Thermal performance of a building envelope including microencapsulated phase change materials (PCMs): A multiscale experimental and numerical investigation

This study aims to assess the thermal behavior of a cement mortar (denoted M15D) incorporating microencapsulated biobased phase change materials at both wall and building scales. A bi-climatic chamber setup was employed to subject the wall to distinct thermal conditions simulating outdoor and indoor...

Full description

Saved in:
Bibliographic Details
Published inBuilding and environment Vol. 253; p. 111294
Main Authors Gbekou, Franck Komi, Belloum, Rahma, Chennouf, Nawal, Agoudjil, Boudjemaa, Boudenne, Abderrahim, Benzarti, Karim
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study aims to assess the thermal behavior of a cement mortar (denoted M15D) incorporating microencapsulated biobased phase change materials at both wall and building scales. A bi-climatic chamber setup was employed to subject the wall to distinct thermal conditions simulating outdoor and indoor environments, using heating and cooling solicitations. Temperature sensors, strategically positioned at various depths, allowed the monitoring of temperature within the walls during the experiments. On a building scale, the thermal performance of M15D was predicted using two mathematical models describing heat transmission in porous systems incorporating phase-change materials. Numerical simulations were carried out using COMSOL Multiphysics and EnergyPlus software. The results obtained were validated against experimental data, at the wall scale and subsequently developed to the building scale. The outcomes highlighted that the incorporation of microencapsulated biobased phase change materials significantly influences both building energy consumption and interior temperature. The heat storage capacity offered by M15D demonstrated a significant impact on thermal performance, leading to energy savings of up to 33% for heating and 31% for cooling, contingent on climate conditions. In conclusion, the integration of biobased phase change materials in the cement mortar (M15D) displays benefits in enhancing thermal performance at building scales. •Thermal behavior of cement mortar including microencapsulated biobased PCMs.•Impact of heat transfer on walls incorporating PCMs under varying thermal scenarios.•Validation of the PCM models in EnergyPlus and COMSOL Multiphysics.•Effect of PCM integration on building thermal performance in diverse climates.•PCMs efficiency depends on climate, with potential limitations in hot-dry regions.
AbstractList This study aims to assess the thermal behavior of a cement mortar (denoted M15D) incorporating microencapsulated biobased phase change materials at both wall and building scales. A bi-climatic chamber setup was employed to subject the wall to distinct thermal conditions simulating outdoor and indoor environments, using heating and cooling solicitations. Temperature sensors, strategically positioned at various depths, allowed the monitoring of temperature within the walls during the experiments. On a building scale, the thermal performance of M15D was predicted using two mathematical models describing heat transmission in porous systems incorporating phase-change materials. Numerical simulations were carried out using COMSOL Multiphysics and EnergyPlus software. The results obtained were validated against experimental data, at the wall scale and subsequently developed to the building scale. The outcomes highlighted that the incorporation of microencapsulated biobased phase change materials significantly influences both building energy consumption and interior temperature. The heat storage capacity offered by M15D demonstrated a significant impact on thermal performance, leading to energy savings of up to 33% for heating and 31% for cooling, contingent on climate conditions. In conclusion, the integration of biobased phase change materials in the cement mortar (M15D) displays benefits in enhancing thermal performance at building scales.
This study aims to assess the thermal behavior of a cement mortar (denoted M15D) incorporating microencapsulated biobased phase change materials at both wall and building scales. A bi-climatic chamber setup was employed to subject the wall to distinct thermal conditions simulating outdoor and indoor environments, using heating and cooling solicitations. Temperature sensors, strategically positioned at various depths, allowed the monitoring of temperature within the walls during the experiments. On a building scale, the thermal performance of M15D was predicted using two mathematical models describing heat transmission in porous systems incorporating phase-change materials. Numerical simulations were carried out using COMSOL Multiphysics and EnergyPlus software. The results obtained were validated against experimental data, at the wall scale and subsequently developed to the building scale. The outcomes highlighted that the incorporation of microencapsulated biobased phase change materials significantly influences both building energy consumption and interior temperature. The heat storage capacity offered by M15D demonstrated a significant impact on thermal performance, leading to energy savings of up to 33% for heating and 31% for cooling, contingent on climate conditions. In conclusion, the integration of biobased phase change materials in the cement mortar (M15D) displays benefits in enhancing thermal performance at building scales. •Thermal behavior of cement mortar including microencapsulated biobased PCMs.•Impact of heat transfer on walls incorporating PCMs under varying thermal scenarios.•Validation of the PCM models in EnergyPlus and COMSOL Multiphysics.•Effect of PCM integration on building thermal performance in diverse climates.•PCMs efficiency depends on climate, with potential limitations in hot-dry regions.
ArticleNumber 111294
Author Agoudjil, Boudjemaa
Benzarti, Karim
Chennouf, Nawal
Boudenne, Abderrahim
Gbekou, Franck Komi
Belloum, Rahma
Author_xml – sequence: 1
  givenname: Franck Komi
  orcidid: 0000-0003-1344-4914
  surname: Gbekou
  fullname: Gbekou, Franck Komi
  organization: Laboratoire Navier, Université Gustave Eiffel, Ecole Nationale des Ponts et Chaussées (ENPC), Centre National de la Recherche Scientifique (CNRS), F-77447, Marne la Vallée, France
– sequence: 2
  givenname: Rahma
  surname: Belloum
  fullname: Belloum, Rahma
  organization: Laboratoire de Physique Energétique Appliquée (LPEA), Université Batna-1, Les Allées 19 Mai, Route de Biskra, Batna, Algeria
– sequence: 3
  givenname: Nawal
  surname: Chennouf
  fullname: Chennouf, Nawal
  organization: Laboratoire de Physique Energétique Appliquée (LPEA), Université Batna-1, Les Allées 19 Mai, Route de Biskra, Batna, Algeria
– sequence: 4
  givenname: Boudjemaa
  orcidid: 0000-0003-0421-5298
  surname: Agoudjil
  fullname: Agoudjil, Boudjemaa
  email: boudjemaa.agoudjil@univ-batna.dz
  organization: Laboratoire de Physique Energétique Appliquée (LPEA), Université Batna-1, Les Allées 19 Mai, Route de Biskra, Batna, Algeria
– sequence: 5
  givenname: Abderrahim
  orcidid: 0000-0003-3804-9996
  surname: Boudenne
  fullname: Boudenne, Abderrahim
  organization: Centre d’Études et de Recherche en Thermique, Environnement et Systèmes (CERTES), Université Paris-Est Créteil, France
– sequence: 6
  givenname: Karim
  orcidid: 0000-0003-1304-5868
  surname: Benzarti
  fullname: Benzarti, Karim
  organization: Laboratoire Navier, Université Gustave Eiffel, Ecole Nationale des Ponts et Chaussées (ENPC), Centre National de la Recherche Scientifique (CNRS), F-77447, Marne la Vallée, France
BackLink https://enpc.hal.science/hal-04468826$$DView record in HAL
BookMark eNqFUcFuGyEURFUq1Un7CxXH5rAOLJhdVz3UstKkkqvkkEq9obfw1sZi2RXsWu235GeL7ebSSy6AhjczTzOX5CL0AQn5yNmcM65u9vNmct5iOMxLVso557xcyjdkxutKFKqWvy7IjAnFCi5K8Y5cprRnmbgUckaen3YYO_B0wNj2-RUM0r6lQE-iLmxpFkbfD0hdMH46QZ0zscdgYEiThxEtHXaQkJodhC3SLkPRgU_00-P6R7r-TFe0m_zokgGPFH9nM9dhGLMvBEvD1GUg_2WLA6bRbWF0fXhP3rZZBD_8u6_Iz2-3T-v7YvNw93292hRGLOVYVAtYLpqKV8cDWtaCWZTCKtEqy8umMVWtJGeiqlEKawxWIGyOpq2MRVk34opcn3V34PWQN4P4R_fg9P1qo48Yk1LVdakOPM9-Oc_mAFKK2GrjxtO2YwTnNWf6WIre65dS9LEUfS4l09V_9Be_V4lfz0TMQRwcRp2Myw2gdRHNqG3vXpP4C3ncsSw
CitedBy_id crossref_primary_10_1080_17512549_2025_2451359
crossref_primary_10_1016_j_jobe_2024_110684
crossref_primary_10_1177_17442591241312415
crossref_primary_10_1039_D4TA03581J
crossref_primary_10_1016_j_enbuild_2024_114906
crossref_primary_10_1016_j_jobe_2025_111841
crossref_primary_10_1016_j_energy_2025_134825
crossref_primary_10_1016_j_solmat_2024_113228
crossref_primary_10_1016_j_applthermaleng_2024_124583
crossref_primary_10_1016_j_buildenv_2024_112343
crossref_primary_10_1051_e3sconf_202454905012
crossref_primary_10_3390_buildings14113636
crossref_primary_10_3390_buildings15060962
crossref_primary_10_1016_j_buildenv_2024_112351
crossref_primary_10_1016_j_tsep_2024_102649
Cites_doi 10.1016/j.rser.2006.11.002
10.1016/j.apenergy.2016.02.091
10.21809/rilemtechlett.2016.9
10.1016/j.enbuild.2015.02.023
10.1016/j.buildenv.2006.10.027
10.1016/j.buildenv.2012.02.019
10.3390/en16124806
10.1016/j.conbuildmat.2016.05.116
10.1016/j.conbuildmat.2022.129056
10.1016/j.rser.2010.07.004
10.3390/app8010066
10.1016/j.aej.2017.02.027
10.1016/j.rser.2010.11.018
10.1016/j.conbuildmat.2023.132312
10.1016/j.enconman.2019.01.036
10.1080/10298436.2012.716837
10.1016/j.scs.2018.06.014
10.1016/j.rser.2007.10.005
10.1016/j.rser.2015.09.040
10.1016/j.conbuildmat.2017.09.109
10.1016/0735-1933(84)90040-X
10.1016/j.enbuild.2014.04.027
10.1016/j.enbuild.2023.113003
10.1016/j.applthermaleng.2005.10.007
10.1016/j.enbuild.2007.01.022
10.1016/j.enbuild.2022.112470
10.1016/j.enbuild.2004.01.029
10.1016/j.ijthermalsci.2012.05.010
10.1016/j.enbuild.2011.07.021
10.1016/j.enbuild.2018.11.032
10.1016/j.applthermaleng.2004.11.001
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.buildenv.2024.111294
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-684X
ExternalDocumentID oai_HAL_hal_04468826v1
10_1016_j_buildenv_2024_111294
S0360132324001367
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
LY6
LY7
LY9
M41
R2-
SAC
SET
SSH
VH1
WUQ
ZMT
1XC
VOOES
ID FETCH-LOGICAL-c394t-75a95b7175b71af0fac523d63f6d12bbc786410378e43dcce7a3d873f7cde48b3
IEDL.DBID .~1
ISSN 0360-1323
IngestDate Thu Jul 10 07:22:24 EDT 2025
Tue Jul 01 00:25:28 EDT 2025
Thu Apr 24 23:03:08 EDT 2025
Sat Mar 30 16:19:02 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Phase change materials (mPCM)
Experimental setups
Energy saving
Numerical model
phase change materials (mPCM)
numerical model
Phase change materials (mPCM) Experimental setups Energy saving Numerical model
energy saving
experimental setups
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-75a95b7175b71af0fac523d63f6d12bbc786410378e43dcce7a3d873f7cde48b3
ORCID 0000-0003-1344-4914
0000-0003-0421-5298
0000-0003-1304-5868
0000-0003-3804-9996
OpenAccessLink https://enpc.hal.science/hal-04468826
ParticipantIDs hal_primary_oai_HAL_hal_04468826v1
crossref_citationtrail_10_1016_j_buildenv_2024_111294
crossref_primary_10_1016_j_buildenv_2024_111294
elsevier_sciencedirect_doi_10_1016_j_buildenv_2024_111294
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
2024-04-00
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Building and environment
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Koschenz, Lehmann (bib24) 2004; 36
Dehdezi, Hall, Dawson, Casey (bib28) 2013; 14
Raj, Velraj (bib11) 2010; 14
Li, Yu, Song (bib19) 2019; 184
Kalnæs, Jelle (bib6) 2015; 94
Cabeza, Castell, Barreneche, De Gracia, Fernández (bib27) 2011; 15
Zhan, Mahyuddin, Sulaiman, Khayatian (bib14) 2023; 397
Darkwa, O’callaghan (bib22) 2006; 26
Li, Yu, Song, Liu (bib20) 2019; 183
Li, Wen, Cai, Yu, Liu (bib7) 2023; 65
Al-Absi, Hafizal, Ismail (bib16) 2023; 288
Verma, Singal (bib32) 2008; 12
Gbekou, Benzarti, Boudenne, Eddhahak, Duc (bib33) 2022; 352
Li, Ju, Wang, Ma, Jiang, Li (bib10) 2022; 277
Tabares-Velasco, Christensen, Bianchi (bib35) 2012; 54
Zhang, Xing, Cui, Chen, Ouyang, Xu (bib18) 2016; 170
Gibout, Franquet, Haillot, Bédécarrats, Dumas (bib30) 2018; 8
Hauer, Mehling, Schossig, Yamaha, Cabeza, Martin (bib17) 2005
Amziane, Sonebi (bib5) 2016; 1
Bahrar, Djamai, Mankibi, Larbi, Salvia (bib15) 2018; 41
Sharma, Tyagi, Chen, Buddhi (bib12) 2009; 13
Salihi, El Fiti, Harmen, Chhiti, Chebak, Alaoui (bib36) 2022; 16
Sedillot, Glorieux-Freminet (bib3) 2022
Voller, Shadabi (bib8) 1984; 11
Khalil, Aouad, El Cheikh, Rémond (bib25) 2017; 157
Zhuang, Deng, Chen, Li, Zhang, Fan (bib38) 2010
Kuznik, Virgone, Roux (bib41) 2008; 40
Cdb (bib2) 2022
Ibanez, Lázaro, Zalba, Cabeza (bib23) 2005; 25
Chel, Kaushik (bib4) 2018; 57
Alam, Jamil, Sanjayan, Wilson (bib37) 2014; 78
Crawley, Hand, Kummert, Griffith (bib21) 2008; 43
(bib26) 2018
Jayalath, San Nicolas, Sofi, Shanks, Ngo, Aye (bib29) 2016; 120
Karthikeyan, Velraj (bib31) 2012; 60
Chan (bib40) 2011; 43
EnergyPlus EnergyPlus, Getting started with EnergyPlus basic: concepts manual essential infor-mation you need about running EnergyPlus. In: Energy USDo, editor. c249759bad2022..
Cunha, Sarcinella, Aguiar, Frigione (bib13) 2023; 16
Giro-Paloma, Martínez, Cabeza, Fernández (bib9) 2016; 53
Yüksek, Karadayi (bib1) 2017; 10
Campbell, Sailor (bib39) 2011
Giro-Paloma (10.1016/j.buildenv.2024.111294_bib9) 2016; 53
Hauer (10.1016/j.buildenv.2024.111294_bib17) 2005
Verma (10.1016/j.buildenv.2024.111294_bib32) 2008; 12
Cabeza (10.1016/j.buildenv.2024.111294_bib27) 2011; 15
Alam (10.1016/j.buildenv.2024.111294_bib37) 2014; 78
Yüksek (10.1016/j.buildenv.2024.111294_bib1) 2017; 10
Khalil (10.1016/j.buildenv.2024.111294_bib25) 2017; 157
Tabares-Velasco (10.1016/j.buildenv.2024.111294_bib35) 2012; 54
Sedillot (10.1016/j.buildenv.2024.111294_bib3) 2022
Karthikeyan (10.1016/j.buildenv.2024.111294_bib31) 2012; 60
Dehdezi (10.1016/j.buildenv.2024.111294_bib28) 2013; 14
Voller (10.1016/j.buildenv.2024.111294_bib8) 1984; 11
Li (10.1016/j.buildenv.2024.111294_bib10) 2022; 277
Darkwa (10.1016/j.buildenv.2024.111294_bib22) 2006; 26
10.1016/j.buildenv.2024.111294_bib34
Sharma (10.1016/j.buildenv.2024.111294_bib12) 2009; 13
Gbekou (10.1016/j.buildenv.2024.111294_bib33) 2022; 352
Ibanez (10.1016/j.buildenv.2024.111294_bib23) 2005; 25
Jayalath (10.1016/j.buildenv.2024.111294_bib29) 2016; 120
Li (10.1016/j.buildenv.2024.111294_bib7) 2023; 65
Zhuang (10.1016/j.buildenv.2024.111294_bib38) 2010
Crawley (10.1016/j.buildenv.2024.111294_bib21) 2008; 43
(10.1016/j.buildenv.2024.111294_bib26) 2018
Salihi (10.1016/j.buildenv.2024.111294_bib36) 2022; 16
Gibout (10.1016/j.buildenv.2024.111294_bib30) 2018; 8
Koschenz (10.1016/j.buildenv.2024.111294_bib24) 2004; 36
Amziane (10.1016/j.buildenv.2024.111294_bib5) 2016; 1
Kalnæs (10.1016/j.buildenv.2024.111294_bib6) 2015; 94
Chel (10.1016/j.buildenv.2024.111294_bib4) 2018; 57
Cunha (10.1016/j.buildenv.2024.111294_bib13) 2023; 16
Bahrar (10.1016/j.buildenv.2024.111294_bib15) 2018; 41
Zhan (10.1016/j.buildenv.2024.111294_bib14) 2023; 397
Zhang (10.1016/j.buildenv.2024.111294_bib18) 2016; 170
Li (10.1016/j.buildenv.2024.111294_bib20) 2019; 183
Al-Absi (10.1016/j.buildenv.2024.111294_bib16) 2023; 288
Chan (10.1016/j.buildenv.2024.111294_bib40) 2011; 43
Cdb (10.1016/j.buildenv.2024.111294_bib2) 2022
Kuznik (10.1016/j.buildenv.2024.111294_bib41) 2008; 40
Li (10.1016/j.buildenv.2024.111294_bib19) 2019; 184
Campbell (10.1016/j.buildenv.2024.111294_bib39) 2011
Raj (10.1016/j.buildenv.2024.111294_bib11) 2010; 14
References_xml – volume: 13
  start-page: 318
  year: 2009
  end-page: 345
  ident: bib12
  article-title: Review on thermal energy storage with phase change materials and applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 170
  start-page: 130
  year: 2016
  end-page: 139
  ident: bib18
  article-title: A novel phase-change cement composite for thermal energy storage: fabrication, thermal and mechanical properties
  publication-title: Appl. Energy
– volume: 10
  start-page: 93
  year: 2017
  end-page: 123
  ident: bib1
  article-title: Energy-efficient building design in the context of building life cycle
  publication-title: Energy Efficient Build.
– volume: 12
  start-page: 999
  year: 2008
  end-page: 1031
  ident: bib32
  article-title: Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material
  publication-title: Renew. Sustain. Energy Rev.
– volume: 25
  start-page: 1796
  year: 2005
  end-page: 1807
  ident: bib23
  article-title: An approach to the simulation of PCMs in building applications using TRNSYS
  publication-title: Appl. Therm. Eng.
– volume: 43
  start-page: 2947
  year: 2011
  end-page: 2955
  ident: bib40
  article-title: Energy and environmental performance of building façades integrated with phase change material in subtropical Hong Kong
  publication-title: Energy Build.
– volume: 57
  start-page: 655
  year: 2018
  end-page: 669
  ident: bib4
  article-title: Renewable energy technologies for sustainable development of energy efficient building
  publication-title: Alex. Eng. J.
– volume: 26
  start-page: 853
  year: 2006
  end-page: 858
  ident: bib22
  article-title: Simulation of phase change drywalls in a passive solar building
  publication-title: Appl. Therm. Eng.
– volume: 36
  start-page: 567
  year: 2004
  end-page: 578
  ident: bib24
  article-title: Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings
  publication-title: Energy Build.
– volume: 352
  year: 2022
  ident: bib33
  article-title: Mechanical and thermophysical properties of cement mortars including bio-based microencapsulated phase change materials
  publication-title: Construct. Build. Mater.
– volume: 15
  start-page: 1675
  year: 2011
  end-page: 1695
  ident: bib27
  article-title: Materials used as PCM in thermal energy storage in buildings: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 397
  year: 2023
  ident: bib14
  article-title: Phase change material (PCM) integrations into buildings in hot climates with simulation access for energy performance and thermal comfort: a review
  publication-title: Construct. Build. Mater.
– start-page: 486
  year: 2010
  end-page: 496
  ident: bib38
  article-title: Validation of veracity on simulating the indoor temperature in PCM light weight building by EnergyPlus
  publication-title: International Conference on Intelligent Computing for Sustainable Energy and Environment
– volume: 277
  year: 2022
  ident: bib10
  article-title: Thermal performance and economy of PCM foamed cement walls for buildings in different climate zones
  publication-title: Energy Build.
– volume: 60
  start-page: 153
  year: 2012
  end-page: 160
  ident: bib31
  article-title: Numerical investigation of packed bed storage unit filled with PCM encapsulated spherical containers–a comparison between various mathematical models
  publication-title: Int. J. Therm. Sci.
– year: 2022
  ident: bib2
  article-title: Global Status Report for Buildings and Construction. 2022
– volume: 53
  start-page: 1059
  year: 2016
  end-page: 1075
  ident: bib9
  article-title: Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 43
  start-page: 661
  year: 2008
  end-page: 673
  ident: bib21
  article-title: Contrasting the capabilities of building energy performance simulation programs
  publication-title: Build. Environ.
– volume: 78
  start-page: 192
  year: 2014
  end-page: 201
  ident: bib37
  article-title: Energy saving potential of phase change materials in major Australian cities
  publication-title: Energy Build.
– reference: EnergyPlus EnergyPlus, Getting started with EnergyPlus basic: concepts manual essential infor-mation you need about running EnergyPlus. In: Energy USDo, editor. c249759bad2022..
– volume: 40
  start-page: 148
  year: 2008
  end-page: 156
  ident: bib41
  article-title: Energetic efficiency of room wall containing PCM wallboard: a full-scale experimental investigation
  publication-title: Energy Build.
– volume: 120
  start-page: 408
  year: 2016
  end-page: 417
  ident: bib29
  article-title: Properties of cementitious mortar and concrete containing micro-encapsulated phase change materials
  publication-title: Construct. Build. Mater.
– volume: 288
  year: 2023
  ident: bib16
  article-title: Innovative PCM-incorporated foamed concrete panels for walls' exterior cladding: an experimental assessment in real-weather conditions
  publication-title: Energy Build.
– volume: 65
  year: 2023
  ident: bib7
  article-title: Phase change material for passive cooling in building envelopes: a comprehensive review
  publication-title: J. Build. Eng.
– volume: 41
  start-page: 455
  year: 2018
  end-page: 468
  ident: bib15
  article-title: Numerical and experimental study on the use of microencapsulated phase change materials (PCMs) in textile reinforced concrete panels for energy storage
  publication-title: Sustain. Cities Soc.
– volume: 183
  start-page: 791
  year: 2019
  end-page: 802
  ident: bib20
  article-title: Novel hybrid microencapsulated phase change materials incorporated wallboard for year-long year energy storage in buildings
  publication-title: Energy Convers. Manag.
– volume: 11
  start-page: 239
  year: 1984
  end-page: 249
  ident: bib8
  article-title: Enthalpy methods for tracking a phase change boundary in two dimensions
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 157
  start-page: 382
  year: 2017
  end-page: 391
  ident: bib25
  article-title: Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars
  publication-title: Construct. Build. Mater.
– volume: 8
  start-page: 66
  year: 2018
  ident: bib30
  article-title: Challenges of the usual graphical methods used to characterize phase change materials by differential scanning calorimetry
  publication-title: Appl. Sci.
– start-page: 809
  year: 2011
  end-page: 818
  ident: bib39
  article-title: Phase change materials as thermal storage for high performance homes
  publication-title: ASME International Mechanical Engineering Congress and Exposition
– volume: 184
  start-page: 34
  year: 2019
  end-page: 43
  ident: bib19
  article-title: Experimental investigation of thermal performance of microencapsulated PCM-contained wallboard by two measurement modes
  publication-title: Energy Build.
– volume: 94
  start-page: 150
  year: 2015
  end-page: 176
  ident: bib6
  article-title: Phase change materials and products for building applications: a state-of-the-art review and future research opportunities
  publication-title: Energy Build.
– volume: 14
  start-page: 449
  year: 2013
  end-page: 462
  ident: bib28
  article-title: Thermal, mechanical and microstructural analysis of concrete containing microencapsulated phase change materials
  publication-title: Int. J. Pavement Eng.
– volume: 14
  start-page: 2819
  year: 2010
  end-page: 2829
  ident: bib11
  article-title: Review on free cooling of buildings using phase change materials
  publication-title: Renew. Sustain. Energy Rev.
– year: 2005
  ident: bib17
  article-title: Annex 17: advanced thermal energy storage through phase change materials and chemical reactions-feasibility studies and demonstration projects
  publication-title: International Energy Agency Implementing Agreement on Energy Conservation through Energy Storage
– volume: 54
  start-page: 186
  year: 2012
  end-page: 196
  ident: bib35
  article-title: Verification and validation of EnergyPlus phase change material model for opaque wall assemblies
  publication-title: Build. Environ.
– year: 2022
  ident: bib3
  article-title: France's Energy Balance in 2021-provisional Data. April 2022
– volume: 1
  start-page: 31
  year: 2016
  end-page: 38
  ident: bib5
  article-title: Overview on biobased building material made with plant aggregate
  publication-title: RILEM Tech. Lett.
– volume: 16
  year: 2022
  ident: bib36
  article-title: Evaluation of global energy performance of building walls integrating PCM: numerical study in semi-arid climate in Morocco
  publication-title: Case Stud. Constr. Mater.
– volume: 16
  start-page: 4806
  year: 2023
  ident: bib13
  article-title: Perspective on the development of energy storage technology using phase change materials in the construction industry: a review
  publication-title: Energies
– year: 2018
  ident: bib26
  article-title: CrodaThermTM ME29P: Microencapsulated Ambient Temperature Phase Change Materi-Al
– volume: 12
  start-page: 999
  year: 2008
  ident: 10.1016/j.buildenv.2024.111294_bib32
  article-title: Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2006.11.002
– volume: 170
  start-page: 130
  year: 2016
  ident: 10.1016/j.buildenv.2024.111294_bib18
  article-title: A novel phase-change cement composite for thermal energy storage: fabrication, thermal and mechanical properties
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.02.091
– year: 2018
  ident: 10.1016/j.buildenv.2024.111294_bib26
– volume: 1
  start-page: 31
  year: 2016
  ident: 10.1016/j.buildenv.2024.111294_bib5
  article-title: Overview on biobased building material made with plant aggregate
  publication-title: RILEM Tech. Lett.
  doi: 10.21809/rilemtechlett.2016.9
– volume: 94
  start-page: 150
  year: 2015
  ident: 10.1016/j.buildenv.2024.111294_bib6
  article-title: Phase change materials and products for building applications: a state-of-the-art review and future research opportunities
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.02.023
– volume: 16
  year: 2022
  ident: 10.1016/j.buildenv.2024.111294_bib36
  article-title: Evaluation of global energy performance of building walls integrating PCM: numerical study in semi-arid climate in Morocco
  publication-title: Case Stud. Constr. Mater.
– volume: 43
  start-page: 661
  year: 2008
  ident: 10.1016/j.buildenv.2024.111294_bib21
  article-title: Contrasting the capabilities of building energy performance simulation programs
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2006.10.027
– volume: 54
  start-page: 186
  year: 2012
  ident: 10.1016/j.buildenv.2024.111294_bib35
  article-title: Verification and validation of EnergyPlus phase change material model for opaque wall assemblies
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2012.02.019
– volume: 16
  start-page: 4806
  year: 2023
  ident: 10.1016/j.buildenv.2024.111294_bib13
  article-title: Perspective on the development of energy storage technology using phase change materials in the construction industry: a review
  publication-title: Energies
  doi: 10.3390/en16124806
– volume: 120
  start-page: 408
  year: 2016
  ident: 10.1016/j.buildenv.2024.111294_bib29
  article-title: Properties of cementitious mortar and concrete containing micro-encapsulated phase change materials
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.05.116
– volume: 352
  year: 2022
  ident: 10.1016/j.buildenv.2024.111294_bib33
  article-title: Mechanical and thermophysical properties of cement mortars including bio-based microencapsulated phase change materials
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.129056
– year: 2005
  ident: 10.1016/j.buildenv.2024.111294_bib17
  article-title: Annex 17: advanced thermal energy storage through phase change materials and chemical reactions-feasibility studies and demonstration projects
– volume: 14
  start-page: 2819
  year: 2010
  ident: 10.1016/j.buildenv.2024.111294_bib11
  article-title: Review on free cooling of buildings using phase change materials
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2010.07.004
– volume: 8
  start-page: 66
  year: 2018
  ident: 10.1016/j.buildenv.2024.111294_bib30
  article-title: Challenges of the usual graphical methods used to characterize phase change materials by differential scanning calorimetry
  publication-title: Appl. Sci.
  doi: 10.3390/app8010066
– volume: 57
  start-page: 655
  year: 2018
  ident: 10.1016/j.buildenv.2024.111294_bib4
  article-title: Renewable energy technologies for sustainable development of energy efficient building
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2017.02.027
– volume: 15
  start-page: 1675
  year: 2011
  ident: 10.1016/j.buildenv.2024.111294_bib27
  article-title: Materials used as PCM in thermal energy storage in buildings: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2010.11.018
– start-page: 809
  year: 2011
  ident: 10.1016/j.buildenv.2024.111294_bib39
  article-title: Phase change materials as thermal storage for high performance homes
– volume: 397
  year: 2023
  ident: 10.1016/j.buildenv.2024.111294_bib14
  article-title: Phase change material (PCM) integrations into buildings in hot climates with simulation access for energy performance and thermal comfort: a review
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2023.132312
– volume: 183
  start-page: 791
  year: 2019
  ident: 10.1016/j.buildenv.2024.111294_bib20
  article-title: Novel hybrid microencapsulated phase change materials incorporated wallboard for year-long year energy storage in buildings
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.01.036
– ident: 10.1016/j.buildenv.2024.111294_bib34
– volume: 14
  start-page: 449
  year: 2013
  ident: 10.1016/j.buildenv.2024.111294_bib28
  article-title: Thermal, mechanical and microstructural analysis of concrete containing microencapsulated phase change materials
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298436.2012.716837
– volume: 10
  start-page: 93
  year: 2017
  ident: 10.1016/j.buildenv.2024.111294_bib1
  article-title: Energy-efficient building design in the context of building life cycle
  publication-title: Energy Efficient Build.
– volume: 41
  start-page: 455
  year: 2018
  ident: 10.1016/j.buildenv.2024.111294_bib15
  article-title: Numerical and experimental study on the use of microencapsulated phase change materials (PCMs) in textile reinforced concrete panels for energy storage
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.06.014
– year: 2022
  ident: 10.1016/j.buildenv.2024.111294_bib3
– volume: 13
  start-page: 318
  year: 2009
  ident: 10.1016/j.buildenv.2024.111294_bib12
  article-title: Review on thermal energy storage with phase change materials and applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2007.10.005
– volume: 53
  start-page: 1059
  year: 2016
  ident: 10.1016/j.buildenv.2024.111294_bib9
  article-title: Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.09.040
– volume: 157
  start-page: 382
  year: 2017
  ident: 10.1016/j.buildenv.2024.111294_bib25
  article-title: Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.09.109
– start-page: 486
  year: 2010
  ident: 10.1016/j.buildenv.2024.111294_bib38
  article-title: Validation of veracity on simulating the indoor temperature in PCM light weight building by EnergyPlus
– volume: 11
  start-page: 239
  year: 1984
  ident: 10.1016/j.buildenv.2024.111294_bib8
  article-title: Enthalpy methods for tracking a phase change boundary in two dimensions
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/0735-1933(84)90040-X
– volume: 78
  start-page: 192
  year: 2014
  ident: 10.1016/j.buildenv.2024.111294_bib37
  article-title: Energy saving potential of phase change materials in major Australian cities
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.04.027
– year: 2022
  ident: 10.1016/j.buildenv.2024.111294_bib2
– volume: 288
  year: 2023
  ident: 10.1016/j.buildenv.2024.111294_bib16
  article-title: Innovative PCM-incorporated foamed concrete panels for walls' exterior cladding: an experimental assessment in real-weather conditions
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2023.113003
– volume: 26
  start-page: 853
  year: 2006
  ident: 10.1016/j.buildenv.2024.111294_bib22
  article-title: Simulation of phase change drywalls in a passive solar building
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2005.10.007
– volume: 40
  start-page: 148
  year: 2008
  ident: 10.1016/j.buildenv.2024.111294_bib41
  article-title: Energetic efficiency of room wall containing PCM wallboard: a full-scale experimental investigation
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2007.01.022
– volume: 277
  year: 2022
  ident: 10.1016/j.buildenv.2024.111294_bib10
  article-title: Thermal performance and economy of PCM foamed cement walls for buildings in different climate zones
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2022.112470
– volume: 65
  year: 2023
  ident: 10.1016/j.buildenv.2024.111294_bib7
  article-title: Phase change material for passive cooling in building envelopes: a comprehensive review
  publication-title: J. Build. Eng.
– volume: 36
  start-page: 567
  year: 2004
  ident: 10.1016/j.buildenv.2024.111294_bib24
  article-title: Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2004.01.029
– volume: 60
  start-page: 153
  year: 2012
  ident: 10.1016/j.buildenv.2024.111294_bib31
  article-title: Numerical investigation of packed bed storage unit filled with PCM encapsulated spherical containers–a comparison between various mathematical models
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2012.05.010
– volume: 43
  start-page: 2947
  year: 2011
  ident: 10.1016/j.buildenv.2024.111294_bib40
  article-title: Energy and environmental performance of building façades integrated with phase change material in subtropical Hong Kong
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.07.021
– volume: 184
  start-page: 34
  year: 2019
  ident: 10.1016/j.buildenv.2024.111294_bib19
  article-title: Experimental investigation of thermal performance of microencapsulated PCM-contained wallboard by two measurement modes
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.11.032
– volume: 25
  start-page: 1796
  year: 2005
  ident: 10.1016/j.buildenv.2024.111294_bib23
  article-title: An approach to the simulation of PCMs in building applications using TRNSYS
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2004.11.001
SSID ssj0016934
Score 2.5194855
Snippet This study aims to assess the thermal behavior of a cement mortar (denoted M15D) incorporating microencapsulated biobased phase change materials at both wall...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 111294
SubjectTerms Energy saving
Engineering Sciences
Experimental setups
Numerical model
Phase change materials (mPCM)
Title Thermal performance of a building envelope including microencapsulated phase change materials (PCMs): A multiscale experimental and numerical investigation
URI https://dx.doi.org/10.1016/j.buildenv.2024.111294
https://enpc.hal.science/hal-04468826
Volume 253
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB5cLnoQV6wbD_Ggh9immWzeQrHUpUXQgrcwW2hLTIu2Hv0j_lnfy1LrQTx4CWTIMMl8j7dk3vseY2dES6R0gGGqNq7Fle1ZEqG3PCW0ChMMfSTVDnd7XqfPb5_d5yXWqmphKK2y1P2FTs-1dTlSL3ezPhkO64-oe-mggBjlcuIxqmDnPkn55cc8zYO4RkoKqYZFTy9UCY8uJbWeNtk7xolNTtqjGfLfDNTyoPrVmpue9ibbKH1GiIrX2mJLJttm6wtMgjvsE-FGFZvC5LsQAMYJCJBl32vAF6D0IAPDTKWzfOiFsvHwkwWGyik6nRomA7RqUFQDAzqzhXzC-UOr-3ZxBRHkCYhvCKyBxeYAIDIN2aw4_klxiTl7xzjbZf329VOrY5V9FyzlhHxq-a4IXYlxHl1E0kiEQsy05ySetptSKj_wONUXBoY7WinjC0cHvpP4ShseSGePrWTjzOwzaOiAG1fZifRCdA2FRH8wdLWxA98PEmFqzK02O1YlKTn1xkjjKvtsFFcgxQRSXIBUY_X5vElBy_HnjLDCMv4hYDHajj_nniL484WIkbsT3cc0RufhGKR47_bBPxY4ZGt0V2QEHbGV6evMHKOzM5UnuTSfsNXo5q7T-wLHUwJp
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYDsABsYqdEeIAh9CmcTZuVQUq0CIkQOJmeYtaFNIKWo78CD_LTJZSDogDlxycWHb8nFnimTeMHRMtkTYRuqnG-g7XbuAohN4JtDQ6TtD1UZQ73L0N2o_8-sl_mmGtKheGwipL2V_I9Fxaly21cjVrw36_do-ylw4KiFEuJx6bZfMcP18qY3D2MYnzILKRkkOq7tDjU2nCz2eKak_b7B0dxQYn8dGI-W8aarZX_WvNdc_lClsujUZoFvNaZTM2W2NLU1SC6-wT8UYZm8LwOxMABglIUGXha8AJUHyQhX6m03He9ELhePjOEn3lFK1OA8MeqjUo0oEBrdlig8LJXav7dnoOTcgjEN8QWQvT1QFAZgaycXH-k-IQE_qOQbbBHi8vHlptpyy84Ggv5iMn9GXsK3T06CKTeiI1gmYCLwmM21BKh1HAKcEwstwzWttQeiYKvSTUxvJIeZtsLhtkdotB3UTc-tpNVBCjbSgVGoSxb6wbhWGUSLvN_GqxhS5Zyak4Riqq8LNnUYEkCCRRgLTNapN-w4KX488ecYWl-LHDBCqPP_seIfiTgYiSu93sCGqjA3H0UoJ3d-cfAxyyhfZDtyM6V7c3u2yR7hThQXtsbvQ6tvto-YzUQb6zvwCahgP3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+performance+of+a+building+envelope+including+microencapsulated+phase+change+materials+%28PCMs%29%3A+A+multiscale+experimental+and+numerical+investigation&rft.jtitle=Building+and+environment&rft.au=Gbekou%2C+Franck+Komi&rft.au=Belloum%2C+Rahma&rft.au=Chennouf%2C+Nawal&rft.au=Agoudjil%2C+Boudjemaa&rft.date=2024-04-01&rft.issn=0360-1323&rft.volume=253&rft.spage=111294&rft_id=info:doi/10.1016%2Fj.buildenv.2024.111294&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_buildenv_2024_111294
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon