Detection of Pine Shoot Beetle (PSB) Stress on Pine Forests at Individual Tree Level using UAV-Based Hyperspectral Imagery and Lidar

In recent years, the outbreak of the pine shoot beetle (PSB), Tomicus spp., has caused serious shoots damage and the death of millions of trees in Yunnan pine forests in southwestern China. It is urgent to develop a convincing approach to accurately assess the shoot damage ratio (SDR) for monitoring...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 11; no. 21; p. 2540
Main Authors Lin, Qinan, Huang, Huaguo, Wang, Jingxu, Huang, Kan, Liu, Yangyang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, the outbreak of the pine shoot beetle (PSB), Tomicus spp., has caused serious shoots damage and the death of millions of trees in Yunnan pine forests in southwestern China. It is urgent to develop a convincing approach to accurately assess the shoot damage ratio (SDR) for monitoring the PSB insects at an early stage. Unmanned airborne vehicles (UAV)-based sensors, including hyperspectral imaging (HI) and lidar, have very high spatial and spectral resolutions, which are very useful to detect forest health. However, very few studies have utilized HI and lidar data to estimate SDRs and compare the predictive power for mapping PSB damage at the individual tree level. Additionally, the data fusion of HI and lidar may improve the detection accuracy, but it has not been well studied. In this study, UAV-based HI and lidar data were fused to detect PSB. We systematically evaluated the potential of a hyperspectral approach (only-HI data), a lidar approach (only-lidar data), and a combined approach (HI plus lidar data) to characterize PSB damage of individual trees using the Random Forest (RF) algorithm, separately. The most innovative point is the proposed new method to extract the three dimensional (3D) shadow distribution of each tree crown based on a lidar point cloud and the 3D radiative transfer model RAPID. The results show that: (1) for the accuracy of estimating the SDR of individual trees, the lidar approach (R2 = 0.69, RMSE = 12.28%) performed better than hyperspectral approach (R2 = 0.67, RMSE = 15.87%), and in addition, it was useful to detect dead trees with an accuracy of 70%; (2) the combined approach has the highest accuracy (R2 = 0.83, RMSE = 9.93%) for mapping PSB damage degrees; and (3) when combining HI and lidar data to predict SDRs, two variables have the most contributions, which are the leaf chlorophyll content (Cab) derived from hyperspectral data and the return intensity of the top of shaded crown (Int_Shd_top) from lidar metrics. This study confirms the high possibility to accurately predict SDRs at individual tree level if combining HI and lidar data. The 3D radiative transfer model can determine the 3D crown shadows from lidar, which is a key information to combine HI and lidar. Therefore, our study provided a guidance to combine the advantages of hyperspectral and lidar data to accurately measure the health of individual trees, enabling us to prioritize areas for forest health promotion. This method may also be used for other 3D land surfaces, like urban areas.
AbstractList In recent years, the outbreak of the pine shoot beetle (PSB), Tomicus spp., has caused serious shoots damage and the death of millions of trees in Yunnan pine forests in southwestern China. It is urgent to develop a convincing approach to accurately assess the shoot damage ratio (SDR) for monitoring the PSB insects at an early stage. Unmanned airborne vehicles (UAV)-based sensors, including hyperspectral imaging (HI) and lidar, have very high spatial and spectral resolutions, which are very useful to detect forest health. However, very few studies have utilized HI and lidar data to estimate SDRs and compare the predictive power for mapping PSB damage at the individual tree level. Additionally, the data fusion of HI and lidar may improve the detection accuracy, but it has not been well studied. In this study, UAV-based HI and lidar data were fused to detect PSB. We systematically evaluated the potential of a hyperspectral approach (only-HI data), a lidar approach (only-lidar data), and a combined approach (HI plus lidar data) to characterize PSB damage of individual trees using the Random Forest (RF) algorithm, separately. The most innovative point is the proposed new method to extract the three dimensional (3D) shadow distribution of each tree crown based on a lidar point cloud and the 3D radiative transfer model RAPID. The results show that: (1) for the accuracy of estimating the SDR of individual trees, the lidar approach (R2 = 0.69, RMSE = 12.28%) performed better than hyperspectral approach (R2 = 0.67, RMSE = 15.87%), and in addition, it was useful to detect dead trees with an accuracy of 70%; (2) the combined approach has the highest accuracy (R2 = 0.83, RMSE = 9.93%) for mapping PSB damage degrees; and (3) when combining HI and lidar data to predict SDRs, two variables have the most contributions, which are the leaf chlorophyll content (Cab) derived from hyperspectral data and the return intensity of the top of shaded crown (Int_Shd_top) from lidar metrics. This study confirms the high possibility to accurately predict SDRs at individual tree level if combining HI and lidar data. The 3D radiative transfer model can determine the 3D crown shadows from lidar, which is a key information to combine HI and lidar. Therefore, our study provided a guidance to combine the advantages of hyperspectral and lidar data to accurately measure the health of individual trees, enabling us to prioritize areas for forest health promotion. This method may also be used for other 3D land surfaces, like urban areas.
Author Huang, Huaguo
Lin, Qinan
Huang, Kan
Liu, Yangyang
Wang, Jingxu
Author_xml – sequence: 1
  givenname: Qinan
  surname: Lin
  fullname: Lin, Qinan
– sequence: 2
  givenname: Huaguo
  orcidid: 0000-0001-9355-2338
  surname: Huang
  fullname: Huang, Huaguo
– sequence: 3
  givenname: Jingxu
  surname: Wang
  fullname: Wang, Jingxu
– sequence: 4
  givenname: Kan
  surname: Huang
  fullname: Huang, Kan
– sequence: 5
  givenname: Yangyang
  surname: Liu
  fullname: Liu, Yangyang
BookMark eNptkU1P3DAQhqMKpFLg0l9gqRdaKa0_4iQ-slBgpZVAWujVmtiTrVfZeGs7SHvvD69hUVshfBl79MzrmXk_FAejH7EoPjL6VQhFv4XIGGdcVvRdccRpw8uKK37w3_19cRrjmuYjBFO0Oip-X2JCk5wfie_JnRuRLH96n8gMMQ1Izu6Ws89kmQLGSDL0TFz5_EyRQCLz0bpHZycYyH1AJAt8xIFM0Y0r8nD-o5xBREtudlsMcZs_Chmcb2CFYUdgtGThLIST4rCHIeLpSzwuHq6-31_clIvb6_nF-aI0QlWprLFi3HIUQrZ5gIY1aGpjaM0YZZ2UfV1ba2UFKudo00sLijWKYq0AMiCOi_le13pY621wGwg77cHp54QPKw0hOTOg5pz1DIzset5UDHkHDKpedXXdiRzbrHW219oG_2vK69AbFw0OA4zop6i5aqUSjeQ8o59eoWs_hTFPqrmUlLetbGimvuwpE3yMAfu_DTKqn_zV__zNMH0FG5fgyca8YTe8VfIHGkanAg
CitedBy_id crossref_primary_10_1146_annurev_ento_120220_125410
crossref_primary_10_3390_rs14133205
crossref_primary_10_3390_rs14102428
crossref_primary_10_14483_2256201X_19250
crossref_primary_10_3390_agronomy13030923
crossref_primary_10_3390_rs17071109
crossref_primary_10_1016_j_ecolind_2023_110714
crossref_primary_10_3390_drones4030041
crossref_primary_10_1093_forsci_fxab003
crossref_primary_10_1016_j_rse_2022_112892
crossref_primary_10_1016_j_rsase_2024_101418
crossref_primary_10_3390_f13030418
crossref_primary_10_3390_f13111743
crossref_primary_10_1016_j_foreco_2021_119493
crossref_primary_10_1016_j_fecs_2022_100068
crossref_primary_10_3390_f14061176
crossref_primary_10_3390_rs16234371
crossref_primary_10_1016_j_rsase_2024_101341
crossref_primary_10_3390_electronics9010109
crossref_primary_10_3390_rs15163941
crossref_primary_10_3389_fevo_2023_1139458
crossref_primary_10_1016_j_ecoinf_2023_102099
crossref_primary_10_3389_fpls_2022_1000093
crossref_primary_10_1016_j_compag_2024_109527
crossref_primary_10_1016_j_ecolind_2023_110302
crossref_primary_10_3390_rs14153830
crossref_primary_10_3390_rs16193751
crossref_primary_10_1016_j_ecolind_2024_112034
crossref_primary_10_3390_rs14092195
crossref_primary_10_1016_j_jag_2023_103549
crossref_primary_10_3390_f11121258
crossref_primary_10_1016_j_rse_2025_114616
crossref_primary_10_1016_j_jag_2022_102856
crossref_primary_10_1016_j_scitotenv_2021_147758
crossref_primary_10_3390_rs13204065
crossref_primary_10_3390_rs15184508
crossref_primary_10_3390_f13060911
crossref_primary_10_1016_j_isprsjprs_2021_12_006
crossref_primary_10_3390_rs14061526
crossref_primary_10_3390_agronomy14010020
crossref_primary_10_1016_j_foreco_2022_120126
crossref_primary_10_3390_app12094372
crossref_primary_10_1016_j_rse_2021_112350
crossref_primary_10_1016_j_rse_2023_113484
crossref_primary_10_1145_3625387
crossref_primary_10_1186_s40663_021_00314_y
crossref_primary_10_1080_01431161_2024_2406036
crossref_primary_10_1016_j_rse_2021_112475
crossref_primary_10_1016_j_rse_2023_113759
crossref_primary_10_1111_avsc_12503
crossref_primary_10_3390_f11030272
crossref_primary_10_3390_f11040417
crossref_primary_10_3390_f13111884
crossref_primary_10_1002_ecs2_4719
crossref_primary_10_1016_j_jag_2021_102363
crossref_primary_10_3390_f15010191
crossref_primary_10_1016_j_rsase_2022_100869
crossref_primary_10_3390_rs12030534
crossref_primary_10_1007_s11119_024_10168_3
crossref_primary_10_1080_10095020_2025_2454521
crossref_primary_10_3390_f15010112
crossref_primary_10_33904_ejfe_1320121
crossref_primary_10_3390_rs12111846
crossref_primary_10_1080_03071375_2022_2082177
crossref_primary_10_1016_j_foreco_2021_119505
crossref_primary_10_3390_rs15061524
crossref_primary_10_1109_MGRS_2022_3168135
crossref_primary_10_1016_j_rse_2020_112040
crossref_primary_10_1016_j_rse_2021_112582
crossref_primary_10_1111_gcb_15268
crossref_primary_10_3390_land12020310
crossref_primary_10_1186_s40663_021_00328_6
crossref_primary_10_1109_MGRS_2021_3087445
Cites_doi 10.1016/S0048-9697(00)00528-3
10.1016/j.rse.2010.09.013
10.2135/cropsci2005.0059
10.1016/S0031-3203(99)00055-2
10.1016/0034-4257(90)90100-Z
10.1016/j.rse.2007.12.011
10.1016/j.rse.2015.09.019
10.3390/rs11010092
10.1046/j.1469-8137.1999.00424.x
10.1016/j.isprsjprs.2016.09.015
10.2307/1933693
10.1016/j.rse.2018.04.023
10.1016/j.rse.2015.08.019
10.1016/0034-4257(94)90079-5
10.1016/j.compag.2014.05.014
10.1016/j.rse.2017.08.010
10.1016/j.rse.2008.01.026
10.1016/j.rse.2013.01.013
10.1007/s10980-013-9879-8
10.1016/j.isprsjprs.2018.02.002
10.1126/science.aac6674
10.1016/S0034-4257(02)00010-X
10.1117/1.3662866
10.1016/j.foreco.2010.03.008
10.2307/1940551
10.3390/rs10071133
10.1016/j.isprsjprs.2013.10.010
10.1016/j.foreco.2013.03.038
10.3390/rs71115467
10.3390/rs5084045
10.1016/j.foreco.2009.06.008
10.1007/s10980-016-0460-0
10.1016/j.rse.2019.01.031
10.1016/j.rse.2016.10.014
10.1126/science.aaj1987
10.3390/rs10020199
10.1016/j.rse.2014.12.020
10.3390/rs4092661
10.1016/j.isprsjprs.2016.03.016
10.1016/j.rse.2017.03.004
10.1016/j.foreco.2005.09.021
10.1016/j.rse.2006.03.001
10.1016/j.foreco.2007.03.005
10.1016/j.isprsjprs.2007.05.008
10.1109/TGRS.2013.2238242
10.1016/S0378-1127(98)00376-4
10.1016/j.patcog.2010.08.011
10.1016/j.foreco.2014.09.012
10.1016/j.rse.2018.06.008
10.1093/jee/tou015
10.14358/PERS.78.1.75
10.1016/j.foreco.2004.07.018
10.1023/A:1010933404324
10.1016/j.rse.2011.12.023
10.1109/TGRS.2007.895844
10.1080/01431161.2012.713142
10.1016/j.foreco.2019.03.064
10.1080/07038992.1996.10855178
10.1016/j.rse.2006.03.012
10.3390/f9010039
10.1016/j.rse.2014.09.002
10.1016/j.csda.2007.08.015
10.1117/12.777153
10.1109/TGRS.2012.2234755
10.1016/j.rse.2011.09.009
10.1016/S0034-4257(98)00059-5
10.1111/gcb.13974
10.1016/j.foreco.2011.04.023
10.3390/f10030292
10.1016/j.rse.2007.02.032
10.3390/rs2122665
10.1016/j.rse.2011.02.018
10.1016/j.rse.2008.01.010
10.3390/rs5073280
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs11212540
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Engineering Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
AGRICOLA
AGRICOLA - Academic
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Publicly Available Content Database
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_221f1ac5bf2741e2ba1a4f9b66b34f98
10_3390_rs11212540
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-6e412d2e3358033717ec6cc061101b55f66ddd54a9c0607f5da91790e69aa1b53
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:24:16 EDT 2025
Fri Jul 11 06:09:30 EDT 2025
Fri Jul 25 09:29:54 EDT 2025
Tue Jul 01 04:14:53 EDT 2025
Thu Apr 24 23:04:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-6e412d2e3358033717ec6cc061101b55f66ddd54a9c0607f5da91790e69aa1b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9355-2338
OpenAccessLink https://doaj.org/article/221f1ac5bf2741e2ba1a4f9b66b34f98
PQID 2550288570
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_221f1ac5bf2741e2ba1a4f9b66b34f98
proquest_miscellaneous_2985937522
proquest_journals_2550288570
crossref_primary_10_3390_rs11212540
crossref_citationtrail_10_3390_rs11212540
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Shendryk (ref_29) 2016; 187
Yu (ref_5) 2018; 9
Kautz (ref_4) 2017; 24
Immitzer (ref_68) 2012; 4
Huang (ref_42) 2013; 132
Hanavan (ref_33) 2015; 108
Verhoef (ref_60) 2007; 45
Townsend (ref_7) 2012; 119
ref_51
Jonsson (ref_82) 2009; 15
Pfeifer (ref_37) 2007; 62
Hornerob (ref_45) 2019; 223
ref_16
Meigs (ref_14) 2011; 115
Ashton (ref_41) 2008; 6966
Coulson (ref_6) 1999; 114
Senf (ref_40) 2017; 32
Jacquemoud (ref_59) 1990; 34
Assal (ref_19) 2014; 155
Pontius (ref_77) 2008; 112
Archer (ref_65) 2008; 52
Ahmed (ref_67) 2013; 34
West (ref_21) 2014; 334
Coops (ref_23) 2010; 259
Jacquemoud (ref_58) 2009; 113
Gamon (ref_73) 2010; 143
Wermelinger (ref_81) 2004; 202
Solberg (ref_38) 2006; 102
Waring (ref_1) 1985; 66
ref_26
Mutanga (ref_64) 2012; 18
Shi (ref_52) 2018; 73
Sprintsin (ref_22) 2011; 5
Donoghue (ref_34) 2007; 110
Honkavaara (ref_28) 2015; 7
Wulder (ref_25) 2009; 258
Kautz (ref_83) 2011; 262
Gitelson (ref_61) 2017; 193
Ali (ref_62) 2016; 122
Foster (ref_8) 2013; 28
Sauvola (ref_44) 2000; 33
Hanssen (ref_39) 2007; 250
Ayres (ref_2) 2000; 262
Somers (ref_11) 2010; 12
Oumar (ref_13) 2014; 87
Li (ref_47) 2012; 78
Senf (ref_9) 2017; 60
Babar (ref_76) 2006; 46
Spruce (ref_10) 2011; 115
Asner (ref_31) 2017; 355
Chen (ref_70) 1996; 22
Tochon (ref_79) 2015; 159
Meng (ref_32) 2018; 215
Liaw (ref_69) 2002; 2
Yuan (ref_43) 2014; 52
Mielcarek (ref_80) 2019; 442
Coops (ref_17) 2006; 103
Hovi (ref_35) 2016; 173
Liu (ref_36) 2017; 200
Verrelst (ref_56) 2014; 52
Carter (ref_74) 1994; 50
Kantola (ref_12) 2010; 2
Wulder (ref_24) 2008; 112
Cook (ref_30) 2013; 5
Rouse (ref_72) 1974; 1
Senf (ref_15) 2015; 170
Breiman (ref_63) 2001; 45
Blackburn (ref_75) 1998; 66
Lin (ref_54) 2016; 46
Ma (ref_78) 2014; 106
Walter (ref_20) 2013; 302
Meddens (ref_27) 2011; 115
Zhao (ref_46) 2016; 117
Ferreira (ref_57) 2018; 211
Verikas (ref_66) 2011; 44
Wingfield (ref_3) 2015; 349
Shi (ref_53) 2018; 137
ref_48
MacArthur (ref_49) 1969; 50
Rivera (ref_55) 2013; 5
Wulder (ref_18) 2006; 221
Sims (ref_71) 2002; 81
References_xml – volume: 262
  start-page: 263
  year: 2000
  ident: ref_2
  article-title: Assessing the consequences of global change for forest disturbance from herbivores and pathogens
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(00)00528-3
– volume: 115
  start-page: 427
  year: 2011
  ident: ref_10
  article-title: Assessment of MODIS NDVI time series data products for detecting forest defoliation by gypsy moth outbreaks
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.09.013
– volume: 46
  start-page: 578
  year: 2006
  ident: ref_76
  article-title: Spectral Reflectance Indices as a Potential Indirect Selection Criteria for Wheat Yield under Irrigation
  publication-title: Crop. Sci.
  doi: 10.2135/cropsci2005.0059
– volume: 33
  start-page: 225
  year: 2000
  ident: ref_44
  article-title: Adaptive document image binarization
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(99)00055-2
– volume: 34
  start-page: 75
  year: 1990
  ident: ref_59
  article-title: PROSPECT: A model of leaf optical properties spectra
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(90)90100-Z
– volume: 112
  start-page: 2665
  year: 2008
  ident: ref_77
  article-title: Ash decline assessment in emerald ash borer-infested regions: A test of tree-level, hyperspectral technologies
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.12.011
– volume: 170
  start-page: 166
  year: 2015
  ident: ref_15
  article-title: Characterizing spectral–temporal patterns of defoliator and bark beetle disturbances using Landsat time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.09.019
– ident: ref_50
  doi: 10.3390/rs11010092
– volume: 143
  start-page: 105
  year: 2010
  ident: ref_73
  article-title: Assessing Leaf Pigment Content and Activity with a Reflectometer
  publication-title: N. Phytol.
  doi: 10.1046/j.1469-8137.1999.00424.x
– volume: 122
  start-page: 68
  year: 2016
  ident: ref_62
  article-title: Retrieval of forest leaf functional traits from HySpex imagery using radiative transfer models and continuous wavelet analysis
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.09.015
– volume: 50
  start-page: 802
  year: 1969
  ident: ref_49
  article-title: Foliage profile by vertical measurements
  publication-title: Ecology
  doi: 10.2307/1933693
– volume: 211
  start-page: 276
  year: 2018
  ident: ref_57
  article-title: Retrieving structural and chemical properties of individual tree crowns in a highly diverse tropical forest with 3D radiative transfer modeling and imaging spectroscopy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.023
– volume: 173
  start-page: 224
  year: 2016
  ident: ref_35
  article-title: Lidar waveform features for tree species classification and their sensitivity to tree- and acquisition related parameters
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.08.019
– ident: ref_16
– volume: 50
  start-page: 295
  year: 1994
  ident: ref_74
  article-title: Early detection of plant stress by digital imaging within narrow stress-sensitive wavebands
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(94)90079-5
– volume: 2
  start-page: 18
  year: 2002
  ident: ref_69
  article-title: Classification and Regression by RandomForest
  publication-title: R. News
– volume: 106
  start-page: 102
  year: 2014
  ident: ref_78
  article-title: Automatic threshold method and optimal wavelength selection for insect-damaged vegetable soybean detection using hyperspectral images
  publication-title: Compute. Electr. Agricult.
  doi: 10.1016/j.compag.2014.05.014
– volume: 200
  start-page: 170
  year: 2017
  ident: ref_36
  article-title: Mapping urban tree species using integrated airborne hyperspectral and lidar remote sensing data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.08.010
– volume: 113
  start-page: S56
  year: 2009
  ident: ref_58
  article-title: PROSPECT+SAIL models: A review of use for vegetation characterization
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.01.026
– volume: 132
  start-page: 221
  year: 2013
  ident: ref_42
  article-title: RAPID: A Radiosity Applicable to Porous IndiviDual Objects for directional reflectance over complex vegetated scenes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.01.013
– volume: 28
  start-page: 1307
  year: 2013
  ident: ref_8
  article-title: Spatial dynamics of a gypsy moth defoliation outbreak and dependence on habitat characteristics
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-013-9879-8
– volume: 137
  start-page: 163
  year: 2018
  ident: ref_53
  article-title: Important lidar metrics for discriminating forest tree species in Central Europe
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.02.002
– volume: 18
  start-page: 399
  year: 2012
  ident: ref_64
  article-title: High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm
  publication-title: Int. J. Appl. Earth Obs.
– volume: 349
  start-page: 832
  year: 2015
  ident: ref_3
  article-title: Planted forest health: The need for a global strategy
  publication-title: Science
  doi: 10.1126/science.aac6674
– volume: 81
  start-page: 337
  year: 2002
  ident: ref_71
  article-title: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00010-X
– volume: 5
  start-page: 53566
  year: 2011
  ident: ref_22
  article-title: Combining land surface temperature and shortwave infrared reflectance for early detection of mountain pine beetle infestations in western Canada
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.3662866
– volume: 259
  start-page: 2355
  year: 2010
  ident: ref_23
  article-title: Assessing changes in forest fragmentation following infestation using time series Landsat imagery
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2010.03.008
– volume: 66
  start-page: 889
  year: 1985
  ident: ref_1
  article-title: Modifying Lodgepole Pine Stands to Change Susceptibility to Mountain Pine Beetle Attack
  publication-title: Ecology
  doi: 10.2307/1940551
– ident: ref_26
  doi: 10.3390/rs10071133
– volume: 87
  start-page: 39
  year: 2014
  ident: ref_13
  article-title: Onisimo Integrating environmental variables and WorldView-2 image data to improve the prediction and mapping of Thaumastocoris peregrinus (bronze bug) damage in plantation forests
  publication-title: J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.10.010
– volume: 302
  start-page: 308
  year: 2013
  ident: ref_20
  article-title: Multi-temporal analysis reveals that predictors of mountain pine beetle infestation change during outbreak cycles
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2013.03.038
– volume: 7
  start-page: 15467
  year: 2015
  ident: ref_28
  article-title: Using UAV-Based Photogrammetry and Hyperspectral Imaging for Mapping Bark Beetle Damage at Tree-Level
  publication-title: Remote Sens. Basel
  doi: 10.3390/rs71115467
– volume: 5
  start-page: 4045
  year: 2013
  ident: ref_30
  article-title: NASA goddard’s lidar, hyperspectral and thermal (G-LiHT) airborne imager
  publication-title: Remote Sens. Basel
  doi: 10.3390/rs5084045
– volume: 258
  start-page: 1181
  year: 2009
  ident: ref_25
  article-title: Monitoring the impacts of mountain pine beetle mitigation
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2009.06.008
– volume: 32
  start-page: 501
  year: 2017
  ident: ref_40
  article-title: A multi-scale analysis of western spruce budworm outbreak dynamics
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-016-0460-0
– volume: 223
  start-page: 320
  year: 2019
  ident: ref_45
  article-title: Chlorophyll content estimation in an open-canopy conifer forest with Sentinel-2A and hyperspectral imagery in the context of forest decline
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.01.031
– volume: 187
  start-page: 202
  year: 2016
  ident: ref_29
  article-title: Mapping individual tree health using full-waveform airborne laser scans and imaging spectroscopy: A case study for a floodplain eucalypt forest
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.10.014
– volume: 355
  start-page: 385
  year: 2017
  ident: ref_31
  article-title: Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation
  publication-title: Science
  doi: 10.1126/science.aaj1987
– ident: ref_51
  doi: 10.3390/rs10020199
– volume: 159
  start-page: 318
  year: 2015
  ident: ref_79
  article-title: On the use of binary partition trees for the tree crown segmentation of tropical rainforest hyperspectral images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.12.020
– volume: 4
  start-page: 2661
  year: 2012
  ident: ref_68
  article-title: Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data
  publication-title: Remote Sens. Basel
  doi: 10.3390/rs4092661
– volume: 117
  start-page: 79
  year: 2016
  ident: ref_46
  article-title: Improved progressive TIN densification filtering algorithm for airborne lidar data in forested areas
  publication-title: J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.03.016
– volume: 193
  start-page: 204
  year: 2017
  ident: ref_61
  article-title: PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.004
– volume: 221
  start-page: 27
  year: 2006
  ident: ref_18
  article-title: Surveying mountain pine beetle damage of forests: A review of remote sensing opportunities
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2005.09.021
– volume: 102
  start-page: 364
  year: 2006
  ident: ref_38
  article-title: Mapping defoliation during a severe insect attack on Scots pine using airborne laser scanning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.03.001
– volume: 250
  start-page: 9
  year: 2007
  ident: ref_39
  article-title: Assessment of defoliation during a pine sawfly outbreak: Calibration of airborne laser scanning data with hemispherical photography
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2007.03.005
– volume: 62
  start-page: 415
  year: 2007
  ident: ref_37
  article-title: Correction of laser scanning intensity data: Data and model-driven approaches
  publication-title: J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2007.05.008
– volume: 52
  start-page: 257
  year: 2014
  ident: ref_56
  article-title: Optimizing LUT-Based RTM Inversion for Semiautomatic Mapping of Crop Biophysical Parameters from Sentinel-2 and -3 Data: Role of Cost Functions
  publication-title: IEEE T Geosci. Remote
  doi: 10.1109/TGRS.2013.2238242
– volume: 114
  start-page: 471
  year: 1999
  ident: ref_6
  article-title: Heterogeneity of forest landscapes and the distribution and abundance of the southern pine beetle
  publication-title: For. Ecol. Manag.
  doi: 10.1016/S0378-1127(98)00376-4
– volume: 44
  start-page: 330
  year: 2011
  ident: ref_66
  article-title: Mining data with random forests: A survey and results of new tests
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2010.08.011
– volume: 334
  start-page: 321
  year: 2014
  ident: ref_21
  article-title: Mountain pine beetle-caused mortality over eight years in two pine hosts in mixed-conifer stands of the southern Rocky Mountains
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2014.09.012
– volume: 215
  start-page: 170
  year: 2018
  ident: ref_32
  article-title: Mapping canopy defoliation by herbivorous insects at the individual tree level using bi-temporal airborne imaging spectroscopy and lidar measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.06.008
– volume: 108
  start-page: 339
  year: 2015
  ident: ref_33
  article-title: A 10-Year Assessment of Hemlock Decline in the Catskill Mountain Region of New York State Using Hyperspectral Remote Sensing Techniques
  publication-title: J. Econ. Entomol.
  doi: 10.1093/jee/tou015
– volume: 78
  start-page: 75
  year: 2012
  ident: ref_47
  article-title: A new method for segmenting individual trees from the lidar point cloud
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.78.1.75
– volume: 12
  start-page: 270
  year: 2010
  ident: ref_11
  article-title: Spectral mixture analysis to monitor defoliation in mixed-aged Eucalyptus globulus Labill plantations in southern Australia using Landsat 5-TM and EO-1 Hyperion data
  publication-title: Int. J. Appl. Earth Observ. Geoinf.
– volume: 202
  start-page: 67
  year: 2004
  ident: ref_81
  article-title: Ecology and management of the spruce bark beetle Ips typographus—A review of recent research
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2004.07.018
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_63
  article-title: Random Forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 119
  start-page: 255
  year: 2012
  ident: ref_7
  article-title: A general Landsat model to predict canopy defoliation in broadleaf deciduous forests
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.12.023
– volume: 46
  start-page: 45
  year: 2016
  ident: ref_54
  article-title: A comprehensive but efficient framework of proposing and validating feature parameters from airborne lidar data for tree species classification
  publication-title: Int. J. Appl. Earth Obs.
– volume: 45
  start-page: 1808
  year: 2007
  ident: ref_60
  article-title: Unified Optical-Thermal Four-Stream Radiative Transfer Theory for Homogeneous Vegetation Canopies
  publication-title: IEEE Trans. Geosci. Remote
  doi: 10.1109/TGRS.2007.895844
– volume: 34
  start-page: 712
  year: 2013
  ident: ref_67
  article-title: Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.713142
– volume: 442
  start-page: 105
  year: 2019
  ident: ref_80
  article-title: Intra-annual Ips typographus outbreak monitoring using a multi-temporal GIS analysis based on hyperspectral and ALS data in the Białowieża Forests
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2019.03.064
– volume: 1
  start-page: 309
  year: 1974
  ident: ref_72
  article-title: Monitoring Vegetation Systems in the Great Plains with ERTS
  publication-title: NASA Spec. Publ.
– volume: 22
  start-page: 229
  year: 1996
  ident: ref_70
  article-title: Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.1996.10855178
– volume: 103
  start-page: 67
  year: 2006
  ident: ref_17
  article-title: Assessment of QuickBird high spatial resolution imagery to detect red attack damage due to mountain pine beetle infestation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.03.012
– volume: 9
  start-page: 39
  year: 2018
  ident: ref_5
  article-title: Detecting Shoot Beetle Damage on Yunnan Pine Using Landsat Time-Series Data
  publication-title: Forests
  doi: 10.3390/f9010039
– volume: 155
  start-page: 275
  year: 2014
  ident: ref_19
  article-title: Modeling a Historical Mountain Pine Beetle Outbreak Using Landsat MSS and Multiple Lines of Evidence
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.09.002
– volume: 52
  start-page: 2249
  year: 2008
  ident: ref_65
  article-title: Empirical characterization of random forest variable importance measures
  publication-title: Comput. Stat. Data Ann.
  doi: 10.1016/j.csda.2007.08.015
– volume: 6966
  start-page: 69660C
  year: 2008
  ident: ref_41
  article-title: A novel method for illumination suppression in hyperspectral images
  publication-title: Proc. SPIE
  doi: 10.1117/12.777153
– volume: 52
  start-page: 16
  year: 2014
  ident: ref_43
  article-title: Remote Sensing Image Segmentation by Combining Spectral and Texture Features
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2234755
– volume: 15
  start-page: 486
  year: 2009
  ident: ref_82
  article-title: Spatio-temporal impact of climate change on the activity and voltinism of the spruce bark beetle
  publication-title: IPS. Typogr.
– volume: 115
  start-page: 3707
  year: 2011
  ident: ref_14
  article-title: A Landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.09.009
– volume: 66
  start-page: 273
  year: 1998
  ident: ref_75
  article-title: Quantifying Chlorophylls and Caroteniods at Leaf and Canopy Scales: An Evaluation of Some Hyperspectral Approaches
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(98)00059-5
– volume: 24
  start-page: 2079
  year: 2017
  ident: ref_4
  article-title: Simulating the recent impacts of multiple biotic disturbances on forest carbon cycling across the United States
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13974
– volume: 262
  start-page: 598
  year: 2011
  ident: ref_83
  article-title: Quantifying spatio-temporal dispersion of bark beetle infestations in epidemic and non-epidemic conditions
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2011.04.023
– ident: ref_48
  doi: 10.3390/f10030292
– volume: 110
  start-page: 509
  year: 2007
  ident: ref_34
  article-title: Remote sensing of species mixtures in conifer plantations using lidar height and intensity data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.02.032
– volume: 2
  start-page: 2665
  year: 2010
  ident: ref_12
  article-title: Classification of defoliated trees using tree-level airborne laser scanning data combined with aerial images
  publication-title: Remote Sens. Basel
  doi: 10.3390/rs2122665
– volume: 73
  start-page: 207
  year: 2018
  ident: ref_52
  article-title: Tree species classification using plant functional traits from lidar and hyperspectral data
  publication-title: Int. J. Appl. Earth Obs.
– volume: 60
  start-page: 49
  year: 2017
  ident: ref_9
  article-title: Remote sensing of forest insect disturbances: Current state and future directions
  publication-title: Int. J. Appl. Earth Obs.
– volume: 115
  start-page: 1632
  year: 2011
  ident: ref_27
  article-title: Evaluating the potential of multispectral imagery to map multiple stages of tree mortality
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.02.018
– volume: 112
  start-page: 2729
  year: 2008
  ident: ref_24
  article-title: Multi-temporal analysis of high spatial resolution imagery for disturbance monitoring
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.01.010
– volume: 5
  start-page: 3280
  year: 2013
  ident: ref_55
  article-title: Multiple Cost Functions and Regularization Options for Improved Retrieval of Leaf Chlorophyll Content and LAI through Inversion of the PROSAIL Model
  publication-title: Remote Sens. Basel
  doi: 10.3390/rs5073280
SSID ssj0000331904
Score 2.4898922
Snippet In recent years, the outbreak of the pine shoot beetle (PSB), Tomicus spp., has caused serious shoots damage and the death of millions of trees in Yunnan pine...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2540
SubjectTerms Airborne sensing
Algorithms
Beetles
China
Chlorophyll
Coniferous forests
Damage assessment
data collection
Data integration
Dead wood
forest health
Forests
Health promotion
hyperspectral imagery
Hyperspectral imaging
Insects
Lasers
leaf chlorophyll content
Lidar
Mapping
monitoring
Pest outbreaks
Pine
pine shoot beetles
Pinus yunnanensis
Radiative transfer
random forest
Remote sensing
Shadows
shoot damage ratio
Three dimensional models
Tomicus
tree crown
Trees
unmanned aerial vehicles
Urban areas
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9RAFJ_octCLUdC4guYROcChYduZdjsnQxWyGCQbljXcmvkqkGgLbTlw9w_3vXa2mEg4NWl_aZq-eR_z5r3fY2xHcoNmP6UBxHwaCGF0oCeFDWRqjOHK2bDL6f44TWZL8f0ivvAJt8aXVa5sYmeobWUoR76PoS-6QqJj_3JzG9DUKDpd9SM0nrM1NMFpOmJr2eHp_GzIskw4LrGJ6HlJOe7v9-sGIwz06pTt-McTdYT9_9njzskcvWavfHQIB70437BnrlxnL_yg8qv7Dfbnm2u74qkSqgLmGCLC4qqqWsicQ6nD7nyR7cGiawABBHUIGr_ZtA2oFo6H_is4r52DE6oZAip-v4Tlwc8gQ6dmYYab074Hs0bg8W_iubgHVVo4ubaqfsuWR4fnX2eBH6QQGC5FGyROhJGNHKczT85xB-dMYgy6clRIHcdFklhrY6Ek3ptMi9gqScxdLpFKIYC_Y6OyKt17BlzyUKWmsNwaobjUaYgeTYRov-PUxG7M9lY_NTeeZZyGXfzKcbdBAsgfBDBmnwfsTc-t8SgqI9kMCOLD7m5U9WXu1SuPorAI8RN0QXQ8LtIqVKKQOkk0x2s6ZlsryeZeSZv8YUmN2fbwGNWLzkxU6ao7xEgihJtilPrh6VdsspcYS8m-TXGLjdr6zn3EeKXVn_yi_AtSyuoT
  priority: 102
  providerName: ProQuest
Title Detection of Pine Shoot Beetle (PSB) Stress on Pine Forests at Individual Tree Level using UAV-Based Hyperspectral Imagery and Lidar
URI https://www.proquest.com/docview/2550288570
https://www.proquest.com/docview/2985937522
https://doaj.org/article/221f1ac5bf2741e2ba1a4f9b66b34f98
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEF21cGgvVaFUTQvRVO2hHCxi79rxHmMghCqgiJCKm7VfBiRqV445cO8P78zahEhU6qUnS-t3WO3M7szszrxh7KvkBo_9lBoQ82EghNGBHhQ2kKkxhitnQ3-ne3aeTBbi-1V8tdbqi3LCWnrgduEOoigsQmViXRDRiou0CpUopE4SzfHry3zR5q0FU_4M5qhaA9HykXKM6w_qJXoWaM3plmPNAnmi_mfnsDcu47fsTecVwqidzRZ74cpt9qprUH7z8I79PnKNT5oqoSpghq4hzG-qqoHMOZQ2fJvNs32Y-8IPQJBHUNvNZbME1cDpqu4KLmvnYEq5QkBJ79ewGP0IMjRmFiYYlLa1lzUCT38Sv8UDqNLC9NaqeoctxseXh5Oga6AQGC5FEyROhJGNHKe3Ts4xcnMmMQZNOG5EHcdFklhrY6Ekjg2GRWyVJMYul0ilEMDfs42yKt0HBlzyUKWmsNwaobjUaYiWDAWCoklN7Hps_3FRc9Oxi1OTi7scowwSQP4kgB77ssL-ajk1_orKSDYrBPFg-wHUjrzTjvxf2tFju4-SzbvNucwxikKvipj9e-zz6jduK3orUaWr7hEjiQhuiN7px_8xj0_sNXpasi1i3GUbTX3v9tCbaXSfvUzHJ322OTo6m87xmx2fzy76Xp3_AMD_9aU
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4ikWCgwCJHqIuomdbHxAqEtZdum2qrS7qLfUsZ0WCZKSpEJ75_fwG5lxHkUCcespkj2yIs94vvFjvmHsleQa3X5MBYj5yBNCp146zIwnY601V9b47kz38CiarsSnk_Bkg_3qcmHoWWXnE52jNoWmM_JdDH0RComO_d3Fd4-qRtHtaldCozGLA7v-gVu26u1sH_X7OggmH5bvp15bVcDTXIrai6zwAxNYTheAnON2xupIa8Q1tM40DLMoMsaEQklsG46y0ChJNFY2kkqhAMdxb7CbgiOSU2b65GN_poPDIb6KhgUV-4e7ZYXxDMYQdLbyB-658gB_eX8HaZM77HYbi8JeYzx32YbN77Gttiz6-fo--7lva_dUK4cig2MMSGFxXhQ1jK1FG4M3x4vxDixcugmgkJOgYp9VXYGqYdZne8GytBbm9EIJ6Kn9Gaz2PntjhFADU9wKNxmfJQrOvhGrxhpUbmD-xajyAVtdywQ_ZJt5kdtHDLjkvop1ZrjRQnGZxj7ip_ARLcJYh3bAdrpJTXTLaU6lNb4muLchBSRXChiwl73sRcPk8U-pMemmlyD2bddQlGdJu5iTIPAzH38hzYj8xwap8pXIZBpFKcdvPGDbnWaT1iVUyZUBD9iLvhsXM93QqNwWlygjiX5uhDHx4_8P8ZxtTZeH82Q-Ozp4wm5hFCebBMlttlmXl_YpRkp1-syZJ7DT614PvwEpziQ0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEJ-iMMAIkNhD1CZ20vgBoYWualmpKrqivQXHdjYkSEaSCfWdv4q_jrt8dEgg3vYUyTlZUe7s35199zuAl5Jr3PZDakDMR44QOnGSYWocGWqtubLGrc90PyyC6Vq8P_FPduBXVwtDaZXdnlhv1CbXdEY-QNcXoZDo2AdpmxaxHE_enn93qIMU3bR27TQaEzmymx8YvpVvZmPU9SvPmxwev5s6bYcBR3MpKiewwvWMZzldBnKOoY3VgdaIcWipie-nQWCM8YWSODYcpb5RkiitbCCVQgGO816D3RFFRT3YjQ4Xy4_bEx6cENFWNJyonMvhoCjRu0GPgk5a_kDBulnAX1hQA9zkNtxqPVN20JjSHdix2V240TZJP9vcg59jW9WJWxnLU7ZE95StzvK8YpG1aHHs9XIV7bNVXXzCUKiWoNafZVUyVbHZtvaLHRfWsjnlKzFKvD9l64NPToSAatgUA-Om_rNAwdk34tjYMJUZNv9iVHEf1lfyix9AL8sz-xAYl9xVoU4NN1ooLpPQRTQVLmKHH2rf9mG_-6mxbhnOqdHG1xgjHVJAfKmAPrzYyp43vB7_lIpIN1sJ4uKuB_LiNG6Xdux5buriJyQpUQFZL1GuEqlMgiDh-Az7sNdpNm43iDK-NOc-PN--xqVN9zUqs_kFykgioxuhh_zo_1M8g-u4FuL5bHH0GG6iSyebask96FXFhX2CblOVPG3tk8Hnq14SvwGk5SnG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Pine+Shoot+Beetle+%28PSB%29+Stress+on+Pine+Forests+at+Individual+Tree+Level+using+UAV-Based+Hyperspectral+Imagery+and+Lidar&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Qinan+Lin&rft.au=Huaguo+Huang&rft.au=Jingxu+Wang&rft.au=Kan+Huang&rft.date=2019-11-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=11&rft.issue=21&rft.spage=2540&rft_id=info:doi/10.3390%2Frs11212540&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_221f1ac5bf2741e2ba1a4f9b66b34f98
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon