Detection of Pine Shoot Beetle (PSB) Stress on Pine Forests at Individual Tree Level using UAV-Based Hyperspectral Imagery and Lidar
In recent years, the outbreak of the pine shoot beetle (PSB), Tomicus spp., has caused serious shoots damage and the death of millions of trees in Yunnan pine forests in southwestern China. It is urgent to develop a convincing approach to accurately assess the shoot damage ratio (SDR) for monitoring...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 11; no. 21; p. 2540 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, the outbreak of the pine shoot beetle (PSB), Tomicus spp., has caused serious shoots damage and the death of millions of trees in Yunnan pine forests in southwestern China. It is urgent to develop a convincing approach to accurately assess the shoot damage ratio (SDR) for monitoring the PSB insects at an early stage. Unmanned airborne vehicles (UAV)-based sensors, including hyperspectral imaging (HI) and lidar, have very high spatial and spectral resolutions, which are very useful to detect forest health. However, very few studies have utilized HI and lidar data to estimate SDRs and compare the predictive power for mapping PSB damage at the individual tree level. Additionally, the data fusion of HI and lidar may improve the detection accuracy, but it has not been well studied. In this study, UAV-based HI and lidar data were fused to detect PSB. We systematically evaluated the potential of a hyperspectral approach (only-HI data), a lidar approach (only-lidar data), and a combined approach (HI plus lidar data) to characterize PSB damage of individual trees using the Random Forest (RF) algorithm, separately. The most innovative point is the proposed new method to extract the three dimensional (3D) shadow distribution of each tree crown based on a lidar point cloud and the 3D radiative transfer model RAPID. The results show that: (1) for the accuracy of estimating the SDR of individual trees, the lidar approach (R2 = 0.69, RMSE = 12.28%) performed better than hyperspectral approach (R2 = 0.67, RMSE = 15.87%), and in addition, it was useful to detect dead trees with an accuracy of 70%; (2) the combined approach has the highest accuracy (R2 = 0.83, RMSE = 9.93%) for mapping PSB damage degrees; and (3) when combining HI and lidar data to predict SDRs, two variables have the most contributions, which are the leaf chlorophyll content (Cab) derived from hyperspectral data and the return intensity of the top of shaded crown (Int_Shd_top) from lidar metrics. This study confirms the high possibility to accurately predict SDRs at individual tree level if combining HI and lidar data. The 3D radiative transfer model can determine the 3D crown shadows from lidar, which is a key information to combine HI and lidar. Therefore, our study provided a guidance to combine the advantages of hyperspectral and lidar data to accurately measure the health of individual trees, enabling us to prioritize areas for forest health promotion. This method may also be used for other 3D land surfaces, like urban areas. |
---|---|
AbstractList | In recent years, the outbreak of the pine shoot beetle (PSB), Tomicus spp., has caused serious shoots damage and the death of millions of trees in Yunnan pine forests in southwestern China. It is urgent to develop a convincing approach to accurately assess the shoot damage ratio (SDR) for monitoring the PSB insects at an early stage. Unmanned airborne vehicles (UAV)-based sensors, including hyperspectral imaging (HI) and lidar, have very high spatial and spectral resolutions, which are very useful to detect forest health. However, very few studies have utilized HI and lidar data to estimate SDRs and compare the predictive power for mapping PSB damage at the individual tree level. Additionally, the data fusion of HI and lidar may improve the detection accuracy, but it has not been well studied. In this study, UAV-based HI and lidar data were fused to detect PSB. We systematically evaluated the potential of a hyperspectral approach (only-HI data), a lidar approach (only-lidar data), and a combined approach (HI plus lidar data) to characterize PSB damage of individual trees using the Random Forest (RF) algorithm, separately. The most innovative point is the proposed new method to extract the three dimensional (3D) shadow distribution of each tree crown based on a lidar point cloud and the 3D radiative transfer model RAPID. The results show that: (1) for the accuracy of estimating the SDR of individual trees, the lidar approach (R2 = 0.69, RMSE = 12.28%) performed better than hyperspectral approach (R2 = 0.67, RMSE = 15.87%), and in addition, it was useful to detect dead trees with an accuracy of 70%; (2) the combined approach has the highest accuracy (R2 = 0.83, RMSE = 9.93%) for mapping PSB damage degrees; and (3) when combining HI and lidar data to predict SDRs, two variables have the most contributions, which are the leaf chlorophyll content (Cab) derived from hyperspectral data and the return intensity of the top of shaded crown (Int_Shd_top) from lidar metrics. This study confirms the high possibility to accurately predict SDRs at individual tree level if combining HI and lidar data. The 3D radiative transfer model can determine the 3D crown shadows from lidar, which is a key information to combine HI and lidar. Therefore, our study provided a guidance to combine the advantages of hyperspectral and lidar data to accurately measure the health of individual trees, enabling us to prioritize areas for forest health promotion. This method may also be used for other 3D land surfaces, like urban areas. |
Author | Huang, Huaguo Lin, Qinan Huang, Kan Liu, Yangyang Wang, Jingxu |
Author_xml | – sequence: 1 givenname: Qinan surname: Lin fullname: Lin, Qinan – sequence: 2 givenname: Huaguo orcidid: 0000-0001-9355-2338 surname: Huang fullname: Huang, Huaguo – sequence: 3 givenname: Jingxu surname: Wang fullname: Wang, Jingxu – sequence: 4 givenname: Kan surname: Huang fullname: Huang, Kan – sequence: 5 givenname: Yangyang surname: Liu fullname: Liu, Yangyang |
BookMark | eNptkU1P3DAQhqMKpFLg0l9gqRdaKa0_4iQ-slBgpZVAWujVmtiTrVfZeGs7SHvvD69hUVshfBl79MzrmXk_FAejH7EoPjL6VQhFv4XIGGdcVvRdccRpw8uKK37w3_19cRrjmuYjBFO0Oip-X2JCk5wfie_JnRuRLH96n8gMMQ1Izu6Ws89kmQLGSDL0TFz5_EyRQCLz0bpHZycYyH1AJAt8xIFM0Y0r8nD-o5xBREtudlsMcZs_Chmcb2CFYUdgtGThLIST4rCHIeLpSzwuHq6-31_clIvb6_nF-aI0QlWprLFi3HIUQrZ5gIY1aGpjaM0YZZ2UfV1ba2UFKudo00sLijWKYq0AMiCOi_le13pY621wGwg77cHp54QPKw0hOTOg5pz1DIzset5UDHkHDKpedXXdiRzbrHW219oG_2vK69AbFw0OA4zop6i5aqUSjeQ8o59eoWs_hTFPqrmUlLetbGimvuwpE3yMAfu_DTKqn_zV__zNMH0FG5fgyca8YTe8VfIHGkanAg |
CitedBy_id | crossref_primary_10_1146_annurev_ento_120220_125410 crossref_primary_10_3390_rs14133205 crossref_primary_10_3390_rs14102428 crossref_primary_10_14483_2256201X_19250 crossref_primary_10_3390_agronomy13030923 crossref_primary_10_3390_rs17071109 crossref_primary_10_1016_j_ecolind_2023_110714 crossref_primary_10_3390_drones4030041 crossref_primary_10_1093_forsci_fxab003 crossref_primary_10_1016_j_rse_2022_112892 crossref_primary_10_1016_j_rsase_2024_101418 crossref_primary_10_3390_f13030418 crossref_primary_10_3390_f13111743 crossref_primary_10_1016_j_foreco_2021_119493 crossref_primary_10_1016_j_fecs_2022_100068 crossref_primary_10_3390_f14061176 crossref_primary_10_3390_rs16234371 crossref_primary_10_1016_j_rsase_2024_101341 crossref_primary_10_3390_electronics9010109 crossref_primary_10_3390_rs15163941 crossref_primary_10_3389_fevo_2023_1139458 crossref_primary_10_1016_j_ecoinf_2023_102099 crossref_primary_10_3389_fpls_2022_1000093 crossref_primary_10_1016_j_compag_2024_109527 crossref_primary_10_1016_j_ecolind_2023_110302 crossref_primary_10_3390_rs14153830 crossref_primary_10_3390_rs16193751 crossref_primary_10_1016_j_ecolind_2024_112034 crossref_primary_10_3390_rs14092195 crossref_primary_10_1016_j_jag_2023_103549 crossref_primary_10_3390_f11121258 crossref_primary_10_1016_j_rse_2025_114616 crossref_primary_10_1016_j_jag_2022_102856 crossref_primary_10_1016_j_scitotenv_2021_147758 crossref_primary_10_3390_rs13204065 crossref_primary_10_3390_rs15184508 crossref_primary_10_3390_f13060911 crossref_primary_10_1016_j_isprsjprs_2021_12_006 crossref_primary_10_3390_rs14061526 crossref_primary_10_3390_agronomy14010020 crossref_primary_10_1016_j_foreco_2022_120126 crossref_primary_10_3390_app12094372 crossref_primary_10_1016_j_rse_2021_112350 crossref_primary_10_1016_j_rse_2023_113484 crossref_primary_10_1145_3625387 crossref_primary_10_1186_s40663_021_00314_y crossref_primary_10_1080_01431161_2024_2406036 crossref_primary_10_1016_j_rse_2021_112475 crossref_primary_10_1016_j_rse_2023_113759 crossref_primary_10_1111_avsc_12503 crossref_primary_10_3390_f11030272 crossref_primary_10_3390_f11040417 crossref_primary_10_3390_f13111884 crossref_primary_10_1002_ecs2_4719 crossref_primary_10_1016_j_jag_2021_102363 crossref_primary_10_3390_f15010191 crossref_primary_10_1016_j_rsase_2022_100869 crossref_primary_10_3390_rs12030534 crossref_primary_10_1007_s11119_024_10168_3 crossref_primary_10_1080_10095020_2025_2454521 crossref_primary_10_3390_f15010112 crossref_primary_10_33904_ejfe_1320121 crossref_primary_10_3390_rs12111846 crossref_primary_10_1080_03071375_2022_2082177 crossref_primary_10_1016_j_foreco_2021_119505 crossref_primary_10_3390_rs15061524 crossref_primary_10_1109_MGRS_2022_3168135 crossref_primary_10_1016_j_rse_2020_112040 crossref_primary_10_1016_j_rse_2021_112582 crossref_primary_10_1111_gcb_15268 crossref_primary_10_3390_land12020310 crossref_primary_10_1186_s40663_021_00328_6 crossref_primary_10_1109_MGRS_2021_3087445 |
Cites_doi | 10.1016/S0048-9697(00)00528-3 10.1016/j.rse.2010.09.013 10.2135/cropsci2005.0059 10.1016/S0031-3203(99)00055-2 10.1016/0034-4257(90)90100-Z 10.1016/j.rse.2007.12.011 10.1016/j.rse.2015.09.019 10.3390/rs11010092 10.1046/j.1469-8137.1999.00424.x 10.1016/j.isprsjprs.2016.09.015 10.2307/1933693 10.1016/j.rse.2018.04.023 10.1016/j.rse.2015.08.019 10.1016/0034-4257(94)90079-5 10.1016/j.compag.2014.05.014 10.1016/j.rse.2017.08.010 10.1016/j.rse.2008.01.026 10.1016/j.rse.2013.01.013 10.1007/s10980-013-9879-8 10.1016/j.isprsjprs.2018.02.002 10.1126/science.aac6674 10.1016/S0034-4257(02)00010-X 10.1117/1.3662866 10.1016/j.foreco.2010.03.008 10.2307/1940551 10.3390/rs10071133 10.1016/j.isprsjprs.2013.10.010 10.1016/j.foreco.2013.03.038 10.3390/rs71115467 10.3390/rs5084045 10.1016/j.foreco.2009.06.008 10.1007/s10980-016-0460-0 10.1016/j.rse.2019.01.031 10.1016/j.rse.2016.10.014 10.1126/science.aaj1987 10.3390/rs10020199 10.1016/j.rse.2014.12.020 10.3390/rs4092661 10.1016/j.isprsjprs.2016.03.016 10.1016/j.rse.2017.03.004 10.1016/j.foreco.2005.09.021 10.1016/j.rse.2006.03.001 10.1016/j.foreco.2007.03.005 10.1016/j.isprsjprs.2007.05.008 10.1109/TGRS.2013.2238242 10.1016/S0378-1127(98)00376-4 10.1016/j.patcog.2010.08.011 10.1016/j.foreco.2014.09.012 10.1016/j.rse.2018.06.008 10.1093/jee/tou015 10.14358/PERS.78.1.75 10.1016/j.foreco.2004.07.018 10.1023/A:1010933404324 10.1016/j.rse.2011.12.023 10.1109/TGRS.2007.895844 10.1080/01431161.2012.713142 10.1016/j.foreco.2019.03.064 10.1080/07038992.1996.10855178 10.1016/j.rse.2006.03.012 10.3390/f9010039 10.1016/j.rse.2014.09.002 10.1016/j.csda.2007.08.015 10.1117/12.777153 10.1109/TGRS.2012.2234755 10.1016/j.rse.2011.09.009 10.1016/S0034-4257(98)00059-5 10.1111/gcb.13974 10.1016/j.foreco.2011.04.023 10.3390/f10030292 10.1016/j.rse.2007.02.032 10.3390/rs2122665 10.1016/j.rse.2011.02.018 10.1016/j.rse.2008.01.010 10.3390/rs5073280 |
ContentType | Journal Article |
Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs11212540 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Engineering Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection AGRICOLA AGRICOLA - Academic Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_221f1ac5bf2741e2ba1a4f9b66b34f98 10_3390_rs11212540 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c394t-6e412d2e3358033717ec6cc061101b55f66ddd54a9c0607f5da91790e69aa1b53 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:24:16 EDT 2025 Fri Jul 11 06:09:30 EDT 2025 Fri Jul 25 09:29:54 EDT 2025 Tue Jul 01 04:14:53 EDT 2025 Thu Apr 24 23:04:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-6e412d2e3358033717ec6cc061101b55f66ddd54a9c0607f5da91790e69aa1b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9355-2338 |
OpenAccessLink | https://doaj.org/article/221f1ac5bf2741e2ba1a4f9b66b34f98 |
PQID | 2550288570 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_221f1ac5bf2741e2ba1a4f9b66b34f98 proquest_miscellaneous_2985937522 proquest_journals_2550288570 crossref_primary_10_3390_rs11212540 crossref_citationtrail_10_3390_rs11212540 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Shendryk (ref_29) 2016; 187 Yu (ref_5) 2018; 9 Kautz (ref_4) 2017; 24 Immitzer (ref_68) 2012; 4 Huang (ref_42) 2013; 132 Hanavan (ref_33) 2015; 108 Verhoef (ref_60) 2007; 45 Townsend (ref_7) 2012; 119 ref_51 Jonsson (ref_82) 2009; 15 Pfeifer (ref_37) 2007; 62 Hornerob (ref_45) 2019; 223 ref_16 Meigs (ref_14) 2011; 115 Ashton (ref_41) 2008; 6966 Coulson (ref_6) 1999; 114 Senf (ref_40) 2017; 32 Jacquemoud (ref_59) 1990; 34 Assal (ref_19) 2014; 155 Pontius (ref_77) 2008; 112 Archer (ref_65) 2008; 52 Ahmed (ref_67) 2013; 34 West (ref_21) 2014; 334 Coops (ref_23) 2010; 259 Jacquemoud (ref_58) 2009; 113 Gamon (ref_73) 2010; 143 Wermelinger (ref_81) 2004; 202 Solberg (ref_38) 2006; 102 Waring (ref_1) 1985; 66 ref_26 Mutanga (ref_64) 2012; 18 Shi (ref_52) 2018; 73 Sprintsin (ref_22) 2011; 5 Donoghue (ref_34) 2007; 110 Honkavaara (ref_28) 2015; 7 Wulder (ref_25) 2009; 258 Kautz (ref_83) 2011; 262 Gitelson (ref_61) 2017; 193 Ali (ref_62) 2016; 122 Foster (ref_8) 2013; 28 Sauvola (ref_44) 2000; 33 Hanssen (ref_39) 2007; 250 Ayres (ref_2) 2000; 262 Somers (ref_11) 2010; 12 Oumar (ref_13) 2014; 87 Li (ref_47) 2012; 78 Senf (ref_9) 2017; 60 Babar (ref_76) 2006; 46 Spruce (ref_10) 2011; 115 Asner (ref_31) 2017; 355 Chen (ref_70) 1996; 22 Tochon (ref_79) 2015; 159 Meng (ref_32) 2018; 215 Liaw (ref_69) 2002; 2 Yuan (ref_43) 2014; 52 Mielcarek (ref_80) 2019; 442 Coops (ref_17) 2006; 103 Hovi (ref_35) 2016; 173 Liu (ref_36) 2017; 200 Verrelst (ref_56) 2014; 52 Carter (ref_74) 1994; 50 Kantola (ref_12) 2010; 2 Wulder (ref_24) 2008; 112 Cook (ref_30) 2013; 5 Rouse (ref_72) 1974; 1 Senf (ref_15) 2015; 170 Breiman (ref_63) 2001; 45 Blackburn (ref_75) 1998; 66 Lin (ref_54) 2016; 46 Ma (ref_78) 2014; 106 Walter (ref_20) 2013; 302 Meddens (ref_27) 2011; 115 Zhao (ref_46) 2016; 117 Ferreira (ref_57) 2018; 211 Verikas (ref_66) 2011; 44 Wingfield (ref_3) 2015; 349 Shi (ref_53) 2018; 137 ref_48 MacArthur (ref_49) 1969; 50 Rivera (ref_55) 2013; 5 Wulder (ref_18) 2006; 221 Sims (ref_71) 2002; 81 |
References_xml | – volume: 262 start-page: 263 year: 2000 ident: ref_2 article-title: Assessing the consequences of global change for forest disturbance from herbivores and pathogens publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(00)00528-3 – volume: 115 start-page: 427 year: 2011 ident: ref_10 article-title: Assessment of MODIS NDVI time series data products for detecting forest defoliation by gypsy moth outbreaks publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.09.013 – volume: 46 start-page: 578 year: 2006 ident: ref_76 article-title: Spectral Reflectance Indices as a Potential Indirect Selection Criteria for Wheat Yield under Irrigation publication-title: Crop. Sci. doi: 10.2135/cropsci2005.0059 – volume: 33 start-page: 225 year: 2000 ident: ref_44 article-title: Adaptive document image binarization publication-title: Pattern Recogn. doi: 10.1016/S0031-3203(99)00055-2 – volume: 34 start-page: 75 year: 1990 ident: ref_59 article-title: PROSPECT: A model of leaf optical properties spectra publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(90)90100-Z – volume: 112 start-page: 2665 year: 2008 ident: ref_77 article-title: Ash decline assessment in emerald ash borer-infested regions: A test of tree-level, hyperspectral technologies publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.12.011 – volume: 170 start-page: 166 year: 2015 ident: ref_15 article-title: Characterizing spectral–temporal patterns of defoliator and bark beetle disturbances using Landsat time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.09.019 – ident: ref_50 doi: 10.3390/rs11010092 – volume: 143 start-page: 105 year: 2010 ident: ref_73 article-title: Assessing Leaf Pigment Content and Activity with a Reflectometer publication-title: N. Phytol. doi: 10.1046/j.1469-8137.1999.00424.x – volume: 122 start-page: 68 year: 2016 ident: ref_62 article-title: Retrieval of forest leaf functional traits from HySpex imagery using radiative transfer models and continuous wavelet analysis publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.09.015 – volume: 50 start-page: 802 year: 1969 ident: ref_49 article-title: Foliage profile by vertical measurements publication-title: Ecology doi: 10.2307/1933693 – volume: 211 start-page: 276 year: 2018 ident: ref_57 article-title: Retrieving structural and chemical properties of individual tree crowns in a highly diverse tropical forest with 3D radiative transfer modeling and imaging spectroscopy publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.04.023 – volume: 173 start-page: 224 year: 2016 ident: ref_35 article-title: Lidar waveform features for tree species classification and their sensitivity to tree- and acquisition related parameters publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.08.019 – ident: ref_16 – volume: 50 start-page: 295 year: 1994 ident: ref_74 article-title: Early detection of plant stress by digital imaging within narrow stress-sensitive wavebands publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(94)90079-5 – volume: 2 start-page: 18 year: 2002 ident: ref_69 article-title: Classification and Regression by RandomForest publication-title: R. News – volume: 106 start-page: 102 year: 2014 ident: ref_78 article-title: Automatic threshold method and optimal wavelength selection for insect-damaged vegetable soybean detection using hyperspectral images publication-title: Compute. Electr. Agricult. doi: 10.1016/j.compag.2014.05.014 – volume: 200 start-page: 170 year: 2017 ident: ref_36 article-title: Mapping urban tree species using integrated airborne hyperspectral and lidar remote sensing data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.08.010 – volume: 113 start-page: S56 year: 2009 ident: ref_58 article-title: PROSPECT+SAIL models: A review of use for vegetation characterization publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.01.026 – volume: 132 start-page: 221 year: 2013 ident: ref_42 article-title: RAPID: A Radiosity Applicable to Porous IndiviDual Objects for directional reflectance over complex vegetated scenes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.01.013 – volume: 28 start-page: 1307 year: 2013 ident: ref_8 article-title: Spatial dynamics of a gypsy moth defoliation outbreak and dependence on habitat characteristics publication-title: Landsc. Ecol. doi: 10.1007/s10980-013-9879-8 – volume: 137 start-page: 163 year: 2018 ident: ref_53 article-title: Important lidar metrics for discriminating forest tree species in Central Europe publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.02.002 – volume: 18 start-page: 399 year: 2012 ident: ref_64 article-title: High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm publication-title: Int. J. Appl. Earth Obs. – volume: 349 start-page: 832 year: 2015 ident: ref_3 article-title: Planted forest health: The need for a global strategy publication-title: Science doi: 10.1126/science.aac6674 – volume: 81 start-page: 337 year: 2002 ident: ref_71 article-title: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00010-X – volume: 5 start-page: 53566 year: 2011 ident: ref_22 article-title: Combining land surface temperature and shortwave infrared reflectance for early detection of mountain pine beetle infestations in western Canada publication-title: J. Appl. Remote Sens. doi: 10.1117/1.3662866 – volume: 259 start-page: 2355 year: 2010 ident: ref_23 article-title: Assessing changes in forest fragmentation following infestation using time series Landsat imagery publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2010.03.008 – volume: 66 start-page: 889 year: 1985 ident: ref_1 article-title: Modifying Lodgepole Pine Stands to Change Susceptibility to Mountain Pine Beetle Attack publication-title: Ecology doi: 10.2307/1940551 – ident: ref_26 doi: 10.3390/rs10071133 – volume: 87 start-page: 39 year: 2014 ident: ref_13 article-title: Onisimo Integrating environmental variables and WorldView-2 image data to improve the prediction and mapping of Thaumastocoris peregrinus (bronze bug) damage in plantation forests publication-title: J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.10.010 – volume: 302 start-page: 308 year: 2013 ident: ref_20 article-title: Multi-temporal analysis reveals that predictors of mountain pine beetle infestation change during outbreak cycles publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2013.03.038 – volume: 7 start-page: 15467 year: 2015 ident: ref_28 article-title: Using UAV-Based Photogrammetry and Hyperspectral Imaging for Mapping Bark Beetle Damage at Tree-Level publication-title: Remote Sens. Basel doi: 10.3390/rs71115467 – volume: 5 start-page: 4045 year: 2013 ident: ref_30 article-title: NASA goddard’s lidar, hyperspectral and thermal (G-LiHT) airborne imager publication-title: Remote Sens. Basel doi: 10.3390/rs5084045 – volume: 258 start-page: 1181 year: 2009 ident: ref_25 article-title: Monitoring the impacts of mountain pine beetle mitigation publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2009.06.008 – volume: 32 start-page: 501 year: 2017 ident: ref_40 article-title: A multi-scale analysis of western spruce budworm outbreak dynamics publication-title: Landsc. Ecol. doi: 10.1007/s10980-016-0460-0 – volume: 223 start-page: 320 year: 2019 ident: ref_45 article-title: Chlorophyll content estimation in an open-canopy conifer forest with Sentinel-2A and hyperspectral imagery in the context of forest decline publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.01.031 – volume: 187 start-page: 202 year: 2016 ident: ref_29 article-title: Mapping individual tree health using full-waveform airborne laser scans and imaging spectroscopy: A case study for a floodplain eucalypt forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.10.014 – volume: 355 start-page: 385 year: 2017 ident: ref_31 article-title: Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation publication-title: Science doi: 10.1126/science.aaj1987 – ident: ref_51 doi: 10.3390/rs10020199 – volume: 159 start-page: 318 year: 2015 ident: ref_79 article-title: On the use of binary partition trees for the tree crown segmentation of tropical rainforest hyperspectral images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.12.020 – volume: 4 start-page: 2661 year: 2012 ident: ref_68 article-title: Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data publication-title: Remote Sens. Basel doi: 10.3390/rs4092661 – volume: 117 start-page: 79 year: 2016 ident: ref_46 article-title: Improved progressive TIN densification filtering algorithm for airborne lidar data in forested areas publication-title: J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.03.016 – volume: 193 start-page: 204 year: 2017 ident: ref_61 article-title: PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.004 – volume: 221 start-page: 27 year: 2006 ident: ref_18 article-title: Surveying mountain pine beetle damage of forests: A review of remote sensing opportunities publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2005.09.021 – volume: 102 start-page: 364 year: 2006 ident: ref_38 article-title: Mapping defoliation during a severe insect attack on Scots pine using airborne laser scanning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.03.001 – volume: 250 start-page: 9 year: 2007 ident: ref_39 article-title: Assessment of defoliation during a pine sawfly outbreak: Calibration of airborne laser scanning data with hemispherical photography publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2007.03.005 – volume: 62 start-page: 415 year: 2007 ident: ref_37 article-title: Correction of laser scanning intensity data: Data and model-driven approaches publication-title: J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2007.05.008 – volume: 52 start-page: 257 year: 2014 ident: ref_56 article-title: Optimizing LUT-Based RTM Inversion for Semiautomatic Mapping of Crop Biophysical Parameters from Sentinel-2 and -3 Data: Role of Cost Functions publication-title: IEEE T Geosci. Remote doi: 10.1109/TGRS.2013.2238242 – volume: 114 start-page: 471 year: 1999 ident: ref_6 article-title: Heterogeneity of forest landscapes and the distribution and abundance of the southern pine beetle publication-title: For. Ecol. Manag. doi: 10.1016/S0378-1127(98)00376-4 – volume: 44 start-page: 330 year: 2011 ident: ref_66 article-title: Mining data with random forests: A survey and results of new tests publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2010.08.011 – volume: 334 start-page: 321 year: 2014 ident: ref_21 article-title: Mountain pine beetle-caused mortality over eight years in two pine hosts in mixed-conifer stands of the southern Rocky Mountains publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2014.09.012 – volume: 215 start-page: 170 year: 2018 ident: ref_32 article-title: Mapping canopy defoliation by herbivorous insects at the individual tree level using bi-temporal airborne imaging spectroscopy and lidar measurements publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.06.008 – volume: 108 start-page: 339 year: 2015 ident: ref_33 article-title: A 10-Year Assessment of Hemlock Decline in the Catskill Mountain Region of New York State Using Hyperspectral Remote Sensing Techniques publication-title: J. Econ. Entomol. doi: 10.1093/jee/tou015 – volume: 78 start-page: 75 year: 2012 ident: ref_47 article-title: A new method for segmenting individual trees from the lidar point cloud publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.78.1.75 – volume: 12 start-page: 270 year: 2010 ident: ref_11 article-title: Spectral mixture analysis to monitor defoliation in mixed-aged Eucalyptus globulus Labill plantations in southern Australia using Landsat 5-TM and EO-1 Hyperion data publication-title: Int. J. Appl. Earth Observ. Geoinf. – volume: 202 start-page: 67 year: 2004 ident: ref_81 article-title: Ecology and management of the spruce bark beetle Ips typographus—A review of recent research publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2004.07.018 – volume: 45 start-page: 5 year: 2001 ident: ref_63 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 119 start-page: 255 year: 2012 ident: ref_7 article-title: A general Landsat model to predict canopy defoliation in broadleaf deciduous forests publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.12.023 – volume: 46 start-page: 45 year: 2016 ident: ref_54 article-title: A comprehensive but efficient framework of proposing and validating feature parameters from airborne lidar data for tree species classification publication-title: Int. J. Appl. Earth Obs. – volume: 45 start-page: 1808 year: 2007 ident: ref_60 article-title: Unified Optical-Thermal Four-Stream Radiative Transfer Theory for Homogeneous Vegetation Canopies publication-title: IEEE Trans. Geosci. Remote doi: 10.1109/TGRS.2007.895844 – volume: 34 start-page: 712 year: 2013 ident: ref_67 article-title: Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2012.713142 – volume: 442 start-page: 105 year: 2019 ident: ref_80 article-title: Intra-annual Ips typographus outbreak monitoring using a multi-temporal GIS analysis based on hyperspectral and ALS data in the Białowieża Forests publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2019.03.064 – volume: 1 start-page: 309 year: 1974 ident: ref_72 article-title: Monitoring Vegetation Systems in the Great Plains with ERTS publication-title: NASA Spec. Publ. – volume: 22 start-page: 229 year: 1996 ident: ref_70 article-title: Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.1996.10855178 – volume: 103 start-page: 67 year: 2006 ident: ref_17 article-title: Assessment of QuickBird high spatial resolution imagery to detect red attack damage due to mountain pine beetle infestation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.03.012 – volume: 9 start-page: 39 year: 2018 ident: ref_5 article-title: Detecting Shoot Beetle Damage on Yunnan Pine Using Landsat Time-Series Data publication-title: Forests doi: 10.3390/f9010039 – volume: 155 start-page: 275 year: 2014 ident: ref_19 article-title: Modeling a Historical Mountain Pine Beetle Outbreak Using Landsat MSS and Multiple Lines of Evidence publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.09.002 – volume: 52 start-page: 2249 year: 2008 ident: ref_65 article-title: Empirical characterization of random forest variable importance measures publication-title: Comput. Stat. Data Ann. doi: 10.1016/j.csda.2007.08.015 – volume: 6966 start-page: 69660C year: 2008 ident: ref_41 article-title: A novel method for illumination suppression in hyperspectral images publication-title: Proc. SPIE doi: 10.1117/12.777153 – volume: 52 start-page: 16 year: 2014 ident: ref_43 article-title: Remote Sensing Image Segmentation by Combining Spectral and Texture Features publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2234755 – volume: 15 start-page: 486 year: 2009 ident: ref_82 article-title: Spatio-temporal impact of climate change on the activity and voltinism of the spruce bark beetle publication-title: IPS. Typogr. – volume: 115 start-page: 3707 year: 2011 ident: ref_14 article-title: A Landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.09.009 – volume: 66 start-page: 273 year: 1998 ident: ref_75 article-title: Quantifying Chlorophylls and Caroteniods at Leaf and Canopy Scales: An Evaluation of Some Hyperspectral Approaches publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(98)00059-5 – volume: 24 start-page: 2079 year: 2017 ident: ref_4 article-title: Simulating the recent impacts of multiple biotic disturbances on forest carbon cycling across the United States publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13974 – volume: 262 start-page: 598 year: 2011 ident: ref_83 article-title: Quantifying spatio-temporal dispersion of bark beetle infestations in epidemic and non-epidemic conditions publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2011.04.023 – ident: ref_48 doi: 10.3390/f10030292 – volume: 110 start-page: 509 year: 2007 ident: ref_34 article-title: Remote sensing of species mixtures in conifer plantations using lidar height and intensity data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.02.032 – volume: 2 start-page: 2665 year: 2010 ident: ref_12 article-title: Classification of defoliated trees using tree-level airborne laser scanning data combined with aerial images publication-title: Remote Sens. Basel doi: 10.3390/rs2122665 – volume: 73 start-page: 207 year: 2018 ident: ref_52 article-title: Tree species classification using plant functional traits from lidar and hyperspectral data publication-title: Int. J. Appl. Earth Obs. – volume: 60 start-page: 49 year: 2017 ident: ref_9 article-title: Remote sensing of forest insect disturbances: Current state and future directions publication-title: Int. J. Appl. Earth Obs. – volume: 115 start-page: 1632 year: 2011 ident: ref_27 article-title: Evaluating the potential of multispectral imagery to map multiple stages of tree mortality publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.02.018 – volume: 112 start-page: 2729 year: 2008 ident: ref_24 article-title: Multi-temporal analysis of high spatial resolution imagery for disturbance monitoring publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.01.010 – volume: 5 start-page: 3280 year: 2013 ident: ref_55 article-title: Multiple Cost Functions and Regularization Options for Improved Retrieval of Leaf Chlorophyll Content and LAI through Inversion of the PROSAIL Model publication-title: Remote Sens. Basel doi: 10.3390/rs5073280 |
SSID | ssj0000331904 |
Score | 2.4898922 |
Snippet | In recent years, the outbreak of the pine shoot beetle (PSB), Tomicus spp., has caused serious shoots damage and the death of millions of trees in Yunnan pine... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2540 |
SubjectTerms | Airborne sensing Algorithms Beetles China Chlorophyll Coniferous forests Damage assessment data collection Data integration Dead wood forest health Forests Health promotion hyperspectral imagery Hyperspectral imaging Insects Lasers leaf chlorophyll content Lidar Mapping monitoring Pest outbreaks Pine pine shoot beetles Pinus yunnanensis Radiative transfer random forest Remote sensing Shadows shoot damage ratio Three dimensional models Tomicus tree crown Trees unmanned aerial vehicles Urban areas |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9RAFJ_octCLUdC4guYROcChYduZdjsnQxWyGCQbljXcmvkqkGgLbTlw9w_3vXa2mEg4NWl_aZq-eR_z5r3fY2xHcoNmP6UBxHwaCGF0oCeFDWRqjOHK2bDL6f44TWZL8f0ivvAJt8aXVa5sYmeobWUoR76PoS-6QqJj_3JzG9DUKDpd9SM0nrM1NMFpOmJr2eHp_GzIskw4LrGJ6HlJOe7v9-sGIwz06pTt-McTdYT9_9njzskcvWavfHQIB70437BnrlxnL_yg8qv7Dfbnm2u74qkSqgLmGCLC4qqqWsicQ6nD7nyR7cGiawABBHUIGr_ZtA2oFo6H_is4r52DE6oZAip-v4Tlwc8gQ6dmYYab074Hs0bg8W_iubgHVVo4ubaqfsuWR4fnX2eBH6QQGC5FGyROhJGNHKczT85xB-dMYgy6clRIHcdFklhrY6Ek3ptMi9gqScxdLpFKIYC_Y6OyKt17BlzyUKWmsNwaobjUaYgeTYRov-PUxG7M9lY_NTeeZZyGXfzKcbdBAsgfBDBmnwfsTc-t8SgqI9kMCOLD7m5U9WXu1SuPorAI8RN0QXQ8LtIqVKKQOkk0x2s6ZlsryeZeSZv8YUmN2fbwGNWLzkxU6ao7xEgihJtilPrh6VdsspcYS8m-TXGLjdr6zn3EeKXVn_yi_AtSyuoT priority: 102 providerName: ProQuest |
Title | Detection of Pine Shoot Beetle (PSB) Stress on Pine Forests at Individual Tree Level using UAV-Based Hyperspectral Imagery and Lidar |
URI | https://www.proquest.com/docview/2550288570 https://www.proquest.com/docview/2985937522 https://doaj.org/article/221f1ac5bf2741e2ba1a4f9b66b34f98 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEF21cGgvVaFUTQvRVO2hHCxi79rxHmMghCqgiJCKm7VfBiRqV445cO8P78zahEhU6qUnS-t3WO3M7szszrxh7KvkBo_9lBoQ82EghNGBHhQ2kKkxhitnQ3-ne3aeTBbi-1V8tdbqi3LCWnrgduEOoigsQmViXRDRiou0CpUopE4SzfHry3zR5q0FU_4M5qhaA9HykXKM6w_qJXoWaM3plmPNAnmi_mfnsDcu47fsTecVwqidzRZ74cpt9qprUH7z8I79PnKNT5oqoSpghq4hzG-qqoHMOZQ2fJvNs32Y-8IPQJBHUNvNZbME1cDpqu4KLmvnYEq5QkBJ79ewGP0IMjRmFiYYlLa1lzUCT38Sv8UDqNLC9NaqeoctxseXh5Oga6AQGC5FEyROhJGNHKe3Ts4xcnMmMQZNOG5EHcdFklhrY6Ekjg2GRWyVJMYul0ilEMDfs42yKt0HBlzyUKWmsNwaobjUaYiWDAWCoklN7Hps_3FRc9Oxi1OTi7scowwSQP4kgB77ssL-ajk1_orKSDYrBPFg-wHUjrzTjvxf2tFju4-SzbvNucwxikKvipj9e-zz6jduK3orUaWr7hEjiQhuiN7px_8xj0_sNXpasi1i3GUbTX3v9tCbaXSfvUzHJ322OTo6m87xmx2fzy76Xp3_AMD_9aU |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4ikWCgwCJHqIuomdbHxAqEtZdum2qrS7qLfUsZ0WCZKSpEJ75_fwG5lxHkUCcespkj2yIs94vvFjvmHsleQa3X5MBYj5yBNCp146zIwnY601V9b47kz38CiarsSnk_Bkg_3qcmHoWWXnE52jNoWmM_JdDH0RComO_d3Fd4-qRtHtaldCozGLA7v-gVu26u1sH_X7OggmH5bvp15bVcDTXIrai6zwAxNYTheAnON2xupIa8Q1tM40DLMoMsaEQklsG46y0ChJNFY2kkqhAMdxb7CbgiOSU2b65GN_poPDIb6KhgUV-4e7ZYXxDMYQdLbyB-658gB_eX8HaZM77HYbi8JeYzx32YbN77Gttiz6-fo--7lva_dUK4cig2MMSGFxXhQ1jK1FG4M3x4vxDixcugmgkJOgYp9VXYGqYdZne8GytBbm9EIJ6Kn9Gaz2PntjhFADU9wKNxmfJQrOvhGrxhpUbmD-xajyAVtdywQ_ZJt5kdtHDLjkvop1ZrjRQnGZxj7ip_ARLcJYh3bAdrpJTXTLaU6lNb4muLchBSRXChiwl73sRcPk8U-pMemmlyD2bddQlGdJu5iTIPAzH38hzYj8xwap8pXIZBpFKcdvPGDbnWaT1iVUyZUBD9iLvhsXM93QqNwWlygjiX5uhDHx4_8P8ZxtTZeH82Q-Ozp4wm5hFCebBMlttlmXl_YpRkp1-syZJ7DT614PvwEpziQ0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEJ-iMMAIkNhD1CZ20vgBoYWualmpKrqivQXHdjYkSEaSCfWdv4q_jrt8dEgg3vYUyTlZUe7s35199zuAl5Jr3PZDakDMR44QOnGSYWocGWqtubLGrc90PyyC6Vq8P_FPduBXVwtDaZXdnlhv1CbXdEY-QNcXoZDo2AdpmxaxHE_enn93qIMU3bR27TQaEzmymx8YvpVvZmPU9SvPmxwev5s6bYcBR3MpKiewwvWMZzldBnKOoY3VgdaIcWipie-nQWCM8YWSODYcpb5RkiitbCCVQgGO816D3RFFRT3YjQ4Xy4_bEx6cENFWNJyonMvhoCjRu0GPgk5a_kDBulnAX1hQA9zkNtxqPVN20JjSHdix2V240TZJP9vcg59jW9WJWxnLU7ZE95StzvK8YpG1aHHs9XIV7bNVXXzCUKiWoNafZVUyVbHZtvaLHRfWsjnlKzFKvD9l64NPToSAatgUA-Om_rNAwdk34tjYMJUZNv9iVHEf1lfyix9AL8sz-xAYl9xVoU4NN1ooLpPQRTQVLmKHH2rf9mG_-6mxbhnOqdHG1xgjHVJAfKmAPrzYyp43vB7_lIpIN1sJ4uKuB_LiNG6Xdux5buriJyQpUQFZL1GuEqlMgiDh-Az7sNdpNm43iDK-NOc-PN--xqVN9zUqs_kFykgioxuhh_zo_1M8g-u4FuL5bHH0GG6iSyebask96FXFhX2CblOVPG3tk8Hnq14SvwGk5SnG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Pine+Shoot+Beetle+%28PSB%29+Stress+on+Pine+Forests+at+Individual+Tree+Level+using+UAV-Based+Hyperspectral+Imagery+and+Lidar&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Qinan+Lin&rft.au=Huaguo+Huang&rft.au=Jingxu+Wang&rft.au=Kan+Huang&rft.date=2019-11-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=11&rft.issue=21&rft.spage=2540&rft_id=info:doi/10.3390%2Frs11212540&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_221f1ac5bf2741e2ba1a4f9b66b34f98 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |