M., 2019. Fast human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3517–3526. Arjmand, Plamondon, Shirazi-Adl, Parnianpour, Larivière (b0030) 2012; 27 Gong, Sun, Yang, Pang, Chen, Qi, Gu, Zhang, Zhang (b0125) 2019; 19 Ghezelbash, Shirazi-Adl, Plamondon, Arjmand, Parnianpour (b0110) 2017; 45 Arjmand, Ekrami, Shirazi-Adl, Plamondon, Parnianpour (b0035) 2013; 46 Feng, A.W., Xu, Y., Shapiro, A., 2012. An Example-Based Motion Synthesis Technique for Locomotion and Object Manipulation. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’12. Association for Computing Machinery, New York, NY, USA, pp. 95–102. Ghezelbash, Shirazi-Adl, Arjmand, El-Ouaaid, Plamondon, Meakin (b0105) 2016; 49 Li, Prabhu, Xie, Wang, Lu, Xu (b0160) 2021; 51 Kingma, de Looze, Toussaint, Klijnsma, Bruijnen (b0150) 1996; 15 Zanjani-Pour, Meakin, Breen, Breen (b0285) 2018; 70 Bahramian, M., Shayestehpour, M.A., Yavari, M., Mehrabi, H., Arjmand, N., 2021. Musculoskeletal injury risk assessment in a car dashboard assembly line using various quantitative and qualitative tools. In: 2021 28th National and 6th International Iranian Conference on Biomedical Engineering (ICBME). IEEE, pp. 310–316. Ghezelbash, Shirazi-Adl, El Ouaaid, Plamondon, Arjmand (b0115) 2020; 102 Hulleck, A.A., Mohseni, M., Hantash, M.K.A., Katmah, R., Almadani, M., Arjmand, N., Khalaf, K., El Rich, M., 2023. Accuracy of Computer Vision-Based Pose Estimation Algorithms in Predicting Joint Kinematics During Gait. Res Sq. https://doi.org/10.21203/rs.3.rs-3239200/v1. Van Nieuwenhuyse (b0260) 2004; 54 Zhang, Huang, Wang, Yu (b0300) 2019; 93 Perez, Tah (b0215) 2020; 8 Kumar, Jain, Kumar (b0155) 2023; 15 Perez, Nussbaum (b0210) 2008; 51 Vogl, Schütz, Postolka, List, Taylor (b0275) 2022; 17 Nawi, Atomi, Rehman (b0195) 2013; 11 Manchikanti (b0170) 2000; 3 Zhang, Horváth, Molenbroek, Snijders (b0295) 2010; 40 Clark, Pua, Fortin, Ritchie, Webster, Denehy, Bryant (b0065) 2012; 36 Asadi, Arjmand (b0045) 2020; 112 Eskandari, Arjmand, Shirazi-Adl, Farahmand (b0090) 2017; 57 Katz (b0145) 2006; 88 Wang, Xie, Lu, Li, Xu (b0280) 2021; 129 Dreischarf, Shirazi-Adl, Arjmand, Rohlmann, Schmidt (b0080) 2016; 49 Dehaghani, Nourani, Arjmand (b0070) 2022; 12 Ghasemi, Arjmand (b0100) 2021; 123 Mohseni, Aghazadeh, Arjmand (b0180) 2022; 131 Perez (10.1016/j.jbiomech.2023.111884_b0215) 2020; 8 Bonnechère (10.1016/j.jbiomech.2023.111884_b0060) 2014; 39 10.1016/j.jbiomech.2023.111884_b0200 Ghezelbash (10.1016/j.jbiomech.2023.111884_b0110) 2017; 45 Shahabpoor (10.1016/j.jbiomech.2023.111884_b0245) 2018; 79 Gong (10.1016/j.jbiomech.2023.111884_b0125) 2019; 19 Wang (10.1016/j.jbiomech.2023.111884_b0280) 2021; 129 Arjmand (10.1016/j.jbiomech.2023.111884_b0040) 2006; 39 10.1016/j.jbiomech.2023.111884_b0290 10.1016/j.jbiomech.2023.111884_b0250 Apte (10.1016/j.jbiomech.2023.111884_b0015) 2023; 13 10.1016/j.jbiomech.2023.111884_b0095 10.1016/j.jbiomech.2023.111884_b0175 10.1016/j.jbiomech.2023.111884_b0055 10.1016/j.jbiomech.2023.111884_b0135 Huu (10.1016/j.jbiomech.2023.111884_b0140) 2022; 10 Dehghan (10.1016/j.jbiomech.2023.111884_b0075) 2022 Shah (10.1016/j.jbiomech.2023.111884_b0240) 2020; 45 Manchikanti (10.1016/j.jbiomech.2023.111884_b0170) 2000; 3 Ghasemi (10.1016/j.jbiomech.2023.111884_b0100) 2021; 123 Pejsa (10.1016/j.jbiomech.2023.111884_b0205) 2010; 29 Zanjani-Pour (10.1016/j.jbiomech.2023.111884_b0285) 2018; 70 Li (10.1016/j.jbiomech.2023.111884_b0160) 2021; 51 Dehaghani (10.1016/j.jbiomech.2023.111884_b0070) 2022; 12 Ghezelbash (10.1016/j.jbiomech.2023.111884_b0115) 2020; 102 Lim (10.1016/j.jbiomech.2023.111884_b0165) 2019; 20 Clark (10.1016/j.jbiomech.2023.111884_b0065) 2012; 36 Dreischarf (10.1016/j.jbiomech.2023.111884_b0080) 2016; 49 Perez (10.1016/j.jbiomech.2023.111884_b0210) 2008; 51 10.1016/j.jbiomech.2023.111884_b0265 Postolka (10.1016/j.jbiomech.2023.111884_b0225) 2022; 96 Arjmand (10.1016/j.jbiomech.2023.111884_b0035) 2013; 46 Mohseni (10.1016/j.jbiomech.2023.111884_b0180) 2022; 131 Eskandari (10.1016/j.jbiomech.2023.111884_b0090) 2017; 57 Arjmand (10.1016/j.jbiomech.2023.111884_b0030) 2012; 27 Bahramian (10.1016/j.jbiomech.2023.111884_b0050) 2023; 111770 Shah (10.1016/j.jbiomech.2023.111884_b0235) 2017; 60 Katz (10.1016/j.jbiomech.2023.111884_b0145) 2006; 88 Kumar (10.1016/j.jbiomech.2023.111884_b0155) 2023; 15 Nasrabadi (10.1016/j.jbiomech.2023.111884_b0190) 2022; 108 Asadi (10.1016/j.jbiomech.2023.111884_b0045) 2020; 112 Arjmand (10.1016/j.jbiomech.2023.111884_b0025) 2011; 44 Mousavi (10.1016/j.jbiomech.2023.111884_b0185) 2020; 34 Zhang (10.1016/j.jbiomech.2023.111884_b0295) 2010; 40 Ghezelbash (10.1016/j.jbiomech.2023.111884_b0105) 2016; 49 Gholipour (10.1016/j.jbiomech.2023.111884_b0120) 2016; 49 Agatonovic-Kustrin (10.1016/j.jbiomech.2023.111884_b0005) 2000; 22 10.1016/j.jbiomech.2023.111884_b0270 Vogl (10.1016/j.jbiomech.2023.111884_b0275) 2022; 17 Plamondon (10.1016/j.jbiomech.2023.111884_b0220) 1996; 11 Rajaee (10.1016/j.jbiomech.2023.111884_b0230) 2015; 48 Thiese (10.1016/j.jbiomech.2023.111884_b0255) 2014; 15 Nawi (10.1016/j.jbiomech.2023.111884_b0195) 2013; 11 Kingma (10.1016/j.jbiomech.2023.111884_b0150) 1996; 15 Arjmand (10.1016/j.jbiomech.2023.111884_b0020) 2009; 24 Aghazadeh (10.1016/j.jbiomech.2023.111884_b0010) 2020; 102 Dutta (10.1016/j.jbiomech.2023.111884_b0085) 2012; 43 Van Nieuwenhuyse (10.1016/j.jbiomech.2023.111884_b0260) 2004; 54 Hajibozorgi (10.1016/j.jbiomech.2023.111884_b0130) 2016; 49 Zhang (10.1016/j.jbiomech.2023.111884_b0300) 2019; 93 |
References_xml | – volume: 11 start-page: 101 year: 1996 end-page: 110 ident: b0220 article-title: Validation of two 3-D segment models to calculate the net reaction forces and moments at the L5S1 joint in lifting publication-title: Clin. Biomech. – reference: Zhang, F., Zhu, X., Ye, M., 2019. Fast human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3517–3526. – volume: 102 year: 2020 ident: b0010 article-title: Coupled artificial neural networks to estimate 3D whole-body posture, lumbosacral moments, and spinal loads during load-handling activities publication-title: J. Biomech. – volume: 108 year: 2022 ident: b0190 article-title: A new scheme for the development of IMU-based activity recognition systems for telerehabilitation publication-title: Med. Eng. Phys. – reference: Feng, A.W., Xu, Y., Shapiro, A., 2012. An Example-Based Motion Synthesis Technique for Locomotion and Object Manipulation. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’12. Association for Computing Machinery, New York, NY, USA, pp. 95–102. – volume: 51 start-page: 1549 year: 2008 end-page: 1564 ident: b0210 article-title: A neural network model for predicting postures during non-repetitive manual materials handling tasks publication-title: Ergonomics – volume: 46 start-page: 1454 year: 2013 end-page: 1462 ident: b0035 article-title: Relative performances of artificial neural network and regression mapping tools in evaluation of spinal loads and muscle forces during static lifting publication-title: J. Biomech. – volume: 51 start-page: 494 year: 2021 end-page: 503 ident: b0160 article-title: Lifting Posture Prediction With Generative Models for Improving Occupational Safety publication-title: IEEE Trans Hum Mach Syst – volume: 3 start-page: 167 year: 2000 end-page: 192 ident: b0170 article-title: Epidemiology of low back pain publication-title: Pain Physician – volume: 45 start-page: 2373 year: 2017 end-page: 2382 ident: b0110 article-title: Obesity and Obesity Shape Markedly Influence Spine Biomechanics: A Subject-Specific Risk Assessment Model publication-title: Ann. Biomed. Eng. – year: 2022 ident: b0075 article-title: The National Institute for Occupational Safety and Health (NIOSH) Recommended Weight Generates Different Spine Loads in Load-Handling Activity Performed Using Stoop, Semi-squat and Full-Squat Techniques; a Full-Body Musculoskeletal Model Study publication-title: Human Factors: J. Human Factors Ergonom. Soc. – volume: 131 year: 2022 ident: b0180 article-title: Improved artificial neural networks for 3D body posture and lumbosacral moment predictions during manual material handling activities publication-title: J. Biomech. – volume: 8 start-page: 662 year: 2020 ident: b0215 article-title: Improving the accuracy of convolutional neural networks by identifying and removing outlier images in datasets using t-SNE publication-title: Mathematics – volume: 15 start-page: 1005 year: 2023 end-page: 1014 ident: b0155 article-title: Face and gait biometrics authentication system based on simplified deep neural networks publication-title: Int. J. Inf. Technol. – volume: 10 start-page: 1839 year: 2022 end-page: 1849 ident: b0140 article-title: Proposing Posture Recognition System Combining MobilenetV2 and LSTM for Medical Surveillance publication-title: IEEE Access – volume: 12 start-page: 18326 year: 2022 ident: b0070 article-title: Effects of auxetic shoe on lumbar spine kinematics and kinetics during gait and drop vertical jump by a combined in vivo and modeling investigation publication-title: Sci. Rep. – volume: 88 start-page: 21 year: 2006 end-page: 24 ident: b0145 article-title: Lumbar disc disorders and low-back pain: socioeconomic factors and consequences publication-title: JBJS – volume: 36 start-page: 372 year: 2012 end-page: 377 ident: b0065 article-title: Validity of the Microsoft Kinect for assessment of postural control publication-title: Gait Posture – volume: 60 start-page: 232 year: 2017 end-page: 237 ident: b0235 article-title: The effects of wrist motion and hand orientation on muscle forces: A physiologic wrist simulator study publication-title: J. Biomech. – volume: 57 start-page: 18 year: 2017 end-page: 26 ident: b0090 article-title: Subject-specific 2D/3D image registration and kinematics-driven musculoskeletal model of the spine publication-title: J. Biomech. – volume: 39 start-page: 510 year: 2006 end-page: 521 ident: b0040 article-title: Model and in vivo studies on human trunk load partitioning and stability in isometric forward flexions publication-title: J. Biomech. – volume: 11 start-page: 32 year: 2013 end-page: 39 ident: b0195 article-title: The Effect of Data Pre-processing on Optimized Training of Artificial Neural Networks publication-title: Procedia Technol. – volume: 40 start-page: 414 year: 2010 end-page: 424 ident: b0295 article-title: Using artificial neural networks for human body posture prediction publication-title: Int. J. Ind. Ergon. – volume: 49 start-page: 913 year: 2016 end-page: 918 ident: b0130 article-title: Sagittal range of motion of the thoracic spine using inertial tracking device and effect of measurement errors on model predictions publication-title: J. Biomech. – volume: 45 start-page: 389 year: 2020 end-page: 398 ident: b0240 article-title: The Effect of Surgical Treatments for Trapeziometacarpal Osteoarthritis on Wrist Biomechanics: A Cadaver Study publication-title: J. Hand Surg. Am. – volume: 48 start-page: 22 year: 2015 end-page: 32 ident: b0230 article-title: Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities publication-title: Appl. Ergon. – volume: 15 start-page: 283 year: 2014 ident: b0255 article-title: Prevalence of low back pain by anatomic location and intensity in an occupational population publication-title: BMC Musculoskelet. Disord. – volume: 102 year: 2020 ident: b0115 article-title: Subject-specific regression equations to estimate lower spinal loads during symmetric and asymmetric static lifting publication-title: J. Biomech. – volume: 20 start-page: 130 year: 2019 ident: b0165 article-title: Prediction of lower limb kinetics and kinematics during walking by a single IMU on the lower back using machine learning publication-title: Sensors – reference: Spüler, M., Sarasola-Sanz, A., Birbaumer, N., Rosenstiel, W., Ramos-Murguialday, A., 2015. Comparing metrics to evaluate performance of regression methods for decoding of neural signals. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp. 1083–1086. – volume: 96 year: 2022 ident: b0225 article-title: ISB clinical biomechanics award winner 2021: Tibio-femoral kinematics of natural versus replaced knees – A comparison using dynamic videofluoroscopy publication-title: Clin. Biomech. – volume: 17 start-page: e0270596 year: 2022 ident: b0275 article-title: Personalised pose estimation from single-plane moving fluoroscope images using deep convolutional neural networks publication-title: PLoS One – volume: 19 start-page: 71 year: 2019 ident: b0125 article-title: Changes of upright body posture in the sagittal plane of men and women occurring with aging – a cross sectional study publication-title: BMC Geriatr. – volume: 22 start-page: 717 year: 2000 end-page: 727 ident: b0005 article-title: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research publication-title: J. Pharm. Biomed. Anal. – volume: 29 start-page: 202 year: 2010 end-page: 226 ident: b0205 article-title: State of the Art in Example-Based Motion Synthesis for Virtual Characters in Interactive Applications publication-title: Comput. Graphics Forum – volume: 44 start-page: 84 year: 2011 end-page: 91 ident: b0025 article-title: Predictive equations to estimate spinal loads in symmetric lifting tasks publication-title: J. Biomech. – reference: Bahramian, M., Shayestehpour, M.A., Yavari, M., Mehrabi, H., Arjmand, N., 2021. Musculoskeletal injury risk assessment in a car dashboard assembly line using various quantitative and qualitative tools. In: 2021 28th National and 6th International Iranian Conference on Biomedical Engineering (ICBME). IEEE, pp. 310–316. – volume: 93 start-page: 228 year: 2019 end-page: 236 ident: b0300 article-title: A comprehensive study on gait biometrics using a joint CNN-based method publication-title: Pattern Recogn. – volume: 54 start-page: 513 year: 2004 end-page: 519 ident: b0260 article-title: Risk factors for first-ever low back pain among workers in their first employment publication-title: Occup. Med. (Chic Ill) – volume: 15 start-page: 833 year: 1996 end-page: 860 ident: b0150 article-title: Validation of a full body 3-D dynamic linked segment model publication-title: Hum. Mov. Sci. – volume: 123 year: 2021 ident: b0100 article-title: Spinal segment ranges of motion, movement coordination, and three-dimensional kinematics during occupational activities in normal-weight and obese individuals publication-title: J. Biomech. – volume: 111770 year: 2023 ident: b0050 article-title: Effect of obesity on spinal loads during load-reaching activities: A subject- and kinematics-specific musculoskeletal modeling approach publication-title: J. Biomech. – reference: Mehrizi, R., Peng, X., Tang, Z., Xu, X., Metaxas, D., Li, K., 2018. Toward Marker-Free 3D Pose Estimation in Lifting: A Deep Multi-View Solution. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018). pp. 485–491. – volume: 70 start-page: 134 year: 2018 end-page: 139 ident: b0285 article-title: Estimation of in vivo inter-vertebral loading during motion using fluoroscopic and magnetic resonance image informed finite element models publication-title: J. Biomech. – volume: 49 start-page: 3492 year: 2016 end-page: 3501 ident: b0105 article-title: Effects of sex, age, body height and body weight on spinal loads: Sensitivity analyses in a subject-specific trunk musculoskeletal model publication-title: J. Biomech. – volume: 79 start-page: 181 year: 2018 end-page: 190 ident: b0245 article-title: Estimation of vertical walking ground reaction force in real-life environments using single IMU sensor publication-title: J. Biomech. – volume: 49 start-page: 2946 year: 2016 end-page: 2952 ident: b0120 article-title: Artificial neural networks to predict 3D spinal posture in reaching and lifting activities; Applications in biomechanical models publication-title: J. Biomech. – reference: Vinutha, H.P., Poornima, B., Sagar, B.M., 2018. Detection of Outliers Using Interquartile Range Technique from Intrusion Dataset. In: Satapathy, S.C., Tavares, J.M.R.S., Bhateja, V., Mohanty, J.R. (Eds.), Springer Singapore, Singapore, pp. 511–518. – volume: 49 start-page: 833 year: 2016 end-page: 845 ident: b0080 article-title: Estimation of loads on human lumbar spine: A review of in vivo and computational model studies publication-title: J. Biomech. – volume: 34 start-page: 3481 year: 2020 end-page: 3485 ident: b0185 article-title: Prediction of the thorax/pelvis orientations and L5–S1 disc loads during various static activities using neuro-fuzzy publication-title: J. Mech. Sci. Technol. – volume: 112 year: 2020 ident: b0045 article-title: Marker-less versus marker-based driven musculoskeletal models of the spine during static load-handling activities publication-title: J. Biomech. – volume: 43 start-page: 645 year: 2012 end-page: 649 ident: b0085 article-title: Evaluation of the Kinect publication-title: Appl. Ergon. – reference: Vicon®, 2002. Plug-in-Gait modelling instructions. Vicon® Manual, Vicon®612 Motion Systems. Oxford Metrics Ltd., Oxford, UK. – volume: 39 start-page: 593 year: 2014 end-page: 598 ident: b0060 article-title: Validity and reliability of the Kinect within functional assessment activities: Comparison with standard stereophotogrammetry publication-title: Gait Posture – volume: 24 start-page: 533 year: 2009 end-page: 541 ident: b0020 article-title: Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models publication-title: Clin. Biomech. – reference: Papaioannidis, C., Mademlis, I., Pitas, I., 2023. Fast Single-Person 2D Human Pose Estimation Using Multi-Task Convolutional Neural Networks. In: ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 1–5. – reference: Hulleck, A.A., Mohseni, M., Hantash, M.K.A., Katmah, R., Almadani, M., Arjmand, N., Khalaf, K., El Rich, M., 2023. Accuracy of Computer Vision-Based Pose Estimation Algorithms in Predicting Joint Kinematics During Gait. Res Sq. https://doi.org/10.21203/rs.3.rs-3239200/v1. – volume: 13 start-page: 4518 year: 2023 ident: b0015 article-title: In-field assessment of change-of-direction ability with a single wearable sensor publication-title: Sci. Rep. – volume: 27 start-page: 537 year: 2012 end-page: 544 ident: b0030 article-title: Predictive equations for lumbar spine loads in load-dependent asymmetric one- and two-handed lifting activities publication-title: Clin. Biomech. – volume: 129 year: 2021 ident: b0280 article-title: A computer-vision method to estimate joint angles and L5/S1 moments during lifting tasks through a single camera publication-title: J. Biomech. – volume: 123 year: 2021 ident: 10.1016/j.jbiomech.2023.111884_b0100 article-title: Spinal segment ranges of motion, movement coordination, and three-dimensional kinematics during occupational activities in normal-weight and obese individuals publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2021.110539 – volume: 15 start-page: 283 year: 2014 ident: 10.1016/j.jbiomech.2023.111884_b0255 article-title: Prevalence of low back pain by anatomic location and intensity in an occupational population publication-title: BMC Musculoskelet. Disord. doi: 10.1186/1471-2474-15-283 – volume: 27 start-page: 537 year: 2012 ident: 10.1016/j.jbiomech.2023.111884_b0030 article-title: Predictive equations for lumbar spine loads in load-dependent asymmetric one- and two-handed lifting activities publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2011.12.015 – volume: 15 start-page: 833 year: 1996 ident: 10.1016/j.jbiomech.2023.111884_b0150 article-title: Validation of a full body 3-D dynamic linked segment model publication-title: Hum. Mov. Sci. doi: 10.1016/S0167-9457(96)00034-6 – volume: 19 start-page: 71 year: 2019 ident: 10.1016/j.jbiomech.2023.111884_b0125 article-title: Changes of upright body posture in the sagittal plane of men and women occurring with aging – a cross sectional study publication-title: BMC Geriatr. doi: 10.1186/s12877-019-1096-0 – volume: 88 start-page: 21 year: 2006 ident: 10.1016/j.jbiomech.2023.111884_b0145 article-title: Lumbar disc disorders and low-back pain: socioeconomic factors and consequences publication-title: JBJS – ident: 10.1016/j.jbiomech.2023.111884_b0135 doi: 10.21203/rs.3.rs-3239200/v1 – volume: 40 start-page: 414 year: 2010 ident: 10.1016/j.jbiomech.2023.111884_b0295 article-title: Using artificial neural networks for human body posture prediction publication-title: Int. J. Ind. Ergon. doi: 10.1016/j.ergon.2010.02.003 – volume: 108 year: 2022 ident: 10.1016/j.jbiomech.2023.111884_b0190 article-title: A new scheme for the development of IMU-based activity recognition systems for telerehabilitation publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2022.103876 – volume: 13 start-page: 4518 year: 2023 ident: 10.1016/j.jbiomech.2023.111884_b0015 article-title: In-field assessment of change-of-direction ability with a single wearable sensor publication-title: Sci. Rep. doi: 10.1038/s41598-023-30773-y – ident: 10.1016/j.jbiomech.2023.111884_b0055 doi: 10.1109/ICBME54433.2021.9750385 – volume: 54 start-page: 513 year: 2004 ident: 10.1016/j.jbiomech.2023.111884_b0260 article-title: Risk factors for first-ever low back pain among workers in their first employment publication-title: Occup. Med. (Chic Ill) doi: 10.1093/occmed/kqh091 – volume: 49 start-page: 2946 year: 2016 ident: 10.1016/j.jbiomech.2023.111884_b0120 article-title: Artificial neural networks to predict 3D spinal posture in reaching and lifting activities; Applications in biomechanical models publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2016.07.008 – volume: 17 start-page: e0270596 year: 2022 ident: 10.1016/j.jbiomech.2023.111884_b0275 article-title: Personalised pose estimation from single-plane moving fluoroscope images using deep convolutional neural networks publication-title: PLoS One doi: 10.1371/journal.pone.0270596 – year: 2022 ident: 10.1016/j.jbiomech.2023.111884_b0075 article-title: The National Institute for Occupational Safety and Health (NIOSH) Recommended Weight Generates Different Spine Loads in Load-Handling Activity Performed Using Stoop, Semi-squat and Full-Squat Techniques; a Full-Body Musculoskeletal Model Study publication-title: Human Factors: J. Human Factors Ergonom. Soc. doi: 10.1177/00187208221141652 – volume: 15 start-page: 1005 year: 2023 ident: 10.1016/j.jbiomech.2023.111884_b0155 article-title: Face and gait biometrics authentication system based on simplified deep neural networks publication-title: Int. J. Inf. Technol. – volume: 43 start-page: 645 year: 2012 ident: 10.1016/j.jbiomech.2023.111884_b0085 article-title: Evaluation of the KinectTM sensor for 3-D kinematic measurement in the workplace publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2011.09.011 – ident: 10.1016/j.jbiomech.2023.111884_b0200 doi: 10.1109/ICASSP49357.2023.10095964 – volume: 49 start-page: 3492 year: 2016 ident: 10.1016/j.jbiomech.2023.111884_b0105 article-title: Effects of sex, age, body height and body weight on spinal loads: Sensitivity analyses in a subject-specific trunk musculoskeletal model publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2016.09.026 – volume: 111770 year: 2023 ident: 10.1016/j.jbiomech.2023.111884_b0050 article-title: Effect of obesity on spinal loads during load-reaching activities: A subject- and kinematics-specific musculoskeletal modeling approach publication-title: J. Biomech. – volume: 10 start-page: 1839 year: 2022 ident: 10.1016/j.jbiomech.2023.111884_b0140 article-title: Proposing Posture Recognition System Combining MobilenetV2 and LSTM for Medical Surveillance publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3138778 – volume: 70 start-page: 134 year: 2018 ident: 10.1016/j.jbiomech.2023.111884_b0285 article-title: Estimation of in vivo inter-vertebral loading during motion using fluoroscopic and magnetic resonance image informed finite element models publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.09.025 – ident: 10.1016/j.jbiomech.2023.111884_b0095 doi: 10.1145/2159616.2159632 – volume: 46 start-page: 1454 year: 2013 ident: 10.1016/j.jbiomech.2023.111884_b0035 article-title: Relative performances of artificial neural network and regression mapping tools in evaluation of spinal loads and muscle forces during static lifting publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.02.026 – volume: 57 start-page: 18 year: 2017 ident: 10.1016/j.jbiomech.2023.111884_b0090 article-title: Subject-specific 2D/3D image registration and kinematics-driven musculoskeletal model of the spine publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.03.011 – volume: 11 start-page: 101 year: 1996 ident: 10.1016/j.jbiomech.2023.111884_b0220 article-title: Validation of two 3-D segment models to calculate the net reaction forces and moments at the L5S1 joint in lifting publication-title: Clin. Biomech. doi: 10.1016/0268-0033(95)00043-7 – volume: 129 year: 2021 ident: 10.1016/j.jbiomech.2023.111884_b0280 article-title: A computer-vision method to estimate joint angles and L5/S1 moments during lifting tasks through a single camera publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2021.110860 – ident: 10.1016/j.jbiomech.2023.111884_b0175 doi: 10.1109/FG.2018.00078 – volume: 24 start-page: 533 year: 2009 ident: 10.1016/j.jbiomech.2023.111884_b0020 article-title: Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2009.05.008 – volume: 49 start-page: 913 year: 2016 ident: 10.1016/j.jbiomech.2023.111884_b0130 article-title: Sagittal range of motion of the thoracic spine using inertial tracking device and effect of measurement errors on model predictions publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.09.003 – volume: 131 year: 2022 ident: 10.1016/j.jbiomech.2023.111884_b0180 article-title: Improved artificial neural networks for 3D body posture and lumbosacral moment predictions during manual material handling activities publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2021.110921 – volume: 12 start-page: 18326 year: 2022 ident: 10.1016/j.jbiomech.2023.111884_b0070 article-title: Effects of auxetic shoe on lumbar spine kinematics and kinetics during gait and drop vertical jump by a combined in vivo and modeling investigation publication-title: Sci. Rep. doi: 10.1038/s41598-022-21540-6 – volume: 102 year: 2020 ident: 10.1016/j.jbiomech.2023.111884_b0010 article-title: Coupled artificial neural networks to estimate 3D whole-body posture, lumbosacral moments, and spinal loads during load-handling activities publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2019.109332 – ident: 10.1016/j.jbiomech.2023.111884_b0250 doi: 10.1109/EMBC.2015.7318553 – volume: 112 year: 2020 ident: 10.1016/j.jbiomech.2023.111884_b0045 article-title: Marker-less versus marker-based driven musculoskeletal models of the spine during static load-handling activities publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2020.110043 – volume: 36 start-page: 372 year: 2012 ident: 10.1016/j.jbiomech.2023.111884_b0065 article-title: Validity of the Microsoft Kinect for assessment of postural control publication-title: Gait Posture doi: 10.1016/j.gaitpost.2012.03.033 – volume: 29 start-page: 202 year: 2010 ident: 10.1016/j.jbiomech.2023.111884_b0205 article-title: State of the Art in Example-Based Motion Synthesis for Virtual Characters in Interactive Applications publication-title: Comput. Graphics Forum doi: 10.1111/j.1467-8659.2009.01591.x – volume: 39 start-page: 510 year: 2006 ident: 10.1016/j.jbiomech.2023.111884_b0040 article-title: Model and in vivo studies on human trunk load partitioning and stability in isometric forward flexions publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.11.030 – volume: 3 start-page: 167 year: 2000 ident: 10.1016/j.jbiomech.2023.111884_b0170 article-title: Epidemiology of low back pain publication-title: Pain Physician doi: 10.36076/ppj.2000/3/167 – volume: 22 start-page: 717 year: 2000 ident: 10.1016/j.jbiomech.2023.111884_b0005 article-title: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/S0731-7085(99)00272-1 – volume: 51 start-page: 1549 year: 2008 ident: 10.1016/j.jbiomech.2023.111884_b0210 article-title: A neural network model for predicting postures during non-repetitive manual materials handling tasks publication-title: Ergonomics doi: 10.1080/00140130802220570 – volume: 8 start-page: 662 year: 2020 ident: 10.1016/j.jbiomech.2023.111884_b0215 article-title: Improving the accuracy of convolutional neural networks by identifying and removing outlier images in datasets using t-SNE publication-title: Mathematics doi: 10.3390/math8050662 – volume: 34 start-page: 3481 year: 2020 ident: 10.1016/j.jbiomech.2023.111884_b0185 article-title: Prediction of the thorax/pelvis orientations and L5–S1 disc loads during various static activities using neuro-fuzzy publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-020-0740-0 – volume: 49 start-page: 833 year: 2016 ident: 10.1016/j.jbiomech.2023.111884_b0080 article-title: Estimation of loads on human lumbar spine: A review of in vivo and computational model studies publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.12.038 – ident: 10.1016/j.jbiomech.2023.111884_b0290 doi: 10.1109/CVPR.2019.00363 – volume: 51 start-page: 494 year: 2021 ident: 10.1016/j.jbiomech.2023.111884_b0160 article-title: Lifting Posture Prediction With Generative Models for Improving Occupational Safety publication-title: IEEE Trans Hum Mach Syst doi: 10.1109/THMS.2021.3102511 – volume: 79 start-page: 181 year: 2018 ident: 10.1016/j.jbiomech.2023.111884_b0245 article-title: Estimation of vertical walking ground reaction force in real-life environments using single IMU sensor publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2018.08.015 – ident: 10.1016/j.jbiomech.2023.111884_b0265 – volume: 45 start-page: 2373 year: 2017 ident: 10.1016/j.jbiomech.2023.111884_b0110 article-title: Obesity and Obesity Shape Markedly Influence Spine Biomechanics: A Subject-Specific Risk Assessment Model publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-017-1868-7 – volume: 11 start-page: 32 year: 2013 ident: 10.1016/j.jbiomech.2023.111884_b0195 article-title: The Effect of Data Pre-processing on Optimized Training of Artificial Neural Networks publication-title: Procedia Technol. doi: 10.1016/j.protcy.2013.12.159 – volume: 96 year: 2022 ident: 10.1016/j.jbiomech.2023.111884_b0225 article-title: ISB clinical biomechanics award winner 2021: Tibio-femoral kinematics of natural versus replaced knees – A comparison using dynamic videofluoroscopy publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2022.105667 – volume: 20 start-page: 130 year: 2019 ident: 10.1016/j.jbiomech.2023.111884_b0165 article-title: Prediction of lower limb kinetics and kinematics during walking by a single IMU on the lower back using machine learning publication-title: Sensors doi: 10.3390/s20010130 – volume: 48 start-page: 22 year: 2015 ident: 10.1016/j.jbiomech.2023.111884_b0230 article-title: Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2014.11.002 – ident: 10.1016/j.jbiomech.2023.111884_b0270 doi: 10.1007/978-981-10-7563-6_53 – volume: 45 start-page: 389 year: 2020 ident: 10.1016/j.jbiomech.2023.111884_b0240 article-title: The Effect of Surgical Treatments for Trapeziometacarpal Osteoarthritis on Wrist Biomechanics: A Cadaver Study publication-title: J. Hand Surg. Am. doi: 10.1016/j.jhsa.2019.10.003 – volume: 44 start-page: 84 year: 2011 ident: 10.1016/j.jbiomech.2023.111884_b0025 article-title: Predictive equations to estimate spinal loads in symmetric lifting tasks publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.08.028 – volume: 39 start-page: 593 year: 2014 ident: 10.1016/j.jbiomech.2023.111884_b0060 article-title: Validity and reliability of the Kinect within functional assessment activities: Comparison with standard stereophotogrammetry publication-title: Gait Posture doi: 10.1016/j.gaitpost.2013.09.018 – volume: 102 year: 2020 ident: 10.1016/j.jbiomech.2023.111884_b0115 article-title: Subject-specific regression equations to estimate lower spinal loads during symmetric and asymmetric static lifting publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2019.109550 – volume: 60 start-page: 232 year: 2017 ident: 10.1016/j.jbiomech.2023.111884_b0235 article-title: The effects of wrist motion and hand orientation on muscle forces: A physiologic wrist simulator study publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.06.017 – volume: 93 start-page: 228 year: 2019 ident: 10.1016/j.jbiomech.2023.111884_b0300 article-title: A comprehensive study on gait biometrics using a joint CNN-based method publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2019.04.023 |
SSID | ssj0007479 |
Score | 2.4724607 |
Snippet | Machine-learning based human posture-prediction tools can potentially be robust alternatives to motion capture measurements. Existing posture-prediction... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 111884 |
SubjectTerms | Algorithms Artificial neural networks Back pain Biomechanics Body mass index Body weight Datasets Ergonomics Errors Extrapolation Extrapolation capability Hand Handedness Humans Kinematics Lifting techniques Machine learning Motion analysis Motion capture Musculoskeletal diseases Neural networks Neural Networks, Computer Obesity Overweight Posture Posture prediction Predictions Robustness Skin Thinness Underweight |
Title | Multi-task artificial neural networks and their extrapolation capabilities to predict full-body 3D human posture during one- and two-handed load-handling activities |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929023004554 https://www.ncbi.nlm.nih.gov/pubmed/38043495 https://www.proquest.com/docview/2913452936 https://www.proquest.com/docview/2897489325 |
Volume | 162 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Na9VAEB-0BdGD6KsfT2sZQbytbbKbfclJqrYUoUXEwruFzX4cnjWJL6nS_8c_1JlN8uyl9pRAssPCzM7MzsdvAN5UpPer2I2Tay0UuW-icgsvXIjgKM5Iwxnd0zN9cq4-L7PlGHDrxrLKSSdGRe0ayzHy_ZRTxBkZJ_2-_Sl4ahRnV8cRGndhm6HLuKRrsdxcuBgbfizxSAS5AQfXOoRX71axvz0mJFLJmiPP1U3G6SbnMxqh40fwcPQe8XBg92O44-sZ7BzWdHP-cYVvMdZzxkD5DB5cgxqcwb3TMYm-A39i063oTfcdWXAGDAlkZMv4iHXhHZraYUwjIOnvtWmboWoOLZnXWFFLd2zsG2zXTLlHDuSLqnFXKD9hHP2HbdNxggKHXkhsai8Gsr8bwRF77_CiMS6-c1s8cpfFr0j5CZwfH337eCLGYQ3CykL1Ik-CCuRuauO98kXwqQ2pNjKVSrqF1To4k4ZAMiNtYgtpbWpMCHmV2UwX0sinsFXTPp4DFuQUGmeDKXIitdBV4khle1fIxCkrzRyyiUulHZHMeaDGRTmVrK3Kibslc7ccuDuH_c26dsDyuHXFYhKCcupUJd1akrm5deXuJDPlqBW68p8Mz-H15jOdZ07SmNo3l_RPXkRAoDSbw7NB1jablfmBknSjffF_4i_hPu1EDYGiXdjq15f-FblOfbUXz8cebH84Ovvy9S_IHR02 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVOJxQJDyCBQYJOC2tPauHfuAUKGtUtpECLVSb-56H4e0tU3iUuX_cOY3Mru2Qy-lp54cydnRWjM7j_3mAfAuJ72f-2qcJI6ZIPeN5XpomLa-OYqWXDpEdzyJR0fi23F0vAJ_uloYl1bZ6USvqHWp3B35Rugg4oiMU_y5-snc1CiHrnYjNBqx2DeLSwrZ5p_2tom_78Nwd-fw64i1UwWY4qmoWRJYYckviqUxwqTWhMqGseQhF1wPVRxbLUNr6eO4ClTKlQqltDbJIxXFKZec6N6BVcEplOnB6pedyfcfS91PznmbVBIwcjw2r9QkTz9OfUW9h0BC7nRVkojrzOF17q43e7uP4GHrr-JWI2CPYcUUfVjbKihWP1_gB_QZpP5qvg8PrjQ37MPdcQvbr8FvX-bLajk_RSeqTdcKdL00_cNnos9RFho9cIFkMWayKps8PVRk0H0OL0X1WJdYzRzlGh10wPJSL5Bvox82iFU5d5AINtWXWBaGNWQvS-YwAqPxrJTa_3aF-OjqOn55yk_g6FYY-RR6Be3jOWBKbqjUyso0IVLDOA80GQmjUx5oobgcQNRxKVNt73Q3wuMs65LkplnH3cxxN2u4O4CN5bqq6R5y44phJwRZVxtL2jwjA3fjyvVOZrJWD82zf6dmAG-Xr0mDOFhIFqa8oP8kqW9BFEYDeNbI2nKzPNkUnGLoF_8n_gbujQ7HB9nB3mT_JdynXYnmmmodevXswrwix63OX7enBeHktg_oX-teXME |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlVwQJBCCRQYJOC2pPauXweEKkLUUlpxoFJuZr2PQyi2iV2q_B9-Bb-O2bUdeik99eRIzo7WmufuNw-AVwXZ_cJX46RxzASFb6zQiWHa-uYoWnLpEN3jk_jgVHyaR_MN-DPUwri0ysEmekOtK-XuyCehg4gjck7xxPZpEV-ms_f1T-YmSDmkdRin0YnIkVld0PGteXc4JV6_DsPZx68fDlg_YYApnomWpYEVlmKkWBojTGZNqGwYSx5ywXWi4thqGVpLH8pVoDKuVCiltWkRqSjOuORE9xbcTngUOB1L5uvDnutL36eXBIxCkL1L1cmLtwtfW-_BkJA7q5Wm4irHeFXg6x3g7D7c6yNX3O9E7QFsmHIE2_slndp_rPAN-lxSf0k_gruX2hyOYOu4B_C34bcv-GWtbL6jE9qufwW6rpr-4XPSG5SlRg9hIDFgKeuqy9hDRa7dZ_PS-R7bCuulo9yi4xUrKr1CPkU_dhDrqnHgCHZ1mFiVhnVkLyrm0AKj8ayS2v92JfnoKjx-ecoP4fRG2PgINkvax2PAjAJSqZWVWUqkkrgINLkLozMeaKG4HEM0cClXfRd1N8zjLB_S5Rb5wN3ccTfvuDuGyXpd3fURuXZFMghBPlTJkl3PydVdu3J3kJm8t0hN_k9_xvBy_ZpsiQOIZGmqc_pPmvlmRGE0hp1O1tab5eme4HSafvJ_4i9gi9Qy_3x4cvQU7tCmRHdftQub7fLcPKMIri2ee1VB-HbTuvkX7exfkQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-task+artificial+neural+networks+and+their+extrapolation+capabilities+to+predict+full-body+3D+human+posture+during+one-+and+two-handed+load-handling+activities&rft.jtitle=Journal+of+biomechanics&rft.au=Mohseni%2C+Mahdi&rft.au=Zargarzadeh%2C+Sadra&rft.au=Arjmand%2C+Navid&rft.date=2024-01-01&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.volume=162&rft_id=info:doi/10.1016%2Fj.jbiomech.2023.111884&rft.externalDocID=S0021929023004554 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |