Simulating the cloudy atmospheres of HD 209458 b and HD 189733 b with the 3D Met Office Unified Model
Aims. To understand and compare the 3D atmospheric structure of HD 209458 b and HD 189733 b, focusing on the formation and distribution of cloud particles, as well as their feedback on the dynamics and thermal profile. Methods. We coupled the 3D Met Office Unified Model (UM), including detailed trea...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 615; p. A97 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
EDP Sciences
01.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aims. To understand and compare the 3D atmospheric structure of HD 209458 b and HD 189733 b, focusing on the formation and distribution of cloud particles, as well as their feedback on the dynamics and thermal profile. Methods. We coupled the 3D Met Office Unified Model (UM), including detailed treatments of atmospheric radiative transfer and dynamics, to a kinetic cloud formation scheme. The resulting model self-consistently solves for the formation of condensation seeds, surface growth and evaporation, gravitational settling and advection, cloud radiative feedback via absorption, and crucially, scattering. We used fluxes directly obtained from the UM to produce synthetic spectral energy distributions and phase curves. Results. Our simulations show extensive cloud formation in both HD 209458 b and HD 189733 b. However, cooler temperatures in the latter result in higher cloud particle number densities. Large particles, reaching 1 μm in diameter, can form due to high particle growth velocities, and sub-μm particles are suspended by vertical flows leading to extensive upper-atmosphere cloud cover. A combination of meridional advection and efficient cloud formation in cooler high latitude regions, results in enhanced cloud coverage for latitudes above 30° and leads to a zonally banded structure for all our simulations. The cloud bands extend around the entire planet, for HD 209458 b and HD 189733 b, as the temperatures, even on the day side, remain below the condensation temperature of silicates and oxides. Therefore, the simulated optical phase curve for HD 209458 b shows no “offset”, in contrast to observations. Efficient scattering of stellar irradiation by cloud particles results in a local maximum cooling of up to 250 K in the upper atmosphere, and an advection-driven fluctuating cloud opacity causes temporal variability in the thermal emission. The inclusion of this fundamental cloud-atmosphere radiative feedback leads to significant differences with approaches neglecting these physical elements, which have been employed to interpret observations and determine thermal profiles for these planets. This suggests that readers should be cautious of interpretations neglecting such cloud feedback and scattering, and that the subject merits further study. |
---|---|
AbstractList | Aims. To understand and compare the 3D atmospheric structure of HD 209458 b and HD 189733 b, focusing on the formation and distribution of cloud particles, as well as their feedback on the dynamics and thermal profile. Methods. We coupled the 3D Met Office Unified Model (UM), including detailed treatments of atmospheric radiative transfer and dynamics, to a kinetic cloud formation scheme. The resulting model self-consistently solves for the formation of condensation seeds, surface growth and evaporation, gravitational settling and advection, cloud radiative feedback via absorption, and crucially, scattering. We used fluxes directly obtained from the UM to produce synthetic spectral energy distributions and phase curves. Results. Our simulations show extensive cloud formation in both HD 209458 b and HD 189733 b. However, cooler temperatures in the latter result in higher cloud particle number densities. Large particles, reaching 1 μm in diameter, can form due to high particle growth velocities, and sub-μm particles are suspended by vertical flows leading to extensive upper-atmosphere cloud cover. A combination of meridional advection and efficient cloud formation in cooler high latitude regions, results in enhanced cloud coverage for latitudes above 30° and leads to a zonally banded structure for all our simulations. The cloud bands extend around the entire planet, for HD 209458 b and HD 189733 b, as the temperatures, even on the day side, remain below the condensation temperature of silicates and oxides. Therefore, the simulated optical phase curve for HD 209458 b shows no “offset”, in contrast to observations. Efficient scattering of stellar irradiation by cloud particles results in a local maximum cooling of up to 250 K in the upper atmosphere, and an advection-driven fluctuating cloud opacity causes temporal variability in the thermal emission. The inclusion of this fundamental cloud-atmosphere radiative feedback leads to significant differences with approaches neglecting these physical elements, which have been employed to interpret observations and determine thermal profiles for these planets. This suggests that readers should be cautious of interpretations neglecting such cloud feedback and scattering, and that the subject merits further study. Aims. To understand and compare the 3D atmospheric structure of HD 209458 b and HD 189733 b, focusing on the formation and distribution of cloud particles, as well as their feedback on the dynamics and thermal profile. Methods. We coupled the 3D Met Office Unified Model (UM), including detailed treatments of atmospheric radiative transfer and dynamics, to a kinetic cloud formation scheme. The resulting model self-consistently solves for the formation of condensation seeds, surface growth and evaporation, gravitational settling and advection, cloud radiative feedback via absorption, and crucially, scattering. We used fluxes directly obtained from the UM to produce synthetic spectral energy distributions and phase curves. Results. Our simulations show extensive cloud formation in both HD 209458 b and HD 189733 b. However, cooler temperatures in the latter result in higher cloud particle number densities. Large particles, reaching 1 μ m in diameter, can form due to high particle growth velocities, and sub- μ m particles are suspended by vertical flows leading to extensive upper-atmosphere cloud cover. A combination of meridional advection and efficient cloud formation in cooler high latitude regions, results in enhanced cloud coverage for latitudes above 30° and leads to a zonally banded structure for all our simulations. The cloud bands extend around the entire planet, for HD 209458 b and HD 189733 b, as the temperatures, even on the day side, remain below the condensation temperature of silicates and oxides. Therefore, the simulated optical phase curve for HD 209458 b shows no “offset”, in contrast to observations. Efficient scattering of stellar irradiation by cloud particles results in a local maximum cooling of up to 250 K in the upper atmosphere, and an advection-driven fluctuating cloud opacity causes temporal variability in the thermal emission. The inclusion of this fundamental cloud-atmosphere radiative feedback leads to significant differences with approaches neglecting these physical elements, which have been employed to interpret observations and determine thermal profiles for these planets. This suggests that readers should be cautious of interpretations neglecting such cloud feedback and scattering, and that the subject merits further study. |
Author | Amundsen, D. S. Lines, S. Kerslake, M. Helling, Ch Drummond, B. Tremblin, P. Boutle, I. A. Manners, J. Acreman, D. M. Mayne, N. J. Lee, G. K. H. Goyal, J. |
Author_xml | – sequence: 1 givenname: S. surname: Lines fullname: Lines, S. organization: Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QL, Exeter, UK – sequence: 2 givenname: N. J. surname: Mayne fullname: Mayne, N. J. organization: Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QL, Exeter, UK – sequence: 3 givenname: I. A. surname: Boutle fullname: Boutle, I. A. organization: Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QL, Exeter, UK – sequence: 4 givenname: J. surname: Manners fullname: Manners, J. organization: Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QL, Exeter, UK – sequence: 5 givenname: G. K. H. surname: Lee fullname: Lee, G. K. H. organization: Centre for Exoplanet Science, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK – sequence: 6 givenname: Ch surname: Helling fullname: Helling, Ch organization: Centre for Exoplanet Science, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK – sequence: 7 givenname: B. surname: Drummond fullname: Drummond, B. organization: Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QL, Exeter, UK – sequence: 8 givenname: D. S. surname: Amundsen fullname: Amundsen, D. S. organization: Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QL, Exeter, UK – sequence: 9 givenname: J. surname: Goyal fullname: Goyal, J. organization: Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QL, Exeter, UK – sequence: 10 givenname: D. M. surname: Acreman fullname: Acreman, D. M. organization: Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QL, Exeter, UK – sequence: 11 givenname: P. surname: Tremblin fullname: Tremblin, P. organization: Maison de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, 91191 Gif-Sur-Yvette, France – sequence: 12 givenname: M. surname: Kerslake fullname: Kerslake, M. organization: Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QL, Exeter, UK |
BookMark | eNqFkMFuEzEQhq2qSE1Ln4CLJc5LPZ712ntsUyCIRBWClqPl9dqNy2ad2o6gb8-GoBy4cBr90v_NjL5zcjrG0RHyBtg7YAKuGGN11WADV5yBRM6lOiEzqJFXTNbNKZkdG2fkPOenKXJQOCPua9jsBlPC-EjL2lE7xF3_Qk3ZxLxdu-QyjZ4ubilnbS0U7agZ-30G1UrEKf8MZf0HxVu6coXeeR-so_dj8MH1dBV7N7wmr7wZsrv8Oy_I_Yf33-aLann38dP8ellZbOtSSQuolG0QjUQQneCd8sZY3_iOgTW86wwXXe-xdayVwjV1I1oDPfhWoBR4Qd4e9m5TfN65XPRT3KVxOqmn_xUDkIBTCw8tm2LOyXm9TWFj0osGpvc-9d6W3tvSR58T1f5D2VAmcXEsyYThP2x1YEMu7tfxnEk_dCOnx7Vi3_Xy88PiZs5W-gv-BsENhjI |
CitedBy_id | crossref_primary_10_1093_mnras_stac680 crossref_primary_10_3847_1538_4357_ab6a94 crossref_primary_10_1098_rsta_2018_0398 crossref_primary_10_1051_0004_6361_201936445 crossref_primary_10_3847_2041_8213_ac139f crossref_primary_10_3847_1538_3881_ac01da crossref_primary_10_1093_mnras_stad2042 crossref_primary_10_1051_0004_6361_201936281 crossref_primary_10_1051_0004_6361_202450767 crossref_primary_10_1051_0004_6361_202450526 crossref_primary_10_3847_1538_4357_abc01c crossref_primary_10_3847_1538_3881_ac0e30 crossref_primary_10_3847_2041_8213_acfc3b crossref_primary_10_3847_1538_3881_ad8cd2 crossref_primary_10_3847_1538_4357_ab4a76 crossref_primary_10_1038_s41550_020_1170_8 crossref_primary_10_1051_0004_6361_202140378 crossref_primary_10_1051_0004_6361_202141468 crossref_primary_10_1038_s41550_025_02488_9 crossref_primary_10_1051_0004_6361_202140417 crossref_primary_10_1051_0004_6361_202451112 crossref_primary_10_1093_mnras_stab1053 crossref_primary_10_3847_1538_4357_ac3d32 crossref_primary_10_3847_1538_4357_ad0b70 crossref_primary_10_3847_1538_4357_abb3d4 crossref_primary_10_1088_1361_6455_ac8213 crossref_primary_10_1093_mnras_stab2027 crossref_primary_10_1093_mnras_stac3432 crossref_primary_10_1146_annurev_astro_081817_051846 crossref_primary_10_3847_1538_4357_aaeb28 crossref_primary_10_3847_1538_3881_acaec5 crossref_primary_10_3847_1538_3881_ac7234 crossref_primary_10_1088_1538_3873_aadbf3 crossref_primary_10_3847_1538_4357_ac423f crossref_primary_10_1093_mnras_staa3418 crossref_primary_10_1051_0004_6361_202452922 crossref_primary_10_1029_2020JE006629 crossref_primary_10_3847_1538_4357_abdc22 crossref_primary_10_3847_1538_4357_ac47fe crossref_primary_10_3847_2041_8213_ad1405 crossref_primary_10_3847_1538_4357_ad9394 crossref_primary_10_3847_1538_4357_ab06ca crossref_primary_10_3847_1538_4357_ad3de4 crossref_primary_10_1051_0004_6361_202450753 crossref_primary_10_3847_1538_4357_abf2bb crossref_primary_10_3847_1538_4357_ab55d9 crossref_primary_10_1051_0004_6361_202037589 crossref_primary_10_3847_1538_3881_ab880d crossref_primary_10_3847_1538_4357_aada7c crossref_primary_10_1051_0004_6361_202452070 crossref_primary_10_3847_1538_4357_ab44bd crossref_primary_10_3847_1538_4357_ab5b0b crossref_primary_10_3847_1538_4357_ac1516 crossref_primary_10_3847_PSJ_abf4df crossref_primary_10_1093_mnras_sty2275 crossref_primary_10_3847_1538_4357_aafdb5 crossref_primary_10_1029_2020JE006655 crossref_primary_10_3847_1538_4357_aada85 crossref_primary_10_3847_1538_4357_ac5e2d crossref_primary_10_1093_mnras_stz1788 crossref_primary_10_1051_0004_6361_202039911 crossref_primary_10_3847_1538_4357_ab2598 crossref_primary_10_1093_mnras_stae1408 crossref_primary_10_3847_1538_4357_ac658c crossref_primary_10_3847_1538_4357_ac7723 crossref_primary_10_1093_mnras_stz1418 crossref_primary_10_3847_1538_4357_acd4bb crossref_primary_10_1007_s10686_021_09749_1 crossref_primary_10_3847_1538_3881_adb7e8 crossref_primary_10_3847_1538_3881_ad2c8b crossref_primary_10_3847_1538_4357_ac2a2a crossref_primary_10_3847_1538_4357_abd549 crossref_primary_10_3847_1538_4357_aad461 crossref_primary_10_1051_0004_6361_201935771 crossref_primary_10_5194_gmd_16_5601_2023 crossref_primary_10_3847_1538_4357_ab0c07 crossref_primary_10_3390_atmos10110664 crossref_primary_10_1093_mnrasl_slz123 crossref_primary_10_1051_0004_6361_202038089 crossref_primary_10_3847_1538_4357_ac5898 crossref_primary_10_1051_0004_6361_201937153 crossref_primary_10_3847_1538_4357_ab338b crossref_primary_10_1051_0004_6361_201732010 crossref_primary_10_1051_0004_6361_202243956 crossref_primary_10_3847_1538_4357_aaf6e9 crossref_primary_10_1051_0004_6361_202245473 crossref_primary_10_1088_1674_4527_20_7_99 crossref_primary_10_1093_mnras_stac2246 crossref_primary_10_1093_mnras_stac2763 crossref_primary_10_3847_2041_8213_ad725e crossref_primary_10_1051_0004_6361_202347069 crossref_primary_10_1093_mnras_staa3989 crossref_primary_10_1088_1742_6596_1322_1_012028 crossref_primary_10_1051_0004_6361_202142816 crossref_primary_10_1093_mnras_stad2037 crossref_primary_10_1051_0004_6361_201936110 crossref_primary_10_3847_1538_4357_aba1e6 crossref_primary_10_3847_1538_3881_ab2a05 crossref_primary_10_1146_annurev_earth_053018_060401 |
Cites_doi | 10.1051/0004-6361/201322174 10.1038/nature16068 10.1086/321540 10.1051/0004-6361/201629977 10.1051/0004-6361/200811501 10.1002/andp.19083300302 10.1051/0004-6361/201730465 10.1051/0004-6361:20021734 10.1051/0004-6361/201732010 10.1051/0004-6361/201629322 10.1086/523832 10.1038/nature05782 10.3847/1538-4357/aa6e57 10.1002/qj.2235 10.3847/2041-8213/aab209 10.3847/0004-637X/823/2/109 10.1051/0004-6361/201629183 10.1038/nature23266 10.1051/0004-6361/201424207 10.1029/90JD01945 10.1146/annurev-earth-060614-105146 10.1146/annurev.astro.46.060407.145222 10.1002/andp.19354160705 10.1007/BF01400352 10.1086/444354 10.3847/2041-8205/822/1/L4 10.1007/s10712-016-9361-7 10.1111/j.1365-2966.2011.18315.x 10.1051/0004-6361/201014105 10.1051/0004-6361/201630020 10.3847/1538-3881/153/2/68 10.1017/CBO9780511985607 10.1093/mnras/stw662 10.1051/0004-6361:20078220 10.1051/0004-6361:20054202 10.1088/0004-637X/700/1/887 10.1007/BF01448839 10.1086/338770 10.1016/j.jms.2016.05.002 10.1007/BF02127704 10.5194/gmd-7-3059-2014 10.1086/588287 10.1088/2041-8205/804/1/L17 10.1111/j.1365-2966.2012.21440.x 10.1086/683797 10.1051/0004-6361:20010937 10.3847/1538-3881/aa5c87 10.1086/533462 10.1051/0004-6361:20054598 10.1051/0004-6361:20031605 10.1088/0004-637X/723/2/1436 10.1088/0004-637X/738/1/71 10.3847/0004-637X/817/2/106 10.1051/epjconf/201510102003 10.1051/0004-6361/201628606 10.1088/2041-8205/776/2/L25 10.1088/0741-3335/58/7/074003 10.1038/nature09111 10.1051/0004-6361/201321132 10.1038/s41550-016-0004 10.1093/mnras/stt651 10.1051/0004-6361/201015579 10.3847/0004-637X/828/1/22 10.1086/306811 10.1051/0004-6361:20034514 10.1093/mnras/stt1509 10.1088/0004-637X/774/2/95 10.1017/S1743921313008995 10.1093/mnras/stx752 10.1051/0004-6361/201525982 10.1093/mnras/stx1666 10.3847/0004-637X/824/2/137 10.1088/2041-8205/772/2/L16 10.3847/0004-637X/829/2/104 10.1016/0031-8914(65)90045-5 10.1088/2041-8205/814/2/L24 10.1088/0004-637X/793/2/141 10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2 10.1051/0004-6361:20020101 10.1088/0004-6256/150/4/112 10.1086/523786 10.1051/0004-6361/201323169 10.1093/mnrasl/slt107 10.1093/mnras/stw133 10.1051/0004-6361/201424621 |
ContentType | Journal Article |
Copyright | Copyright EDP Sciences Jul 2018 |
Copyright_xml | – notice: Copyright EDP Sciences Jul 2018 |
DBID | BSCLL AAYXX CITATION 8FD H8D L7M |
DOI | 10.1051/0004-6361/201732278 |
DatabaseName | Istex CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | 10_1051_0004_6361_201732278 ark_67375_80W_LKVHBC0M_Q |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOTM ABDNZ ABDPE ABPPZ ABTAH ABUBZ ABZDU ACACO ACGFS ACNCT ACYGS ACYRX ADCOW ADHUB ADIYS AEILP AENEX AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ BSCLL CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNP RNS RSV SDH SJN SOJ TR2 UPT UQL VH1 VOH WH7 XOL ZY4 AAOGA AAYXX ABNSH ACRPL ADNMO AGQPQ CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c394t-7c1388c633a7315b52b8faacf6fb01ca2bba25bdf39e0975e64659a1d1f953753 |
ISSN | 0004-6361 |
IngestDate | Wed Aug 13 09:19:34 EDT 2025 Thu Apr 24 23:00:11 EDT 2025 Tue Jul 01 03:59:11 EDT 2025 Wed Oct 30 09:48:21 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://www.edpsciences.org/en/authors/copyright-and-licensing |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c394t-7c1388c633a7315b52b8faacf6fb01ca2bba25bdf39e0975e64659a1d1f953753 |
Notes | bibcode:2018A%26A...615A..97L dkey:10.1051/0004-6361/201732278 istex:693E34747E3CC445B9863A2FD2DC3A2A48AB71F7 publisher-ID:aa32278-17 e-mail: s.lines@exeter.ac.uk ark:/67375/80W-LKVHBC0M-Q href:https://www.aanda.org/articles/aa/abs/2018/07/aa32278-17/aa32278-17.html ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0931-659X |
OpenAccessLink | http://hdl.handle.net/10871/31772 |
PQID | 2098011713 |
PQPubID | 1796397 |
ParticipantIDs | proquest_journals_2098011713 crossref_primary_10_1051_0004_6361_201732278 crossref_citationtrail_10_1051_0004_6361_201732278 istex_primary_ark_67375_80W_LKVHBC0M_Q |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180701 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 20180701 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2018 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Helling (R48) 2008; 485 Shporer (R79) 2015; 150 Helling (R46) 2008; 675 Charbonneau (R20) 2002; 568 Showman (R78) 2011; 738 Heng (R52) 2015; 43 Boutle (R14) 2017; 601 Deming (R27) 2013; 774 R26 Gail (R39) 1986; 166 Helling (R44) 2001; 376 R2 Amundsen (R3) 2014; 564 Mayne (R66) 2014; 7 Brogi (R15) 2016; 817 Dobbs-Dixon (R31) 2008; 673 Sing (R81) 2016; 529 Woitke (R95) 2003; 399 Burrows (R18) 1999; 512 R32 Armstrong (R8) 2016; 1 Bruggeman (R17) 1935; 416 R35 Birkby (R11) 2013; 436 Menou (R69) 2009; 700 Stevenson (R83) 2017; 153 Oreshenko (R71) 2016; 457 Dobbs-Dixon (R30) 2013; 435 Courant (R23) 1928; 100 Lee (R60) 2015; 580 Mayne (R67) 2014; 561 Lee (R61) 2015; 575 R40 Parmentier (R72) 2013; 558 R42 Mayne (R68) 2017; 604 Brown (R16) 2012; 93 Charney (R21) 1953; 10 Drummond (R33) 2018; 855 Amundsen (R4) 2016; 595 Swain (R84) 2008; 674 Parmentier (R73) 2016; 828 Sing (R80) 2011; 527 Cooper (R22) 2005; 629 Helling (R45) 2004; 423 Birkby (R12) 2017; 153 Rotstayn (R76) 1997; 123 Iyer (R55) 2016; 823 Walters (R91) 2017; 2017 Helling (R43) 2006; 455 R56 Ackerman (R1) 2001; 556 Crossfield (R25) 2010; 723 Helling (R49) 2016; 58 Angerhausen (R6) 2015; 127 Helling (R50) 2016; 37 Tennyson (R86) 2016; 327 Evans (R37) 2016; 822 Woitke (R94) 2006; 452 Zdunkowski (R99) 1980; 53 Pont (R74) 2013; 432 Woitke (R96) 2004; 414 Helling (R51) 2016; 460 R65 Deuflhard (R29) 1987; 51 Knutson (R58) 2007; 447 Showman (R77) 2002; 385 Wood (R97) 2014; 140 Mie (R70) 1908; 330 Tennyson (R85) 2012; 425 Arakawa (R7) 1977; 17 Louden (R64) 2015; 814 Witte (R92) 2009; 506 Evans (R36) 2013; 772 R75 Tremblin (R88) 2017; 841 Amundsen (R5) 2017; 598 Asplund (R9) 2009; 47 Heng (R54) 2011; 413 Heng (R53) 2016; 829 Edwards (R34) 1996; 122 Tsai (R89) 2014; 793 Evans (R38) 2017; 548 Helling (R47) 2008; 677 Lee (R62) 2016; 594 Witte (R93) 2011; 529 Demory (R28) 2013; 776 Looyenga (R63) 1965; 31 Snellen (R82) 2010; 465 Zahnle (R98) 2016; 824 Helling (R41) 2013; 371 Wakeford (R90) 2015; 573 R10 Crank (R24) 1996; 6 Bohren (R13) 1983; 306 Tremblin (R87) 2015; 804 Lacis (R59) 1991; 96 Kirk (R57) 2017; 468 R19 |
References_xml | – volume: 561 start-page: A1 year: 2014 ident: R67 publication-title: A&A doi: 10.1051/0004-6361/201322174 – volume: 529 start-page: 59 year: 2016 ident: R81 publication-title: Nature doi: 10.1038/nature16068 – volume: 556 start-page: 872 year: 2001 ident: R1 publication-title: ApJ doi: 10.1086/321540 – ident: R56 doi: 10.1051/0004-6361/201629977 – ident: R42 – volume: 123 start-page: 1227 year: 1997 ident: R76 publication-title: Q. J. R. Meteorol. Soc. – volume: 506 start-page: 1367 year: 2009 ident: R92 publication-title: A&A doi: 10.1051/0004-6361/200811501 – volume: 330 start-page: 377 year: 1908 ident: R70 publication-title: Ann. Phys. doi: 10.1002/andp.19083300302 – volume: 604 start-page: A79 year: 2017 ident: R68 publication-title: A&A doi: 10.1051/0004-6361/201730465 – volume: 399 start-page: 297 year: 2003 ident: R95 publication-title: A&A doi: 10.1051/0004-6361:20021734 – ident: R32 doi: 10.1051/0004-6361/201732010 – volume: 598 start-page: A97 year: 2017 ident: R5 publication-title: A&A doi: 10.1051/0004-6361/201629322 – ident: R10 – volume: 674 start-page: 482 year: 2008 ident: R84 publication-title: ApJ doi: 10.1086/523832 – volume: 447 start-page: 183 year: 2007 ident: R58 publication-title: Nature doi: 10.1038/nature05782 – volume: 841 start-page: 30 year: 2017 ident: R88 publication-title: ApJ doi: 10.3847/1538-4357/aa6e57 – volume: 140 start-page: 1505 year: 2014 ident: R97 publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.2235 – volume: 855 start-page: L31 year: 2018 ident: R33 publication-title: ApJ doi: 10.3847/2041-8213/aab209 – volume: 2017 start-page: 1 year: 2017 ident: R91 publication-title: Geosci. Model Dev. Dis. – volume: 823 start-page: 109 year: 2016 ident: R55 publication-title: ApJ doi: 10.3847/0004-637X/823/2/109 – volume: 595 start-page: A36 year: 2016 ident: R4 publication-title: A&A doi: 10.1051/0004-6361/201629183 – volume: 53 start-page: 147 year: 1980 ident: R99 publication-title: Beitr. Phys. Atm. – volume: 548 start-page: 58 year: 2017 ident: R38 publication-title: Nature doi: 10.1038/nature23266 – volume: 573 start-page: A122 year: 2015 ident: R90 publication-title: A&A doi: 10.1051/0004-6361/201424207 – volume: 96 start-page: 9027 year: 1991 ident: R59 publication-title: J. Geophys. Res.: Atmospheres doi: 10.1029/90JD01945 – volume: 43 start-page: 509 year: 2015 ident: R52 publication-title: Ann. Rev. Earth Planet. Sci. doi: 10.1146/annurev-earth-060614-105146 – volume: 47 start-page: 481 year: 2009 ident: R9 publication-title: ARA&A doi: 10.1146/annurev.astro.46.060407.145222 – volume: 416 start-page: 636 year: 1935 ident: R17 publication-title: Ann. Phys. doi: 10.1002/andp.19354160705 – volume: 51 start-page: 501 year: 1987 ident: R29 publication-title: Numer. Math. doi: 10.1007/BF01400352 – volume: 629 start-page: L45 year: 2005 ident: R22 publication-title: ApJ doi: 10.1086/444354 – volume: 822 start-page: L4 year: 2016 ident: R37 publication-title: ApJ doi: 10.3847/2041-8205/822/1/L4 – volume: 37 start-page: 705 year: 2016 ident: R50 publication-title: Surv. Geophys. doi: 10.1007/s10712-016-9361-7 – volume: 413 start-page: 2380 year: 2011 ident: R54 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.18315.x – volume: 371 start-page: 20110581 year: 2013 ident: R41 publication-title: Phil. Trans. R. Soc. London, Ser. A – volume: 529 start-page: A44 year: 2011 ident: R93 publication-title: A&A doi: 10.1051/0004-6361/201014105 – volume: 601 start-page: A120 year: 2017 ident: R14 publication-title: A&A doi: 10.1051/0004-6361/201630020 – volume: 153 start-page: 68 year: 2017 ident: R83 publication-title: AJ doi: 10.3847/1538-3881/153/2/68 – ident: R40 doi: 10.1017/CBO9780511985607 – volume: 460 start-page: 855 year: 2016 ident: R51 publication-title: MNRAS doi: 10.1093/mnras/stw662 – volume: 306 start-page: 625 year: 1983 ident: R13 publication-title: Nature – volume: 485 start-page: 547 year: 2008 ident: R48 publication-title: A&A doi: 10.1051/0004-6361:20078220 – volume: 452 start-page: 537 year: 2006 ident: R94 publication-title: A&A doi: 10.1051/0004-6361:20054202 – volume: 700 start-page: 887 year: 2009 ident: R69 publication-title: ApJ doi: 10.1088/0004-637X/700/1/887 – volume: 100 start-page: 32 year: 1928 ident: R23 publication-title: Math. Ann. doi: 10.1007/BF01448839 – volume: 568 start-page: 377 year: 2002 ident: R20 publication-title: ApJ doi: 10.1086/338770 – volume: 327 start-page: 73 year: 2016 ident: R86 publication-title: J. Mol. Spectr. doi: 10.1016/j.jms.2016.05.002 – volume: 6 start-page: 207 year: 1996 ident: R24 publication-title: Adv. Comput. Math. doi: 10.1007/BF02127704 – volume: 17 start-page: 173 year: 1977 ident: R7 publication-title: Meth. Comput. Phys. – volume: 7 start-page: 3059 year: 2014 ident: R66 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-7-3059-2014 – volume: 677 start-page: L157 year: 2008 ident: R47 publication-title: ApJ doi: 10.1086/588287 – volume: 804 start-page: L17 year: 2015 ident: R87 publication-title: ApJ doi: 10.1088/2041-8205/804/1/L17 – volume: 425 start-page: 21 year: 2012 ident: R85 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21440.x – volume: 127 start-page: 1113 year: 2015 ident: R6 publication-title: PASP doi: 10.1086/683797 – volume: 376 start-page: 194 year: 2001 ident: R44 publication-title: A&A doi: 10.1051/0004-6361:20010937 – volume: 153 start-page: 138 year: 2017 ident: R12 publication-title: AJ doi: 10.3847/1538-3881/aa5c87 – volume: 675 start-page: L105 year: 2008 ident: R46 publication-title: ApJ doi: 10.1086/533462 – ident: R26 – volume: 455 start-page: 325 year: 2006 ident: R43 publication-title: A&A doi: 10.1051/0004-6361:20054598 – ident: R75 – volume: 414 start-page: 335 year: 2004 ident: R96 publication-title: A&A doi: 10.1051/0004-6361:20031605 – volume: 723 start-page: 1436 year: 2010 ident: R25 publication-title: ApJ doi: 10.1088/0004-637X/723/2/1436 – volume: 738 start-page: 71 year: 2011 ident: R78 publication-title: ApJ doi: 10.1088/0004-637X/738/1/71 – volume: 817 start-page: 106 year: 2016 ident: R15 publication-title: ApJ doi: 10.3847/0004-637X/817/2/106 – volume: 122 start-page: 689 year: 1996 ident: R34 publication-title: QJRAS – ident: R35 doi: 10.1051/epjconf/201510102003 – volume: 594 start-page: A48 year: 2016 ident: R62 publication-title: A&A doi: 10.1051/0004-6361/201628606 – volume: 776 start-page: L25 year: 2013 ident: R28 publication-title: ApJ doi: 10.1088/2041-8205/776/2/L25 – volume: 58 start-page: 074003 year: 2016 ident: R49 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/58/7/074003 – volume: 166 start-page: 225 year: 1986 ident: R39 publication-title: A&A – volume: 465 start-page: 1049 year: 2010 ident: R82 publication-title: Nature doi: 10.1038/nature09111 – volume: 558 start-page: A91 year: 2013 ident: R72 publication-title: A&A doi: 10.1051/0004-6361/201321132 – volume: 1 start-page: 0004 year: 2016 ident: R8 publication-title: Nat. Astron. doi: 10.1038/s41550-016-0004 – ident: R2 – volume: 432 start-page: 2917 year: 2013 ident: R74 publication-title: MNRAS doi: 10.1093/mnras/stt651 – volume: 527 start-page: A73 year: 2011 ident: R80 publication-title: A&A doi: 10.1051/0004-6361/201015579 – volume: 828 start-page: 22 year: 2016 ident: R73 publication-title: ApJ doi: 10.3847/0004-637X/828/1/22 – volume: 512 start-page: 843 year: 1999 ident: R18 publication-title: ApJ doi: 10.1086/306811 – volume: 423 start-page: 657 year: 2004 ident: R45 publication-title: A&A doi: 10.1051/0004-6361:20034514 – volume: 435 start-page: 3159 year: 2013 ident: R30 publication-title: MNRAS doi: 10.1093/mnras/stt1509 – volume: 774 start-page: 95 year: 2013 ident: R27 publication-title: ApJ doi: 10.1088/0004-637X/774/2/95 – ident: R19 doi: 10.1017/S1743921313008995 – volume: 468 start-page: 3907 year: 2017 ident: R57 publication-title: MNRAS doi: 10.1093/mnras/stx752 – volume: 580 start-page: A12 year: 2015 ident: R60 publication-title: A&A doi: 10.1051/0004-6361/201525982 – ident: R65 doi: 10.1093/mnras/stx1666 – volume: 824 start-page: 137 year: 2016 ident: R98 publication-title: ApJ doi: 10.3847/0004-637X/824/2/137 – volume: 772 start-page: L16 year: 2013 ident: R36 publication-title: ApJ doi: 10.1088/2041-8205/772/2/L16 – volume: 829 start-page: 104 year: 2016 ident: R53 publication-title: ApJ doi: 10.3847/0004-637X/829/2/104 – volume: 31 start-page: 401 year: 1965 ident: R63 publication-title: Physica doi: 10.1016/0031-8914(65)90045-5 – volume: 814 start-page: L24 year: 2015 ident: R64 publication-title: ApJ doi: 10.1088/2041-8205/814/2/L24 – volume: 793 start-page: 141 year: 2014 ident: R89 publication-title: ApJ doi: 10.1088/0004-637X/793/2/141 – volume: 93 start-page: 1865 year: 2012 ident: R16 publication-title: BAAS – volume: 10 start-page: 71 year: 1953 ident: R21 publication-title: J. Meteorol. doi: 10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2 – volume: 385 start-page: 166 year: 2002 ident: R77 publication-title: A&A doi: 10.1051/0004-6361:20020101 – volume: 150 start-page: 112 year: 2015 ident: R79 publication-title: AJ doi: 10.1088/0004-6256/150/4/112 – volume: 673 start-page: 513 year: 2008 ident: R31 publication-title: ApJ doi: 10.1086/523786 – volume: 564 start-page: A59 year: 2014 ident: R3 publication-title: A&A doi: 10.1051/0004-6361/201323169 – volume: 436 start-page: L35 year: 2013 ident: R11 publication-title: MNRAS doi: 10.1093/mnrasl/slt107 – volume: 457 start-page: 3420 year: 2016 ident: R71 publication-title: MNRAS doi: 10.1093/mnras/stw133 – volume: 575 start-page: A11 year: 2015 ident: R61 publication-title: A&A doi: 10.1051/0004-6361/201424621 |
SSID | ssj0002183 |
Score | 2.6150494 |
Snippet | Aims. To understand and compare the 3D atmospheric structure of HD 209458 b and HD 189733 b, focusing on the formation and distribution of cloud particles, as... Aims. To understand and compare the 3D atmospheric structure of HD 209458 b and HD 189733 b, focusing on the formation and distribution of cloud particles, as... |
SourceID | proquest crossref istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | A97 |
SubjectTerms | Advection Atmosphere Banded structure Cloud cover Clouds Computer simulation Condensation Feedback Fluxes hydrodynamics methods: numerical planets and satellites: atmospheres planets and satellites: gaseous planets Radiative transfer Scattering Seeds Silicates Thermal emission Three dimensional models Upper atmosphere |
Title | Simulating the cloudy atmospheres of HD 209458 b and HD 189733 b with the 3D Met Office Unified Model |
URI | https://api.istex.fr/ark:/67375/80W-LKVHBC0M-Q/fulltext.pdf https://www.proquest.com/docview/2098011713 |
Volume | 615 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKJiQuaAzQCgP5gHYJyeo4Tpxjt4LCWAdoG-wW2a4jTWsbtGbS4MCd_5pnO3UDQxPjEsWW8yLl_fL83vP7QOgVgz1PppqFmWaTMJE5D7mgNMwTKRQXOtY2w3t8lBanycEZO-v1fnailq4aGanvf80r-R-uwhzw1WTJ3oGznihMwD3wF67AYbj-E4-Pz2e2-1ab8aSmtakQLZpZvTDVAlw92WIUxGBdMR5Ie1IAY8LzjFIYOy8sPEpHwVg3wQdTUMIqopVRTU2jtGlXfR0ujOe8nrmiTcKMnGvE-m5d6ayOb-HwvG0EcBytPN_fnA_1KAoO_OyejUuy8ioKhp3FpjGYQ1rU9U8Q7mNZVzI3CVPqSq5H2onZhJqY19b52MrhlLCOJB26sN0bEh6EiAuJdERNQgsIFWoyeldb2vIY_4-dzscf2pN3RszJe1IaMqUncg-tx2Bx2Lzxdz_8pm40SWdJufcuC1gxsuvndj2R35ScdfO_Xt_Y660Cc7KBHraWBx46GD1CPT3fRFueo3gHDzv83ET3P7q7x0ivcIYBLNjhDHdwhusKFyPscIYlBnSYscMZjA3O7KN0hAFn2OEMtzjDFmdP0OnbNyf7Rdi25wgVzZMmzBShnKuUUpFRwiSLJa-EUFVayQFRIpZSxExOKprrQZ4xnSYpywWZkCpnFMzkp2htXs_1FsI6i6UAS0XKapAkYETHFFZXYL2nsVKU91G8_J6lamvXmxYq0_IWTvbRa__QV1e65fblO5ZRfq24vDBRjxkr-eBLefj-c7G3PxiXn_poe8nJshUGCyCTc1NekdBnd3vtc_Rg9ddso7Xm8kq_AD23kS8tAn8BxWWUoA |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulating+the+cloudy+atmospheres+of+HD+209458+b+and+HD+189733+b+with+the+3D+Met+Office+Unified+Model&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Lines%2C+S.&rft.au=Mayne%2C+N.+J.&rft.au=Boutle%2C+I.+A.&rft.au=Manners%2C+J.&rft.date=2018-07-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=615&rft.spage=A97&rft_id=info:doi/10.1051%2F0004-6361%2F201732278&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_201732278 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |