Simulating the cloudy atmospheres of HD 209458 b and HD 189733 b with the 3D Met Office Unified Model

Aims. To understand and compare the 3D atmospheric structure of HD 209458 b and HD 189733 b, focusing on the formation and distribution of cloud particles, as well as their feedback on the dynamics and thermal profile. Methods. We coupled the 3D Met Office Unified Model (UM), including detailed trea...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 615; p. A97
Main Authors Lines, S., Mayne, N. J., Boutle, I. A., Manners, J., Lee, G. K. H., Helling, Ch, Drummond, B., Amundsen, D. S., Goyal, J., Acreman, D. M., Tremblin, P., Kerslake, M.
Format Journal Article
LanguageEnglish
Published Heidelberg EDP Sciences 01.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aims. To understand and compare the 3D atmospheric structure of HD 209458 b and HD 189733 b, focusing on the formation and distribution of cloud particles, as well as their feedback on the dynamics and thermal profile. Methods. We coupled the 3D Met Office Unified Model (UM), including detailed treatments of atmospheric radiative transfer and dynamics, to a kinetic cloud formation scheme. The resulting model self-consistently solves for the formation of condensation seeds, surface growth and evaporation, gravitational settling and advection, cloud radiative feedback via absorption, and crucially, scattering. We used fluxes directly obtained from the UM to produce synthetic spectral energy distributions and phase curves. Results. Our simulations show extensive cloud formation in both HD 209458 b and HD 189733 b. However, cooler temperatures in the latter result in higher cloud particle number densities. Large particles, reaching 1 μm in diameter, can form due to high particle growth velocities, and sub-μm particles are suspended by vertical flows leading to extensive upper-atmosphere cloud cover. A combination of meridional advection and efficient cloud formation in cooler high latitude regions, results in enhanced cloud coverage for latitudes above 30° and leads to a zonally banded structure for all our simulations. The cloud bands extend around the entire planet, for HD 209458 b and HD 189733 b, as the temperatures, even on the day side, remain below the condensation temperature of silicates and oxides. Therefore, the simulated optical phase curve for HD 209458 b shows no “offset”, in contrast to observations. Efficient scattering of stellar irradiation by cloud particles results in a local maximum cooling of up to 250 K in the upper atmosphere, and an advection-driven fluctuating cloud opacity causes temporal variability in the thermal emission. The inclusion of this fundamental cloud-atmosphere radiative feedback leads to significant differences with approaches neglecting these physical elements, which have been employed to interpret observations and determine thermal profiles for these planets. This suggests that readers should be cautious of interpretations neglecting such cloud feedback and scattering, and that the subject merits further study.
AbstractList Aims. To understand and compare the 3D atmospheric structure of HD 209458 b and HD 189733 b, focusing on the formation and distribution of cloud particles, as well as their feedback on the dynamics and thermal profile. Methods. We coupled the 3D Met Office Unified Model (UM), including detailed treatments of atmospheric radiative transfer and dynamics, to a kinetic cloud formation scheme. The resulting model self-consistently solves for the formation of condensation seeds, surface growth and evaporation, gravitational settling and advection, cloud radiative feedback via absorption, and crucially, scattering. We used fluxes directly obtained from the UM to produce synthetic spectral energy distributions and phase curves. Results. Our simulations show extensive cloud formation in both HD 209458 b and HD 189733 b. However, cooler temperatures in the latter result in higher cloud particle number densities. Large particles, reaching 1 μm in diameter, can form due to high particle growth velocities, and sub-μm particles are suspended by vertical flows leading to extensive upper-atmosphere cloud cover. A combination of meridional advection and efficient cloud formation in cooler high latitude regions, results in enhanced cloud coverage for latitudes above 30° and leads to a zonally banded structure for all our simulations. The cloud bands extend around the entire planet, for HD 209458 b and HD 189733 b, as the temperatures, even on the day side, remain below the condensation temperature of silicates and oxides. Therefore, the simulated optical phase curve for HD 209458 b shows no “offset”, in contrast to observations. Efficient scattering of stellar irradiation by cloud particles results in a local maximum cooling of up to 250 K in the upper atmosphere, and an advection-driven fluctuating cloud opacity causes temporal variability in the thermal emission. The inclusion of this fundamental cloud-atmosphere radiative feedback leads to significant differences with approaches neglecting these physical elements, which have been employed to interpret observations and determine thermal profiles for these planets. This suggests that readers should be cautious of interpretations neglecting such cloud feedback and scattering, and that the subject merits further study.
Aims. To understand and compare the 3D atmospheric structure of HD 209458 b and HD 189733 b, focusing on the formation and distribution of cloud particles, as well as their feedback on the dynamics and thermal profile. Methods. We coupled the 3D Met Office Unified Model (UM), including detailed treatments of atmospheric radiative transfer and dynamics, to a kinetic cloud formation scheme. The resulting model self-consistently solves for the formation of condensation seeds, surface growth and evaporation, gravitational settling and advection, cloud radiative feedback via absorption, and crucially, scattering. We used fluxes directly obtained from the UM to produce synthetic spectral energy distributions and phase curves. Results. Our simulations show extensive cloud formation in both HD 209458 b and HD 189733 b. However, cooler temperatures in the latter result in higher cloud particle number densities. Large particles, reaching 1 μ m in diameter, can form due to high particle growth velocities, and sub- μ m particles are suspended by vertical flows leading to extensive upper-atmosphere cloud cover. A combination of meridional advection and efficient cloud formation in cooler high latitude regions, results in enhanced cloud coverage for latitudes above 30° and leads to a zonally banded structure for all our simulations. The cloud bands extend around the entire planet, for HD 209458 b and HD 189733 b, as the temperatures, even on the day side, remain below the condensation temperature of silicates and oxides. Therefore, the simulated optical phase curve for HD 209458 b shows no “offset”, in contrast to observations. Efficient scattering of stellar irradiation by cloud particles results in a local maximum cooling of up to 250 K in the upper atmosphere, and an advection-driven fluctuating cloud opacity causes temporal variability in the thermal emission. The inclusion of this fundamental cloud-atmosphere radiative feedback leads to significant differences with approaches neglecting these physical elements, which have been employed to interpret observations and determine thermal profiles for these planets. This suggests that readers should be cautious of interpretations neglecting such cloud feedback and scattering, and that the subject merits further study.
Author Amundsen, D. S.
Lines, S.
Kerslake, M.
Helling, Ch
Drummond, B.
Tremblin, P.
Boutle, I. A.
Manners, J.
Acreman, D. M.
Mayne, N. J.
Lee, G. K. H.
Goyal, J.
Author_xml – sequence: 1
  givenname: S.
  surname: Lines
  fullname: Lines, S.
  organization: Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QL, Exeter, UK
– sequence: 2
  givenname: N. J.
  surname: Mayne
  fullname: Mayne, N. J.
  organization: Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QL, Exeter, UK
– sequence: 3
  givenname: I. A.
  surname: Boutle
  fullname: Boutle, I. A.
  organization: Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QL, Exeter, UK
– sequence: 4
  givenname: J.
  surname: Manners
  fullname: Manners, J.
  organization: Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QL, Exeter, UK
– sequence: 5
  givenname: G. K. H.
  surname: Lee
  fullname: Lee, G. K. H.
  organization: Centre for Exoplanet Science, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK
– sequence: 6
  givenname: Ch
  surname: Helling
  fullname: Helling, Ch
  organization: Centre for Exoplanet Science, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK
– sequence: 7
  givenname: B.
  surname: Drummond
  fullname: Drummond, B.
  organization: Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QL, Exeter, UK
– sequence: 8
  givenname: D. S.
  surname: Amundsen
  fullname: Amundsen, D. S.
  organization: Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QL, Exeter, UK
– sequence: 9
  givenname: J.
  surname: Goyal
  fullname: Goyal, J.
  organization: Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QL, Exeter, UK
– sequence: 10
  givenname: D. M.
  surname: Acreman
  fullname: Acreman, D. M.
  organization: Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QL, Exeter, UK
– sequence: 11
  givenname: P.
  surname: Tremblin
  fullname: Tremblin, P.
  organization: Maison de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, 91191 Gif-Sur-Yvette, France
– sequence: 12
  givenname: M.
  surname: Kerslake
  fullname: Kerslake, M.
  organization: Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QL, Exeter, UK
BookMark eNqFkMFuEzEQhq2qSE1Ln4CLJc5LPZ712ntsUyCIRBWClqPl9dqNy2ad2o6gb8-GoBy4cBr90v_NjL5zcjrG0RHyBtg7YAKuGGN11WADV5yBRM6lOiEzqJFXTNbNKZkdG2fkPOenKXJQOCPua9jsBlPC-EjL2lE7xF3_Qk3ZxLxdu-QyjZ4ubilnbS0U7agZ-30G1UrEKf8MZf0HxVu6coXeeR-so_dj8MH1dBV7N7wmr7wZsrv8Oy_I_Yf33-aLann38dP8ellZbOtSSQuolG0QjUQQneCd8sZY3_iOgTW86wwXXe-xdayVwjV1I1oDPfhWoBR4Qd4e9m5TfN65XPRT3KVxOqmn_xUDkIBTCw8tm2LOyXm9TWFj0osGpvc-9d6W3tvSR58T1f5D2VAmcXEsyYThP2x1YEMu7tfxnEk_dCOnx7Vi3_Xy88PiZs5W-gv-BsENhjI
CitedBy_id crossref_primary_10_1093_mnras_stac680
crossref_primary_10_3847_1538_4357_ab6a94
crossref_primary_10_1098_rsta_2018_0398
crossref_primary_10_1051_0004_6361_201936445
crossref_primary_10_3847_2041_8213_ac139f
crossref_primary_10_3847_1538_3881_ac01da
crossref_primary_10_1093_mnras_stad2042
crossref_primary_10_1051_0004_6361_201936281
crossref_primary_10_1051_0004_6361_202450767
crossref_primary_10_1051_0004_6361_202450526
crossref_primary_10_3847_1538_4357_abc01c
crossref_primary_10_3847_1538_3881_ac0e30
crossref_primary_10_3847_2041_8213_acfc3b
crossref_primary_10_3847_1538_3881_ad8cd2
crossref_primary_10_3847_1538_4357_ab4a76
crossref_primary_10_1038_s41550_020_1170_8
crossref_primary_10_1051_0004_6361_202140378
crossref_primary_10_1051_0004_6361_202141468
crossref_primary_10_1038_s41550_025_02488_9
crossref_primary_10_1051_0004_6361_202140417
crossref_primary_10_1051_0004_6361_202451112
crossref_primary_10_1093_mnras_stab1053
crossref_primary_10_3847_1538_4357_ac3d32
crossref_primary_10_3847_1538_4357_ad0b70
crossref_primary_10_3847_1538_4357_abb3d4
crossref_primary_10_1088_1361_6455_ac8213
crossref_primary_10_1093_mnras_stab2027
crossref_primary_10_1093_mnras_stac3432
crossref_primary_10_1146_annurev_astro_081817_051846
crossref_primary_10_3847_1538_4357_aaeb28
crossref_primary_10_3847_1538_3881_acaec5
crossref_primary_10_3847_1538_3881_ac7234
crossref_primary_10_1088_1538_3873_aadbf3
crossref_primary_10_3847_1538_4357_ac423f
crossref_primary_10_1093_mnras_staa3418
crossref_primary_10_1051_0004_6361_202452922
crossref_primary_10_1029_2020JE006629
crossref_primary_10_3847_1538_4357_abdc22
crossref_primary_10_3847_1538_4357_ac47fe
crossref_primary_10_3847_2041_8213_ad1405
crossref_primary_10_3847_1538_4357_ad9394
crossref_primary_10_3847_1538_4357_ab06ca
crossref_primary_10_3847_1538_4357_ad3de4
crossref_primary_10_1051_0004_6361_202450753
crossref_primary_10_3847_1538_4357_abf2bb
crossref_primary_10_3847_1538_4357_ab55d9
crossref_primary_10_1051_0004_6361_202037589
crossref_primary_10_3847_1538_3881_ab880d
crossref_primary_10_3847_1538_4357_aada7c
crossref_primary_10_1051_0004_6361_202452070
crossref_primary_10_3847_1538_4357_ab44bd
crossref_primary_10_3847_1538_4357_ab5b0b
crossref_primary_10_3847_1538_4357_ac1516
crossref_primary_10_3847_PSJ_abf4df
crossref_primary_10_1093_mnras_sty2275
crossref_primary_10_3847_1538_4357_aafdb5
crossref_primary_10_1029_2020JE006655
crossref_primary_10_3847_1538_4357_aada85
crossref_primary_10_3847_1538_4357_ac5e2d
crossref_primary_10_1093_mnras_stz1788
crossref_primary_10_1051_0004_6361_202039911
crossref_primary_10_3847_1538_4357_ab2598
crossref_primary_10_1093_mnras_stae1408
crossref_primary_10_3847_1538_4357_ac658c
crossref_primary_10_3847_1538_4357_ac7723
crossref_primary_10_1093_mnras_stz1418
crossref_primary_10_3847_1538_4357_acd4bb
crossref_primary_10_1007_s10686_021_09749_1
crossref_primary_10_3847_1538_3881_adb7e8
crossref_primary_10_3847_1538_3881_ad2c8b
crossref_primary_10_3847_1538_4357_ac2a2a
crossref_primary_10_3847_1538_4357_abd549
crossref_primary_10_3847_1538_4357_aad461
crossref_primary_10_1051_0004_6361_201935771
crossref_primary_10_5194_gmd_16_5601_2023
crossref_primary_10_3847_1538_4357_ab0c07
crossref_primary_10_3390_atmos10110664
crossref_primary_10_1093_mnrasl_slz123
crossref_primary_10_1051_0004_6361_202038089
crossref_primary_10_3847_1538_4357_ac5898
crossref_primary_10_1051_0004_6361_201937153
crossref_primary_10_3847_1538_4357_ab338b
crossref_primary_10_1051_0004_6361_201732010
crossref_primary_10_1051_0004_6361_202243956
crossref_primary_10_3847_1538_4357_aaf6e9
crossref_primary_10_1051_0004_6361_202245473
crossref_primary_10_1088_1674_4527_20_7_99
crossref_primary_10_1093_mnras_stac2246
crossref_primary_10_1093_mnras_stac2763
crossref_primary_10_3847_2041_8213_ad725e
crossref_primary_10_1051_0004_6361_202347069
crossref_primary_10_1093_mnras_staa3989
crossref_primary_10_1088_1742_6596_1322_1_012028
crossref_primary_10_1051_0004_6361_202142816
crossref_primary_10_1093_mnras_stad2037
crossref_primary_10_1051_0004_6361_201936110
crossref_primary_10_3847_1538_4357_aba1e6
crossref_primary_10_3847_1538_3881_ab2a05
crossref_primary_10_1146_annurev_earth_053018_060401
Cites_doi 10.1051/0004-6361/201322174
10.1038/nature16068
10.1086/321540
10.1051/0004-6361/201629977
10.1051/0004-6361/200811501
10.1002/andp.19083300302
10.1051/0004-6361/201730465
10.1051/0004-6361:20021734
10.1051/0004-6361/201732010
10.1051/0004-6361/201629322
10.1086/523832
10.1038/nature05782
10.3847/1538-4357/aa6e57
10.1002/qj.2235
10.3847/2041-8213/aab209
10.3847/0004-637X/823/2/109
10.1051/0004-6361/201629183
10.1038/nature23266
10.1051/0004-6361/201424207
10.1029/90JD01945
10.1146/annurev-earth-060614-105146
10.1146/annurev.astro.46.060407.145222
10.1002/andp.19354160705
10.1007/BF01400352
10.1086/444354
10.3847/2041-8205/822/1/L4
10.1007/s10712-016-9361-7
10.1111/j.1365-2966.2011.18315.x
10.1051/0004-6361/201014105
10.1051/0004-6361/201630020
10.3847/1538-3881/153/2/68
10.1017/CBO9780511985607
10.1093/mnras/stw662
10.1051/0004-6361:20078220
10.1051/0004-6361:20054202
10.1088/0004-637X/700/1/887
10.1007/BF01448839
10.1086/338770
10.1016/j.jms.2016.05.002
10.1007/BF02127704
10.5194/gmd-7-3059-2014
10.1086/588287
10.1088/2041-8205/804/1/L17
10.1111/j.1365-2966.2012.21440.x
10.1086/683797
10.1051/0004-6361:20010937
10.3847/1538-3881/aa5c87
10.1086/533462
10.1051/0004-6361:20054598
10.1051/0004-6361:20031605
10.1088/0004-637X/723/2/1436
10.1088/0004-637X/738/1/71
10.3847/0004-637X/817/2/106
10.1051/epjconf/201510102003
10.1051/0004-6361/201628606
10.1088/2041-8205/776/2/L25
10.1088/0741-3335/58/7/074003
10.1038/nature09111
10.1051/0004-6361/201321132
10.1038/s41550-016-0004
10.1093/mnras/stt651
10.1051/0004-6361/201015579
10.3847/0004-637X/828/1/22
10.1086/306811
10.1051/0004-6361:20034514
10.1093/mnras/stt1509
10.1088/0004-637X/774/2/95
10.1017/S1743921313008995
10.1093/mnras/stx752
10.1051/0004-6361/201525982
10.1093/mnras/stx1666
10.3847/0004-637X/824/2/137
10.1088/2041-8205/772/2/L16
10.3847/0004-637X/829/2/104
10.1016/0031-8914(65)90045-5
10.1088/2041-8205/814/2/L24
10.1088/0004-637X/793/2/141
10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2
10.1051/0004-6361:20020101
10.1088/0004-6256/150/4/112
10.1086/523786
10.1051/0004-6361/201323169
10.1093/mnrasl/slt107
10.1093/mnras/stw133
10.1051/0004-6361/201424621
ContentType Journal Article
Copyright Copyright EDP Sciences Jul 2018
Copyright_xml – notice: Copyright EDP Sciences Jul 2018
DBID BSCLL
AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1051/0004-6361/201732278
DatabaseName Istex
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID 10_1051_0004_6361_201732278
ark_67375_80W_LKVHBC0M_Q
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOTM
ABDNZ
ABDPE
ABPPZ
ABTAH
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
AEILP
AENEX
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
BSCLL
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNP
RNS
RSV
SDH
SJN
SOJ
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
AAOGA
AAYXX
ABNSH
ACRPL
ADNMO
AGQPQ
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c394t-7c1388c633a7315b52b8faacf6fb01ca2bba25bdf39e0975e64659a1d1f953753
ISSN 0004-6361
IngestDate Wed Aug 13 09:19:34 EDT 2025
Thu Apr 24 23:00:11 EDT 2025
Tue Jul 01 03:59:11 EDT 2025
Wed Oct 30 09:48:21 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://www.edpsciences.org/en/authors/copyright-and-licensing
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c394t-7c1388c633a7315b52b8faacf6fb01ca2bba25bdf39e0975e64659a1d1f953753
Notes bibcode:2018A%26A...615A..97L
dkey:10.1051/0004-6361/201732278
istex:693E34747E3CC445B9863A2FD2DC3A2A48AB71F7
publisher-ID:aa32278-17
e-mail: s.lines@exeter.ac.uk
ark:/67375/80W-LKVHBC0M-Q
href:https://www.aanda.org/articles/aa/abs/2018/07/aa32278-17/aa32278-17.html
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0931-659X
OpenAccessLink http://hdl.handle.net/10871/31772
PQID 2098011713
PQPubID 1796397
ParticipantIDs proquest_journals_2098011713
crossref_primary_10_1051_0004_6361_201732278
crossref_citationtrail_10_1051_0004_6361_201732278
istex_primary_ark_67375_80W_LKVHBC0M_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180701
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 20180701
  day: 01
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2018
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Helling (R48) 2008; 485
Shporer (R79) 2015; 150
Helling (R46) 2008; 675
Charbonneau (R20) 2002; 568
Showman (R78) 2011; 738
Heng (R52) 2015; 43
Boutle (R14) 2017; 601
Deming (R27) 2013; 774
R26
Gail (R39) 1986; 166
Helling (R44) 2001; 376
R2
Amundsen (R3) 2014; 564
Mayne (R66) 2014; 7
Brogi (R15) 2016; 817
Dobbs-Dixon (R31) 2008; 673
Sing (R81) 2016; 529
Woitke (R95) 2003; 399
Burrows (R18) 1999; 512
R32
Armstrong (R8) 2016; 1
Bruggeman (R17) 1935; 416
R35
Birkby (R11) 2013; 436
Menou (R69) 2009; 700
Stevenson (R83) 2017; 153
Oreshenko (R71) 2016; 457
Dobbs-Dixon (R30) 2013; 435
Courant (R23) 1928; 100
Lee (R60) 2015; 580
Mayne (R67) 2014; 561
Lee (R61) 2015; 575
R40
Parmentier (R72) 2013; 558
R42
Mayne (R68) 2017; 604
Brown (R16) 2012; 93
Charney (R21) 1953; 10
Drummond (R33) 2018; 855
Amundsen (R4) 2016; 595
Swain (R84) 2008; 674
Parmentier (R73) 2016; 828
Sing (R80) 2011; 527
Cooper (R22) 2005; 629
Helling (R45) 2004; 423
Birkby (R12) 2017; 153
Rotstayn (R76) 1997; 123
Iyer (R55) 2016; 823
Walters (R91) 2017; 2017
Helling (R43) 2006; 455
R56
Ackerman (R1) 2001; 556
Crossfield (R25) 2010; 723
Helling (R49) 2016; 58
Angerhausen (R6) 2015; 127
Helling (R50) 2016; 37
Tennyson (R86) 2016; 327
Evans (R37) 2016; 822
Woitke (R94) 2006; 452
Zdunkowski (R99) 1980; 53
Pont (R74) 2013; 432
Woitke (R96) 2004; 414
Helling (R51) 2016; 460
R65
Deuflhard (R29) 1987; 51
Knutson (R58) 2007; 447
Showman (R77) 2002; 385
Wood (R97) 2014; 140
Mie (R70) 1908; 330
Tennyson (R85) 2012; 425
Arakawa (R7) 1977; 17
Louden (R64) 2015; 814
Witte (R92) 2009; 506
Evans (R36) 2013; 772
R75
Tremblin (R88) 2017; 841
Amundsen (R5) 2017; 598
Asplund (R9) 2009; 47
Heng (R54) 2011; 413
Heng (R53) 2016; 829
Edwards (R34) 1996; 122
Tsai (R89) 2014; 793
Evans (R38) 2017; 548
Helling (R47) 2008; 677
Lee (R62) 2016; 594
Witte (R93) 2011; 529
Demory (R28) 2013; 776
Looyenga (R63) 1965; 31
Snellen (R82) 2010; 465
Zahnle (R98) 2016; 824
Helling (R41) 2013; 371
Wakeford (R90) 2015; 573
R10
Crank (R24) 1996; 6
Bohren (R13) 1983; 306
Tremblin (R87) 2015; 804
Lacis (R59) 1991; 96
Kirk (R57) 2017; 468
R19
References_xml – volume: 561
  start-page: A1
  year: 2014
  ident: R67
  publication-title: A&A
  doi: 10.1051/0004-6361/201322174
– volume: 529
  start-page: 59
  year: 2016
  ident: R81
  publication-title: Nature
  doi: 10.1038/nature16068
– volume: 556
  start-page: 872
  year: 2001
  ident: R1
  publication-title: ApJ
  doi: 10.1086/321540
– ident: R56
  doi: 10.1051/0004-6361/201629977
– ident: R42
– volume: 123
  start-page: 1227
  year: 1997
  ident: R76
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 506
  start-page: 1367
  year: 2009
  ident: R92
  publication-title: A&A
  doi: 10.1051/0004-6361/200811501
– volume: 330
  start-page: 377
  year: 1908
  ident: R70
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19083300302
– volume: 604
  start-page: A79
  year: 2017
  ident: R68
  publication-title: A&A
  doi: 10.1051/0004-6361/201730465
– volume: 399
  start-page: 297
  year: 2003
  ident: R95
  publication-title: A&A
  doi: 10.1051/0004-6361:20021734
– ident: R32
  doi: 10.1051/0004-6361/201732010
– volume: 598
  start-page: A97
  year: 2017
  ident: R5
  publication-title: A&A
  doi: 10.1051/0004-6361/201629322
– ident: R10
– volume: 674
  start-page: 482
  year: 2008
  ident: R84
  publication-title: ApJ
  doi: 10.1086/523832
– volume: 447
  start-page: 183
  year: 2007
  ident: R58
  publication-title: Nature
  doi: 10.1038/nature05782
– volume: 841
  start-page: 30
  year: 2017
  ident: R88
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa6e57
– volume: 140
  start-page: 1505
  year: 2014
  ident: R97
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.2235
– volume: 855
  start-page: L31
  year: 2018
  ident: R33
  publication-title: ApJ
  doi: 10.3847/2041-8213/aab209
– volume: 2017
  start-page: 1
  year: 2017
  ident: R91
  publication-title: Geosci. Model Dev. Dis.
– volume: 823
  start-page: 109
  year: 2016
  ident: R55
  publication-title: ApJ
  doi: 10.3847/0004-637X/823/2/109
– volume: 595
  start-page: A36
  year: 2016
  ident: R4
  publication-title: A&A
  doi: 10.1051/0004-6361/201629183
– volume: 53
  start-page: 147
  year: 1980
  ident: R99
  publication-title: Beitr. Phys. Atm.
– volume: 548
  start-page: 58
  year: 2017
  ident: R38
  publication-title: Nature
  doi: 10.1038/nature23266
– volume: 573
  start-page: A122
  year: 2015
  ident: R90
  publication-title: A&A
  doi: 10.1051/0004-6361/201424207
– volume: 96
  start-page: 9027
  year: 1991
  ident: R59
  publication-title: J. Geophys. Res.: Atmospheres
  doi: 10.1029/90JD01945
– volume: 43
  start-page: 509
  year: 2015
  ident: R52
  publication-title: Ann. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev-earth-060614-105146
– volume: 47
  start-page: 481
  year: 2009
  ident: R9
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.46.060407.145222
– volume: 416
  start-page: 636
  year: 1935
  ident: R17
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19354160705
– volume: 51
  start-page: 501
  year: 1987
  ident: R29
  publication-title: Numer. Math.
  doi: 10.1007/BF01400352
– volume: 629
  start-page: L45
  year: 2005
  ident: R22
  publication-title: ApJ
  doi: 10.1086/444354
– volume: 822
  start-page: L4
  year: 2016
  ident: R37
  publication-title: ApJ
  doi: 10.3847/2041-8205/822/1/L4
– volume: 37
  start-page: 705
  year: 2016
  ident: R50
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-016-9361-7
– volume: 413
  start-page: 2380
  year: 2011
  ident: R54
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.18315.x
– volume: 371
  start-page: 20110581
  year: 2013
  ident: R41
  publication-title: Phil. Trans. R. Soc. London, Ser. A
– volume: 529
  start-page: A44
  year: 2011
  ident: R93
  publication-title: A&A
  doi: 10.1051/0004-6361/201014105
– volume: 601
  start-page: A120
  year: 2017
  ident: R14
  publication-title: A&A
  doi: 10.1051/0004-6361/201630020
– volume: 153
  start-page: 68
  year: 2017
  ident: R83
  publication-title: AJ
  doi: 10.3847/1538-3881/153/2/68
– ident: R40
  doi: 10.1017/CBO9780511985607
– volume: 460
  start-page: 855
  year: 2016
  ident: R51
  publication-title: MNRAS
  doi: 10.1093/mnras/stw662
– volume: 306
  start-page: 625
  year: 1983
  ident: R13
  publication-title: Nature
– volume: 485
  start-page: 547
  year: 2008
  ident: R48
  publication-title: A&A
  doi: 10.1051/0004-6361:20078220
– volume: 452
  start-page: 537
  year: 2006
  ident: R94
  publication-title: A&A
  doi: 10.1051/0004-6361:20054202
– volume: 700
  start-page: 887
  year: 2009
  ident: R69
  publication-title: ApJ
  doi: 10.1088/0004-637X/700/1/887
– volume: 100
  start-page: 32
  year: 1928
  ident: R23
  publication-title: Math. Ann.
  doi: 10.1007/BF01448839
– volume: 568
  start-page: 377
  year: 2002
  ident: R20
  publication-title: ApJ
  doi: 10.1086/338770
– volume: 327
  start-page: 73
  year: 2016
  ident: R86
  publication-title: J. Mol. Spectr.
  doi: 10.1016/j.jms.2016.05.002
– volume: 6
  start-page: 207
  year: 1996
  ident: R24
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF02127704
– volume: 17
  start-page: 173
  year: 1977
  ident: R7
  publication-title: Meth. Comput. Phys.
– volume: 7
  start-page: 3059
  year: 2014
  ident: R66
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-7-3059-2014
– volume: 677
  start-page: L157
  year: 2008
  ident: R47
  publication-title: ApJ
  doi: 10.1086/588287
– volume: 804
  start-page: L17
  year: 2015
  ident: R87
  publication-title: ApJ
  doi: 10.1088/2041-8205/804/1/L17
– volume: 425
  start-page: 21
  year: 2012
  ident: R85
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21440.x
– volume: 127
  start-page: 1113
  year: 2015
  ident: R6
  publication-title: PASP
  doi: 10.1086/683797
– volume: 376
  start-page: 194
  year: 2001
  ident: R44
  publication-title: A&A
  doi: 10.1051/0004-6361:20010937
– volume: 153
  start-page: 138
  year: 2017
  ident: R12
  publication-title: AJ
  doi: 10.3847/1538-3881/aa5c87
– volume: 675
  start-page: L105
  year: 2008
  ident: R46
  publication-title: ApJ
  doi: 10.1086/533462
– ident: R26
– volume: 455
  start-page: 325
  year: 2006
  ident: R43
  publication-title: A&A
  doi: 10.1051/0004-6361:20054598
– ident: R75
– volume: 414
  start-page: 335
  year: 2004
  ident: R96
  publication-title: A&A
  doi: 10.1051/0004-6361:20031605
– volume: 723
  start-page: 1436
  year: 2010
  ident: R25
  publication-title: ApJ
  doi: 10.1088/0004-637X/723/2/1436
– volume: 738
  start-page: 71
  year: 2011
  ident: R78
  publication-title: ApJ
  doi: 10.1088/0004-637X/738/1/71
– volume: 817
  start-page: 106
  year: 2016
  ident: R15
  publication-title: ApJ
  doi: 10.3847/0004-637X/817/2/106
– volume: 122
  start-page: 689
  year: 1996
  ident: R34
  publication-title: QJRAS
– ident: R35
  doi: 10.1051/epjconf/201510102003
– volume: 594
  start-page: A48
  year: 2016
  ident: R62
  publication-title: A&A
  doi: 10.1051/0004-6361/201628606
– volume: 776
  start-page: L25
  year: 2013
  ident: R28
  publication-title: ApJ
  doi: 10.1088/2041-8205/776/2/L25
– volume: 58
  start-page: 074003
  year: 2016
  ident: R49
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/58/7/074003
– volume: 166
  start-page: 225
  year: 1986
  ident: R39
  publication-title: A&A
– volume: 465
  start-page: 1049
  year: 2010
  ident: R82
  publication-title: Nature
  doi: 10.1038/nature09111
– volume: 558
  start-page: A91
  year: 2013
  ident: R72
  publication-title: A&A
  doi: 10.1051/0004-6361/201321132
– volume: 1
  start-page: 0004
  year: 2016
  ident: R8
  publication-title: Nat. Astron.
  doi: 10.1038/s41550-016-0004
– ident: R2
– volume: 432
  start-page: 2917
  year: 2013
  ident: R74
  publication-title: MNRAS
  doi: 10.1093/mnras/stt651
– volume: 527
  start-page: A73
  year: 2011
  ident: R80
  publication-title: A&A
  doi: 10.1051/0004-6361/201015579
– volume: 828
  start-page: 22
  year: 2016
  ident: R73
  publication-title: ApJ
  doi: 10.3847/0004-637X/828/1/22
– volume: 512
  start-page: 843
  year: 1999
  ident: R18
  publication-title: ApJ
  doi: 10.1086/306811
– volume: 423
  start-page: 657
  year: 2004
  ident: R45
  publication-title: A&A
  doi: 10.1051/0004-6361:20034514
– volume: 435
  start-page: 3159
  year: 2013
  ident: R30
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1509
– volume: 774
  start-page: 95
  year: 2013
  ident: R27
  publication-title: ApJ
  doi: 10.1088/0004-637X/774/2/95
– ident: R19
  doi: 10.1017/S1743921313008995
– volume: 468
  start-page: 3907
  year: 2017
  ident: R57
  publication-title: MNRAS
  doi: 10.1093/mnras/stx752
– volume: 580
  start-page: A12
  year: 2015
  ident: R60
  publication-title: A&A
  doi: 10.1051/0004-6361/201525982
– ident: R65
  doi: 10.1093/mnras/stx1666
– volume: 824
  start-page: 137
  year: 2016
  ident: R98
  publication-title: ApJ
  doi: 10.3847/0004-637X/824/2/137
– volume: 772
  start-page: L16
  year: 2013
  ident: R36
  publication-title: ApJ
  doi: 10.1088/2041-8205/772/2/L16
– volume: 829
  start-page: 104
  year: 2016
  ident: R53
  publication-title: ApJ
  doi: 10.3847/0004-637X/829/2/104
– volume: 31
  start-page: 401
  year: 1965
  ident: R63
  publication-title: Physica
  doi: 10.1016/0031-8914(65)90045-5
– volume: 814
  start-page: L24
  year: 2015
  ident: R64
  publication-title: ApJ
  doi: 10.1088/2041-8205/814/2/L24
– volume: 793
  start-page: 141
  year: 2014
  ident: R89
  publication-title: ApJ
  doi: 10.1088/0004-637X/793/2/141
– volume: 93
  start-page: 1865
  year: 2012
  ident: R16
  publication-title: BAAS
– volume: 10
  start-page: 71
  year: 1953
  ident: R21
  publication-title: J. Meteorol.
  doi: 10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2
– volume: 385
  start-page: 166
  year: 2002
  ident: R77
  publication-title: A&A
  doi: 10.1051/0004-6361:20020101
– volume: 150
  start-page: 112
  year: 2015
  ident: R79
  publication-title: AJ
  doi: 10.1088/0004-6256/150/4/112
– volume: 673
  start-page: 513
  year: 2008
  ident: R31
  publication-title: ApJ
  doi: 10.1086/523786
– volume: 564
  start-page: A59
  year: 2014
  ident: R3
  publication-title: A&A
  doi: 10.1051/0004-6361/201323169
– volume: 436
  start-page: L35
  year: 2013
  ident: R11
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slt107
– volume: 457
  start-page: 3420
  year: 2016
  ident: R71
  publication-title: MNRAS
  doi: 10.1093/mnras/stw133
– volume: 575
  start-page: A11
  year: 2015
  ident: R61
  publication-title: A&A
  doi: 10.1051/0004-6361/201424621
SSID ssj0002183
Score 2.6150494
Snippet Aims. To understand and compare the 3D atmospheric structure of HD 209458 b and HD 189733 b, focusing on the formation and distribution of cloud particles, as...
Aims. To understand and compare the 3D atmospheric structure of HD 209458 b and HD 189733 b, focusing on the formation and distribution of cloud particles, as...
SourceID proquest
crossref
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage A97
SubjectTerms Advection
Atmosphere
Banded structure
Cloud cover
Clouds
Computer simulation
Condensation
Feedback
Fluxes
hydrodynamics
methods: numerical
planets and satellites: atmospheres
planets and satellites: gaseous planets
Radiative transfer
Scattering
Seeds
Silicates
Thermal emission
Three dimensional models
Upper atmosphere
Title Simulating the cloudy atmospheres of HD 209458 b and HD 189733 b with the 3D Met Office Unified Model
URI https://api.istex.fr/ark:/67375/80W-LKVHBC0M-Q/fulltext.pdf
https://www.proquest.com/docview/2098011713
Volume 615
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKJiQuaAzQCgP5gHYJyeo4Tpxjt4LCWAdoG-wW2a4jTWsbtGbS4MCd_5pnO3UDQxPjEsWW8yLl_fL83vP7QOgVgz1PppqFmWaTMJE5D7mgNMwTKRQXOtY2w3t8lBanycEZO-v1fnailq4aGanvf80r-R-uwhzw1WTJ3oGznihMwD3wF67AYbj-E4-Pz2e2-1ab8aSmtakQLZpZvTDVAlw92WIUxGBdMR5Ie1IAY8LzjFIYOy8sPEpHwVg3wQdTUMIqopVRTU2jtGlXfR0ujOe8nrmiTcKMnGvE-m5d6ayOb-HwvG0EcBytPN_fnA_1KAoO_OyejUuy8ioKhp3FpjGYQ1rU9U8Q7mNZVzI3CVPqSq5H2onZhJqY19b52MrhlLCOJB26sN0bEh6EiAuJdERNQgsIFWoyeldb2vIY_4-dzscf2pN3RszJe1IaMqUncg-tx2Bx2Lzxdz_8pm40SWdJufcuC1gxsuvndj2R35ScdfO_Xt_Y660Cc7KBHraWBx46GD1CPT3fRFueo3gHDzv83ET3P7q7x0ivcIYBLNjhDHdwhusKFyPscIYlBnSYscMZjA3O7KN0hAFn2OEMtzjDFmdP0OnbNyf7Rdi25wgVzZMmzBShnKuUUpFRwiSLJa-EUFVayQFRIpZSxExOKprrQZ4xnSYpywWZkCpnFMzkp2htXs_1FsI6i6UAS0XKapAkYETHFFZXYL2nsVKU91G8_J6lamvXmxYq0_IWTvbRa__QV1e65fblO5ZRfq24vDBRjxkr-eBLefj-c7G3PxiXn_poe8nJshUGCyCTc1NekdBnd3vtc_Rg9ddso7Xm8kq_AD23kS8tAn8BxWWUoA
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulating+the+cloudy+atmospheres+of+HD+209458+b+and+HD+189733+b+with+the+3D+Met+Office+Unified+Model&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Lines%2C+S.&rft.au=Mayne%2C+N.+J.&rft.au=Boutle%2C+I.+A.&rft.au=Manners%2C+J.&rft.date=2018-07-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=615&rft.spage=A97&rft_id=info:doi/10.1051%2F0004-6361%2F201732278&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_201732278
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon