Positive association between foliar silicon and extrafloral nectar in Vicia faba with application of methyl jasmonate

Plants have evolved direct and indirect defences against herbivores, which may come at a cost to other plant functions. Many plants can uptake and deposit large amounts of silicon within plant tissue, creating structures which can reduce herbivore performance. Silicon uptake can increase plant defen...

Full description

Saved in:
Bibliographic Details
Published inBasic and applied ecology Vol. 82; pp. 11 - 17
Main Authors Gowton, Chelsea Megan, Chiu, Dennis, Peetoom Heida, Isaac John, Carrillo, Juli
Format Journal Article
LanguageEnglish
Published Elsevier GmbH 01.02.2025
Elsevier
Subjects
Online AccessGet full text
ISSN1439-1791
DOI10.1016/j.baae.2024.11.005

Cover

Abstract Plants have evolved direct and indirect defences against herbivores, which may come at a cost to other plant functions. Many plants can uptake and deposit large amounts of silicon within plant tissue, creating structures which can reduce herbivore performance. Silicon uptake can increase plant defenses against herbivores, but it has also been shown to trade-off with defensive phenolic compounds due to interference with jasmonic acid (JA) signaling. Additionally, plants can recruit predacious insects with extrafloral nectar (EFN), a sugar secretion not involved in pollination. It is currently unclear whether silicon uptake reduces other putative defences associated with the JA pathway, like EFN production. We used faba bean (Vicia faba) to identify potential trade-offs between silicon accumulation, phenolic content, and EFN production. We grew four genotypes of faba bean that varied in tannin content in control soil, or soil supplemented with silicon. After five weeks of growth, we exposed plants to either a buffer or methyl jasmonate (MeJA) solution to simulate an herbivory response. We measured EFN production at 24 and 48 hours after treatment, and harvested leaves to quantify silicon and phenolic content. We found silicon supplementation, but not MeJA treatment, increased foliar silicon concentration. Silicon supplementation did not affect foliar phenolic content or EFN sugar content. Silicon concentration (ppm) and MeJA treatment did not decrease foliar phenolic content or EFN sugar content. However, we found an interaction between silicon concentration (ppm) and MeJA treatment with EFN sugar content: across MeJA-treated plants, we detected a positive association between foliar silicon concentration and the amount of sugar (mg) in EFN. This study is the first to show MeJA can interact with leaf silicon concentration to alter EFN response, with the potential for cascading effects on other trophic levels.
AbstractList Plants have evolved direct and indirect defences against herbivores, which may come at a cost to other plant functions. Many plants can uptake and deposit large amounts of silicon within plant tissue, creating structures which can reduce herbivore performance. Silicon uptake can increase plant defenses against herbivores, but it has also been shown to trade-off with defensive phenolic compounds due to interference with jasmonic acid (JA) signaling. Additionally, plants can recruit predacious insects with extrafloral nectar (EFN), a sugar secretion not involved in pollination. It is currently unclear whether silicon uptake reduces other putative defences associated with the JA pathway, like EFN production. We used faba bean (Vicia faba) to identify potential trade-offs between silicon accumulation, phenolic content, and EFN production. We grew four genotypes of faba bean that varied in tannin content in control soil, or soil supplemented with silicon. After five weeks of growth, we exposed plants to either a buffer or methyl jasmonate (MeJA) solution to simulate an herbivory response. We measured EFN production at 24 and 48 hours after treatment, and harvested leaves to quantify silicon and phenolic content. We found silicon supplementation, but not MeJA treatment, increased foliar silicon concentration. Silicon supplementation did not affect foliar phenolic content or EFN sugar content. Silicon concentration (ppm) and MeJA treatment did not decrease foliar phenolic content or EFN sugar content. However, we found an interaction between silicon concentration (ppm) and MeJA treatment with EFN sugar content: across MeJA-treated plants, we detected a positive association between foliar silicon concentration and the amount of sugar (mg) in EFN. This study is the first to show MeJA can interact with leaf silicon concentration to alter EFN response, with the potential for cascading effects on other trophic levels.
Author Carrillo, Juli
Gowton, Chelsea Megan
Peetoom Heida, Isaac John
Chiu, Dennis
Author_xml – sequence: 1
  givenname: Chelsea Megan
  orcidid: 0000-0003-2443-0809
  surname: Gowton
  fullname: Gowton, Chelsea Megan
  email: cgowton@student.ubc.ca
  organization: Centre for Sustainable Food Systems, Faculty of Land and Food Systems, University of British Columbia, Located on Traditional xwməθkwəýəm Musqueam Territory, 2357 Main Mall, Vancouver, British Columbia, Canada
– sequence: 2
  givenname: Dennis
  orcidid: 0009-0001-8881-6682
  surname: Chiu
  fullname: Chiu, Dennis
  organization: Centre for Sustainable Food Systems, Faculty of Land and Food Systems, University of British Columbia, Located on Traditional xwməθkwəýəm Musqueam Territory, 2357 Main Mall, Vancouver, British Columbia, Canada
– sequence: 3
  givenname: Isaac John
  surname: Peetoom Heida
  fullname: Peetoom Heida, Isaac John
  organization: Centre for Sustainable Food Systems, Faculty of Land and Food Systems, University of British Columbia, Located on Traditional xwməθkwəýəm Musqueam Territory, 2357 Main Mall, Vancouver, British Columbia, Canada
– sequence: 4
  givenname: Juli
  surname: Carrillo
  fullname: Carrillo, Juli
  organization: Centre for Sustainable Food Systems, Faculty of Land and Food Systems, University of British Columbia, Located on Traditional xwməθkwəýəm Musqueam Territory, 2357 Main Mall, Vancouver, British Columbia, Canada
BookMark eNp9kT1vFDEQhrcIEkngD6RySXOLx_Z-WKJBER-RIkEBtNasd5x4tWcfti8h_x5fFqWksjSe55nRvBfNWYiBmuYKeAsc-vdLOyFSK7hQLUDLeXfWnIOSegeDhtfNRc4L56C4HM-b4_eYffEPxDDnaD0WHwObqDwSBebi6jGx7FdvaxnDzOhPSejWmHBlgWyp3z6wX76izOGE7NGXe4aHQ0U2WXRsT-X-aWUL5n0MWOhN88rhmuntv_ey-fn504_rr7vbb19urj_e7qzUqux6p20nZGcll0rDMHWgwMkZOkVawOAmyUmidSNZmC3XMJEg7HSvJxgdl5fNzeadIy7mkPwe05OJ6M1zIaY7g6l4u5JxY1VzQNXPXE2dGufB6pkPUknkVovqere5Din-PlIuZu-zpXXFQPGYjaxbiV6AGGur2Fptijknci-jgZtTRmYxp4zMKSMDYGpGFfqwQVQP8uApmWw9BUuzT_XOdWP_P_wv_kufKQ
Cites_doi 10.1371/journal.pone.0169492
10.1146/annurev-arplant-042916-041132
10.1007/s10886-014-0392-6
10.1016/j.tplants.2011.01.003
10.4236/oje.2011.13007
10.1093/aob/mcn130
10.1111/j.1469-8137.2012.04179.x
10.3390/plants9050643
10.1111/j.1469-8137.2007.02330.x
10.1016/j.phytochem.2011.01.040
10.1046/j.1461-0248.2003.00457.x
10.1002/9781119312994.apr0512
10.1111/1365-2435.13702
10.1016/j.baae.2012.07.006
10.1098/rsbl.2006.0527
10.1146/annurev-phyto-080614-120132
10.1111/j.1365-313X.2011.04483.x
10.1093/aob/mcs225
10.1111/1365-2435.12935
10.3389/fpls.2019.01132
10.1073/pnas.98.3.1083
10.1002/ecy.3006
10.4161/psb.1.5.3279
10.1007/s10682-016-9875-y
10.1002/ecy.3250
10.1146/annurev.arplant.50.1.641
10.1039/D0FO01857K
10.21105/joss.01686
10.1093/jxb/eraa300
10.1007/s00442-012-2326-8
10.1104/pp.104.048694
10.1111/ele.13713
10.1086/417659
10.1111/1365-2435.13565
10.1126/science.684415
10.1146/annurev.es.20.110189.001555
10.1093/pcp/pcu158
10.1016/j.foodchem.2022.132948
10.1007/s11103-013-0087-3
10.1371/journal.pone.0056457
10.1111/btp.12283
10.1007/BF00377434
10.1073/pnas.1009007107
10.1007/s10886-011-0052-z
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.baae.2024.11.005
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals (ND)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EndPage 17
ExternalDocumentID oai_doaj_org_article_f841f01a46d04b548d7c9d07343a0c92
10_1016_j_baae_2024_11_005
S1439179124000884
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXKI
AAXUO
ABFYP
ABGRD
ABLST
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADQTV
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CAG
COF
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SSA
SSJ
SSZ
T5K
Y6R
~G-
~KM
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
BNPGV
CITATION
SSH
7S9
EFKBS
EFLBG
L.6
ID FETCH-LOGICAL-c394t-6f9c5235c3034917b5141f3d154e9217fb30e3acf8ec1dc091be2ea5969b18f03
IEDL.DBID AIKHN
ISSN 1439-1791
IngestDate Wed Aug 27 01:16:25 EDT 2025
Thu Sep 04 19:13:19 EDT 2025
Tue Jul 01 01:53:59 EDT 2025
Sat Jan 25 15:58:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Plant-interaction
Induced defense
Indirect defense
Trade-off
Tri-trophic interaction
Plant defense
Mutualism
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-6f9c5235c3034917b5141f3d154e9217fb30e3acf8ec1dc091be2ea5969b18f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0001-8881-6682
0000-0003-2443-0809
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1439179124000884
PQID 3154262128
PQPubID 24069
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_f841f01a46d04b548d7c9d07343a0c92
proquest_miscellaneous_3154262128
crossref_primary_10_1016_j_baae_2024_11_005
elsevier_sciencedirect_doi_10_1016_j_baae_2024_11_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Basic and applied ecology
PublicationYear 2025
Publisher Elsevier GmbH
Elsevier
Publisher_xml – name: Elsevier GmbH
– name: Elsevier
References Putra, Powell, Hartley, Johnson (bib0036) 2020; 34
Radhika, Kost, Mithöfer, Boland (bib0039) 2010; 107
Wang, Weide, Yan, Tindjau, Carbajo, Deluc, Zandberg, Castellarin (bib0047) 2022; 388
Cipollini, Walters, Voelckel (bib0009) 2017
Heil, Koch, Hilpert, Fiala, Boland, Linsenmair (bib0021) 2001; 98
Fox, Weisberg (bib0016) 2019
Mitani, Yamaji, Ago, Iwasaki, Ma (bib0030) 2011; 66
Bolten, Feinsinger, Baker, Baker (bib0004) 1979; 41
Epstein, E. 1999. Silicon. Annual Review of Plant Physiology and Plant Molecular Biology 50:641.
(bib0011) 1978
Herms, Mattson (bib0022) 1992; 67
Ament, Kant, Sabelis, Haring, Schuurink (bib0001) 2004; 135
Simpson, Wade, Rees, Osborne, Hartley (bib0043) 2017; 31
Chowdhary, Alooparampil, Pandya, Tank, Chowdhary, Alooparampil, Pandya, Tank (bib0008) 2021
Johnson, Hartley, Ryalls, Frew, Hall (bib0026) 2021; 102
Lange, Calixto, Del-Claro (bib0028) 2017; 12
.
Conrath, Beckers, Langenbach, Jaskiewicz (bib0010) 2015; 53
Delphia, Mescher, Felton, Moraes (bib0012) 2006; 1
Mondor, Summers (bib0032) 2011; 1
Carrillo, Wang, Ding, Siemann (bib0006) 2012; 13
Mauch-Mani, Baccelli, Luna, Flors (bib0029) 2017; 68
Waterman, Hall, Mikhael, Cazzonelli, Hartley, Johnson (bib0048) 2021; 35
Pico, Pismag, Laudouze, Martinez (bib0035) 2020; 11
Singh, Kumar, Hartley, Singh (bib0044) 2020; 71
Ye, Song, Long, Wang, Baerson, Pan, Zhu-Salzman (bib0051) 2013; 110
Carvalhais, Dennis, Badri, Tyson, Vivanco, Schenk (bib0007) 2013; 8
Hunt, Dean, Webster, Johnson, Ennos (bib0025) 2008; 102
Wickham, Averick, Bryan, Chang, McGowan, François, Grolemund (bib0050) 2019; 4
Reynolds, Lambin, Massey, Reidinger, Sherratt, Smith, White, Hartley (bib0041) 2012; 170
Karban, Myers (bib0027) 1989; 20
Hall, Dagg, Waterman, Johnson (bib0017) 2020; 9
Barbehenn, Constabel (bib0003) 2011; 72
Ballhorn, Kay, Kautz (bib0002) 2014; 40
Easwar Rao, Divya, Prathyusha, Krishna, Chaitanya (bib0014) 2017
Hoffmeister, Junker (bib0024) 2017; 31
Heil (bib0019) 2008; 178
Heil (bib0020) 2011; 16
Walker, Hoeck, Perez (bib0046) 1978; 201
Okada, Abe, Arimura (bib0034) 2015; 56
Mondor, Addicott (bib0031) 2003; 6
Quigley, Griffith, Donati, Michael Anderson (bib0037) 2020; 101
Bozarth (bib0005) 1992
Mondor, Tremblay, Messing (bib0033) 2007; 2
R Core Team. 2021. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
Deshmukh, Vivancos, Guérin, Sonah, Labbé, Belzile, Bélanger (bib0013) 2013; 83
Hall, Waterman, Vandegeer, Hartley, Johnson (bib0018) 2019; 10
Weber, Keeler (bib0049) 2012; 111
Zuest, Agrawal (bib0052) 2017; 68
Reidinger, Ramsey, Hartley (bib0040) 2012; 195
Hernandez-Cumplido, Forter, Moreira, Heil, Benrey (bib0023) 2016; 48
Shenoy, Radhika, Satish, Borges (bib0042) 2012; 38
Tombeur, Laliberté, Lambers, Faucon, Zemunik, Turner, Cornelis, Mahy (bib0045) 2021; 24
10.1016/j.baae.2024.11.005_bib0038
Heil (10.1016/j.baae.2024.11.005_bib0021) 2001; 98
Ament (10.1016/j.baae.2024.11.005_bib0001) 2004; 135
Wickham (10.1016/j.baae.2024.11.005_bib0050) 2019; 4
Barbehenn (10.1016/j.baae.2024.11.005_bib0003) 2011; 72
Wang (10.1016/j.baae.2024.11.005_bib0047) 2022; 388
Bolten (10.1016/j.baae.2024.11.005_bib0004) 1979; 41
Tombeur (10.1016/j.baae.2024.11.005_bib0045) 2021; 24
Singh (10.1016/j.baae.2024.11.005_bib0044) 2020; 71
Karban (10.1016/j.baae.2024.11.005_bib0027) 1989; 20
Walker (10.1016/j.baae.2024.11.005_bib0046) 1978; 201
Hernandez-Cumplido (10.1016/j.baae.2024.11.005_bib0023) 2016; 48
Okada (10.1016/j.baae.2024.11.005_bib0034) 2015; 56
Herms (10.1016/j.baae.2024.11.005_bib0022) 1992; 67
Conrath (10.1016/j.baae.2024.11.005_bib0010) 2015; 53
Pico (10.1016/j.baae.2024.11.005_bib0035) 2020; 11
Johnson (10.1016/j.baae.2024.11.005_bib0026) 2021; 102
Bozarth (10.1016/j.baae.2024.11.005_bib0005) 1992
Reynolds (10.1016/j.baae.2024.11.005_bib0041) 2012; 170
Carrillo (10.1016/j.baae.2024.11.005_bib0006) 2012; 13
Hoffmeister (10.1016/j.baae.2024.11.005_bib0024) 2017; 31
Shenoy (10.1016/j.baae.2024.11.005_bib0042) 2012; 38
Hall (10.1016/j.baae.2024.11.005_bib0017) 2020; 9
Mondor (10.1016/j.baae.2024.11.005_bib0031) 2003; 6
10.1016/j.baae.2024.11.005_bib0015
Radhika (10.1016/j.baae.2024.11.005_bib0039) 2010; 107
Zuest (10.1016/j.baae.2024.11.005_bib0052) 2017; 68
Mondor (10.1016/j.baae.2024.11.005_bib0033) 2007; 2
Fox (10.1016/j.baae.2024.11.005_bib0016) 2019
Putra (10.1016/j.baae.2024.11.005_bib0036) 2020; 34
Mitani (10.1016/j.baae.2024.11.005_bib0030) 2011; 66
Delphia (10.1016/j.baae.2024.11.005_bib0012) 2006; 1
Ye (10.1016/j.baae.2024.11.005_bib0051) 2013; 110
Simpson (10.1016/j.baae.2024.11.005_bib0043) 2017; 31
Carvalhais (10.1016/j.baae.2024.11.005_bib0007) 2013; 8
Ballhorn (10.1016/j.baae.2024.11.005_bib0002) 2014; 40
Lange (10.1016/j.baae.2024.11.005_bib0028) 2017; 12
Deshmukh (10.1016/j.baae.2024.11.005_bib0013) 2013; 83
Hall (10.1016/j.baae.2024.11.005_bib0018) 2019; 10
Quigley (10.1016/j.baae.2024.11.005_bib0037) 2020; 101
Waterman (10.1016/j.baae.2024.11.005_bib0048) 2021; 35
(10.1016/j.baae.2024.11.005_bib0011) 1978
Reidinger (10.1016/j.baae.2024.11.005_bib0040) 2012; 195
Mauch-Mani (10.1016/j.baae.2024.11.005_bib0029) 2017; 68
Easwar Rao (10.1016/j.baae.2024.11.005_bib0014) 2017
Mondor (10.1016/j.baae.2024.11.005_bib0032) 2011; 1
Hunt (10.1016/j.baae.2024.11.005_bib0025) 2008; 102
Chowdhary (10.1016/j.baae.2024.11.005_bib0008) 2021
Weber (10.1016/j.baae.2024.11.005_bib0049) 2012; 111
Cipollini (10.1016/j.baae.2024.11.005_bib0009) 2017
Heil (10.1016/j.baae.2024.11.005_bib0019) 2008; 178
Heil (10.1016/j.baae.2024.11.005_bib0020) 2011; 16
References_xml – volume: 107
  start-page: 17228
  year: 2010
  end-page: 17233
  ident: bib0039
  article-title: Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 34
  start-page: 1142
  year: 2020
  end-page: 1157
  ident: bib0036
  article-title: Is it time to include legumes in plant silicon research?
  publication-title: Functional Ecology
– volume: 16
  start-page: 191
  year: 2011
  end-page: 200
  ident: bib0020
  article-title: Nectar: Generation, regulation and ecological functions
  publication-title: Trends in Plant Science
– volume: 53
  start-page: 97
  year: 2015
  end-page: 119
  ident: bib0010
  article-title: Priming for enhanced defense
  publication-title: Annual Review of Phytopathology
– year: 2021
  ident: bib0008
  article-title: Physiological function of phenolic compounds in plant defense system. phenolic compounds - chemistry, synthesis, diversity, non-conventional industrial
  publication-title: Pharmaceutical and Therapeutic Applications
– volume: 72
  start-page: 1551
  year: 2011
  end-page: 1565
  ident: bib0003
  article-title: Tannins in plant–herbivore interactions
  publication-title: Phytochemistry
– start-page: 263
  year: 2017
  end-page: 307
  ident: bib0009
  article-title: Costs of resistance in plants: From theory to evidence
  publication-title: Annual Plant Reviews Online
– volume: 31
  start-page: 269
  year: 2017
  end-page: 284
  ident: bib0024
  article-title: Herbivory-induced changes in the olfactory and visual display of flowers and extrafloral nectaries affect pollinator behavior
  publication-title: Evolutionary Ecology
– volume: 66
  start-page: 231
  year: 2011
  end-page: 240
  ident: bib0030
  article-title: Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation
  publication-title: The Plant Journal
– volume: 8
  start-page: e56457
  year: 2013
  ident: bib0007
  article-title: Activation of the Jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities
  publication-title: PLoS ONE
– volume: 11
  start-page: 9868
  year: 2020
  end-page: 9880
  ident: bib0035
  article-title: Systematic evaluation of the folin–ciocalteu and fast blue bb reactions during the analysis of total phenolics in legumes, nuts and plant seeds
  publication-title: Food & Function
– volume: 67
  start-page: 283
  year: 1992
  end-page: 335
  ident: bib0022
  article-title: The dilemma of plants: To grow or defend
  publication-title: The Quarterly Review of Biology
– volume: 110
  start-page: E3631
  year: 2013
  end-page: E3639
  ident: bib0051
  article-title: Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 83
  start-page: 303
  year: 2013
  end-page: 315
  ident: bib0013
  article-title: Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice
  publication-title: Plant Molecular Biology
– volume: 102
  start-page: 653
  year: 2008
  end-page: 656
  ident: bib0025
  article-title: A novel mechanism by which silica defends grasses against herbivory
  publication-title: Annals of Botany
– volume: 20
  start-page: 331
  year: 1989
  end-page: 348
  ident: bib0027
  article-title: Induced plant responses to herbivory
  publication-title: Annual Review of Ecology and Systematics
– volume: 201
  start-page: 908
  year: 1978
  end-page: 910
  ident: bib0046
  article-title: Microwear of mammalian teeth as an indicator of diet
  publication-title: Science
– volume: 195
  start-page: 699
  year: 2012
  end-page: 706
  ident: bib0040
  article-title: Rapid and accurate analyses of silicon and phosphorus in plants using a portable X-ray fluorescence spectrometer
  publication-title: New Phytologist
– volume: 2
  start-page: 583
  year: 2007
  end-page: 585
  ident: bib0033
  article-title: Extrafloral nectary phenotypic plasticity is damage-and resource-dependent in
  publication-title: Biology Letters
– volume: 9
  start-page: 643
  year: 2020
  ident: bib0017
  article-title: Silicon alters leaf surface morphology and suppresses insect herbivory in a model grass species
  publication-title: Plants
– volume: 4
  start-page: 1686
  year: 2019
  ident: bib0050
  article-title: Welcome to the Tidyverse
  publication-title: Journal of Open Source Software
– volume: 68
  year: 2017
  ident: bib0052
  article-title: Trade-offs between plant growth and defense against insect herbivory: An emerging mechanistic synthesis
  publication-title: Annual Review of Plant Biology
– year: 1978
  ident: bib0011
  article-title: CRC Handbook of Chemistry and Physics
– volume: 68
  start-page: 485
  year: 2017
  end-page: 512
  ident: bib0029
  article-title: Defense priming: An adaptive part of induced resistance
  publication-title: Annual Review of Plant Biology
– volume: 1
  start-page: 243
  year: 2006
  end-page: 250
  ident: bib0012
  article-title: The role of insect-derived cues in eliciting indirect plant defenses in tobacco,
  publication-title: Plant Signaling & Behavior
– reference: Epstein, E. 1999. Silicon. Annual Review of Plant Physiology and Plant Molecular Biology 50:641.
– volume: 10
  year: 2019
  ident: bib0018
  article-title: The role of silicon in antiherbivore phytohormonal signalling
  publication-title: Frontiers in Plant Science
– volume: 178
  start-page: 41
  year: 2008
  end-page: 61
  ident: bib0019
  article-title: Indirect defence via tritrophic interactions
  publication-title: New Phytologist
– volume: 6
  start-page: 495
  year: 2003
  end-page: 497
  ident: bib0031
  article-title: Conspicuous extra-floral nectaries are inducible in
  publication-title: Ecology Letters
– volume: 13
  start-page: 449
  year: 2012
  end-page: 457
  ident: bib0006
  article-title: Induction of extrafloral nectar depends on herbivore type in invasive and native Chinese tallow seedlings
  publication-title: Basic and Applied Ecology
– volume: 56
  start-page: 16
  year: 2015
  end-page: 27
  ident: bib0034
  article-title: Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants
  publication-title: Plant and Cell Physiology
– volume: 24
  start-page: 984
  year: 2021
  end-page: 995
  ident: bib0045
  article-title: A shift from phenol to silica-based leaf defences during long-term soil and ecosystem development
  publication-title: Ecology Letters
– volume: 1
  start-page: 57
  year: 2011
  end-page: 62
  ident: bib0032
  article-title: Rhizobium alters inducible defenses in broad bean,
  publication-title: Open Journal of Ecology
– volume: 102
  start-page: e03250
  year: 2021
  ident: bib0026
  article-title: Targeted plant defense: Silicon conserves hormonal defense signaling impacting chewing but not fluid-feeding herbivores
  publication-title: Ecology
– volume: 98
  start-page: 1083
  year: 2001
  end-page: 1088
  ident: bib0021
  article-title: Extrafloral nectar production of the ant-associated plant,
  publication-title: Proceedings of the National Academy of Sciences
– start-page: 47
  year: 2017
  end-page: 74
  ident: bib0014
  article-title: 3 - insect-resistant plants
  publication-title: Current Developments in Biotechnology and Bioengineering
– volume: 40
  start-page: 294
  year: 2014
  end-page: 296
  ident: bib0002
  article-title: Quantitative effects of leaf area removal on indirect defense of lima bean (
  publication-title: Journal of Chemical Ecology
– volume: 135
  start-page: 2025
  year: 2004
  end-page: 2037
  ident: bib0001
  article-title: Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato
  publication-title: Plant Physiology
– reference: R Core Team. 2021. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
– volume: 48
  start-page: 342
  year: 2016
  end-page: 348
  ident: bib0023
  article-title: Induced floral and extrafloral nectar production affect ant-pollinator interactions and plant fitness
  publication-title: Biotropica
– volume: 71
  start-page: 6730
  year: 2020
  end-page: 6743
  ident: bib0044
  article-title: Silicon: Its ameliorative effect on plant defense against herbivory
  publication-title: Journal of Experimental Botany
– volume: 12
  year: 2017
  ident: bib0028
  article-title: Variation in extrafloral nectary productivity influences the ant foraging
  publication-title: PLoS ONE
– volume: 388
  year: 2022
  ident: bib0047
  article-title: Impact of hormone applications on ripening-related metabolites in gewürztraminer grapes (
  publication-title: Food Chemistry
– start-page: 193
  year: 1992
  end-page: 214
  ident: bib0005
  article-title: Classification of opal phytoliths formed in selected dicotyledons native to the great plains
  publication-title: Advances in Archaeological and Museum Science
– volume: 101
  start-page: e03006
  year: 2020
  ident: bib0037
  article-title: Soil nutrients and precipitation are major drivers of global patterns of grass leaf silicification
  publication-title: Ecology
– volume: 31
  start-page: 2108
  year: 2017
  end-page: 2117
  ident: bib0043
  article-title: Still armed after domestication? impacts of domestication and agronomic selection on silicon defences in cereals
  publication-title: Functional Ecology
– volume: 170
  start-page: 445
  year: 2012
  end-page: 456
  ident: bib0041
  article-title: Delayed induced silica defences in grasses and their potential for destabilising herbivore population dynamics
  publication-title: Oecologia
– reference: .
– volume: 111
  start-page: 1251
  year: 2012
  end-page: 1261
  ident: bib0049
  article-title: The phylogenetic distribution of extrafloral nectaries in plants
  publication-title: Annals of Botany
– volume: 41
  start-page: 301
  year: 1979
  end-page: 304
  ident: bib0004
  article-title: On the calculation of sugar concentration in flower nectar
  publication-title: Oecologia
– year: 2019
  ident: bib0016
  article-title: An R Companion to Applied Regression_. Third
– volume: 35
  start-page: 82
  year: 2021
  end-page: 92
  ident: bib0048
  article-title: Short-Term resistance that persists: Rapidly induced silicon anti-herbivore defence affects carbon-based plant defences
  publication-title: Functional Ecology
– volume: 38
  start-page: 88
  year: 2012
  end-page: 99
  ident: bib0042
  article-title: Composition of extrafloral nectar influences interactions between the myrmecophyte
  publication-title: Journal of Chemical Ecology
– volume: 12
  year: 2017
  ident: 10.1016/j.baae.2024.11.005_bib0028
  article-title: Variation in extrafloral nectary productivity influences the ant foraging
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0169492
– year: 2019
  ident: 10.1016/j.baae.2024.11.005_bib0016
– volume: 68
  start-page: 485
  issue: 1
  year: 2017
  ident: 10.1016/j.baae.2024.11.005_bib0029
  article-title: Defense priming: An adaptive part of induced resistance
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev-arplant-042916-041132
– volume: 40
  start-page: 294
  issue: 3
  year: 2014
  ident: 10.1016/j.baae.2024.11.005_bib0002
  article-title: Quantitative effects of leaf area removal on indirect defense of lima bean (Phaseolus Lunatus) in nature
  publication-title: Journal of Chemical Ecology
  doi: 10.1007/s10886-014-0392-6
– volume: 16
  start-page: 191
  issue: 4
  year: 2011
  ident: 10.1016/j.baae.2024.11.005_bib0020
  article-title: Nectar: Generation, regulation and ecological functions
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2011.01.003
– volume: 1
  start-page: 57
  issue: 3
  year: 2011
  ident: 10.1016/j.baae.2024.11.005_bib0032
  article-title: Rhizobium alters inducible defenses in broad bean, Vicia Faba
  publication-title: Open Journal of Ecology
  doi: 10.4236/oje.2011.13007
– volume: 102
  start-page: 653
  issue: 4
  year: 2008
  ident: 10.1016/j.baae.2024.11.005_bib0025
  article-title: A novel mechanism by which silica defends grasses against herbivory
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcn130
– volume: 195
  start-page: 699
  issue: 3
  year: 2012
  ident: 10.1016/j.baae.2024.11.005_bib0040
  article-title: Rapid and accurate analyses of silicon and phosphorus in plants using a portable X-ray fluorescence spectrometer
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2012.04179.x
– volume: 9
  start-page: 643
  issue: 5
  year: 2020
  ident: 10.1016/j.baae.2024.11.005_bib0017
  article-title: Silicon alters leaf surface morphology and suppresses insect herbivory in a model grass species
  publication-title: Plants
  doi: 10.3390/plants9050643
– volume: 110
  start-page: E3631
  issue: 38
  year: 2013
  ident: 10.1016/j.baae.2024.11.005_bib0051
  article-title: Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 178
  start-page: 41
  issue: 1
  year: 2008
  ident: 10.1016/j.baae.2024.11.005_bib0019
  article-title: Indirect defence via tritrophic interactions
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2007.02330.x
– volume: 72
  start-page: 1551
  issue: 13
  year: 2011
  ident: 10.1016/j.baae.2024.11.005_bib0003
  article-title: Tannins in plant–herbivore interactions
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2011.01.040
– ident: 10.1016/j.baae.2024.11.005_bib0038
– volume: 6
  start-page: 495
  issue: 6
  year: 2003
  ident: 10.1016/j.baae.2024.11.005_bib0031
  article-title: Conspicuous extra-floral nectaries are inducible in Vicia Faba
  publication-title: Ecology Letters
  doi: 10.1046/j.1461-0248.2003.00457.x
– start-page: 47
  year: 2017
  ident: 10.1016/j.baae.2024.11.005_bib0014
  article-title: 3 - insect-resistant plants
– start-page: 263
  year: 2017
  ident: 10.1016/j.baae.2024.11.005_bib0009
  article-title: Costs of resistance in plants: From theory to evidence
  publication-title: Annual Plant Reviews Online
  doi: 10.1002/9781119312994.apr0512
– volume: 35
  start-page: 82
  issue: 1
  year: 2021
  ident: 10.1016/j.baae.2024.11.005_bib0048
  article-title: Short-Term resistance that persists: Rapidly induced silicon anti-herbivore defence affects carbon-based plant defences
  publication-title: Functional Ecology
  doi: 10.1111/1365-2435.13702
– volume: 13
  start-page: 449
  issue: 5
  year: 2012
  ident: 10.1016/j.baae.2024.11.005_bib0006
  article-title: Induction of extrafloral nectar depends on herbivore type in invasive and native Chinese tallow seedlings
  publication-title: Basic and Applied Ecology
  doi: 10.1016/j.baae.2012.07.006
– volume: 2
  start-page: 583
  year: 2007
  ident: 10.1016/j.baae.2024.11.005_bib0033
  article-title: Extrafloral nectary phenotypic plasticity is damage-and resource-dependent in Vicia Faba
  publication-title: Biology Letters
  doi: 10.1098/rsbl.2006.0527
– volume: 53
  start-page: 97
  issue: 1
  year: 2015
  ident: 10.1016/j.baae.2024.11.005_bib0010
  article-title: Priming for enhanced defense
  publication-title: Annual Review of Phytopathology
  doi: 10.1146/annurev-phyto-080614-120132
– volume: 66
  start-page: 231
  issue: 2
  year: 2011
  ident: 10.1016/j.baae.2024.11.005_bib0030
  article-title: Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2011.04483.x
– volume: 111
  start-page: 1251
  issue: 6
  year: 2012
  ident: 10.1016/j.baae.2024.11.005_bib0049
  article-title: The phylogenetic distribution of extrafloral nectaries in plants
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcs225
– volume: 31
  start-page: 2108
  issue: 11
  year: 2017
  ident: 10.1016/j.baae.2024.11.005_bib0043
  article-title: Still armed after domestication? impacts of domestication and agronomic selection on silicon defences in cereals
  publication-title: Functional Ecology
  doi: 10.1111/1365-2435.12935
– volume: 10
  year: 2019
  ident: 10.1016/j.baae.2024.11.005_bib0018
  article-title: The role of silicon in antiherbivore phytohormonal signalling
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2019.01132
– volume: 98
  start-page: 1083
  issue: 3
  year: 2001
  ident: 10.1016/j.baae.2024.11.005_bib0021
  article-title: Extrafloral nectar production of the ant-associated plant, Macaranga Tanarius, is an induced, indirect, defensive response elicited by jasmonic acid
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.98.3.1083
– volume: 101
  start-page: e03006
  issue: 6
  year: 2020
  ident: 10.1016/j.baae.2024.11.005_bib0037
  article-title: Soil nutrients and precipitation are major drivers of global patterns of grass leaf silicification
  publication-title: Ecology
  doi: 10.1002/ecy.3006
– volume: 1
  start-page: 243
  issue: 5
  year: 2006
  ident: 10.1016/j.baae.2024.11.005_bib0012
  article-title: The role of insect-derived cues in eliciting indirect plant defenses in tobacco, Nicotiana Tabacum
  publication-title: Plant Signaling & Behavior
  doi: 10.4161/psb.1.5.3279
– volume: 31
  start-page: 269
  issue: 2
  year: 2017
  ident: 10.1016/j.baae.2024.11.005_bib0024
  article-title: Herbivory-induced changes in the olfactory and visual display of flowers and extrafloral nectaries affect pollinator behavior
  publication-title: Evolutionary Ecology
  doi: 10.1007/s10682-016-9875-y
– volume: 102
  start-page: e03250
  issue: 3
  year: 2021
  ident: 10.1016/j.baae.2024.11.005_bib0026
  article-title: Targeted plant defense: Silicon conserves hormonal defense signaling impacting chewing but not fluid-feeding herbivores
  publication-title: Ecology
  doi: 10.1002/ecy.3250
– ident: 10.1016/j.baae.2024.11.005_bib0015
  doi: 10.1146/annurev.arplant.50.1.641
– volume: 11
  start-page: 9868
  issue: 11
  year: 2020
  ident: 10.1016/j.baae.2024.11.005_bib0035
  article-title: Systematic evaluation of the folin–ciocalteu and fast blue bb reactions during the analysis of total phenolics in legumes, nuts and plant seeds
  publication-title: Food & Function
  doi: 10.1039/D0FO01857K
– year: 2021
  ident: 10.1016/j.baae.2024.11.005_bib0008
  article-title: Physiological function of phenolic compounds in plant defense system. phenolic compounds - chemistry, synthesis, diversity, non-conventional industrial
– volume: 4
  start-page: 1686
  issue: 43
  year: 2019
  ident: 10.1016/j.baae.2024.11.005_bib0050
  article-title: Welcome to the Tidyverse
  publication-title: Journal of Open Source Software
  doi: 10.21105/joss.01686
– volume: 71
  start-page: 6730
  issue: 21
  year: 2020
  ident: 10.1016/j.baae.2024.11.005_bib0044
  article-title: Silicon: Its ameliorative effect on plant defense against herbivory
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/eraa300
– volume: 170
  start-page: 445
  issue: 2
  year: 2012
  ident: 10.1016/j.baae.2024.11.005_bib0041
  article-title: Delayed induced silica defences in grasses and their potential for destabilising herbivore population dynamics
  publication-title: Oecologia
  doi: 10.1007/s00442-012-2326-8
– volume: 135
  start-page: 2025
  issue: 4
  year: 2004
  ident: 10.1016/j.baae.2024.11.005_bib0001
  article-title: Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato
  publication-title: Plant Physiology
  doi: 10.1104/pp.104.048694
– volume: 24
  start-page: 984
  issue: 5
  year: 2021
  ident: 10.1016/j.baae.2024.11.005_bib0045
  article-title: A shift from phenol to silica-based leaf defences during long-term soil and ecosystem development
  publication-title: Ecology Letters
  doi: 10.1111/ele.13713
– volume: 67
  start-page: 283
  issue: 3
  year: 1992
  ident: 10.1016/j.baae.2024.11.005_bib0022
  article-title: The dilemma of plants: To grow or defend
  publication-title: The Quarterly Review of Biology
  doi: 10.1086/417659
– volume: 34
  start-page: 1142
  issue: 6
  year: 2020
  ident: 10.1016/j.baae.2024.11.005_bib0036
  article-title: Is it time to include legumes in plant silicon research?
  publication-title: Functional Ecology
  doi: 10.1111/1365-2435.13565
– volume: 201
  start-page: 908
  issue: 4359
  year: 1978
  ident: 10.1016/j.baae.2024.11.005_bib0046
  article-title: Microwear of mammalian teeth as an indicator of diet
  publication-title: Science
  doi: 10.1126/science.684415
– volume: 20
  start-page: 331
  issue: 1
  year: 1989
  ident: 10.1016/j.baae.2024.11.005_bib0027
  article-title: Induced plant responses to herbivory
  publication-title: Annual Review of Ecology and Systematics
  doi: 10.1146/annurev.es.20.110189.001555
– volume: 56
  start-page: 16
  issue: 1
  year: 2015
  ident: 10.1016/j.baae.2024.11.005_bib0034
  article-title: Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants
  publication-title: Plant and Cell Physiology
  doi: 10.1093/pcp/pcu158
– volume: 388
  year: 2022
  ident: 10.1016/j.baae.2024.11.005_bib0047
  article-title: Impact of hormone applications on ripening-related metabolites in gewürztraminer grapes (Vitis Vinifera L.): The key role of jasmonates in terpene modulation
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2022.132948
– volume: 83
  start-page: 303
  issue: 4
  year: 2013
  ident: 10.1016/j.baae.2024.11.005_bib0013
  article-title: Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice
  publication-title: Plant Molecular Biology
  doi: 10.1007/s11103-013-0087-3
– volume: 8
  start-page: e56457
  issue: 2
  year: 2013
  ident: 10.1016/j.baae.2024.11.005_bib0007
  article-title: Activation of the Jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0056457
– start-page: 193
  year: 1992
  ident: 10.1016/j.baae.2024.11.005_bib0005
  article-title: Classification of opal phytoliths formed in selected dicotyledons native to the great plains
– volume: 48
  start-page: 342
  issue: 3
  year: 2016
  ident: 10.1016/j.baae.2024.11.005_bib0023
  article-title: Induced floral and extrafloral nectar production affect ant-pollinator interactions and plant fitness
  publication-title: Biotropica
  doi: 10.1111/btp.12283
– volume: 68
  year: 2017
  ident: 10.1016/j.baae.2024.11.005_bib0052
  article-title: Trade-offs between plant growth and defense against insect herbivory: An emerging mechanistic synthesis
  publication-title: Annual Review of Plant Biology
– volume: 41
  start-page: 301
  issue: 3
  year: 1979
  ident: 10.1016/j.baae.2024.11.005_bib0004
  article-title: On the calculation of sugar concentration in flower nectar
  publication-title: Oecologia
  doi: 10.1007/BF00377434
– volume: 107
  start-page: 17228
  issue: 40
  year: 2010
  ident: 10.1016/j.baae.2024.11.005_bib0039
  article-title: Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1009007107
– volume: 38
  start-page: 88
  issue: 1
  year: 2012
  ident: 10.1016/j.baae.2024.11.005_bib0042
  article-title: Composition of extrafloral nectar influences interactions between the myrmecophyte Humboldtia Brunonis and its ant associates
  publication-title: Journal of Chemical Ecology
  doi: 10.1007/s10886-011-0052-z
– year: 1978
  ident: 10.1016/j.baae.2024.11.005_bib0011
SSID ssj0014038
Score 2.3982706
Snippet Plants have evolved direct and indirect defences against herbivores, which may come at a cost to other plant functions. Many plants can uptake and deposit...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 11
SubjectTerms applied ecology
faba beans
herbivores
Indirect defense
Induced defense
jasmonic acid
leaves
methyl jasmonate
Mutualism
nectar
Plant defense
plant tissues
Plant-interaction
pollination
secretion
silicon
soil
sugar content
sugars
Trade-off
Tri-trophic interaction
Vicia faba
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (ND)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA9FEHqRqhVfqxLBW9l2d5Ndk6PKE_EgHrR4C_mYwJPXfeV9FPzvnclm9dWDvfQW9jNkJpPfTCa_YewkSlDeyarwjYVCChUKVTucVxDBNSEoD4nt86a9upfXD83DWqkvygnr6YH7gfsRlaxiWVnZhlI6xNfh1OuAiimFLb1O1rfU5eBM5f0DWaYa1ggGdCLgzMdl-swuZy0RZNbyO_F3UuG6tSUpMff_tTK9sdFp4bn8xLYyYuRnfU-32QfodthmX0PyCVtjn1t749dDa_hCnrWLXba6TZlZf4DbV2HwnKHF42w6sXO-mExRKTpuu8DRYM9tnNLhfd6hRcTbk47_pAgIj9ZZTtFbvrb3zWeRUy3qpyl_tItfFJGHz-z-cnx3cVXkcguFF1ouizZqj25p4wVx1lSnDrFUFUVAkAUaPZfoRAnC-qjAV8Ej0HBQg210q12lYin22EY362CfcYg-eOkkUKhSoVMFXjZNCy2KHh0aPWLfhhE3v3tWDTOkmz0ako8h-aB7YlA-I3ZOQnl5khix0wXUE5P1xPxLT0asGURqMrjoQQN-avLuz48H-RucebSdYjuYrRZG4MDULS796sv_6OBX9rGm2sIpI_yAbSznKzhEwLN0R0m3nwFJff1c
  priority: 102
  providerName: Directory of Open Access Journals
Title Positive association between foliar silicon and extrafloral nectar in Vicia faba with application of methyl jasmonate
URI https://dx.doi.org/10.1016/j.baae.2024.11.005
https://www.proquest.com/docview/3154262128
https://doaj.org/article/f841f01a46d04b548d7c9d07343a0c92
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0Gq3QuKCKFCxQFdG4obSTWInGx_LaqvloaoCinqz_BhXqZak2gdSL3w7M4m3Dw4cuEWO41jz8sx4Hoy9CxIqZ2WWuMJAIkXlkyq3yFcQwBbeVw66ap-n5fxcfrooLnbYdJsLQ2GVUfb3Mr2T1nFkHKE5vq7r8beMkkYnKqMoSOQVucv2cqHKYsD2jj9-np_eXibItGtoTfO7apwxd6YP87LGULXMXB5RMU_qYnfvfOrK-D84pv4S2N0pdPKUPYnqIz_ud7jPdqB5xh71DSVv8Gnm4tPB7C6DDT-ILLx6zjZnXZjWL-DmDjM8hmvx0C5qs-SreoEU0nDTeI7Se2nCgjL5eYOgwtd1w3-QO4QHYw0nVy6_dxHO28CpMfXNgl-Z1U9yz8MLdn4y-z6dJ7H3QuKEkuukDMqhjVo4QQVssolFxSoLwqPGBQrNmGBFCsK4UIHLvEOtw0IOplClslkVUnHABk3bwEvGITjvpJVAfssKLSxwsihKKJEO0LpRQ_Z-C3F93ZfY0NvYsytN-NGEH7RVNOJnyD4QUm5nUnnsbqBdXupIHzpUuNk0M7L0qbRolPmJUx6lmRQmdSofsmKLUv2A2nCp-p8_f7vFv0Y2pLsV00C7WWmBgMlL1AOqV_-59mv2OKfewl1E-Bs2WC83cIgKz9qO2O7R72yEZD39-uVsFMl71LkP_gALgQM5
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEaIXVB4VW6AYiRtKN4mdbHKEaqsFSoVEi3qz_BijVNuk2kelXvjtzDhOHxw4cIucxLE84_GM8803jL33EiprZJbYQkMiReWSKje4rsCDKZyrLAS2z-Nydiq_nBVnG-xgyIUhWGW0_b1ND9Y6tozjbI4vm2b8I6Ok0UmdEQoS14p8wB7KQkwI17f_-wbnQXx0IR8Onw5cnDFzpgd5Ga2JKzOX-0TlSTXs7uxOgcT_3ib1l7kOe9DhNnsSnUf-sR_fU7YB7TP2qC8neY1XUxuvdqa3-Wv4QlzAy-ds_T2AtK6A61u58AjW4r6bN3rBl80c9aPlunUcbfdC-znl8fMWJwpvNy3_SYch3GujOR3k8ju_wXnnOZWlvp7zc728oMN5eMFOD6cnB7MkVl5IrKjlKil9bTFCLawg-ppsYtCtyrxw6G9BjUGMNyIFoa2vwGbOos9hIAdd1GVtssqnYodttl0LLxkHb52VRgKdWlYYX4GVRVFCiVqAsU09Yh-GGVeXPcGGGpBn54rko0g-GKkolM-IfSKh3DxJ5NihoVv8UlE7lK9wsGmmZelSaTAkcxNbO7RlUujU1vmIFYNI1T1dw66af3783SB_hYuQ_qzoFrr1UgmcmLxEL6Da_c--37LHs5NvR-ro8_HXV2wrpyrDARv-mm2uFmt4g67PyuwF1f4DHacBeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Positive+association+between+foliar+silicon+and+extrafloral+nectar+in+Vicia+faba+with+application+of+methyl+jasmonate&rft.jtitle=Basic+and+applied+ecology&rft.au=Gowton%2C+Chelsea+Megan&rft.au=Chiu%2C+Dennis&rft.au=Peetoom+Heida%2C+Isaac+John&rft.au=Carrillo%2C+Juli&rft.date=2025-02-01&rft.issn=1439-1791&rft.volume=82&rft.spage=11&rft.epage=17&rft_id=info:doi/10.1016%2Fj.baae.2024.11.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_baae_2024_11_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-1791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-1791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-1791&client=summon