A Model-Dependent Method for Monitoring Subtle Changes in Vegetation Height in the Boreal–Alpine Ecotone Using Bi-Temporal, Three Dimensional Point Data from Airborne Laser Scanning

The boreal tree line is in many places expected to advance upwards into the mountains due to climate change. This study aimed to develop a general method for estimation of vegetation height change in general, and change in tree height more specifically, for small geographical domains utilizing bi-te...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 11; no. 15; p. 1804
Main Authors Næsset, Erik, Gobakken, Terje, McRoberts, Ronald E.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The boreal tree line is in many places expected to advance upwards into the mountains due to climate change. This study aimed to develop a general method for estimation of vegetation height change in general, and change in tree height more specifically, for small geographical domains utilizing bi-temporal airborne laser scanner (ALS) data. The domains subject to estimation may subsequently be used to monitor vegetation and tree height change with detailed temporal and geographical resolutions. A method was developed with particular focus on statistically rigorous estimators of uncertainty for change estimates. The method employed model-dependent statistical inference. The method was demonstrated in a 12 ha study site in a boreal–alpine tree line in southeastern Norway, in which 316 trees were measured on the ground in 2006 and 2012 and ALS data were acquired in two temporally coincident campaigns. The trees ranged from 0.11 m to 5.20 m in height. Average growth in height was 0.19 m. Regression models were used to predict and estimate change. By following the area-based approach, predictions were produced for every individual 2 m2 population element that tessellated the study area. Two demonstrations of the method are provided in which separate height change estimates were calculated for domains of size 1.5 ha or greater. Differences in height change estimates among such small domains illustrate how change patterns may vary over the landscape. Model-dependent mean square error estimates for the height change estimators that accounted for (1) model parameter uncertainty, (2) residual variance, and (3) residual covariance are provided. Findings suggested that the two latter sources of uncertainty could be ignored in the uncertainty analysis. The proposed estimators are likely to work well for estimation of differences in height change along a gradient of small monitoring units, like the 1.5 ha cells used for demonstration purposes, and thus may potentially be used to monitor tree line migration over time.
AbstractList The boreal tree line is in many places expected to advance upwards into the mountains due to climate change. This study aimed to develop a general method for estimation of vegetation height change in general, and change in tree height more specifically, for small geographical domains utilizing bi-temporal airborne laser scanner (ALS) data. The domains subject to estimation may subsequently be used to monitor vegetation and tree height change with detailed temporal and geographical resolutions. A method was developed with particular focus on statistically rigorous estimators of uncertainty for change estimates. The method employed model-dependent statistical inference. The method was demonstrated in a 12 ha study site in a boreal−alpine tree line in southeastern Norway, in which 316 trees were measured on the ground in 2006 and 2012 and ALS data were acquired in two temporally coincident campaigns. The trees ranged from 0.11 m to 5.20 m in height. Average growth in height was 0.19 m. Regression models were used to predict and estimate change. By following the area-based approach, predictions were produced for every individual 2 m2 population element that tessellated the study area. Two demonstrations of the method are provided in which separate height change estimates were calculated for domains of size 1.5 ha or greater. Differences in height change estimates among such small domains illustrate how change patterns may vary over the landscape. Model-dependent mean square error estimates for the height change estimators that accounted for (1) model parameter uncertainty, (2) residual variance, and (3) residual covariance are provided. Findings suggested that the two latter sources of uncertainty could be ignored in the uncertainty analysis. The proposed estimators are likely to work well for estimation of differences in height change along a gradient of small monitoring units, like the 1.5 ha cells used for demonstration purposes, and thus may potentially be used to monitor tree line migration over time.
The boreal tree line is in many places expected to advance upwards into the mountains due to climate change. This study aimed to develop a general method for estimation of vegetation height change in general, and change in tree height more specifically, for small geographical domains utilizing bi-temporal airborne laser scanner (ALS) data. The domains subject to estimation may subsequently be used to monitor vegetation and tree height change with detailed temporal and geographical resolutions. A method was developed with particular focus on statistically rigorous estimators of uncertainty for change estimates. The method employed model-dependent statistical inference. The method was demonstrated in a 12 ha study site in a boreal–alpine tree line in southeastern Norway, in which 316 trees were measured on the ground in 2006 and 2012 and ALS data were acquired in two temporally coincident campaigns. The trees ranged from 0.11 m to 5.20 m in height. Average growth in height was 0.19 m. Regression models were used to predict and estimate change. By following the area-based approach, predictions were produced for every individual 2 m2 population element that tessellated the study area. Two demonstrations of the method are provided in which separate height change estimates were calculated for domains of size 1.5 ha or greater. Differences in height change estimates among such small domains illustrate how change patterns may vary over the landscape. Model-dependent mean square error estimates for the height change estimators that accounted for (1) model parameter uncertainty, (2) residual variance, and (3) residual covariance are provided. Findings suggested that the two latter sources of uncertainty could be ignored in the uncertainty analysis. The proposed estimators are likely to work well for estimation of differences in height change along a gradient of small monitoring units, like the 1.5 ha cells used for demonstration purposes, and thus may potentially be used to monitor tree line migration over time.
Author Næsset, Erik
Gobakken, Terje
McRoberts, Ronald E.
Author_xml – sequence: 1
  givenname: Erik
  surname: Næsset
  fullname: Næsset, Erik
– sequence: 2
  givenname: Terje
  orcidid: 0000-0001-5534-049X
  surname: Gobakken
  fullname: Gobakken, Terje
– sequence: 3
  givenname: Ronald E.
  surname: McRoberts
  fullname: McRoberts, Ronald E.
BookMark eNptks1uEzEQgFeoSJTSC09giQtCLNhr74-PadLSSqlAasp1NWvPbhw5drCdAzfegYfp-_AkOAQBqvDF1vibb0b2PC9OnHdYFC8Zfce5pO9DZIzVrKPiSXFa0bYqRSWrk3_Oz4rzGDc0L86ZpOK0eJiRW6_RlgvcodPoErnFtPaajD7kK2eSD8ZN5G4_JItkvgY3YSTGkc84YYJkvCPXaKZ1OgTTGsmFDwj2x7fvM7szDsml8il3Su7jQXRhyhVudz6AfUtW64BIFmaLLmYRWPLJm9zDAhKQMfgtmZkw-JCzlxAxkDsFzmXNi-LpCDbi-e_9rLi_ulzNr8vlxw8389myVFyKVDZj3WrguuWAHTTYNIKjqFvQbKAdHVQ31BVo2g5Vy0VTq0GMUupB0WbkWtX8rLg5erWHTb8LZgvha-_B9L8CPkw9hGSUxR4RJO9UxwWrRMOlRMWEph3Tda4iZHa9Prp2wX_ZY0z91kSF1oJDv499Jbuma2opq4y-eoRu_D7k98kUp4IK2VCWqTdHSgUfY8DxT4OM9oeR6P-ORIbpI1iZ4_elAMb-L-UnaDW8EQ
CitedBy_id crossref_primary_10_1016_j_rse_2022_113028
crossref_primary_10_3390_rs15143508
crossref_primary_10_1093_forestry_cpad024
crossref_primary_10_1016_j_rse_2023_113455
crossref_primary_10_3390_rs13234873
crossref_primary_10_3390_rs13132469
crossref_primary_10_1016_j_jag_2023_103201
Cites_doi 10.1007/978-1-4613-8122-8
10.1007/s10584-006-9113-7
10.1139/X07-219
10.1002/0471722146
10.1017/S0032247407006511
10.3390/rs70404702
10.1186/s40663-016-0064-9
10.1007/s10661-017-6401-9
10.1016/j.rse.2007.03.004
10.1111/j.1365-2745.2006.01200.x
10.1016/j.rse.2016.10.046
10.1016/0304-4076(85)90158-7
10.1139/x26-085
10.1080/02827581.2017.1338354
10.1016/j.agee.2006.05.004
10.1080/028275802317221064
10.1111/j.1365-2745.2006.01190.x
10.1016/j.rse.2012.10.008
10.18637/jss.v011.i10
10.3390/rs61010152
10.3390/rs8070548
10.1139/cjfr-2016-0086
10.1016/j.rse.2013.12.015
10.1016/j.rse.2012.04.017
10.1016/j.rse.2015.07.026
10.1080/00031305.2000.10474549
10.1139/X10-161
10.5589/m12-053
10.2307/1936723
10.3390/rs8050407
10.1080/01621459.1983.10477018
10.2307/2297111
10.1016/j.rse.2006.03.005
10.5589/m11-041
10.18637/jss.v016.i09
10.1016/j.rse.2008.09.001
10.1016/j.rse.2012.03.008
10.1080/2150704X.2012.714087
10.1007/s13595-016-0590-1
10.1139/cjfr-2017-0396
10.1016/j.rse.2012.10.007
10.1016/j.rse.2017.09.027
10.1007/s10260-012-0220-5
10.1080/21513732.2012.737373
10.3390/rs6054582
10.1080/02827580410019472
10.1139/cjfr-2015-0084
10.2307/1912934
10.1111/j.1654-1103.2007.tb02571.x
10.2307/1930167
10.1016/j.rse.2015.02.018
10.1139/cjfr-2017-0031
10.1002/ecs2.2176
10.1139/cjfr-2015-0077
10.1139/x86-136
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs11151804
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
AGRICOLA
AGRICOLA - Academic
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_eea938c8341246399ec14d081d58b549
10_3390_rs11151804
GeographicLocations United States--US
Norway
GeographicLocations_xml – name: United States--US
– name: Norway
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-6f57da3d73ae8a6e6643e457ad1b080bc8b52ad07b273465cb4f99dbc06f3dc53
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:12:34 EDT 2025
Thu Jul 10 16:45:53 EDT 2025
Fri Jul 25 12:06:40 EDT 2025
Tue Jul 01 04:14:49 EDT 2025
Thu Apr 24 23:04:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-6f57da3d73ae8a6e6643e457ad1b080bc8b52ad07b273465cb4f99dbc06f3dc53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5534-049X
OpenAccessLink https://doaj.org/article/eea938c8341246399ec14d081d58b549
PQID 2304049601
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_eea938c8341246399ec14d081d58b549
proquest_miscellaneous_2986865992
proquest_journals_2304049601
crossref_primary_10_3390_rs11151804
crossref_citationtrail_10_3390_rs11151804
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Cottam (ref_25) 1956; 37
Long (ref_42) 2000; 54
Kaplan (ref_5) 2006; 79
Bryn (ref_7) 2012; 8
Zeileis (ref_47) 2006; 16
Kambo (ref_63) 2018; 9
Kullman (ref_3) 2007; 95
ref_10
ref_54
Maltamo (ref_15) 2016; 46
White (ref_40) 1980; 48
Ene (ref_62) 2017; 47
Hauglin (ref_13) 2017; 190
ref_18
Holmgren (ref_32) 2004; 19
Ene (ref_37) 2017; 188
Zeileis (ref_44) 2004; 11
Thomsen (ref_66) 1978; 5
McRoberts (ref_49) 2013; 128
Holmgren (ref_14) 2012; 123
Breusch (ref_39) 1980; 47
Warde (ref_26) 1981; 62
Magnussen (ref_33) 2015; 45
Zheng (ref_1) 2002; 17
Gobakken (ref_31) 2008; 38
ref_21
ref_65
Tasser (ref_9) 2007; 118
Stumberg (ref_17) 2014; 6
Stumberg (ref_22) 2014; 6
ref_64
Saarela (ref_53) 2016; 3
Guisan (ref_8) 2007; 18
McRoberts (ref_36) 2015; 164
Holmgren (ref_23) 2013; 4
ref_29
Magnusson (ref_30) 2007; 53
ref_27
Skowronski (ref_38) 2014; 151
Holm (ref_55) 2011; 41
Ene (ref_57) 2012; 123
Kullman (ref_2) 1986; 16
Ene (ref_61) 2018; 204
Thieme (ref_16) 2011; 37
Hansen (ref_48) 1983; 78
Axelsson (ref_28) 2000; 33
Nelson (ref_11) 2007; 110
(ref_24) 2015; 7
Saarela (ref_59) 2016; 73
McRoberts (ref_58) 2006; 103
ref_46
McRoberts (ref_50) 2018; 48
Kangas (ref_56) 1996; 26
Gobakken (ref_35) 2013; 128
ref_45
Breidenbach (ref_51) 2016; 173
Ene (ref_60) 2018; 33
ref_41
Danby (ref_4) 2007; 95
Gregoire (ref_34) 2013; 22
Saarela (ref_52) 2015; 45
Rees (ref_19) 2007; 43
Stumberg (ref_12) 2012; 38
(ref_20) 2009; 113
MacKinnon (ref_43) 1985; 29
ref_6
References_xml – ident: ref_64
  doi: 10.1007/978-1-4613-8122-8
– volume: 33
  start-page: 111
  year: 2000
  ident: ref_28
  article-title: DEM generation from laser scanner data using adaptive TIN models
  publication-title: Int. Arch. Photogramm. Remote Sens.
– volume: 79
  start-page: 213
  year: 2006
  ident: ref_5
  article-title: Arctic climate change with a 2 °C global warming: Timing, climate patterns and vegetation change
  publication-title: Clim. Chang.
  doi: 10.1007/s10584-006-9113-7
– volume: 38
  start-page: 1095
  year: 2008
  ident: ref_31
  article-title: Assessing effects of laser point density, ground sampling intensity, and field sample plot size on biophysical stand properties derived from airborne laser scanner data
  publication-title: Can. J. For. Res.
  doi: 10.1139/X07-219
– ident: ref_45
  doi: 10.1002/0471722146
– volume: 43
  start-page: 345
  year: 2007
  ident: ref_19
  article-title: Characterisation of Arctic treelines by LiDAR and multispectral imagery
  publication-title: Polar Rec.
  doi: 10.1017/S0032247407006511
– volume: 7
  start-page: 4702
  year: 2015
  ident: ref_24
  article-title: Vertical Height Errors in Digital Terrain Models Derived from Airborne Laser Scanner Data in a Boreal-Alpine Ecotone in Norway
  publication-title: Remote Sens.
  doi: 10.3390/rs70404702
– ident: ref_65
– volume: 3
  start-page: 5
  year: 2016
  ident: ref_53
  article-title: Use of models in large-area forest surveys: Comparing model-assisted, model-based and hybrid estimation
  publication-title: For. Ecosyst.
  doi: 10.1186/s40663-016-0064-9
– volume: 190
  start-page: 12
  year: 2017
  ident: ref_13
  article-title: Monitoring small pioneer trees in the forest-tundra ecotone: Using multi-temporal airborne laser scanning data to model height growth
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-017-6401-9
– volume: 110
  start-page: 357
  year: 2007
  ident: ref_11
  article-title: Using airborne laser scanning to monitor tree migration in the boreal-alpine transition zone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.03.004
– volume: 95
  start-page: 352
  year: 2007
  ident: ref_4
  article-title: Variability, contingency and rapid change in recent subarctic alpine tree line dynamics
  publication-title: J. Ecol.
  doi: 10.1111/j.1365-2745.2006.01200.x
– volume: 188
  start-page: 106
  year: 2017
  ident: ref_37
  article-title: Large-scale estimation of change in aboveground biomass in miombo woodlands using airborne laser scanning and national forest inventory data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.10.046
– volume: 29
  start-page: 305
  year: 1985
  ident: ref_43
  article-title: Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties
  publication-title: J. Econom.
  doi: 10.1016/0304-4076(85)90158-7
– volume: 26
  start-page: 758
  year: 1996
  ident: ref_56
  article-title: Small-area estimates using model-based methods
  publication-title: Can. J. For. Res.
  doi: 10.1139/x26-085
– volume: 33
  start-page: 155
  year: 2018
  ident: ref_60
  article-title: Estimation of biomass change in montane forests in Norway along a 1200 km latitudinal gradient using airborne laser scanning: A comparison of direct and indirect prediction of change under a model-based inferential approach
  publication-title: Scand. J. For. Res.
  doi: 10.1080/02827581.2017.1338354
– volume: 118
  start-page: 115
  year: 2007
  ident: ref_9
  article-title: Land-use changes and natural reforestation in the Eastern Central Alps
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2006.05.004
– volume: 17
  start-page: 35
  year: 2002
  ident: ref_1
  article-title: Production of Picea abies in south-east Norway in response to climate change: A case study using process-based model simulation with field validation
  publication-title: Scand. J. For. Res.
  doi: 10.1080/028275802317221064
– volume: 95
  start-page: 41
  year: 2007
  ident: ref_3
  article-title: Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973–2005: Implications for tree line theory and climate change ecology
  publication-title: J. Ecol.
  doi: 10.1111/j.1365-2745.2006.01190.x
– volume: 128
  start-page: 299
  year: 2013
  ident: ref_35
  article-title: Model-assisted estimation of change in forest biomass over an 11 year period in a sample survey supported by airborne LiDAR: A case study with post-stratification to provide “activity data”
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.10.008
– volume: 11
  start-page: 1
  year: 2004
  ident: ref_44
  article-title: Econometric Computing with HC and HAC Covariance Matrix Estimators
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v011.i10
– ident: ref_27
– volume: 6
  start-page: 10152
  year: 2014
  ident: ref_17
  article-title: Automatic Detection of Small Single Trees in the Forest-Tundra Ecotone Using Airborne Laser Scanning
  publication-title: Remote Sens.
  doi: 10.3390/rs61010152
– ident: ref_10
– ident: ref_21
  doi: 10.3390/rs8070548
– volume: 46
  start-page: 1138
  year: 2016
  ident: ref_15
  article-title: Large-scale prediction of aboveground biomass in heterogeneous mountain forests by means of airborne laser scanning
  publication-title: Can. J. For. Res.
  doi: 10.1139/cjfr-2016-0086
– volume: 151
  start-page: 166
  year: 2014
  ident: ref_38
  article-title: Airborne laser scanner-assisted estimation of aboveground biomass change in a temperate oak–pine forest
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.12.015
– ident: ref_41
– volume: 123
  start-page: 579
  year: 2012
  ident: ref_57
  article-title: Assessing the accuracy of regional LiDAR-based biomass estimation using a simulation approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.04.017
– volume: 173
  start-page: 274
  year: 2016
  ident: ref_51
  article-title: Empirical coverage of model-based variance estimators for remote sensing assisted estimation of stand-level timber volume
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.07.026
– volume: 54
  start-page: 217
  year: 2000
  ident: ref_42
  article-title: Using Heteroscedasticity Consistent Standard Errors in the Linear Regression Model
  publication-title: Am. Stat.
  doi: 10.1080/00031305.2000.10474549
– volume: 41
  start-page: 96
  year: 2011
  ident: ref_55
  article-title: Model-based inference for biomass estimation in a LiDAR sample survey in the county of Hedmark County, Norway
  publication-title: Can. J. For. Res.
  doi: 10.1139/X10-161
– volume: 38
  start-page: 655
  year: 2012
  ident: ref_12
  article-title: Classifying tree and nontree echoes from airborne laser scanning in the forest–tundra ecotone
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m12-053
– volume: 62
  start-page: 491
  year: 1981
  ident: ref_26
  article-title: A Correction Factor Table for Missing Point-Center Quarter Data
  publication-title: Ecology
  doi: 10.2307/1936723
– ident: ref_18
  doi: 10.3390/rs8050407
– volume: 78
  start-page: 776
  year: 1983
  ident: ref_48
  article-title: An Evaluation of Model-Dependent and Probability-Sampling Inferences in Sample Surveys
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1983.10477018
– volume: 5
  start-page: 27
  year: 1978
  ident: ref_66
  article-title: Design-based and model-based inference in survey sampling
  publication-title: Scand. J. Statist.
– volume: 47
  start-page: 239
  year: 1980
  ident: ref_39
  article-title: The Lagrange multiplier test and its applications to model specification in econometrics
  publication-title: Rev. Econ. Stud.
  doi: 10.2307/2297111
– volume: 103
  start-page: 56
  year: 2006
  ident: ref_58
  article-title: A model-based approach to estimating forest area
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.03.005
– volume: 37
  start-page: 264
  year: 2011
  ident: ref_16
  article-title: Detection of small single trees in the forest-tundra ecotone using height values from airborne laser scanning
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m11-041
– volume: 16
  start-page: 1
  year: 2006
  ident: ref_47
  article-title: Object-oriented Computation of Sandwich Estimators
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v016.i09
– volume: 113
  start-page: 148
  year: 2009
  ident: ref_20
  article-title: Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.09.001
– volume: 123
  start-page: 271
  year: 2012
  ident: ref_14
  article-title: Prediction of tree biomass in the forest–tundra ecotone using airborne laser scanning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.03.008
– volume: 4
  start-page: 190
  year: 2013
  ident: ref_23
  article-title: Change detection of mountain birch using multi-temporal ALS point clouds
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2012.714087
– volume: 73
  start-page: 895
  year: 2016
  ident: ref_59
  article-title: Hierarchical model-based inference for forest inventory utilizing three sources of information
  publication-title: Ann. For. Sci.
  doi: 10.1007/s13595-016-0590-1
– volume: 48
  start-page: 642
  year: 2018
  ident: ref_50
  article-title: Assessing components of the model-based mean square error estimator for remote sensing assisted forest applications
  publication-title: Can. J. For. Res.
  doi: 10.1139/cjfr-2017-0396
– volume: 128
  start-page: 268
  year: 2013
  ident: ref_49
  article-title: Inference for lidar-assisted estimation of forest growing stock volume
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.10.007
– volume: 204
  start-page: 741
  year: 2018
  ident: ref_61
  article-title: Large-area hybrid estimation of aboveground biomass in interior Alaska using airborne laser scanning data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.09.027
– volume: 22
  start-page: 113
  year: 2013
  ident: ref_34
  article-title: Detection of biomass change in a Norwegian mountain forest area using small footprint airborne laser scanner data
  publication-title: Stat. Methods Appl.
  doi: 10.1007/s10260-012-0220-5
– volume: 8
  start-page: 360
  year: 2012
  ident: ref_7
  article-title: Impacts of land use on the vegetation in three rural landscapes of Norway
  publication-title: Int. J. Biodivers. Sci. Ecosyst. Serv. Manag.
  doi: 10.1080/21513732.2012.737373
– ident: ref_6
– volume: 6
  start-page: 4582
  year: 2014
  ident: ref_22
  article-title: Improving Classification of Airborne Laser Scanning Echoes in the Forest-Tundra Ecotone Using Geostatistical and Statistical Measures
  publication-title: Remote Sens.
  doi: 10.3390/rs6054582
– volume: 19
  start-page: 543
  year: 2004
  ident: ref_32
  article-title: Prediction of tree height, basal area and stem volume in forest stands using airborne laser scanning
  publication-title: Scand. J. For. Res.
  doi: 10.1080/02827580410019472
– ident: ref_29
– ident: ref_54
– ident: ref_46
– volume: 53
  start-page: 619
  year: 2007
  ident: ref_30
  article-title: Effects on estimation accuracy of forest variables using different pulse density of laser data
  publication-title: For. Sci.
– volume: 45
  start-page: 1514
  year: 2015
  ident: ref_33
  article-title: LiDAR-supported estimation of change in forest biomass with time-invariant regression models
  publication-title: Can. J. For. Res.
  doi: 10.1139/cjfr-2015-0084
– volume: 48
  start-page: 817
  year: 1980
  ident: ref_40
  article-title: A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity
  publication-title: Econometrica
  doi: 10.2307/1912934
– volume: 18
  start-page: 571
  year: 2007
  ident: ref_8
  article-title: Tree line shifts in the Swiss Alps: Climate change or land abandonment?
  publication-title: J. Veg. Sci.
  doi: 10.1111/j.1654-1103.2007.tb02571.x
– volume: 37
  start-page: 451
  year: 1956
  ident: ref_25
  article-title: The Use of Distance Measures in Phytosociological Sampling
  publication-title: Ecology
  doi: 10.2307/1930167
– volume: 164
  start-page: 36
  year: 2015
  ident: ref_36
  article-title: Indirect and direct estimation of forest biomass change using forest inventory and airborne laser scanning data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.02.018
– volume: 47
  start-page: 839
  year: 2017
  ident: ref_62
  article-title: Post-stratified change estimation for large-area forest biomass using repeated ALS strip sampling
  publication-title: Can. J. For. Res.
  doi: 10.1139/cjfr-2017-0031
– volume: 9
  start-page: e02176
  year: 2018
  ident: ref_63
  article-title: Factors influencing the establishment and growth of tree seedlings at Subarctic alpine treelines
  publication-title: Ecosphere
  doi: 10.1002/ecs2.2176
– volume: 45
  start-page: 1524
  year: 2015
  ident: ref_52
  article-title: Effects of sample size and model form on the accuracy of model-based estimators of growing stock volume
  publication-title: Can. J. For. Res.
  doi: 10.1139/cjfr-2015-0077
– volume: 16
  start-page: 761
  year: 1986
  ident: ref_2
  article-title: Recent tree-limit history of Piceaabies in the southern Swedish Scandes
  publication-title: Can. J. For. Res.
  doi: 10.1139/x86-136
SSID ssj0000331904
Score 2.2468011
Snippet The boreal tree line is in many places expected to advance upwards into the mountains due to climate change. This study aimed to develop a general method for...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1804
SubjectTerms Accuracy
Airborne lasers
Biomass
Climate change
Covariance
Data acquisition
Domains
ecotones
Estimates
Estimators
Forest monitoring
Forests
Global change
Identification
landscapes
Laser scanning
Lasers
lidar
Mathematical models
Model-dependent inference
Monitoring
Monitoring methods
Mountains
Norway
Parameter uncertainty
prediction
Regression analysis
Regression models
Remote sensing
scanners
Sensors
Small trees
Statistical analysis
Statistical inference
Taiga & tundra
Tree growth
tree height
Tree migration
treeline
Trees
Uncertainty analysis
variance
Vegetation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtQwFLWgXcAG8RRDC7oINkhYTcZ2HK_QDDPVCNGqginqLvKzHSmaTGfSBTv-gY_hf_gSrhPPdAFimzhRovvwudf2OYS8zYzMgnaGquAD5bk2VONMRnmQWrCCcdEtxZycFrNz_ulCXKSG2yZtq9zmxC5Ru8bGHvlRbF4imsX64cPqmkbVqLi6miQ07pJ9TMElFl_74-np2ZddlyVj6GIZ73lJGdb3R-sNRrfIy6TMtp2JOsL-v_JxN8kcPyQPEjqEUW_OR-SOXz4m95JQ-dX3J-TXCKJ6WU0nSby2hZNOAxoQfEIfoLFTB5gQ0AugPzywgcUSvvnLtLUQZl0_NF5E-AfjBoFj_fvHz1G9QswJU9tEhm7odhPAeEHnPX1V_R7maHkPk6gI0LN5wFmzwG-Y6FZDPKkCo8UavQqf_ozT4xq-2l4T6Sk5P57OP85o0l6gline0iII6TRzkmlf6sIXiFw8F1K73CDINLY0YqhdJk3kxymENTwo5YzNisCcFewZ2Vvitz4nIDXPXZYHx0POvZQ6sHzocqyOfcnFUA7Iu60dKpuIyaM-Rl1hgRJtVt3abEDe7MauejqOf44aR3PuRkQK7e5Cs76sUkRW3mvFSluyqL8dcZq3OXeIkJzAf-NqQA63zlCluN5Ut144IK93tzEi4zKLXvrmBseosigLodTwxf9fcUDuI_xS_XbCQ7LXrm_8S4Q4rXmV_PgPmrv-kQ
  priority: 102
  providerName: ProQuest
Title A Model-Dependent Method for Monitoring Subtle Changes in Vegetation Height in the Boreal–Alpine Ecotone Using Bi-Temporal, Three Dimensional Point Data from Airborne Laser Scanning
URI https://www.proquest.com/docview/2304049601
https://www.proquest.com/docview/2986865992
https://doaj.org/article/eea938c8341246399ec14d081d58b549
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtNAFB1BWcAGUR4iUKKLYIOEVTvzspdOkzRCTVXRFHVnzbNEspIqcRfs-Ac-hv_hS7jjcdJKILFhZWk8lka-9849dx7nEPI-1TL1yuqk8M4nLFM6UZjJEual4lRQxtutmNmpmF6wT5f88o7UVzgTFumB4487dE4VNDc5DTLJIZ06kzGLiczyXGNxE2ZfzHl3iql2DqboWimLfKQU6_rD9Qajmmd5p8i2zUAtUf8f83CbXCZPyOMOFUIZR7NP7rnlU_KwEyj_-u0Z-VlCUC2rk1EnWtvArNV-BgSdEAMzrNABTgRofYiXBjawWMIXd9UdKYRpuw4aGhH2wXCFgLH-9f1HWV8j1oSxWQVmbmhPEcBwkcwjbVX9EeZocQejoAQQWTzgbLXAMYxUoyDcUIFysUZvwq9PMC2u4dxELaTn5GIynh9Nk05zITG0YE0iPJdWUSupcrkSTiBicYxLZTON4FIb_OkDZVOpAy-O4EYzXxRWm1R4ag2nL8jeEsf6koBULLNp5i3zGXNSKk-zgc2wKnY54wPZIx-2dqhMR0gedDHqCguTYLPq1mY98m7X9zrScPy11zCYc9cjUGe3DehQVedQ1b8cqkcOts5QdfG8qcLSOdZSWL32yNvda4zEsL2ilm51g32KXOSCF8Xg1f8Yx2vyCMFZEQ8bHpC9Zn3j3iAAanSf3M8nx33yoBzNTs7xORyfnn3utxHwG67NCQE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqcigXxK9YKDAIOCARNYntJD4gtMt22dLdCokt6i04ttOuFG222a1Qb7wD78GV9-FJmMnP9gDi1mvsRI7m88znsT0fYy_9LPZzbTNP5S73RKAzT2Mk80Qea8kjLmS9FTM9isbH4uOJPNliP7u7MHSssvOJtaO2paEc-R4lL5HN4vrh3fLcI9Uo2l3tJDQaWBy6y2-4ZFu9PRiifV-F4Wh_9n7staoCnuFKrL0ol7HV3MZcu0RHLsKY7ISMtQ0ypE-ZSTIZauvHGVV-iaTJRK6UzYwf5dwaUolAl39DcK5oRiWjD5ucjs8R0L5oqqBiu79XrdCXyCBpdeC6uFfLA_zl_euQNrrNbrVcFPoNeO6wLbe4y3ZaWfSzy3vsVx9IK63whq1U7hqmteI0INWFxh1QXhDQ_SDmoLmqsIL5Ar640_YgI4zr7Cs9RLIJgxJpavH7-49-sUSGC_umpHrgUJ9dgMHcmzXFsoo3MEOcORiS_kBTOwQ-lXMcw1CvNdC9GOjPK8Qwvj3BYFzBZ9MoMN1nx9dikwdse4Fjfcgg1iKwfpBbkQfCxbHOeRDaANfiLhEyjHvsdWeH1LRl0EmNo0hxOUQ2S69s1mMvNn2XTfGPf_YakDk3Pahgd_2grE7Tdv6nzmnFE5NwUvsmVuhMICzyMSvx34Tqsd0ODGnrRVbpFeZ77PmmGec_berohSsvsI9KoiSSSoWP_v-JZ2xnPJtO0snB0eFjdhOJn2oOMu6y7XV14Z4guVpnT2tEA_t63VPoD43eOww
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5VqQRcEL8itMAg4ICEFdu79noPCCUkUUrbKIIU9WbW-1MiRXGapEK98Q48DBKPw5Mwa6_TA4hbr84mcjSz33wzOzsfIS_DgodW6iIQ1tiARbIIJEaygFkuE5pSllRHMcfjdHTCPpwmpzvkV3MXxrVVNphYAbUulauRd1zxEtks5g8d69siJv3hu-V54BSk3ElrI6dRu8ihufyG6dv67UEfbf0qjoeD6ftR4BUGAkUF2wSpTbiWVHMqTSZTk2J8NizhUkcFUqlCZUUSSx3ywk2BSRNVMCuELlSYWqqVU4xA-N_lmBWFLbLbG4wnH7cVnpCie4esnolKqQg7qzUiSxJlXhWuiYKVWMBfsaAKcMM75LZnptCtXeku2TGLe-SmF0n_enmf_OyCU06bB30vnLuB40p_GpD4Qg0OrkoICEbogVBfXFjDbAGfzZlva4RRVYt1D5F6Qq9E0jr__f1Hd75EvgsDVbrp4FB1MkBvFkzr0VnzNzBFrzPQd2oE9SQRmJQzfIe-3Ehwt2SgO1uhR-O3jzA0r-CTqvWYHpCTa7HKQ9Ja4Ls-IsAli3QYWc1sxAzn0tIo1hFm5iZjSczb5HVjh1z5oehOm2OeY3LkbJZf2axNXmzXLutRIP9c1XPm3K5w47urB-XqLPdokBsjBc1URp32t-OIRkVMIzvTCf43Jtpkv3GG3GPKOr_aAW3yfPsxooE74pELU17gGpGlWZoIET_-_088Izdw--RHB-PDPXILWaCouxr3SWuzujBPkGltiqfepYF8ue5d9AcsikCe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Model-Dependent+Method+for+Monitoring+Subtle+Changes+in+Vegetation+Height+in+the+Boreal%E2%80%93Alpine+Ecotone+Using+Bi-Temporal%2C+Three+Dimensional+Point+Data+from+Airborne+Laser+Scanning&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Erik+N%C3%A6sset&rft.au=Terje+Gobakken&rft.au=Ronald+E.+McRoberts&rft.date=2019-08-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=11&rft.issue=15&rft.spage=1804&rft_id=info:doi/10.3390%2Frs11151804&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_eea938c8341246399ec14d081d58b549
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon