A Model-Dependent Method for Monitoring Subtle Changes in Vegetation Height in the Boreal–Alpine Ecotone Using Bi-Temporal, Three Dimensional Point Data from Airborne Laser Scanning
The boreal tree line is in many places expected to advance upwards into the mountains due to climate change. This study aimed to develop a general method for estimation of vegetation height change in general, and change in tree height more specifically, for small geographical domains utilizing bi-te...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 11; no. 15; p. 1804 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The boreal tree line is in many places expected to advance upwards into the mountains due to climate change. This study aimed to develop a general method for estimation of vegetation height change in general, and change in tree height more specifically, for small geographical domains utilizing bi-temporal airborne laser scanner (ALS) data. The domains subject to estimation may subsequently be used to monitor vegetation and tree height change with detailed temporal and geographical resolutions. A method was developed with particular focus on statistically rigorous estimators of uncertainty for change estimates. The method employed model-dependent statistical inference. The method was demonstrated in a 12 ha study site in a boreal–alpine tree line in southeastern Norway, in which 316 trees were measured on the ground in 2006 and 2012 and ALS data were acquired in two temporally coincident campaigns. The trees ranged from 0.11 m to 5.20 m in height. Average growth in height was 0.19 m. Regression models were used to predict and estimate change. By following the area-based approach, predictions were produced for every individual 2 m2 population element that tessellated the study area. Two demonstrations of the method are provided in which separate height change estimates were calculated for domains of size 1.5 ha or greater. Differences in height change estimates among such small domains illustrate how change patterns may vary over the landscape. Model-dependent mean square error estimates for the height change estimators that accounted for (1) model parameter uncertainty, (2) residual variance, and (3) residual covariance are provided. Findings suggested that the two latter sources of uncertainty could be ignored in the uncertainty analysis. The proposed estimators are likely to work well for estimation of differences in height change along a gradient of small monitoring units, like the 1.5 ha cells used for demonstration purposes, and thus may potentially be used to monitor tree line migration over time. |
---|---|
AbstractList | The boreal tree line is in many places expected to advance upwards into the mountains due to climate change. This study aimed to develop a general method for estimation of vegetation height change in general, and change in tree height more specifically, for small geographical domains utilizing bi-temporal airborne laser scanner (ALS) data. The domains subject to estimation may subsequently be used to monitor vegetation and tree height change with detailed temporal and geographical resolutions. A method was developed with particular focus on statistically rigorous estimators of uncertainty for change estimates. The method employed model-dependent statistical inference. The method was demonstrated in a 12 ha study site in a boreal−alpine tree line in southeastern Norway, in which 316 trees were measured on the ground in 2006 and 2012 and ALS data were acquired in two temporally coincident campaigns. The trees ranged from 0.11 m to 5.20 m in height. Average growth in height was 0.19 m. Regression models were used to predict and estimate change. By following the area-based approach, predictions were produced for every individual 2 m2 population element that tessellated the study area. Two demonstrations of the method are provided in which separate height change estimates were calculated for domains of size 1.5 ha or greater. Differences in height change estimates among such small domains illustrate how change patterns may vary over the landscape. Model-dependent mean square error estimates for the height change estimators that accounted for (1) model parameter uncertainty, (2) residual variance, and (3) residual covariance are provided. Findings suggested that the two latter sources of uncertainty could be ignored in the uncertainty analysis. The proposed estimators are likely to work well for estimation of differences in height change along a gradient of small monitoring units, like the 1.5 ha cells used for demonstration purposes, and thus may potentially be used to monitor tree line migration over time. The boreal tree line is in many places expected to advance upwards into the mountains due to climate change. This study aimed to develop a general method for estimation of vegetation height change in general, and change in tree height more specifically, for small geographical domains utilizing bi-temporal airborne laser scanner (ALS) data. The domains subject to estimation may subsequently be used to monitor vegetation and tree height change with detailed temporal and geographical resolutions. A method was developed with particular focus on statistically rigorous estimators of uncertainty for change estimates. The method employed model-dependent statistical inference. The method was demonstrated in a 12 ha study site in a boreal–alpine tree line in southeastern Norway, in which 316 trees were measured on the ground in 2006 and 2012 and ALS data were acquired in two temporally coincident campaigns. The trees ranged from 0.11 m to 5.20 m in height. Average growth in height was 0.19 m. Regression models were used to predict and estimate change. By following the area-based approach, predictions were produced for every individual 2 m2 population element that tessellated the study area. Two demonstrations of the method are provided in which separate height change estimates were calculated for domains of size 1.5 ha or greater. Differences in height change estimates among such small domains illustrate how change patterns may vary over the landscape. Model-dependent mean square error estimates for the height change estimators that accounted for (1) model parameter uncertainty, (2) residual variance, and (3) residual covariance are provided. Findings suggested that the two latter sources of uncertainty could be ignored in the uncertainty analysis. The proposed estimators are likely to work well for estimation of differences in height change along a gradient of small monitoring units, like the 1.5 ha cells used for demonstration purposes, and thus may potentially be used to monitor tree line migration over time. |
Author | Næsset, Erik Gobakken, Terje McRoberts, Ronald E. |
Author_xml | – sequence: 1 givenname: Erik surname: Næsset fullname: Næsset, Erik – sequence: 2 givenname: Terje orcidid: 0000-0001-5534-049X surname: Gobakken fullname: Gobakken, Terje – sequence: 3 givenname: Ronald E. surname: McRoberts fullname: McRoberts, Ronald E. |
BookMark | eNptks1uEzEQgFeoSJTSC09giQtCLNhr74-PadLSSqlAasp1NWvPbhw5drCdAzfegYfp-_AkOAQBqvDF1vibb0b2PC9OnHdYFC8Zfce5pO9DZIzVrKPiSXFa0bYqRSWrk3_Oz4rzGDc0L86ZpOK0eJiRW6_RlgvcodPoErnFtPaajD7kK2eSD8ZN5G4_JItkvgY3YSTGkc84YYJkvCPXaKZ1OgTTGsmFDwj2x7fvM7szDsml8il3Su7jQXRhyhVudz6AfUtW64BIFmaLLmYRWPLJm9zDAhKQMfgtmZkw-JCzlxAxkDsFzmXNi-LpCDbi-e_9rLi_ulzNr8vlxw8389myVFyKVDZj3WrguuWAHTTYNIKjqFvQbKAdHVQ31BVo2g5Vy0VTq0GMUupB0WbkWtX8rLg5erWHTb8LZgvha-_B9L8CPkw9hGSUxR4RJO9UxwWrRMOlRMWEph3Tda4iZHa9Prp2wX_ZY0z91kSF1oJDv499Jbuma2opq4y-eoRu_D7k98kUp4IK2VCWqTdHSgUfY8DxT4OM9oeR6P-ORIbpI1iZ4_elAMb-L-UnaDW8EQ |
CitedBy_id | crossref_primary_10_1016_j_rse_2022_113028 crossref_primary_10_3390_rs15143508 crossref_primary_10_1093_forestry_cpad024 crossref_primary_10_1016_j_rse_2023_113455 crossref_primary_10_3390_rs13234873 crossref_primary_10_3390_rs13132469 crossref_primary_10_1016_j_jag_2023_103201 |
Cites_doi | 10.1007/978-1-4613-8122-8 10.1007/s10584-006-9113-7 10.1139/X07-219 10.1002/0471722146 10.1017/S0032247407006511 10.3390/rs70404702 10.1186/s40663-016-0064-9 10.1007/s10661-017-6401-9 10.1016/j.rse.2007.03.004 10.1111/j.1365-2745.2006.01200.x 10.1016/j.rse.2016.10.046 10.1016/0304-4076(85)90158-7 10.1139/x26-085 10.1080/02827581.2017.1338354 10.1016/j.agee.2006.05.004 10.1080/028275802317221064 10.1111/j.1365-2745.2006.01190.x 10.1016/j.rse.2012.10.008 10.18637/jss.v011.i10 10.3390/rs61010152 10.3390/rs8070548 10.1139/cjfr-2016-0086 10.1016/j.rse.2013.12.015 10.1016/j.rse.2012.04.017 10.1016/j.rse.2015.07.026 10.1080/00031305.2000.10474549 10.1139/X10-161 10.5589/m12-053 10.2307/1936723 10.3390/rs8050407 10.1080/01621459.1983.10477018 10.2307/2297111 10.1016/j.rse.2006.03.005 10.5589/m11-041 10.18637/jss.v016.i09 10.1016/j.rse.2008.09.001 10.1016/j.rse.2012.03.008 10.1080/2150704X.2012.714087 10.1007/s13595-016-0590-1 10.1139/cjfr-2017-0396 10.1016/j.rse.2012.10.007 10.1016/j.rse.2017.09.027 10.1007/s10260-012-0220-5 10.1080/21513732.2012.737373 10.3390/rs6054582 10.1080/02827580410019472 10.1139/cjfr-2015-0084 10.2307/1912934 10.1111/j.1654-1103.2007.tb02571.x 10.2307/1930167 10.1016/j.rse.2015.02.018 10.1139/cjfr-2017-0031 10.1002/ecs2.2176 10.1139/cjfr-2015-0077 10.1139/x86-136 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs11151804 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection AGRICOLA AGRICOLA - Academic Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_eea938c8341246399ec14d081d58b549 10_3390_rs11151804 |
GeographicLocations | United States--US Norway |
GeographicLocations_xml | – name: United States--US – name: Norway |
GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c394t-6f57da3d73ae8a6e6643e457ad1b080bc8b52ad07b273465cb4f99dbc06f3dc53 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:12:34 EDT 2025 Thu Jul 10 16:45:53 EDT 2025 Fri Jul 25 12:06:40 EDT 2025 Tue Jul 01 04:14:49 EDT 2025 Thu Apr 24 23:04:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-6f57da3d73ae8a6e6643e457ad1b080bc8b52ad07b273465cb4f99dbc06f3dc53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5534-049X |
OpenAccessLink | https://doaj.org/article/eea938c8341246399ec14d081d58b549 |
PQID | 2304049601 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_eea938c8341246399ec14d081d58b549 proquest_miscellaneous_2986865992 proquest_journals_2304049601 crossref_primary_10_3390_rs11151804 crossref_citationtrail_10_3390_rs11151804 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Cottam (ref_25) 1956; 37 Long (ref_42) 2000; 54 Kaplan (ref_5) 2006; 79 Bryn (ref_7) 2012; 8 Zeileis (ref_47) 2006; 16 Kambo (ref_63) 2018; 9 Kullman (ref_3) 2007; 95 ref_10 ref_54 Maltamo (ref_15) 2016; 46 White (ref_40) 1980; 48 Ene (ref_62) 2017; 47 Hauglin (ref_13) 2017; 190 ref_18 Holmgren (ref_32) 2004; 19 Ene (ref_37) 2017; 188 Zeileis (ref_44) 2004; 11 Thomsen (ref_66) 1978; 5 McRoberts (ref_49) 2013; 128 Holmgren (ref_14) 2012; 123 Breusch (ref_39) 1980; 47 Warde (ref_26) 1981; 62 Magnussen (ref_33) 2015; 45 Zheng (ref_1) 2002; 17 Gobakken (ref_31) 2008; 38 ref_21 ref_65 Tasser (ref_9) 2007; 118 Stumberg (ref_17) 2014; 6 Stumberg (ref_22) 2014; 6 ref_64 Saarela (ref_53) 2016; 3 Guisan (ref_8) 2007; 18 McRoberts (ref_36) 2015; 164 Holmgren (ref_23) 2013; 4 ref_29 Magnusson (ref_30) 2007; 53 ref_27 Skowronski (ref_38) 2014; 151 Holm (ref_55) 2011; 41 Ene (ref_57) 2012; 123 Kullman (ref_2) 1986; 16 Ene (ref_61) 2018; 204 Thieme (ref_16) 2011; 37 Hansen (ref_48) 1983; 78 Axelsson (ref_28) 2000; 33 Nelson (ref_11) 2007; 110 (ref_24) 2015; 7 Saarela (ref_59) 2016; 73 McRoberts (ref_58) 2006; 103 ref_46 McRoberts (ref_50) 2018; 48 Kangas (ref_56) 1996; 26 Gobakken (ref_35) 2013; 128 ref_45 Breidenbach (ref_51) 2016; 173 Ene (ref_60) 2018; 33 ref_41 Danby (ref_4) 2007; 95 Gregoire (ref_34) 2013; 22 Saarela (ref_52) 2015; 45 Rees (ref_19) 2007; 43 Stumberg (ref_12) 2012; 38 (ref_20) 2009; 113 MacKinnon (ref_43) 1985; 29 ref_6 |
References_xml | – ident: ref_64 doi: 10.1007/978-1-4613-8122-8 – volume: 33 start-page: 111 year: 2000 ident: ref_28 article-title: DEM generation from laser scanner data using adaptive TIN models publication-title: Int. Arch. Photogramm. Remote Sens. – volume: 79 start-page: 213 year: 2006 ident: ref_5 article-title: Arctic climate change with a 2 °C global warming: Timing, climate patterns and vegetation change publication-title: Clim. Chang. doi: 10.1007/s10584-006-9113-7 – volume: 38 start-page: 1095 year: 2008 ident: ref_31 article-title: Assessing effects of laser point density, ground sampling intensity, and field sample plot size on biophysical stand properties derived from airborne laser scanner data publication-title: Can. J. For. Res. doi: 10.1139/X07-219 – ident: ref_45 doi: 10.1002/0471722146 – volume: 43 start-page: 345 year: 2007 ident: ref_19 article-title: Characterisation of Arctic treelines by LiDAR and multispectral imagery publication-title: Polar Rec. doi: 10.1017/S0032247407006511 – volume: 7 start-page: 4702 year: 2015 ident: ref_24 article-title: Vertical Height Errors in Digital Terrain Models Derived from Airborne Laser Scanner Data in a Boreal-Alpine Ecotone in Norway publication-title: Remote Sens. doi: 10.3390/rs70404702 – ident: ref_65 – volume: 3 start-page: 5 year: 2016 ident: ref_53 article-title: Use of models in large-area forest surveys: Comparing model-assisted, model-based and hybrid estimation publication-title: For. Ecosyst. doi: 10.1186/s40663-016-0064-9 – volume: 190 start-page: 12 year: 2017 ident: ref_13 article-title: Monitoring small pioneer trees in the forest-tundra ecotone: Using multi-temporal airborne laser scanning data to model height growth publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-017-6401-9 – volume: 110 start-page: 357 year: 2007 ident: ref_11 article-title: Using airborne laser scanning to monitor tree migration in the boreal-alpine transition zone publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.03.004 – volume: 95 start-page: 352 year: 2007 ident: ref_4 article-title: Variability, contingency and rapid change in recent subarctic alpine tree line dynamics publication-title: J. Ecol. doi: 10.1111/j.1365-2745.2006.01200.x – volume: 188 start-page: 106 year: 2017 ident: ref_37 article-title: Large-scale estimation of change in aboveground biomass in miombo woodlands using airborne laser scanning and national forest inventory data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.10.046 – volume: 29 start-page: 305 year: 1985 ident: ref_43 article-title: Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties publication-title: J. Econom. doi: 10.1016/0304-4076(85)90158-7 – volume: 26 start-page: 758 year: 1996 ident: ref_56 article-title: Small-area estimates using model-based methods publication-title: Can. J. For. Res. doi: 10.1139/x26-085 – volume: 33 start-page: 155 year: 2018 ident: ref_60 article-title: Estimation of biomass change in montane forests in Norway along a 1200 km latitudinal gradient using airborne laser scanning: A comparison of direct and indirect prediction of change under a model-based inferential approach publication-title: Scand. J. For. Res. doi: 10.1080/02827581.2017.1338354 – volume: 118 start-page: 115 year: 2007 ident: ref_9 article-title: Land-use changes and natural reforestation in the Eastern Central Alps publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2006.05.004 – volume: 17 start-page: 35 year: 2002 ident: ref_1 article-title: Production of Picea abies in south-east Norway in response to climate change: A case study using process-based model simulation with field validation publication-title: Scand. J. For. Res. doi: 10.1080/028275802317221064 – volume: 95 start-page: 41 year: 2007 ident: ref_3 article-title: Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973–2005: Implications for tree line theory and climate change ecology publication-title: J. Ecol. doi: 10.1111/j.1365-2745.2006.01190.x – volume: 128 start-page: 299 year: 2013 ident: ref_35 article-title: Model-assisted estimation of change in forest biomass over an 11 year period in a sample survey supported by airborne LiDAR: A case study with post-stratification to provide “activity data” publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.10.008 – volume: 11 start-page: 1 year: 2004 ident: ref_44 article-title: Econometric Computing with HC and HAC Covariance Matrix Estimators publication-title: J. Stat. Softw. doi: 10.18637/jss.v011.i10 – ident: ref_27 – volume: 6 start-page: 10152 year: 2014 ident: ref_17 article-title: Automatic Detection of Small Single Trees in the Forest-Tundra Ecotone Using Airborne Laser Scanning publication-title: Remote Sens. doi: 10.3390/rs61010152 – ident: ref_10 – ident: ref_21 doi: 10.3390/rs8070548 – volume: 46 start-page: 1138 year: 2016 ident: ref_15 article-title: Large-scale prediction of aboveground biomass in heterogeneous mountain forests by means of airborne laser scanning publication-title: Can. J. For. Res. doi: 10.1139/cjfr-2016-0086 – volume: 151 start-page: 166 year: 2014 ident: ref_38 article-title: Airborne laser scanner-assisted estimation of aboveground biomass change in a temperate oak–pine forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.12.015 – ident: ref_41 – volume: 123 start-page: 579 year: 2012 ident: ref_57 article-title: Assessing the accuracy of regional LiDAR-based biomass estimation using a simulation approach publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.04.017 – volume: 173 start-page: 274 year: 2016 ident: ref_51 article-title: Empirical coverage of model-based variance estimators for remote sensing assisted estimation of stand-level timber volume publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.07.026 – volume: 54 start-page: 217 year: 2000 ident: ref_42 article-title: Using Heteroscedasticity Consistent Standard Errors in the Linear Regression Model publication-title: Am. Stat. doi: 10.1080/00031305.2000.10474549 – volume: 41 start-page: 96 year: 2011 ident: ref_55 article-title: Model-based inference for biomass estimation in a LiDAR sample survey in the county of Hedmark County, Norway publication-title: Can. J. For. Res. doi: 10.1139/X10-161 – volume: 38 start-page: 655 year: 2012 ident: ref_12 article-title: Classifying tree and nontree echoes from airborne laser scanning in the forest–tundra ecotone publication-title: Can. J. Remote Sens. doi: 10.5589/m12-053 – volume: 62 start-page: 491 year: 1981 ident: ref_26 article-title: A Correction Factor Table for Missing Point-Center Quarter Data publication-title: Ecology doi: 10.2307/1936723 – ident: ref_18 doi: 10.3390/rs8050407 – volume: 78 start-page: 776 year: 1983 ident: ref_48 article-title: An Evaluation of Model-Dependent and Probability-Sampling Inferences in Sample Surveys publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1983.10477018 – volume: 5 start-page: 27 year: 1978 ident: ref_66 article-title: Design-based and model-based inference in survey sampling publication-title: Scand. J. Statist. – volume: 47 start-page: 239 year: 1980 ident: ref_39 article-title: The Lagrange multiplier test and its applications to model specification in econometrics publication-title: Rev. Econ. Stud. doi: 10.2307/2297111 – volume: 103 start-page: 56 year: 2006 ident: ref_58 article-title: A model-based approach to estimating forest area publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.03.005 – volume: 37 start-page: 264 year: 2011 ident: ref_16 article-title: Detection of small single trees in the forest-tundra ecotone using height values from airborne laser scanning publication-title: Can. J. Remote Sens. doi: 10.5589/m11-041 – volume: 16 start-page: 1 year: 2006 ident: ref_47 article-title: Object-oriented Computation of Sandwich Estimators publication-title: J. Stat. Softw. doi: 10.18637/jss.v016.i09 – volume: 113 start-page: 148 year: 2009 ident: ref_20 article-title: Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.09.001 – volume: 123 start-page: 271 year: 2012 ident: ref_14 article-title: Prediction of tree biomass in the forest–tundra ecotone using airborne laser scanning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.03.008 – volume: 4 start-page: 190 year: 2013 ident: ref_23 article-title: Change detection of mountain birch using multi-temporal ALS point clouds publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2012.714087 – volume: 73 start-page: 895 year: 2016 ident: ref_59 article-title: Hierarchical model-based inference for forest inventory utilizing three sources of information publication-title: Ann. For. Sci. doi: 10.1007/s13595-016-0590-1 – volume: 48 start-page: 642 year: 2018 ident: ref_50 article-title: Assessing components of the model-based mean square error estimator for remote sensing assisted forest applications publication-title: Can. J. For. Res. doi: 10.1139/cjfr-2017-0396 – volume: 128 start-page: 268 year: 2013 ident: ref_49 article-title: Inference for lidar-assisted estimation of forest growing stock volume publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.10.007 – volume: 204 start-page: 741 year: 2018 ident: ref_61 article-title: Large-area hybrid estimation of aboveground biomass in interior Alaska using airborne laser scanning data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.09.027 – volume: 22 start-page: 113 year: 2013 ident: ref_34 article-title: Detection of biomass change in a Norwegian mountain forest area using small footprint airborne laser scanner data publication-title: Stat. Methods Appl. doi: 10.1007/s10260-012-0220-5 – volume: 8 start-page: 360 year: 2012 ident: ref_7 article-title: Impacts of land use on the vegetation in three rural landscapes of Norway publication-title: Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. doi: 10.1080/21513732.2012.737373 – ident: ref_6 – volume: 6 start-page: 4582 year: 2014 ident: ref_22 article-title: Improving Classification of Airborne Laser Scanning Echoes in the Forest-Tundra Ecotone Using Geostatistical and Statistical Measures publication-title: Remote Sens. doi: 10.3390/rs6054582 – volume: 19 start-page: 543 year: 2004 ident: ref_32 article-title: Prediction of tree height, basal area and stem volume in forest stands using airborne laser scanning publication-title: Scand. J. For. Res. doi: 10.1080/02827580410019472 – ident: ref_29 – ident: ref_54 – ident: ref_46 – volume: 53 start-page: 619 year: 2007 ident: ref_30 article-title: Effects on estimation accuracy of forest variables using different pulse density of laser data publication-title: For. Sci. – volume: 45 start-page: 1514 year: 2015 ident: ref_33 article-title: LiDAR-supported estimation of change in forest biomass with time-invariant regression models publication-title: Can. J. For. Res. doi: 10.1139/cjfr-2015-0084 – volume: 48 start-page: 817 year: 1980 ident: ref_40 article-title: A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity publication-title: Econometrica doi: 10.2307/1912934 – volume: 18 start-page: 571 year: 2007 ident: ref_8 article-title: Tree line shifts in the Swiss Alps: Climate change or land abandonment? publication-title: J. Veg. Sci. doi: 10.1111/j.1654-1103.2007.tb02571.x – volume: 37 start-page: 451 year: 1956 ident: ref_25 article-title: The Use of Distance Measures in Phytosociological Sampling publication-title: Ecology doi: 10.2307/1930167 – volume: 164 start-page: 36 year: 2015 ident: ref_36 article-title: Indirect and direct estimation of forest biomass change using forest inventory and airborne laser scanning data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.02.018 – volume: 47 start-page: 839 year: 2017 ident: ref_62 article-title: Post-stratified change estimation for large-area forest biomass using repeated ALS strip sampling publication-title: Can. J. For. Res. doi: 10.1139/cjfr-2017-0031 – volume: 9 start-page: e02176 year: 2018 ident: ref_63 article-title: Factors influencing the establishment and growth of tree seedlings at Subarctic alpine treelines publication-title: Ecosphere doi: 10.1002/ecs2.2176 – volume: 45 start-page: 1524 year: 2015 ident: ref_52 article-title: Effects of sample size and model form on the accuracy of model-based estimators of growing stock volume publication-title: Can. J. For. Res. doi: 10.1139/cjfr-2015-0077 – volume: 16 start-page: 761 year: 1986 ident: ref_2 article-title: Recent tree-limit history of Piceaabies in the southern Swedish Scandes publication-title: Can. J. For. Res. doi: 10.1139/x86-136 |
SSID | ssj0000331904 |
Score | 2.2468011 |
Snippet | The boreal tree line is in many places expected to advance upwards into the mountains due to climate change. This study aimed to develop a general method for... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1804 |
SubjectTerms | Accuracy Airborne lasers Biomass Climate change Covariance Data acquisition Domains ecotones Estimates Estimators Forest monitoring Forests Global change Identification landscapes Laser scanning Lasers lidar Mathematical models Model-dependent inference Monitoring Monitoring methods Mountains Norway Parameter uncertainty prediction Regression analysis Regression models Remote sensing scanners Sensors Small trees Statistical analysis Statistical inference Taiga & tundra Tree growth tree height Tree migration treeline Trees Uncertainty analysis variance Vegetation |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtQwFLWgXcAG8RRDC7oINkhYTcZ2HK_QDDPVCNGqginqLvKzHSmaTGfSBTv-gY_hf_gSrhPPdAFimzhRovvwudf2OYS8zYzMgnaGquAD5bk2VONMRnmQWrCCcdEtxZycFrNz_ulCXKSG2yZtq9zmxC5Ru8bGHvlRbF4imsX64cPqmkbVqLi6miQ07pJ9TMElFl_74-np2ZddlyVj6GIZ73lJGdb3R-sNRrfIy6TMtp2JOsL-v_JxN8kcPyQPEjqEUW_OR-SOXz4m95JQ-dX3J-TXCKJ6WU0nSby2hZNOAxoQfEIfoLFTB5gQ0AugPzywgcUSvvnLtLUQZl0_NF5E-AfjBoFj_fvHz1G9QswJU9tEhm7odhPAeEHnPX1V_R7maHkPk6gI0LN5wFmzwG-Y6FZDPKkCo8UavQqf_ozT4xq-2l4T6Sk5P57OP85o0l6gline0iII6TRzkmlf6sIXiFw8F1K73CDINLY0YqhdJk3kxymENTwo5YzNisCcFewZ2Vvitz4nIDXPXZYHx0POvZQ6sHzocqyOfcnFUA7Iu60dKpuIyaM-Rl1hgRJtVt3abEDe7MauejqOf44aR3PuRkQK7e5Cs76sUkRW3mvFSluyqL8dcZq3OXeIkJzAf-NqQA63zlCluN5Ut144IK93tzEi4zKLXvrmBseosigLodTwxf9fcUDuI_xS_XbCQ7LXrm_8S4Q4rXmV_PgPmrv-kQ priority: 102 providerName: ProQuest |
Title | A Model-Dependent Method for Monitoring Subtle Changes in Vegetation Height in the Boreal–Alpine Ecotone Using Bi-Temporal, Three Dimensional Point Data from Airborne Laser Scanning |
URI | https://www.proquest.com/docview/2304049601 https://www.proquest.com/docview/2986865992 https://doaj.org/article/eea938c8341246399ec14d081d58b549 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtNAFB1BWcAGUR4iUKKLYIOEVTvzspdOkzRCTVXRFHVnzbNEspIqcRfs-Ac-hv_hS7jjcdJKILFhZWk8lka-9849dx7nEPI-1TL1yuqk8M4nLFM6UZjJEual4lRQxtutmNmpmF6wT5f88o7UVzgTFumB4487dE4VNDc5DTLJIZ06kzGLiczyXGNxE2ZfzHl3iql2DqboWimLfKQU6_rD9Qajmmd5p8i2zUAtUf8f83CbXCZPyOMOFUIZR7NP7rnlU_KwEyj_-u0Z-VlCUC2rk1EnWtvArNV-BgSdEAMzrNABTgRofYiXBjawWMIXd9UdKYRpuw4aGhH2wXCFgLH-9f1HWV8j1oSxWQVmbmhPEcBwkcwjbVX9EeZocQejoAQQWTzgbLXAMYxUoyDcUIFysUZvwq9PMC2u4dxELaTn5GIynh9Nk05zITG0YE0iPJdWUSupcrkSTiBicYxLZTON4FIb_OkDZVOpAy-O4EYzXxRWm1R4ag2nL8jeEsf6koBULLNp5i3zGXNSKk-zgc2wKnY54wPZIx-2dqhMR0gedDHqCguTYLPq1mY98m7X9zrScPy11zCYc9cjUGe3DehQVedQ1b8cqkcOts5QdfG8qcLSOdZSWL32yNvda4zEsL2ilm51g32KXOSCF8Xg1f8Yx2vyCMFZEQ8bHpC9Zn3j3iAAanSf3M8nx33yoBzNTs7xORyfnn3utxHwG67NCQE |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqcigXxK9YKDAIOCARNYntJD4gtMt22dLdCokt6i04ttOuFG222a1Qb7wD78GV9-FJmMnP9gDi1mvsRI7m88znsT0fYy_9LPZzbTNP5S73RKAzT2Mk80Qea8kjLmS9FTM9isbH4uOJPNliP7u7MHSssvOJtaO2paEc-R4lL5HN4vrh3fLcI9Uo2l3tJDQaWBy6y2-4ZFu9PRiifV-F4Wh_9n7staoCnuFKrL0ol7HV3MZcu0RHLsKY7ISMtQ0ypE-ZSTIZauvHGVV-iaTJRK6UzYwf5dwaUolAl39DcK5oRiWjD5ucjs8R0L5oqqBiu79XrdCXyCBpdeC6uFfLA_zl_euQNrrNbrVcFPoNeO6wLbe4y3ZaWfSzy3vsVx9IK63whq1U7hqmteI0INWFxh1QXhDQ_SDmoLmqsIL5Ar640_YgI4zr7Cs9RLIJgxJpavH7-49-sUSGC_umpHrgUJ9dgMHcmzXFsoo3MEOcORiS_kBTOwQ-lXMcw1CvNdC9GOjPK8Qwvj3BYFzBZ9MoMN1nx9dikwdse4Fjfcgg1iKwfpBbkQfCxbHOeRDaANfiLhEyjHvsdWeH1LRl0EmNo0hxOUQ2S69s1mMvNn2XTfGPf_YakDk3Pahgd_2grE7Tdv6nzmnFE5NwUvsmVuhMICzyMSvx34Tqsd0ODGnrRVbpFeZ77PmmGec_berohSsvsI9KoiSSSoWP_v-JZ2xnPJtO0snB0eFjdhOJn2oOMu6y7XV14Z4guVpnT2tEA_t63VPoD43eOww |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5VqQRcEL8itMAg4ICEFdu79noPCCUkUUrbKIIU9WbW-1MiRXGapEK98Q48DBKPw5Mwa6_TA4hbr84mcjSz33wzOzsfIS_DgodW6iIQ1tiARbIIJEaygFkuE5pSllRHMcfjdHTCPpwmpzvkV3MXxrVVNphYAbUulauRd1zxEtks5g8d69siJv3hu-V54BSk3ElrI6dRu8ihufyG6dv67UEfbf0qjoeD6ftR4BUGAkUF2wSpTbiWVHMqTSZTk2J8NizhUkcFUqlCZUUSSx3ywk2BSRNVMCuELlSYWqqVU4xA-N_lmBWFLbLbG4wnH7cVnpCie4esnolKqQg7qzUiSxJlXhWuiYKVWMBfsaAKcMM75LZnptCtXeku2TGLe-SmF0n_enmf_OyCU06bB30vnLuB40p_GpD4Qg0OrkoICEbogVBfXFjDbAGfzZlva4RRVYt1D5F6Qq9E0jr__f1Hd75EvgsDVbrp4FB1MkBvFkzr0VnzNzBFrzPQd2oE9SQRmJQzfIe-3Ehwt2SgO1uhR-O3jzA0r-CTqvWYHpCTa7HKQ9Ja4Ls-IsAli3QYWc1sxAzn0tIo1hFm5iZjSczb5HVjh1z5oehOm2OeY3LkbJZf2axNXmzXLutRIP9c1XPm3K5w47urB-XqLPdokBsjBc1URp32t-OIRkVMIzvTCf43Jtpkv3GG3GPKOr_aAW3yfPsxooE74pELU17gGpGlWZoIET_-_088Izdw--RHB-PDPXILWaCouxr3SWuzujBPkGltiqfepYF8ue5d9AcsikCe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Model-Dependent+Method+for+Monitoring+Subtle+Changes+in+Vegetation+Height+in+the+Boreal%E2%80%93Alpine+Ecotone+Using+Bi-Temporal%2C+Three+Dimensional+Point+Data+from+Airborne+Laser+Scanning&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Erik+N%C3%A6sset&rft.au=Terje+Gobakken&rft.au=Ronald+E.+McRoberts&rft.date=2019-08-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=11&rft.issue=15&rft.spage=1804&rft_id=info:doi/10.3390%2Frs11151804&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_eea938c8341246399ec14d081d58b549 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |