Thermal performance of a building envelope including microencapsulated phase change materials (PCMs): A multiscale experimental and numerical investigation
This study aims to assess the thermal behavior of a cement mortar (denoted M15D) incorporating microencapsulated biobased phase change materials at both wall and building scales. A bi-climatic chamber setup was employed to subject the wall to distinct thermal conditions simulating outdoor and indoor...
Saved in:
Published in | Building and environment Vol. 253; p. 111294 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study aims to assess the thermal behavior of a cement mortar (denoted M15D) incorporating microencapsulated biobased phase change materials at both wall and building scales. A bi-climatic chamber setup was employed to subject the wall to distinct thermal conditions simulating outdoor and indoor environments, using heating and cooling solicitations. Temperature sensors, strategically positioned at various depths, allowed the monitoring of temperature within the walls during the experiments.
On a building scale, the thermal performance of M15D was predicted using two mathematical models describing heat transmission in porous systems incorporating phase-change materials. Numerical simulations were carried out using COMSOL Multiphysics and EnergyPlus software. The results obtained were validated against experimental data, at the wall scale and subsequently developed to the building scale.
The outcomes highlighted that the incorporation of microencapsulated biobased phase change materials significantly influences both building energy consumption and interior temperature. The heat storage capacity offered by M15D demonstrated a significant impact on thermal performance, leading to energy savings of up to 33% for heating and 31% for cooling, contingent on climate conditions. In conclusion, the integration of biobased phase change materials in the cement mortar (M15D) displays benefits in enhancing thermal performance at building scales.
•Thermal behavior of cement mortar including microencapsulated biobased PCMs.•Impact of heat transfer on walls incorporating PCMs under varying thermal scenarios.•Validation of the PCM models in EnergyPlus and COMSOL Multiphysics.•Effect of PCM integration on building thermal performance in diverse climates.•PCMs efficiency depends on climate, with potential limitations in hot-dry regions. |
---|---|
AbstractList | This study aims to assess the thermal behavior of a cement mortar (denoted M15D) incorporating microencapsulated biobased phase change materials at both wall and building scales. A bi-climatic chamber setup was employed to subject the wall to distinct thermal conditions simulating outdoor and indoor environments, using heating and cooling solicitations. Temperature sensors, strategically positioned at various depths, allowed the monitoring of temperature within the walls during the experiments. On a building scale, the thermal performance of M15D was predicted using two mathematical models describing heat transmission in porous systems incorporating phase-change materials. Numerical simulations were carried out using COMSOL Multiphysics and EnergyPlus software. The results obtained were validated against experimental data, at the wall scale and subsequently developed to the building scale. The outcomes highlighted that the incorporation of microencapsulated biobased phase change materials significantly influences both building energy consumption and interior temperature. The heat storage capacity offered by M15D demonstrated a significant impact on thermal performance, leading to energy savings of up to 33% for heating and 31% for cooling, contingent on climate conditions. In conclusion, the integration of biobased phase change materials in the cement mortar (M15D) displays benefits in enhancing thermal performance at building scales. This study aims to assess the thermal behavior of a cement mortar (denoted M15D) incorporating microencapsulated biobased phase change materials at both wall and building scales. A bi-climatic chamber setup was employed to subject the wall to distinct thermal conditions simulating outdoor and indoor environments, using heating and cooling solicitations. Temperature sensors, strategically positioned at various depths, allowed the monitoring of temperature within the walls during the experiments. On a building scale, the thermal performance of M15D was predicted using two mathematical models describing heat transmission in porous systems incorporating phase-change materials. Numerical simulations were carried out using COMSOL Multiphysics and EnergyPlus software. The results obtained were validated against experimental data, at the wall scale and subsequently developed to the building scale. The outcomes highlighted that the incorporation of microencapsulated biobased phase change materials significantly influences both building energy consumption and interior temperature. The heat storage capacity offered by M15D demonstrated a significant impact on thermal performance, leading to energy savings of up to 33% for heating and 31% for cooling, contingent on climate conditions. In conclusion, the integration of biobased phase change materials in the cement mortar (M15D) displays benefits in enhancing thermal performance at building scales. •Thermal behavior of cement mortar including microencapsulated biobased PCMs.•Impact of heat transfer on walls incorporating PCMs under varying thermal scenarios.•Validation of the PCM models in EnergyPlus and COMSOL Multiphysics.•Effect of PCM integration on building thermal performance in diverse climates.•PCMs efficiency depends on climate, with potential limitations in hot-dry regions. |
ArticleNumber | 111294 |
Author | Agoudjil, Boudjemaa Benzarti, Karim Chennouf, Nawal Boudenne, Abderrahim Gbekou, Franck Komi Belloum, Rahma |
Author_xml | – sequence: 1 givenname: Franck Komi orcidid: 0000-0003-1344-4914 surname: Gbekou fullname: Gbekou, Franck Komi organization: Laboratoire Navier, Université Gustave Eiffel, Ecole Nationale des Ponts et Chaussées (ENPC), Centre National de la Recherche Scientifique (CNRS), F-77447, Marne la Vallée, France – sequence: 2 givenname: Rahma surname: Belloum fullname: Belloum, Rahma organization: Laboratoire de Physique Energétique Appliquée (LPEA), Université Batna-1, Les Allées 19 Mai, Route de Biskra, Batna, Algeria – sequence: 3 givenname: Nawal surname: Chennouf fullname: Chennouf, Nawal organization: Laboratoire de Physique Energétique Appliquée (LPEA), Université Batna-1, Les Allées 19 Mai, Route de Biskra, Batna, Algeria – sequence: 4 givenname: Boudjemaa orcidid: 0000-0003-0421-5298 surname: Agoudjil fullname: Agoudjil, Boudjemaa email: boudjemaa.agoudjil@univ-batna.dz organization: Laboratoire de Physique Energétique Appliquée (LPEA), Université Batna-1, Les Allées 19 Mai, Route de Biskra, Batna, Algeria – sequence: 5 givenname: Abderrahim orcidid: 0000-0003-3804-9996 surname: Boudenne fullname: Boudenne, Abderrahim organization: Centre d’Études et de Recherche en Thermique, Environnement et Systèmes (CERTES), Université Paris-Est Créteil, France – sequence: 6 givenname: Karim orcidid: 0000-0003-1304-5868 surname: Benzarti fullname: Benzarti, Karim organization: Laboratoire Navier, Université Gustave Eiffel, Ecole Nationale des Ponts et Chaussées (ENPC), Centre National de la Recherche Scientifique (CNRS), F-77447, Marne la Vallée, France |
BackLink | https://enpc.hal.science/hal-04468826$$DView record in HAL |
BookMark | eNqFUcFuGyEURFUq1Un7CxXH5rAOLJhdVz3UstKkkqvkkEq9obfw1sZi2RXsWu235GeL7ebSSy6AhjczTzOX5CL0AQn5yNmcM65u9vNmct5iOMxLVso557xcyjdkxutKFKqWvy7IjAnFCi5K8Y5cprRnmbgUckaen3YYO_B0wNj2-RUM0r6lQE-iLmxpFkbfD0hdMH46QZ0zscdgYEiThxEtHXaQkJodhC3SLkPRgU_00-P6R7r-TFe0m_zokgGPFH9nM9dhGLMvBEvD1GUg_2WLA6bRbWF0fXhP3rZZBD_8u6_Iz2-3T-v7YvNw93292hRGLOVYVAtYLpqKV8cDWtaCWZTCKtEqy8umMVWtJGeiqlEKawxWIGyOpq2MRVk34opcn3V34PWQN4P4R_fg9P1qo48Yk1LVdakOPM9-Oc_mAFKK2GrjxtO2YwTnNWf6WIre65dS9LEUfS4l09V_9Be_V4lfz0TMQRwcRp2Myw2gdRHNqG3vXpP4C3ncsSw |
CitedBy_id | crossref_primary_10_1080_17512549_2025_2451359 crossref_primary_10_1016_j_jobe_2024_110684 crossref_primary_10_1177_17442591241312415 crossref_primary_10_1039_D4TA03581J crossref_primary_10_1016_j_enbuild_2024_114906 crossref_primary_10_1016_j_jobe_2025_111841 crossref_primary_10_1016_j_energy_2025_134825 crossref_primary_10_1016_j_solmat_2024_113228 crossref_primary_10_1016_j_applthermaleng_2024_124583 crossref_primary_10_1016_j_buildenv_2024_112343 crossref_primary_10_1051_e3sconf_202454905012 crossref_primary_10_3390_buildings14113636 crossref_primary_10_3390_buildings15060962 crossref_primary_10_1016_j_buildenv_2024_112351 crossref_primary_10_1016_j_tsep_2024_102649 |
Cites_doi | 10.1016/j.rser.2006.11.002 10.1016/j.apenergy.2016.02.091 10.21809/rilemtechlett.2016.9 10.1016/j.enbuild.2015.02.023 10.1016/j.buildenv.2006.10.027 10.1016/j.buildenv.2012.02.019 10.3390/en16124806 10.1016/j.conbuildmat.2016.05.116 10.1016/j.conbuildmat.2022.129056 10.1016/j.rser.2010.07.004 10.3390/app8010066 10.1016/j.aej.2017.02.027 10.1016/j.rser.2010.11.018 10.1016/j.conbuildmat.2023.132312 10.1016/j.enconman.2019.01.036 10.1080/10298436.2012.716837 10.1016/j.scs.2018.06.014 10.1016/j.rser.2007.10.005 10.1016/j.rser.2015.09.040 10.1016/j.conbuildmat.2017.09.109 10.1016/0735-1933(84)90040-X 10.1016/j.enbuild.2014.04.027 10.1016/j.enbuild.2023.113003 10.1016/j.applthermaleng.2005.10.007 10.1016/j.enbuild.2007.01.022 10.1016/j.enbuild.2022.112470 10.1016/j.enbuild.2004.01.029 10.1016/j.ijthermalsci.2012.05.010 10.1016/j.enbuild.2011.07.021 10.1016/j.enbuild.2018.11.032 10.1016/j.applthermaleng.2004.11.001 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.buildenv.2024.111294 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-684X |
ExternalDocumentID | oai_HAL_hal_04468826v1 10_1016_j_buildenv_2024_111294 S0360132324001367 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SEN SES SEW SPC SPCBC SSJ SSR SST SSZ T5K ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ LY6 LY7 LY9 M41 R2- SAC SET SSH VH1 WUQ ZMT 1XC VOOES |
ID | FETCH-LOGICAL-c394t-75a95b7175b71af0fac523d63f6d12bbc786410378e43dcce7a3d873f7cde48b3 |
IEDL.DBID | .~1 |
ISSN | 0360-1323 |
IngestDate | Thu Jul 10 07:22:24 EDT 2025 Tue Jul 01 00:25:28 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 Sat Mar 30 16:19:02 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Phase change materials (mPCM) Experimental setups Energy saving Numerical model phase change materials (mPCM) numerical model Phase change materials (mPCM) Experimental setups Energy saving Numerical model energy saving experimental setups |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-75a95b7175b71af0fac523d63f6d12bbc786410378e43dcce7a3d873f7cde48b3 |
ORCID | 0000-0003-1344-4914 0000-0003-0421-5298 0000-0003-1304-5868 0000-0003-3804-9996 |
OpenAccessLink | https://enpc.hal.science/hal-04468826 |
ParticipantIDs | hal_primary_oai_HAL_hal_04468826v1 crossref_citationtrail_10_1016_j_buildenv_2024_111294 crossref_primary_10_1016_j_buildenv_2024_111294 elsevier_sciencedirect_doi_10_1016_j_buildenv_2024_111294 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 2024-04-00 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Building and environment |
PublicationYear | 2024 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Koschenz, Lehmann (bib24) 2004; 36 Dehdezi, Hall, Dawson, Casey (bib28) 2013; 14 Raj, Velraj (bib11) 2010; 14 Li, Yu, Song (bib19) 2019; 184 Kalnæs, Jelle (bib6) 2015; 94 Cabeza, Castell, Barreneche, De Gracia, Fernández (bib27) 2011; 15 Zhan, Mahyuddin, Sulaiman, Khayatian (bib14) 2023; 397 Darkwa, O’callaghan (bib22) 2006; 26 Li, Yu, Song, Liu (bib20) 2019; 183 Li, Wen, Cai, Yu, Liu (bib7) 2023; 65 Al-Absi, Hafizal, Ismail (bib16) 2023; 288 Verma, Singal (bib32) 2008; 12 Gbekou, Benzarti, Boudenne, Eddhahak, Duc (bib33) 2022; 352 Li, Ju, Wang, Ma, Jiang, Li (bib10) 2022; 277 Tabares-Velasco, Christensen, Bianchi (bib35) 2012; 54 Zhang, Xing, Cui, Chen, Ouyang, Xu (bib18) 2016; 170 Gibout, Franquet, Haillot, Bédécarrats, Dumas (bib30) 2018; 8 Hauer, Mehling, Schossig, Yamaha, Cabeza, Martin (bib17) 2005 Amziane, Sonebi (bib5) 2016; 1 Bahrar, Djamai, Mankibi, Larbi, Salvia (bib15) 2018; 41 Sharma, Tyagi, Chen, Buddhi (bib12) 2009; 13 Salihi, El Fiti, Harmen, Chhiti, Chebak, Alaoui (bib36) 2022; 16 Sedillot, Glorieux-Freminet (bib3) 2022 Voller, Shadabi (bib8) 1984; 11 Khalil, Aouad, El Cheikh, Rémond (bib25) 2017; 157 Zhuang, Deng, Chen, Li, Zhang, Fan (bib38) 2010 Kuznik, Virgone, Roux (bib41) 2008; 40 Cdb (bib2) 2022 Ibanez, Lázaro, Zalba, Cabeza (bib23) 2005; 25 Chel, Kaushik (bib4) 2018; 57 Alam, Jamil, Sanjayan, Wilson (bib37) 2014; 78 Crawley, Hand, Kummert, Griffith (bib21) 2008; 43 (bib26) 2018 Jayalath, San Nicolas, Sofi, Shanks, Ngo, Aye (bib29) 2016; 120 Karthikeyan, Velraj (bib31) 2012; 60 Chan (bib40) 2011; 43 EnergyPlus EnergyPlus, Getting started with EnergyPlus basic: concepts manual essential infor-mation you need about running EnergyPlus. In: Energy USDo, editor. c249759bad2022.. Cunha, Sarcinella, Aguiar, Frigione (bib13) 2023; 16 Giro-Paloma, Martínez, Cabeza, Fernández (bib9) 2016; 53 Yüksek, Karadayi (bib1) 2017; 10 Campbell, Sailor (bib39) 2011 Giro-Paloma (10.1016/j.buildenv.2024.111294_bib9) 2016; 53 Hauer (10.1016/j.buildenv.2024.111294_bib17) 2005 Verma (10.1016/j.buildenv.2024.111294_bib32) 2008; 12 Cabeza (10.1016/j.buildenv.2024.111294_bib27) 2011; 15 Alam (10.1016/j.buildenv.2024.111294_bib37) 2014; 78 Yüksek (10.1016/j.buildenv.2024.111294_bib1) 2017; 10 Khalil (10.1016/j.buildenv.2024.111294_bib25) 2017; 157 Tabares-Velasco (10.1016/j.buildenv.2024.111294_bib35) 2012; 54 Sedillot (10.1016/j.buildenv.2024.111294_bib3) 2022 Karthikeyan (10.1016/j.buildenv.2024.111294_bib31) 2012; 60 Dehdezi (10.1016/j.buildenv.2024.111294_bib28) 2013; 14 Voller (10.1016/j.buildenv.2024.111294_bib8) 1984; 11 Li (10.1016/j.buildenv.2024.111294_bib10) 2022; 277 Darkwa (10.1016/j.buildenv.2024.111294_bib22) 2006; 26 10.1016/j.buildenv.2024.111294_bib34 Sharma (10.1016/j.buildenv.2024.111294_bib12) 2009; 13 Gbekou (10.1016/j.buildenv.2024.111294_bib33) 2022; 352 Ibanez (10.1016/j.buildenv.2024.111294_bib23) 2005; 25 Jayalath (10.1016/j.buildenv.2024.111294_bib29) 2016; 120 Li (10.1016/j.buildenv.2024.111294_bib7) 2023; 65 Zhuang (10.1016/j.buildenv.2024.111294_bib38) 2010 Crawley (10.1016/j.buildenv.2024.111294_bib21) 2008; 43 (10.1016/j.buildenv.2024.111294_bib26) 2018 Salihi (10.1016/j.buildenv.2024.111294_bib36) 2022; 16 Gibout (10.1016/j.buildenv.2024.111294_bib30) 2018; 8 Koschenz (10.1016/j.buildenv.2024.111294_bib24) 2004; 36 Amziane (10.1016/j.buildenv.2024.111294_bib5) 2016; 1 Kalnæs (10.1016/j.buildenv.2024.111294_bib6) 2015; 94 Chel (10.1016/j.buildenv.2024.111294_bib4) 2018; 57 Cunha (10.1016/j.buildenv.2024.111294_bib13) 2023; 16 Bahrar (10.1016/j.buildenv.2024.111294_bib15) 2018; 41 Zhan (10.1016/j.buildenv.2024.111294_bib14) 2023; 397 Zhang (10.1016/j.buildenv.2024.111294_bib18) 2016; 170 Li (10.1016/j.buildenv.2024.111294_bib20) 2019; 183 Al-Absi (10.1016/j.buildenv.2024.111294_bib16) 2023; 288 Chan (10.1016/j.buildenv.2024.111294_bib40) 2011; 43 Cdb (10.1016/j.buildenv.2024.111294_bib2) 2022 Kuznik (10.1016/j.buildenv.2024.111294_bib41) 2008; 40 Li (10.1016/j.buildenv.2024.111294_bib19) 2019; 184 Campbell (10.1016/j.buildenv.2024.111294_bib39) 2011 Raj (10.1016/j.buildenv.2024.111294_bib11) 2010; 14 |
References_xml | – volume: 13 start-page: 318 year: 2009 end-page: 345 ident: bib12 article-title: Review on thermal energy storage with phase change materials and applications publication-title: Renew. Sustain. Energy Rev. – volume: 170 start-page: 130 year: 2016 end-page: 139 ident: bib18 article-title: A novel phase-change cement composite for thermal energy storage: fabrication, thermal and mechanical properties publication-title: Appl. Energy – volume: 10 start-page: 93 year: 2017 end-page: 123 ident: bib1 article-title: Energy-efficient building design in the context of building life cycle publication-title: Energy Efficient Build. – volume: 12 start-page: 999 year: 2008 end-page: 1031 ident: bib32 article-title: Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material publication-title: Renew. Sustain. Energy Rev. – volume: 25 start-page: 1796 year: 2005 end-page: 1807 ident: bib23 article-title: An approach to the simulation of PCMs in building applications using TRNSYS publication-title: Appl. Therm. Eng. – volume: 43 start-page: 2947 year: 2011 end-page: 2955 ident: bib40 article-title: Energy and environmental performance of building façades integrated with phase change material in subtropical Hong Kong publication-title: Energy Build. – volume: 57 start-page: 655 year: 2018 end-page: 669 ident: bib4 article-title: Renewable energy technologies for sustainable development of energy efficient building publication-title: Alex. Eng. J. – volume: 26 start-page: 853 year: 2006 end-page: 858 ident: bib22 article-title: Simulation of phase change drywalls in a passive solar building publication-title: Appl. Therm. Eng. – volume: 36 start-page: 567 year: 2004 end-page: 578 ident: bib24 article-title: Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings publication-title: Energy Build. – volume: 352 year: 2022 ident: bib33 article-title: Mechanical and thermophysical properties of cement mortars including bio-based microencapsulated phase change materials publication-title: Construct. Build. Mater. – volume: 15 start-page: 1675 year: 2011 end-page: 1695 ident: bib27 article-title: Materials used as PCM in thermal energy storage in buildings: a review publication-title: Renew. Sustain. Energy Rev. – volume: 397 year: 2023 ident: bib14 article-title: Phase change material (PCM) integrations into buildings in hot climates with simulation access for energy performance and thermal comfort: a review publication-title: Construct. Build. Mater. – start-page: 486 year: 2010 end-page: 496 ident: bib38 article-title: Validation of veracity on simulating the indoor temperature in PCM light weight building by EnergyPlus publication-title: International Conference on Intelligent Computing for Sustainable Energy and Environment – volume: 277 year: 2022 ident: bib10 article-title: Thermal performance and economy of PCM foamed cement walls for buildings in different climate zones publication-title: Energy Build. – volume: 60 start-page: 153 year: 2012 end-page: 160 ident: bib31 article-title: Numerical investigation of packed bed storage unit filled with PCM encapsulated spherical containers–a comparison between various mathematical models publication-title: Int. J. Therm. Sci. – year: 2022 ident: bib2 article-title: Global Status Report for Buildings and Construction. 2022 – volume: 53 start-page: 1059 year: 2016 end-page: 1075 ident: bib9 article-title: Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): a review publication-title: Renew. Sustain. Energy Rev. – volume: 43 start-page: 661 year: 2008 end-page: 673 ident: bib21 article-title: Contrasting the capabilities of building energy performance simulation programs publication-title: Build. Environ. – volume: 78 start-page: 192 year: 2014 end-page: 201 ident: bib37 article-title: Energy saving potential of phase change materials in major Australian cities publication-title: Energy Build. – reference: EnergyPlus EnergyPlus, Getting started with EnergyPlus basic: concepts manual essential infor-mation you need about running EnergyPlus. In: Energy USDo, editor. c249759bad2022.. – volume: 40 start-page: 148 year: 2008 end-page: 156 ident: bib41 article-title: Energetic efficiency of room wall containing PCM wallboard: a full-scale experimental investigation publication-title: Energy Build. – volume: 120 start-page: 408 year: 2016 end-page: 417 ident: bib29 article-title: Properties of cementitious mortar and concrete containing micro-encapsulated phase change materials publication-title: Construct. Build. Mater. – volume: 288 year: 2023 ident: bib16 article-title: Innovative PCM-incorporated foamed concrete panels for walls' exterior cladding: an experimental assessment in real-weather conditions publication-title: Energy Build. – volume: 65 year: 2023 ident: bib7 article-title: Phase change material for passive cooling in building envelopes: a comprehensive review publication-title: J. Build. Eng. – volume: 41 start-page: 455 year: 2018 end-page: 468 ident: bib15 article-title: Numerical and experimental study on the use of microencapsulated phase change materials (PCMs) in textile reinforced concrete panels for energy storage publication-title: Sustain. Cities Soc. – volume: 183 start-page: 791 year: 2019 end-page: 802 ident: bib20 article-title: Novel hybrid microencapsulated phase change materials incorporated wallboard for year-long year energy storage in buildings publication-title: Energy Convers. Manag. – volume: 11 start-page: 239 year: 1984 end-page: 249 ident: bib8 article-title: Enthalpy methods for tracking a phase change boundary in two dimensions publication-title: Int. Commun. Heat Mass Tran. – volume: 157 start-page: 382 year: 2017 end-page: 391 ident: bib25 article-title: Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars publication-title: Construct. Build. Mater. – volume: 8 start-page: 66 year: 2018 ident: bib30 article-title: Challenges of the usual graphical methods used to characterize phase change materials by differential scanning calorimetry publication-title: Appl. Sci. – start-page: 809 year: 2011 end-page: 818 ident: bib39 article-title: Phase change materials as thermal storage for high performance homes publication-title: ASME International Mechanical Engineering Congress and Exposition – volume: 184 start-page: 34 year: 2019 end-page: 43 ident: bib19 article-title: Experimental investigation of thermal performance of microencapsulated PCM-contained wallboard by two measurement modes publication-title: Energy Build. – volume: 94 start-page: 150 year: 2015 end-page: 176 ident: bib6 article-title: Phase change materials and products for building applications: a state-of-the-art review and future research opportunities publication-title: Energy Build. – volume: 14 start-page: 449 year: 2013 end-page: 462 ident: bib28 article-title: Thermal, mechanical and microstructural analysis of concrete containing microencapsulated phase change materials publication-title: Int. J. Pavement Eng. – volume: 14 start-page: 2819 year: 2010 end-page: 2829 ident: bib11 article-title: Review on free cooling of buildings using phase change materials publication-title: Renew. Sustain. Energy Rev. – year: 2005 ident: bib17 article-title: Annex 17: advanced thermal energy storage through phase change materials and chemical reactions-feasibility studies and demonstration projects publication-title: International Energy Agency Implementing Agreement on Energy Conservation through Energy Storage – volume: 54 start-page: 186 year: 2012 end-page: 196 ident: bib35 article-title: Verification and validation of EnergyPlus phase change material model for opaque wall assemblies publication-title: Build. Environ. – year: 2022 ident: bib3 article-title: France's Energy Balance in 2021-provisional Data. April 2022 – volume: 1 start-page: 31 year: 2016 end-page: 38 ident: bib5 article-title: Overview on biobased building material made with plant aggregate publication-title: RILEM Tech. Lett. – volume: 16 year: 2022 ident: bib36 article-title: Evaluation of global energy performance of building walls integrating PCM: numerical study in semi-arid climate in Morocco publication-title: Case Stud. Constr. Mater. – volume: 16 start-page: 4806 year: 2023 ident: bib13 article-title: Perspective on the development of energy storage technology using phase change materials in the construction industry: a review publication-title: Energies – year: 2018 ident: bib26 article-title: CrodaThermTM ME29P: Microencapsulated Ambient Temperature Phase Change Materi-Al – volume: 12 start-page: 999 year: 2008 ident: 10.1016/j.buildenv.2024.111294_bib32 article-title: Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2006.11.002 – volume: 170 start-page: 130 year: 2016 ident: 10.1016/j.buildenv.2024.111294_bib18 article-title: A novel phase-change cement composite for thermal energy storage: fabrication, thermal and mechanical properties publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.02.091 – year: 2018 ident: 10.1016/j.buildenv.2024.111294_bib26 – volume: 1 start-page: 31 year: 2016 ident: 10.1016/j.buildenv.2024.111294_bib5 article-title: Overview on biobased building material made with plant aggregate publication-title: RILEM Tech. Lett. doi: 10.21809/rilemtechlett.2016.9 – volume: 94 start-page: 150 year: 2015 ident: 10.1016/j.buildenv.2024.111294_bib6 article-title: Phase change materials and products for building applications: a state-of-the-art review and future research opportunities publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.02.023 – volume: 16 year: 2022 ident: 10.1016/j.buildenv.2024.111294_bib36 article-title: Evaluation of global energy performance of building walls integrating PCM: numerical study in semi-arid climate in Morocco publication-title: Case Stud. Constr. Mater. – volume: 43 start-page: 661 year: 2008 ident: 10.1016/j.buildenv.2024.111294_bib21 article-title: Contrasting the capabilities of building energy performance simulation programs publication-title: Build. Environ. doi: 10.1016/j.buildenv.2006.10.027 – volume: 54 start-page: 186 year: 2012 ident: 10.1016/j.buildenv.2024.111294_bib35 article-title: Verification and validation of EnergyPlus phase change material model for opaque wall assemblies publication-title: Build. Environ. doi: 10.1016/j.buildenv.2012.02.019 – volume: 16 start-page: 4806 year: 2023 ident: 10.1016/j.buildenv.2024.111294_bib13 article-title: Perspective on the development of energy storage technology using phase change materials in the construction industry: a review publication-title: Energies doi: 10.3390/en16124806 – volume: 120 start-page: 408 year: 2016 ident: 10.1016/j.buildenv.2024.111294_bib29 article-title: Properties of cementitious mortar and concrete containing micro-encapsulated phase change materials publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2016.05.116 – volume: 352 year: 2022 ident: 10.1016/j.buildenv.2024.111294_bib33 article-title: Mechanical and thermophysical properties of cement mortars including bio-based microencapsulated phase change materials publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2022.129056 – year: 2005 ident: 10.1016/j.buildenv.2024.111294_bib17 article-title: Annex 17: advanced thermal energy storage through phase change materials and chemical reactions-feasibility studies and demonstration projects – volume: 14 start-page: 2819 year: 2010 ident: 10.1016/j.buildenv.2024.111294_bib11 article-title: Review on free cooling of buildings using phase change materials publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.07.004 – volume: 8 start-page: 66 year: 2018 ident: 10.1016/j.buildenv.2024.111294_bib30 article-title: Challenges of the usual graphical methods used to characterize phase change materials by differential scanning calorimetry publication-title: Appl. Sci. doi: 10.3390/app8010066 – volume: 57 start-page: 655 year: 2018 ident: 10.1016/j.buildenv.2024.111294_bib4 article-title: Renewable energy technologies for sustainable development of energy efficient building publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2017.02.027 – volume: 15 start-page: 1675 year: 2011 ident: 10.1016/j.buildenv.2024.111294_bib27 article-title: Materials used as PCM in thermal energy storage in buildings: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.11.018 – start-page: 809 year: 2011 ident: 10.1016/j.buildenv.2024.111294_bib39 article-title: Phase change materials as thermal storage for high performance homes – volume: 397 year: 2023 ident: 10.1016/j.buildenv.2024.111294_bib14 article-title: Phase change material (PCM) integrations into buildings in hot climates with simulation access for energy performance and thermal comfort: a review publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2023.132312 – volume: 183 start-page: 791 year: 2019 ident: 10.1016/j.buildenv.2024.111294_bib20 article-title: Novel hybrid microencapsulated phase change materials incorporated wallboard for year-long year energy storage in buildings publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.01.036 – ident: 10.1016/j.buildenv.2024.111294_bib34 – volume: 14 start-page: 449 year: 2013 ident: 10.1016/j.buildenv.2024.111294_bib28 article-title: Thermal, mechanical and microstructural analysis of concrete containing microencapsulated phase change materials publication-title: Int. J. Pavement Eng. doi: 10.1080/10298436.2012.716837 – volume: 10 start-page: 93 year: 2017 ident: 10.1016/j.buildenv.2024.111294_bib1 article-title: Energy-efficient building design in the context of building life cycle publication-title: Energy Efficient Build. – volume: 41 start-page: 455 year: 2018 ident: 10.1016/j.buildenv.2024.111294_bib15 article-title: Numerical and experimental study on the use of microencapsulated phase change materials (PCMs) in textile reinforced concrete panels for energy storage publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2018.06.014 – year: 2022 ident: 10.1016/j.buildenv.2024.111294_bib3 – volume: 13 start-page: 318 year: 2009 ident: 10.1016/j.buildenv.2024.111294_bib12 article-title: Review on thermal energy storage with phase change materials and applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2007.10.005 – volume: 53 start-page: 1059 year: 2016 ident: 10.1016/j.buildenv.2024.111294_bib9 article-title: Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.09.040 – volume: 157 start-page: 382 year: 2017 ident: 10.1016/j.buildenv.2024.111294_bib25 article-title: Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2017.09.109 – start-page: 486 year: 2010 ident: 10.1016/j.buildenv.2024.111294_bib38 article-title: Validation of veracity on simulating the indoor temperature in PCM light weight building by EnergyPlus – volume: 11 start-page: 239 year: 1984 ident: 10.1016/j.buildenv.2024.111294_bib8 article-title: Enthalpy methods for tracking a phase change boundary in two dimensions publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/0735-1933(84)90040-X – volume: 78 start-page: 192 year: 2014 ident: 10.1016/j.buildenv.2024.111294_bib37 article-title: Energy saving potential of phase change materials in major Australian cities publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.04.027 – year: 2022 ident: 10.1016/j.buildenv.2024.111294_bib2 – volume: 288 year: 2023 ident: 10.1016/j.buildenv.2024.111294_bib16 article-title: Innovative PCM-incorporated foamed concrete panels for walls' exterior cladding: an experimental assessment in real-weather conditions publication-title: Energy Build. doi: 10.1016/j.enbuild.2023.113003 – volume: 26 start-page: 853 year: 2006 ident: 10.1016/j.buildenv.2024.111294_bib22 article-title: Simulation of phase change drywalls in a passive solar building publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2005.10.007 – volume: 40 start-page: 148 year: 2008 ident: 10.1016/j.buildenv.2024.111294_bib41 article-title: Energetic efficiency of room wall containing PCM wallboard: a full-scale experimental investigation publication-title: Energy Build. doi: 10.1016/j.enbuild.2007.01.022 – volume: 277 year: 2022 ident: 10.1016/j.buildenv.2024.111294_bib10 article-title: Thermal performance and economy of PCM foamed cement walls for buildings in different climate zones publication-title: Energy Build. doi: 10.1016/j.enbuild.2022.112470 – volume: 65 year: 2023 ident: 10.1016/j.buildenv.2024.111294_bib7 article-title: Phase change material for passive cooling in building envelopes: a comprehensive review publication-title: J. Build. Eng. – volume: 36 start-page: 567 year: 2004 ident: 10.1016/j.buildenv.2024.111294_bib24 article-title: Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2004.01.029 – volume: 60 start-page: 153 year: 2012 ident: 10.1016/j.buildenv.2024.111294_bib31 article-title: Numerical investigation of packed bed storage unit filled with PCM encapsulated spherical containers–a comparison between various mathematical models publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2012.05.010 – volume: 43 start-page: 2947 year: 2011 ident: 10.1016/j.buildenv.2024.111294_bib40 article-title: Energy and environmental performance of building façades integrated with phase change material in subtropical Hong Kong publication-title: Energy Build. doi: 10.1016/j.enbuild.2011.07.021 – volume: 184 start-page: 34 year: 2019 ident: 10.1016/j.buildenv.2024.111294_bib19 article-title: Experimental investigation of thermal performance of microencapsulated PCM-contained wallboard by two measurement modes publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.11.032 – volume: 25 start-page: 1796 year: 2005 ident: 10.1016/j.buildenv.2024.111294_bib23 article-title: An approach to the simulation of PCMs in building applications using TRNSYS publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2004.11.001 |
SSID | ssj0016934 |
Score | 2.5194855 |
Snippet | This study aims to assess the thermal behavior of a cement mortar (denoted M15D) incorporating microencapsulated biobased phase change materials at both wall... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 111294 |
SubjectTerms | Energy saving Engineering Sciences Experimental setups Numerical model Phase change materials (mPCM) |
Title | Thermal performance of a building envelope including microencapsulated phase change materials (PCMs): A multiscale experimental and numerical investigation |
URI | https://dx.doi.org/10.1016/j.buildenv.2024.111294 https://enpc.hal.science/hal-04468826 |
Volume | 253 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB5cLnoQV6wbD_Ggh9immWzeQrHUpUXQgrcwW2hLTIu2Hv0j_lnfy1LrQTx4CWTIMMl8j7dk3vseY2dES6R0gGGqNq7Fle1ZEqG3PCW0ChMMfSTVDnd7XqfPb5_d5yXWqmphKK2y1P2FTs-1dTlSL3ezPhkO64-oe-mggBjlcuIxqmDnPkn55cc8zYO4RkoKqYZFTy9UCY8uJbWeNtk7xolNTtqjGfLfDNTyoPrVmpue9ibbKH1GiIrX2mJLJttm6wtMgjvsE-FGFZvC5LsQAMYJCJBl32vAF6D0IAPDTKWzfOiFsvHwkwWGyik6nRomA7RqUFQDAzqzhXzC-UOr-3ZxBRHkCYhvCKyBxeYAIDIN2aw4_klxiTl7xzjbZf329VOrY5V9FyzlhHxq-a4IXYlxHl1E0kiEQsy05ySetptSKj_wONUXBoY7WinjC0cHvpP4ShseSGePrWTjzOwzaOiAG1fZifRCdA2FRH8wdLWxA98PEmFqzK02O1YlKTn1xkjjKvtsFFcgxQRSXIBUY_X5vElBy_HnjLDCMv4hYDHajj_nniL484WIkbsT3cc0RufhGKR47_bBPxY4ZGt0V2QEHbGV6evMHKOzM5UnuTSfsNXo5q7T-wLHUwJp |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYDsABsYqdEeIAh9CmcTZuVQUq0CIkQOJmeYtaFNIKWo78CD_LTJZSDogDlxycWHb8nFnimTeMHRMtkTYRuqnG-g7XbuAohN4JtDQ6TtD1UZQ73L0N2o_8-sl_mmGtKheGwipL2V_I9Fxaly21cjVrw36_do-ylw4KiFEuJx6bZfMcP18qY3D2MYnzILKRkkOq7tDjU2nCz2eKak_b7B0dxQYn8dGI-W8aarZX_WvNdc_lClsujUZoFvNaZTM2W2NLU1SC6-wT8UYZm8LwOxMABglIUGXha8AJUHyQhX6m03He9ELhePjOEn3lFK1OA8MeqjUo0oEBrdlig8LJXav7dnoOTcgjEN8QWQvT1QFAZgaycXH-k-IQE_qOQbbBHi8vHlptpyy84Ggv5iMn9GXsK3T06CKTeiI1gmYCLwmM21BKh1HAKcEwstwzWttQeiYKvSTUxvJIeZtsLhtkdotB3UTc-tpNVBCjbSgVGoSxb6wbhWGUSLvN_GqxhS5Zyak4Riqq8LNnUYEkCCRRgLTNapN-w4KX488ecYWl-LHDBCqPP_seIfiTgYiSu93sCGqjA3H0UoJ3d-cfAxyyhfZDtyM6V7c3u2yR7hThQXtsbvQ6tvto-YzUQb6zvwCahgP3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+performance+of+a+building+envelope+including+microencapsulated+phase+change+materials+%28PCMs%29%3A+A+multiscale+experimental+and+numerical+investigation&rft.jtitle=Building+and+environment&rft.au=Gbekou%2C+Franck+Komi&rft.au=Belloum%2C+Rahma&rft.au=Chennouf%2C+Nawal&rft.au=Agoudjil%2C+Boudjemaa&rft.date=2024-04-01&rft.issn=0360-1323&rft.volume=253&rft.spage=111294&rft_id=info:doi/10.1016%2Fj.buildenv.2024.111294&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_buildenv_2024_111294 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon |