Positive association between foliar silicon and extrafloral nectar in Vicia faba with application of methyl jasmonate
Plants have evolved direct and indirect defences against herbivores, which may come at a cost to other plant functions. Many plants can uptake and deposit large amounts of silicon within plant tissue, creating structures which can reduce herbivore performance. Silicon uptake can increase plant defen...
Saved in:
Published in | Basic and applied ecology Vol. 82; pp. 11 - 17 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier GmbH
01.02.2025
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1439-1791 |
DOI | 10.1016/j.baae.2024.11.005 |
Cover
Abstract | Plants have evolved direct and indirect defences against herbivores, which may come at a cost to other plant functions. Many plants can uptake and deposit large amounts of silicon within plant tissue, creating structures which can reduce herbivore performance. Silicon uptake can increase plant defenses against herbivores, but it has also been shown to trade-off with defensive phenolic compounds due to interference with jasmonic acid (JA) signaling. Additionally, plants can recruit predacious insects with extrafloral nectar (EFN), a sugar secretion not involved in pollination. It is currently unclear whether silicon uptake reduces other putative defences associated with the JA pathway, like EFN production. We used faba bean (Vicia faba) to identify potential trade-offs between silicon accumulation, phenolic content, and EFN production. We grew four genotypes of faba bean that varied in tannin content in control soil, or soil supplemented with silicon. After five weeks of growth, we exposed plants to either a buffer or methyl jasmonate (MeJA) solution to simulate an herbivory response. We measured EFN production at 24 and 48 hours after treatment, and harvested leaves to quantify silicon and phenolic content. We found silicon supplementation, but not MeJA treatment, increased foliar silicon concentration. Silicon supplementation did not affect foliar phenolic content or EFN sugar content. Silicon concentration (ppm) and MeJA treatment did not decrease foliar phenolic content or EFN sugar content. However, we found an interaction between silicon concentration (ppm) and MeJA treatment with EFN sugar content: across MeJA-treated plants, we detected a positive association between foliar silicon concentration and the amount of sugar (mg) in EFN. This study is the first to show MeJA can interact with leaf silicon concentration to alter EFN response, with the potential for cascading effects on other trophic levels. |
---|---|
AbstractList | Plants have evolved direct and indirect defences against herbivores, which may come at a cost to other plant functions. Many plants can uptake and deposit large amounts of silicon within plant tissue, creating structures which can reduce herbivore performance. Silicon uptake can increase plant defenses against herbivores, but it has also been shown to trade-off with defensive phenolic compounds due to interference with jasmonic acid (JA) signaling. Additionally, plants can recruit predacious insects with extrafloral nectar (EFN), a sugar secretion not involved in pollination. It is currently unclear whether silicon uptake reduces other putative defences associated with the JA pathway, like EFN production. We used faba bean (Vicia faba) to identify potential trade-offs between silicon accumulation, phenolic content, and EFN production. We grew four genotypes of faba bean that varied in tannin content in control soil, or soil supplemented with silicon. After five weeks of growth, we exposed plants to either a buffer or methyl jasmonate (MeJA) solution to simulate an herbivory response. We measured EFN production at 24 and 48 hours after treatment, and harvested leaves to quantify silicon and phenolic content. We found silicon supplementation, but not MeJA treatment, increased foliar silicon concentration. Silicon supplementation did not affect foliar phenolic content or EFN sugar content. Silicon concentration (ppm) and MeJA treatment did not decrease foliar phenolic content or EFN sugar content. However, we found an interaction between silicon concentration (ppm) and MeJA treatment with EFN sugar content: across MeJA-treated plants, we detected a positive association between foliar silicon concentration and the amount of sugar (mg) in EFN. This study is the first to show MeJA can interact with leaf silicon concentration to alter EFN response, with the potential for cascading effects on other trophic levels. |
Author | Carrillo, Juli Gowton, Chelsea Megan Peetoom Heida, Isaac John Chiu, Dennis |
Author_xml | – sequence: 1 givenname: Chelsea Megan orcidid: 0000-0003-2443-0809 surname: Gowton fullname: Gowton, Chelsea Megan email: cgowton@student.ubc.ca organization: Centre for Sustainable Food Systems, Faculty of Land and Food Systems, University of British Columbia, Located on Traditional xwməθkwəýəm Musqueam Territory, 2357 Main Mall, Vancouver, British Columbia, Canada – sequence: 2 givenname: Dennis orcidid: 0009-0001-8881-6682 surname: Chiu fullname: Chiu, Dennis organization: Centre for Sustainable Food Systems, Faculty of Land and Food Systems, University of British Columbia, Located on Traditional xwməθkwəýəm Musqueam Territory, 2357 Main Mall, Vancouver, British Columbia, Canada – sequence: 3 givenname: Isaac John surname: Peetoom Heida fullname: Peetoom Heida, Isaac John organization: Centre for Sustainable Food Systems, Faculty of Land and Food Systems, University of British Columbia, Located on Traditional xwməθkwəýəm Musqueam Territory, 2357 Main Mall, Vancouver, British Columbia, Canada – sequence: 4 givenname: Juli surname: Carrillo fullname: Carrillo, Juli organization: Centre for Sustainable Food Systems, Faculty of Land and Food Systems, University of British Columbia, Located on Traditional xwməθkwəýəm Musqueam Territory, 2357 Main Mall, Vancouver, British Columbia, Canada |
BookMark | eNp9kT1vFDEQhrcIEkngD6RySXOLx_Z-WKJBER-RIkEBtNasd5x4tWcfti8h_x5fFqWksjSe55nRvBfNWYiBmuYKeAsc-vdLOyFSK7hQLUDLeXfWnIOSegeDhtfNRc4L56C4HM-b4_eYffEPxDDnaD0WHwObqDwSBebi6jGx7FdvaxnDzOhPSejWmHBlgWyp3z6wX76izOGE7NGXe4aHQ0U2WXRsT-X-aWUL5n0MWOhN88rhmuntv_ey-fn504_rr7vbb19urj_e7qzUqux6p20nZGcll0rDMHWgwMkZOkVawOAmyUmidSNZmC3XMJEg7HSvJxgdl5fNzeadIy7mkPwe05OJ6M1zIaY7g6l4u5JxY1VzQNXPXE2dGufB6pkPUknkVovqere5Din-PlIuZu-zpXXFQPGYjaxbiV6AGGur2Fptijknci-jgZtTRmYxp4zMKSMDYGpGFfqwQVQP8uApmWw9BUuzT_XOdWP_P_wv_kufKQ |
Cites_doi | 10.1371/journal.pone.0169492 10.1146/annurev-arplant-042916-041132 10.1007/s10886-014-0392-6 10.1016/j.tplants.2011.01.003 10.4236/oje.2011.13007 10.1093/aob/mcn130 10.1111/j.1469-8137.2012.04179.x 10.3390/plants9050643 10.1111/j.1469-8137.2007.02330.x 10.1016/j.phytochem.2011.01.040 10.1046/j.1461-0248.2003.00457.x 10.1002/9781119312994.apr0512 10.1111/1365-2435.13702 10.1016/j.baae.2012.07.006 10.1098/rsbl.2006.0527 10.1146/annurev-phyto-080614-120132 10.1111/j.1365-313X.2011.04483.x 10.1093/aob/mcs225 10.1111/1365-2435.12935 10.3389/fpls.2019.01132 10.1073/pnas.98.3.1083 10.1002/ecy.3006 10.4161/psb.1.5.3279 10.1007/s10682-016-9875-y 10.1002/ecy.3250 10.1146/annurev.arplant.50.1.641 10.1039/D0FO01857K 10.21105/joss.01686 10.1093/jxb/eraa300 10.1007/s00442-012-2326-8 10.1104/pp.104.048694 10.1111/ele.13713 10.1086/417659 10.1111/1365-2435.13565 10.1126/science.684415 10.1146/annurev.es.20.110189.001555 10.1093/pcp/pcu158 10.1016/j.foodchem.2022.132948 10.1007/s11103-013-0087-3 10.1371/journal.pone.0056457 10.1111/btp.12283 10.1007/BF00377434 10.1073/pnas.1009007107 10.1007/s10886-011-0052-z |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.baae.2024.11.005 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals (ND) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_f841f01a46d04b548d7c9d07343a0c92 10_1016_j_baae_2024_11_005 S1439179124000884 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXKI AAXUO ABFYP ABGRD ABLST ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADQTV ADVLN AEBSH AEIPS AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CAG COF CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FGOYB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SSA SSJ SSZ T5K Y6R ~G- ~KM AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU BNPGV CITATION SSH 7S9 EFKBS EFLBG L.6 |
ID | FETCH-LOGICAL-c394t-6f9c5235c3034917b5141f3d154e9217fb30e3acf8ec1dc091be2ea5969b18f03 |
IEDL.DBID | AIKHN |
ISSN | 1439-1791 |
IngestDate | Wed Aug 27 01:16:25 EDT 2025 Thu Sep 04 19:13:19 EDT 2025 Tue Jul 01 01:53:59 EDT 2025 Sat Jan 25 15:58:31 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Plant-interaction Induced defense Indirect defense Trade-off Tri-trophic interaction Plant defense Mutualism |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-6f9c5235c3034917b5141f3d154e9217fb30e3acf8ec1dc091be2ea5969b18f03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0001-8881-6682 0000-0003-2443-0809 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1439179124000884 |
PQID | 3154262128 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f841f01a46d04b548d7c9d07343a0c92 proquest_miscellaneous_3154262128 crossref_primary_10_1016_j_baae_2024_11_005 elsevier_sciencedirect_doi_10_1016_j_baae_2024_11_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Basic and applied ecology |
PublicationYear | 2025 |
Publisher | Elsevier GmbH Elsevier |
Publisher_xml | – name: Elsevier GmbH – name: Elsevier |
References | Putra, Powell, Hartley, Johnson (bib0036) 2020; 34 Radhika, Kost, Mithöfer, Boland (bib0039) 2010; 107 Wang, Weide, Yan, Tindjau, Carbajo, Deluc, Zandberg, Castellarin (bib0047) 2022; 388 Cipollini, Walters, Voelckel (bib0009) 2017 Heil, Koch, Hilpert, Fiala, Boland, Linsenmair (bib0021) 2001; 98 Fox, Weisberg (bib0016) 2019 Mitani, Yamaji, Ago, Iwasaki, Ma (bib0030) 2011; 66 Bolten, Feinsinger, Baker, Baker (bib0004) 1979; 41 Epstein, E. 1999. Silicon. Annual Review of Plant Physiology and Plant Molecular Biology 50:641. (bib0011) 1978 Herms, Mattson (bib0022) 1992; 67 Ament, Kant, Sabelis, Haring, Schuurink (bib0001) 2004; 135 Simpson, Wade, Rees, Osborne, Hartley (bib0043) 2017; 31 Chowdhary, Alooparampil, Pandya, Tank, Chowdhary, Alooparampil, Pandya, Tank (bib0008) 2021 Johnson, Hartley, Ryalls, Frew, Hall (bib0026) 2021; 102 Lange, Calixto, Del-Claro (bib0028) 2017; 12 . Conrath, Beckers, Langenbach, Jaskiewicz (bib0010) 2015; 53 Delphia, Mescher, Felton, Moraes (bib0012) 2006; 1 Mondor, Summers (bib0032) 2011; 1 Carrillo, Wang, Ding, Siemann (bib0006) 2012; 13 Mauch-Mani, Baccelli, Luna, Flors (bib0029) 2017; 68 Waterman, Hall, Mikhael, Cazzonelli, Hartley, Johnson (bib0048) 2021; 35 Pico, Pismag, Laudouze, Martinez (bib0035) 2020; 11 Singh, Kumar, Hartley, Singh (bib0044) 2020; 71 Ye, Song, Long, Wang, Baerson, Pan, Zhu-Salzman (bib0051) 2013; 110 Carvalhais, Dennis, Badri, Tyson, Vivanco, Schenk (bib0007) 2013; 8 Hunt, Dean, Webster, Johnson, Ennos (bib0025) 2008; 102 Wickham, Averick, Bryan, Chang, McGowan, François, Grolemund (bib0050) 2019; 4 Reynolds, Lambin, Massey, Reidinger, Sherratt, Smith, White, Hartley (bib0041) 2012; 170 Karban, Myers (bib0027) 1989; 20 Hall, Dagg, Waterman, Johnson (bib0017) 2020; 9 Barbehenn, Constabel (bib0003) 2011; 72 Ballhorn, Kay, Kautz (bib0002) 2014; 40 Easwar Rao, Divya, Prathyusha, Krishna, Chaitanya (bib0014) 2017 Hoffmeister, Junker (bib0024) 2017; 31 Heil (bib0019) 2008; 178 Heil (bib0020) 2011; 16 Walker, Hoeck, Perez (bib0046) 1978; 201 Okada, Abe, Arimura (bib0034) 2015; 56 Mondor, Addicott (bib0031) 2003; 6 Quigley, Griffith, Donati, Michael Anderson (bib0037) 2020; 101 Bozarth (bib0005) 1992 Mondor, Tremblay, Messing (bib0033) 2007; 2 R Core Team. 2021. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Deshmukh, Vivancos, Guérin, Sonah, Labbé, Belzile, Bélanger (bib0013) 2013; 83 Hall, Waterman, Vandegeer, Hartley, Johnson (bib0018) 2019; 10 Weber, Keeler (bib0049) 2012; 111 Zuest, Agrawal (bib0052) 2017; 68 Reidinger, Ramsey, Hartley (bib0040) 2012; 195 Hernandez-Cumplido, Forter, Moreira, Heil, Benrey (bib0023) 2016; 48 Shenoy, Radhika, Satish, Borges (bib0042) 2012; 38 Tombeur, Laliberté, Lambers, Faucon, Zemunik, Turner, Cornelis, Mahy (bib0045) 2021; 24 10.1016/j.baae.2024.11.005_bib0038 Heil (10.1016/j.baae.2024.11.005_bib0021) 2001; 98 Ament (10.1016/j.baae.2024.11.005_bib0001) 2004; 135 Wickham (10.1016/j.baae.2024.11.005_bib0050) 2019; 4 Barbehenn (10.1016/j.baae.2024.11.005_bib0003) 2011; 72 Wang (10.1016/j.baae.2024.11.005_bib0047) 2022; 388 Bolten (10.1016/j.baae.2024.11.005_bib0004) 1979; 41 Tombeur (10.1016/j.baae.2024.11.005_bib0045) 2021; 24 Singh (10.1016/j.baae.2024.11.005_bib0044) 2020; 71 Karban (10.1016/j.baae.2024.11.005_bib0027) 1989; 20 Walker (10.1016/j.baae.2024.11.005_bib0046) 1978; 201 Hernandez-Cumplido (10.1016/j.baae.2024.11.005_bib0023) 2016; 48 Okada (10.1016/j.baae.2024.11.005_bib0034) 2015; 56 Herms (10.1016/j.baae.2024.11.005_bib0022) 1992; 67 Conrath (10.1016/j.baae.2024.11.005_bib0010) 2015; 53 Pico (10.1016/j.baae.2024.11.005_bib0035) 2020; 11 Johnson (10.1016/j.baae.2024.11.005_bib0026) 2021; 102 Bozarth (10.1016/j.baae.2024.11.005_bib0005) 1992 Reynolds (10.1016/j.baae.2024.11.005_bib0041) 2012; 170 Carrillo (10.1016/j.baae.2024.11.005_bib0006) 2012; 13 Hoffmeister (10.1016/j.baae.2024.11.005_bib0024) 2017; 31 Shenoy (10.1016/j.baae.2024.11.005_bib0042) 2012; 38 Hall (10.1016/j.baae.2024.11.005_bib0017) 2020; 9 Mondor (10.1016/j.baae.2024.11.005_bib0031) 2003; 6 10.1016/j.baae.2024.11.005_bib0015 Radhika (10.1016/j.baae.2024.11.005_bib0039) 2010; 107 Zuest (10.1016/j.baae.2024.11.005_bib0052) 2017; 68 Mondor (10.1016/j.baae.2024.11.005_bib0033) 2007; 2 Fox (10.1016/j.baae.2024.11.005_bib0016) 2019 Putra (10.1016/j.baae.2024.11.005_bib0036) 2020; 34 Mitani (10.1016/j.baae.2024.11.005_bib0030) 2011; 66 Delphia (10.1016/j.baae.2024.11.005_bib0012) 2006; 1 Ye (10.1016/j.baae.2024.11.005_bib0051) 2013; 110 Simpson (10.1016/j.baae.2024.11.005_bib0043) 2017; 31 Carvalhais (10.1016/j.baae.2024.11.005_bib0007) 2013; 8 Ballhorn (10.1016/j.baae.2024.11.005_bib0002) 2014; 40 Lange (10.1016/j.baae.2024.11.005_bib0028) 2017; 12 Deshmukh (10.1016/j.baae.2024.11.005_bib0013) 2013; 83 Hall (10.1016/j.baae.2024.11.005_bib0018) 2019; 10 Quigley (10.1016/j.baae.2024.11.005_bib0037) 2020; 101 Waterman (10.1016/j.baae.2024.11.005_bib0048) 2021; 35 (10.1016/j.baae.2024.11.005_bib0011) 1978 Reidinger (10.1016/j.baae.2024.11.005_bib0040) 2012; 195 Mauch-Mani (10.1016/j.baae.2024.11.005_bib0029) 2017; 68 Easwar Rao (10.1016/j.baae.2024.11.005_bib0014) 2017 Mondor (10.1016/j.baae.2024.11.005_bib0032) 2011; 1 Hunt (10.1016/j.baae.2024.11.005_bib0025) 2008; 102 Chowdhary (10.1016/j.baae.2024.11.005_bib0008) 2021 Weber (10.1016/j.baae.2024.11.005_bib0049) 2012; 111 Cipollini (10.1016/j.baae.2024.11.005_bib0009) 2017 Heil (10.1016/j.baae.2024.11.005_bib0019) 2008; 178 Heil (10.1016/j.baae.2024.11.005_bib0020) 2011; 16 |
References_xml | – volume: 107 start-page: 17228 year: 2010 end-page: 17233 ident: bib0039 article-title: Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 34 start-page: 1142 year: 2020 end-page: 1157 ident: bib0036 article-title: Is it time to include legumes in plant silicon research? publication-title: Functional Ecology – volume: 16 start-page: 191 year: 2011 end-page: 200 ident: bib0020 article-title: Nectar: Generation, regulation and ecological functions publication-title: Trends in Plant Science – volume: 53 start-page: 97 year: 2015 end-page: 119 ident: bib0010 article-title: Priming for enhanced defense publication-title: Annual Review of Phytopathology – year: 2021 ident: bib0008 article-title: Physiological function of phenolic compounds in plant defense system. phenolic compounds - chemistry, synthesis, diversity, non-conventional industrial publication-title: Pharmaceutical and Therapeutic Applications – volume: 72 start-page: 1551 year: 2011 end-page: 1565 ident: bib0003 article-title: Tannins in plant–herbivore interactions publication-title: Phytochemistry – start-page: 263 year: 2017 end-page: 307 ident: bib0009 article-title: Costs of resistance in plants: From theory to evidence publication-title: Annual Plant Reviews Online – volume: 31 start-page: 269 year: 2017 end-page: 284 ident: bib0024 article-title: Herbivory-induced changes in the olfactory and visual display of flowers and extrafloral nectaries affect pollinator behavior publication-title: Evolutionary Ecology – volume: 66 start-page: 231 year: 2011 end-page: 240 ident: bib0030 article-title: Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation publication-title: The Plant Journal – volume: 8 start-page: e56457 year: 2013 ident: bib0007 article-title: Activation of the Jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities publication-title: PLoS ONE – volume: 11 start-page: 9868 year: 2020 end-page: 9880 ident: bib0035 article-title: Systematic evaluation of the folin–ciocalteu and fast blue bb reactions during the analysis of total phenolics in legumes, nuts and plant seeds publication-title: Food & Function – volume: 67 start-page: 283 year: 1992 end-page: 335 ident: bib0022 article-title: The dilemma of plants: To grow or defend publication-title: The Quarterly Review of Biology – volume: 110 start-page: E3631 year: 2013 end-page: E3639 ident: bib0051 article-title: Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 83 start-page: 303 year: 2013 end-page: 315 ident: bib0013 article-title: Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice publication-title: Plant Molecular Biology – volume: 102 start-page: 653 year: 2008 end-page: 656 ident: bib0025 article-title: A novel mechanism by which silica defends grasses against herbivory publication-title: Annals of Botany – volume: 20 start-page: 331 year: 1989 end-page: 348 ident: bib0027 article-title: Induced plant responses to herbivory publication-title: Annual Review of Ecology and Systematics – volume: 201 start-page: 908 year: 1978 end-page: 910 ident: bib0046 article-title: Microwear of mammalian teeth as an indicator of diet publication-title: Science – volume: 195 start-page: 699 year: 2012 end-page: 706 ident: bib0040 article-title: Rapid and accurate analyses of silicon and phosphorus in plants using a portable X-ray fluorescence spectrometer publication-title: New Phytologist – volume: 2 start-page: 583 year: 2007 end-page: 585 ident: bib0033 article-title: Extrafloral nectary phenotypic plasticity is damage-and resource-dependent in publication-title: Biology Letters – volume: 9 start-page: 643 year: 2020 ident: bib0017 article-title: Silicon alters leaf surface morphology and suppresses insect herbivory in a model grass species publication-title: Plants – volume: 4 start-page: 1686 year: 2019 ident: bib0050 article-title: Welcome to the Tidyverse publication-title: Journal of Open Source Software – volume: 68 year: 2017 ident: bib0052 article-title: Trade-offs between plant growth and defense against insect herbivory: An emerging mechanistic synthesis publication-title: Annual Review of Plant Biology – year: 1978 ident: bib0011 article-title: CRC Handbook of Chemistry and Physics – volume: 68 start-page: 485 year: 2017 end-page: 512 ident: bib0029 article-title: Defense priming: An adaptive part of induced resistance publication-title: Annual Review of Plant Biology – volume: 1 start-page: 243 year: 2006 end-page: 250 ident: bib0012 article-title: The role of insect-derived cues in eliciting indirect plant defenses in tobacco, publication-title: Plant Signaling & Behavior – reference: Epstein, E. 1999. Silicon. Annual Review of Plant Physiology and Plant Molecular Biology 50:641. – volume: 10 year: 2019 ident: bib0018 article-title: The role of silicon in antiherbivore phytohormonal signalling publication-title: Frontiers in Plant Science – volume: 178 start-page: 41 year: 2008 end-page: 61 ident: bib0019 article-title: Indirect defence via tritrophic interactions publication-title: New Phytologist – volume: 6 start-page: 495 year: 2003 end-page: 497 ident: bib0031 article-title: Conspicuous extra-floral nectaries are inducible in publication-title: Ecology Letters – volume: 13 start-page: 449 year: 2012 end-page: 457 ident: bib0006 article-title: Induction of extrafloral nectar depends on herbivore type in invasive and native Chinese tallow seedlings publication-title: Basic and Applied Ecology – volume: 56 start-page: 16 year: 2015 end-page: 27 ident: bib0034 article-title: Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants publication-title: Plant and Cell Physiology – volume: 24 start-page: 984 year: 2021 end-page: 995 ident: bib0045 article-title: A shift from phenol to silica-based leaf defences during long-term soil and ecosystem development publication-title: Ecology Letters – volume: 1 start-page: 57 year: 2011 end-page: 62 ident: bib0032 article-title: Rhizobium alters inducible defenses in broad bean, publication-title: Open Journal of Ecology – volume: 102 start-page: e03250 year: 2021 ident: bib0026 article-title: Targeted plant defense: Silicon conserves hormonal defense signaling impacting chewing but not fluid-feeding herbivores publication-title: Ecology – volume: 98 start-page: 1083 year: 2001 end-page: 1088 ident: bib0021 article-title: Extrafloral nectar production of the ant-associated plant, publication-title: Proceedings of the National Academy of Sciences – start-page: 47 year: 2017 end-page: 74 ident: bib0014 article-title: 3 - insect-resistant plants publication-title: Current Developments in Biotechnology and Bioengineering – volume: 40 start-page: 294 year: 2014 end-page: 296 ident: bib0002 article-title: Quantitative effects of leaf area removal on indirect defense of lima bean ( publication-title: Journal of Chemical Ecology – volume: 135 start-page: 2025 year: 2004 end-page: 2037 ident: bib0001 article-title: Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato publication-title: Plant Physiology – reference: R Core Team. 2021. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. – volume: 48 start-page: 342 year: 2016 end-page: 348 ident: bib0023 article-title: Induced floral and extrafloral nectar production affect ant-pollinator interactions and plant fitness publication-title: Biotropica – volume: 71 start-page: 6730 year: 2020 end-page: 6743 ident: bib0044 article-title: Silicon: Its ameliorative effect on plant defense against herbivory publication-title: Journal of Experimental Botany – volume: 12 year: 2017 ident: bib0028 article-title: Variation in extrafloral nectary productivity influences the ant foraging publication-title: PLoS ONE – volume: 388 year: 2022 ident: bib0047 article-title: Impact of hormone applications on ripening-related metabolites in gewürztraminer grapes ( publication-title: Food Chemistry – start-page: 193 year: 1992 end-page: 214 ident: bib0005 article-title: Classification of opal phytoliths formed in selected dicotyledons native to the great plains publication-title: Advances in Archaeological and Museum Science – volume: 101 start-page: e03006 year: 2020 ident: bib0037 article-title: Soil nutrients and precipitation are major drivers of global patterns of grass leaf silicification publication-title: Ecology – volume: 31 start-page: 2108 year: 2017 end-page: 2117 ident: bib0043 article-title: Still armed after domestication? impacts of domestication and agronomic selection on silicon defences in cereals publication-title: Functional Ecology – volume: 170 start-page: 445 year: 2012 end-page: 456 ident: bib0041 article-title: Delayed induced silica defences in grasses and their potential for destabilising herbivore population dynamics publication-title: Oecologia – reference: . – volume: 111 start-page: 1251 year: 2012 end-page: 1261 ident: bib0049 article-title: The phylogenetic distribution of extrafloral nectaries in plants publication-title: Annals of Botany – volume: 41 start-page: 301 year: 1979 end-page: 304 ident: bib0004 article-title: On the calculation of sugar concentration in flower nectar publication-title: Oecologia – year: 2019 ident: bib0016 article-title: An R Companion to Applied Regression_. Third – volume: 35 start-page: 82 year: 2021 end-page: 92 ident: bib0048 article-title: Short-Term resistance that persists: Rapidly induced silicon anti-herbivore defence affects carbon-based plant defences publication-title: Functional Ecology – volume: 38 start-page: 88 year: 2012 end-page: 99 ident: bib0042 article-title: Composition of extrafloral nectar influences interactions between the myrmecophyte publication-title: Journal of Chemical Ecology – volume: 12 year: 2017 ident: 10.1016/j.baae.2024.11.005_bib0028 article-title: Variation in extrafloral nectary productivity influences the ant foraging publication-title: PLoS ONE doi: 10.1371/journal.pone.0169492 – year: 2019 ident: 10.1016/j.baae.2024.11.005_bib0016 – volume: 68 start-page: 485 issue: 1 year: 2017 ident: 10.1016/j.baae.2024.11.005_bib0029 article-title: Defense priming: An adaptive part of induced resistance publication-title: Annual Review of Plant Biology doi: 10.1146/annurev-arplant-042916-041132 – volume: 40 start-page: 294 issue: 3 year: 2014 ident: 10.1016/j.baae.2024.11.005_bib0002 article-title: Quantitative effects of leaf area removal on indirect defense of lima bean (Phaseolus Lunatus) in nature publication-title: Journal of Chemical Ecology doi: 10.1007/s10886-014-0392-6 – volume: 16 start-page: 191 issue: 4 year: 2011 ident: 10.1016/j.baae.2024.11.005_bib0020 article-title: Nectar: Generation, regulation and ecological functions publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2011.01.003 – volume: 1 start-page: 57 issue: 3 year: 2011 ident: 10.1016/j.baae.2024.11.005_bib0032 article-title: Rhizobium alters inducible defenses in broad bean, Vicia Faba publication-title: Open Journal of Ecology doi: 10.4236/oje.2011.13007 – volume: 102 start-page: 653 issue: 4 year: 2008 ident: 10.1016/j.baae.2024.11.005_bib0025 article-title: A novel mechanism by which silica defends grasses against herbivory publication-title: Annals of Botany doi: 10.1093/aob/mcn130 – volume: 195 start-page: 699 issue: 3 year: 2012 ident: 10.1016/j.baae.2024.11.005_bib0040 article-title: Rapid and accurate analyses of silicon and phosphorus in plants using a portable X-ray fluorescence spectrometer publication-title: New Phytologist doi: 10.1111/j.1469-8137.2012.04179.x – volume: 9 start-page: 643 issue: 5 year: 2020 ident: 10.1016/j.baae.2024.11.005_bib0017 article-title: Silicon alters leaf surface morphology and suppresses insect herbivory in a model grass species publication-title: Plants doi: 10.3390/plants9050643 – volume: 110 start-page: E3631 issue: 38 year: 2013 ident: 10.1016/j.baae.2024.11.005_bib0051 article-title: Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 178 start-page: 41 issue: 1 year: 2008 ident: 10.1016/j.baae.2024.11.005_bib0019 article-title: Indirect defence via tritrophic interactions publication-title: New Phytologist doi: 10.1111/j.1469-8137.2007.02330.x – volume: 72 start-page: 1551 issue: 13 year: 2011 ident: 10.1016/j.baae.2024.11.005_bib0003 article-title: Tannins in plant–herbivore interactions publication-title: Phytochemistry doi: 10.1016/j.phytochem.2011.01.040 – ident: 10.1016/j.baae.2024.11.005_bib0038 – volume: 6 start-page: 495 issue: 6 year: 2003 ident: 10.1016/j.baae.2024.11.005_bib0031 article-title: Conspicuous extra-floral nectaries are inducible in Vicia Faba publication-title: Ecology Letters doi: 10.1046/j.1461-0248.2003.00457.x – start-page: 47 year: 2017 ident: 10.1016/j.baae.2024.11.005_bib0014 article-title: 3 - insect-resistant plants – start-page: 263 year: 2017 ident: 10.1016/j.baae.2024.11.005_bib0009 article-title: Costs of resistance in plants: From theory to evidence publication-title: Annual Plant Reviews Online doi: 10.1002/9781119312994.apr0512 – volume: 35 start-page: 82 issue: 1 year: 2021 ident: 10.1016/j.baae.2024.11.005_bib0048 article-title: Short-Term resistance that persists: Rapidly induced silicon anti-herbivore defence affects carbon-based plant defences publication-title: Functional Ecology doi: 10.1111/1365-2435.13702 – volume: 13 start-page: 449 issue: 5 year: 2012 ident: 10.1016/j.baae.2024.11.005_bib0006 article-title: Induction of extrafloral nectar depends on herbivore type in invasive and native Chinese tallow seedlings publication-title: Basic and Applied Ecology doi: 10.1016/j.baae.2012.07.006 – volume: 2 start-page: 583 year: 2007 ident: 10.1016/j.baae.2024.11.005_bib0033 article-title: Extrafloral nectary phenotypic plasticity is damage-and resource-dependent in Vicia Faba publication-title: Biology Letters doi: 10.1098/rsbl.2006.0527 – volume: 53 start-page: 97 issue: 1 year: 2015 ident: 10.1016/j.baae.2024.11.005_bib0010 article-title: Priming for enhanced defense publication-title: Annual Review of Phytopathology doi: 10.1146/annurev-phyto-080614-120132 – volume: 66 start-page: 231 issue: 2 year: 2011 ident: 10.1016/j.baae.2024.11.005_bib0030 article-title: Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2011.04483.x – volume: 111 start-page: 1251 issue: 6 year: 2012 ident: 10.1016/j.baae.2024.11.005_bib0049 article-title: The phylogenetic distribution of extrafloral nectaries in plants publication-title: Annals of Botany doi: 10.1093/aob/mcs225 – volume: 31 start-page: 2108 issue: 11 year: 2017 ident: 10.1016/j.baae.2024.11.005_bib0043 article-title: Still armed after domestication? impacts of domestication and agronomic selection on silicon defences in cereals publication-title: Functional Ecology doi: 10.1111/1365-2435.12935 – volume: 10 year: 2019 ident: 10.1016/j.baae.2024.11.005_bib0018 article-title: The role of silicon in antiherbivore phytohormonal signalling publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2019.01132 – volume: 98 start-page: 1083 issue: 3 year: 2001 ident: 10.1016/j.baae.2024.11.005_bib0021 article-title: Extrafloral nectar production of the ant-associated plant, Macaranga Tanarius, is an induced, indirect, defensive response elicited by jasmonic acid publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.98.3.1083 – volume: 101 start-page: e03006 issue: 6 year: 2020 ident: 10.1016/j.baae.2024.11.005_bib0037 article-title: Soil nutrients and precipitation are major drivers of global patterns of grass leaf silicification publication-title: Ecology doi: 10.1002/ecy.3006 – volume: 1 start-page: 243 issue: 5 year: 2006 ident: 10.1016/j.baae.2024.11.005_bib0012 article-title: The role of insect-derived cues in eliciting indirect plant defenses in tobacco, Nicotiana Tabacum publication-title: Plant Signaling & Behavior doi: 10.4161/psb.1.5.3279 – volume: 31 start-page: 269 issue: 2 year: 2017 ident: 10.1016/j.baae.2024.11.005_bib0024 article-title: Herbivory-induced changes in the olfactory and visual display of flowers and extrafloral nectaries affect pollinator behavior publication-title: Evolutionary Ecology doi: 10.1007/s10682-016-9875-y – volume: 102 start-page: e03250 issue: 3 year: 2021 ident: 10.1016/j.baae.2024.11.005_bib0026 article-title: Targeted plant defense: Silicon conserves hormonal defense signaling impacting chewing but not fluid-feeding herbivores publication-title: Ecology doi: 10.1002/ecy.3250 – ident: 10.1016/j.baae.2024.11.005_bib0015 doi: 10.1146/annurev.arplant.50.1.641 – volume: 11 start-page: 9868 issue: 11 year: 2020 ident: 10.1016/j.baae.2024.11.005_bib0035 article-title: Systematic evaluation of the folin–ciocalteu and fast blue bb reactions during the analysis of total phenolics in legumes, nuts and plant seeds publication-title: Food & Function doi: 10.1039/D0FO01857K – year: 2021 ident: 10.1016/j.baae.2024.11.005_bib0008 article-title: Physiological function of phenolic compounds in plant defense system. phenolic compounds - chemistry, synthesis, diversity, non-conventional industrial – volume: 4 start-page: 1686 issue: 43 year: 2019 ident: 10.1016/j.baae.2024.11.005_bib0050 article-title: Welcome to the Tidyverse publication-title: Journal of Open Source Software doi: 10.21105/joss.01686 – volume: 71 start-page: 6730 issue: 21 year: 2020 ident: 10.1016/j.baae.2024.11.005_bib0044 article-title: Silicon: Its ameliorative effect on plant defense against herbivory publication-title: Journal of Experimental Botany doi: 10.1093/jxb/eraa300 – volume: 170 start-page: 445 issue: 2 year: 2012 ident: 10.1016/j.baae.2024.11.005_bib0041 article-title: Delayed induced silica defences in grasses and their potential for destabilising herbivore population dynamics publication-title: Oecologia doi: 10.1007/s00442-012-2326-8 – volume: 135 start-page: 2025 issue: 4 year: 2004 ident: 10.1016/j.baae.2024.11.005_bib0001 article-title: Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato publication-title: Plant Physiology doi: 10.1104/pp.104.048694 – volume: 24 start-page: 984 issue: 5 year: 2021 ident: 10.1016/j.baae.2024.11.005_bib0045 article-title: A shift from phenol to silica-based leaf defences during long-term soil and ecosystem development publication-title: Ecology Letters doi: 10.1111/ele.13713 – volume: 67 start-page: 283 issue: 3 year: 1992 ident: 10.1016/j.baae.2024.11.005_bib0022 article-title: The dilemma of plants: To grow or defend publication-title: The Quarterly Review of Biology doi: 10.1086/417659 – volume: 34 start-page: 1142 issue: 6 year: 2020 ident: 10.1016/j.baae.2024.11.005_bib0036 article-title: Is it time to include legumes in plant silicon research? publication-title: Functional Ecology doi: 10.1111/1365-2435.13565 – volume: 201 start-page: 908 issue: 4359 year: 1978 ident: 10.1016/j.baae.2024.11.005_bib0046 article-title: Microwear of mammalian teeth as an indicator of diet publication-title: Science doi: 10.1126/science.684415 – volume: 20 start-page: 331 issue: 1 year: 1989 ident: 10.1016/j.baae.2024.11.005_bib0027 article-title: Induced plant responses to herbivory publication-title: Annual Review of Ecology and Systematics doi: 10.1146/annurev.es.20.110189.001555 – volume: 56 start-page: 16 issue: 1 year: 2015 ident: 10.1016/j.baae.2024.11.005_bib0034 article-title: Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants publication-title: Plant and Cell Physiology doi: 10.1093/pcp/pcu158 – volume: 388 year: 2022 ident: 10.1016/j.baae.2024.11.005_bib0047 article-title: Impact of hormone applications on ripening-related metabolites in gewürztraminer grapes (Vitis Vinifera L.): The key role of jasmonates in terpene modulation publication-title: Food Chemistry doi: 10.1016/j.foodchem.2022.132948 – volume: 83 start-page: 303 issue: 4 year: 2013 ident: 10.1016/j.baae.2024.11.005_bib0013 article-title: Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice publication-title: Plant Molecular Biology doi: 10.1007/s11103-013-0087-3 – volume: 8 start-page: e56457 issue: 2 year: 2013 ident: 10.1016/j.baae.2024.11.005_bib0007 article-title: Activation of the Jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities publication-title: PLoS ONE doi: 10.1371/journal.pone.0056457 – start-page: 193 year: 1992 ident: 10.1016/j.baae.2024.11.005_bib0005 article-title: Classification of opal phytoliths formed in selected dicotyledons native to the great plains – volume: 48 start-page: 342 issue: 3 year: 2016 ident: 10.1016/j.baae.2024.11.005_bib0023 article-title: Induced floral and extrafloral nectar production affect ant-pollinator interactions and plant fitness publication-title: Biotropica doi: 10.1111/btp.12283 – volume: 68 year: 2017 ident: 10.1016/j.baae.2024.11.005_bib0052 article-title: Trade-offs between plant growth and defense against insect herbivory: An emerging mechanistic synthesis publication-title: Annual Review of Plant Biology – volume: 41 start-page: 301 issue: 3 year: 1979 ident: 10.1016/j.baae.2024.11.005_bib0004 article-title: On the calculation of sugar concentration in flower nectar publication-title: Oecologia doi: 10.1007/BF00377434 – volume: 107 start-page: 17228 issue: 40 year: 2010 ident: 10.1016/j.baae.2024.11.005_bib0039 article-title: Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1009007107 – volume: 38 start-page: 88 issue: 1 year: 2012 ident: 10.1016/j.baae.2024.11.005_bib0042 article-title: Composition of extrafloral nectar influences interactions between the myrmecophyte Humboldtia Brunonis and its ant associates publication-title: Journal of Chemical Ecology doi: 10.1007/s10886-011-0052-z – year: 1978 ident: 10.1016/j.baae.2024.11.005_bib0011 |
SSID | ssj0014038 |
Score | 2.3982706 |
Snippet | Plants have evolved direct and indirect defences against herbivores, which may come at a cost to other plant functions. Many plants can uptake and deposit... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 11 |
SubjectTerms | applied ecology faba beans herbivores Indirect defense Induced defense jasmonic acid leaves methyl jasmonate Mutualism nectar Plant defense plant tissues Plant-interaction pollination secretion silicon soil sugar content sugars Trade-off Tri-trophic interaction Vicia faba |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (ND) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA9FEHqRqhVfqxLBW9l2d5Ndk6PKE_EgHrR4C_mYwJPXfeV9FPzvnclm9dWDvfQW9jNkJpPfTCa_YewkSlDeyarwjYVCChUKVTucVxDBNSEoD4nt86a9upfXD83DWqkvygnr6YH7gfsRlaxiWVnZhlI6xNfh1OuAiimFLb1O1rfU5eBM5f0DWaYa1ggGdCLgzMdl-swuZy0RZNbyO_F3UuG6tSUpMff_tTK9sdFp4bn8xLYyYuRnfU-32QfodthmX0PyCVtjn1t749dDa_hCnrWLXba6TZlZf4DbV2HwnKHF42w6sXO-mExRKTpuu8DRYM9tnNLhfd6hRcTbk47_pAgIj9ZZTtFbvrb3zWeRUy3qpyl_tItfFJGHz-z-cnx3cVXkcguFF1ouizZqj25p4wVx1lSnDrFUFUVAkAUaPZfoRAnC-qjAV8Ej0HBQg210q12lYin22EY362CfcYg-eOkkUKhSoVMFXjZNCy2KHh0aPWLfhhE3v3tWDTOkmz0ako8h-aB7YlA-I3ZOQnl5khix0wXUE5P1xPxLT0asGURqMrjoQQN-avLuz48H-RucebSdYjuYrRZG4MDULS796sv_6OBX9rGm2sIpI_yAbSznKzhEwLN0R0m3nwFJff1c priority: 102 providerName: Directory of Open Access Journals |
Title | Positive association between foliar silicon and extrafloral nectar in Vicia faba with application of methyl jasmonate |
URI | https://dx.doi.org/10.1016/j.baae.2024.11.005 https://www.proquest.com/docview/3154262128 https://doaj.org/article/f841f01a46d04b548d7c9d07343a0c92 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0Gq3QuKCKFCxQFdG4obSTWInGx_LaqvloaoCinqz_BhXqZak2gdSL3w7M4m3Dw4cuEWO41jz8sx4Hoy9CxIqZ2WWuMJAIkXlkyq3yFcQwBbeVw66ap-n5fxcfrooLnbYdJsLQ2GVUfb3Mr2T1nFkHKE5vq7r8beMkkYnKqMoSOQVucv2cqHKYsD2jj9-np_eXibItGtoTfO7apwxd6YP87LGULXMXB5RMU_qYnfvfOrK-D84pv4S2N0pdPKUPYnqIz_ud7jPdqB5xh71DSVv8Gnm4tPB7C6DDT-ILLx6zjZnXZjWL-DmDjM8hmvx0C5qs-SreoEU0nDTeI7Se2nCgjL5eYOgwtd1w3-QO4QHYw0nVy6_dxHO28CpMfXNgl-Z1U9yz8MLdn4y-z6dJ7H3QuKEkuukDMqhjVo4QQVssolFxSoLwqPGBQrNmGBFCsK4UIHLvEOtw0IOplClslkVUnHABk3bwEvGITjvpJVAfssKLSxwsihKKJEO0LpRQ_Z-C3F93ZfY0NvYsytN-NGEH7RVNOJnyD4QUm5nUnnsbqBdXupIHzpUuNk0M7L0qbRolPmJUx6lmRQmdSofsmKLUv2A2nCp-p8_f7vFv0Y2pLsV00C7WWmBgMlL1AOqV_-59mv2OKfewl1E-Bs2WC83cIgKz9qO2O7R72yEZD39-uVsFMl71LkP_gALgQM5 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEaIXVB4VW6AYiRtKN4mdbHKEaqsFSoVEi3qz_BijVNuk2kelXvjtzDhOHxw4cIucxLE84_GM8803jL33EiprZJbYQkMiReWSKje4rsCDKZyrLAS2z-Nydiq_nBVnG-xgyIUhWGW0_b1ND9Y6tozjbI4vm2b8I6Ok0UmdEQoS14p8wB7KQkwI17f_-wbnQXx0IR8Onw5cnDFzpgd5Ga2JKzOX-0TlSTXs7uxOgcT_3ib1l7kOe9DhNnsSnUf-sR_fU7YB7TP2qC8neY1XUxuvdqa3-Wv4QlzAy-ds_T2AtK6A61u58AjW4r6bN3rBl80c9aPlunUcbfdC-znl8fMWJwpvNy3_SYch3GujOR3k8ju_wXnnOZWlvp7zc728oMN5eMFOD6cnB7MkVl5IrKjlKil9bTFCLawg-ppsYtCtyrxw6G9BjUGMNyIFoa2vwGbOos9hIAdd1GVtssqnYodttl0LLxkHb52VRgKdWlYYX4GVRVFCiVqAsU09Yh-GGVeXPcGGGpBn54rko0g-GKkolM-IfSKh3DxJ5NihoVv8UlE7lK9wsGmmZelSaTAkcxNbO7RlUujU1vmIFYNI1T1dw66af3783SB_hYuQ_qzoFrr1UgmcmLxEL6Da_c--37LHs5NvR-ro8_HXV2wrpyrDARv-mm2uFmt4g67PyuwF1f4DHacBeg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Positive+association+between+foliar+silicon+and+extrafloral+nectar+in+Vicia+faba+with+application+of+methyl+jasmonate&rft.jtitle=Basic+and+applied+ecology&rft.au=Gowton%2C+Chelsea+Megan&rft.au=Chiu%2C+Dennis&rft.au=Peetoom+Heida%2C+Isaac+John&rft.au=Carrillo%2C+Juli&rft.date=2025-02-01&rft.issn=1439-1791&rft.volume=82&rft.spage=11&rft.epage=17&rft_id=info:doi/10.1016%2Fj.baae.2024.11.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_baae_2024_11_005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-1791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-1791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-1791&client=summon |