Rich Embedding Features for One-Shot Semantic Segmentation
One-shot semantic segmentation poses the challenging task of segmenting object regions from unseen categories with only one annotated example as guidance. Thus, how to effectively construct robust feature representations from the guidance image is crucial to the success of one-shot semantic segmenta...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 33; no. 11; pp. 6484 - 6493 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One-shot semantic segmentation poses the challenging task of segmenting object regions from unseen categories with only one annotated example as guidance. Thus, how to effectively construct robust feature representations from the guidance image is crucial to the success of one-shot semantic segmentation. To this end, we propose in this article a simple, yet effective approach named rich embedding features (REFs). Given a reference image accompanied with its annotated mask, our REF constructs rich embedding features of the support object from three perspectives: 1) global embedding to capture the general characteristics; 2) peak embedding to capture the most discriminative information; 3) adaptive embedding to capture the internal long-range dependencies. By combining these informative features, we can easily harvest sufficient and rich guidance even from a single reference image. In addition to REF, we further propose a simple depth-priority context module to obtain useful contextual cues from the query image. This successfully raises the performance of one-shot semantic segmentation to a new level. We conduct experiments on pattern analysis, statical modeling and computational learning (Pascal) visual object classes (VOC) 2012 and common object in context (COCO) to demonstrate the effectiveness of our approach. |
---|---|
AbstractList | One-shot semantic segmentation poses the challenging task of segmenting object regions from unseen categories with only one annotated example as guidance. Thus, how to effectively construct robust feature representations from the guidance image is crucial to the success of one-shot semantic segmentation. To this end, we propose in this article a simple, yet effective approach named rich embedding features (REFs). Given a reference image accompanied with its annotated mask, our REF constructs rich embedding features of the support object from three perspectives: 1) global embedding to capture the general characteristics; 2) peak embedding to capture the most discriminative information; 3) adaptive embedding to capture the internal long-range dependencies. By combining these informative features, we can easily harvest sufficient and rich guidance even from a single reference image. In addition to REF, we further propose a simple depth-priority context module to obtain useful contextual cues from the query image. This successfully raises the performance of one-shot semantic segmentation to a new level. We conduct experiments on pattern analysis, statical modeling and computational learning (Pascal) visual object classes (VOC) 2012 and common object in context (COCO) to demonstrate the effectiveness of our approach.One-shot semantic segmentation poses the challenging task of segmenting object regions from unseen categories with only one annotated example as guidance. Thus, how to effectively construct robust feature representations from the guidance image is crucial to the success of one-shot semantic segmentation. To this end, we propose in this article a simple, yet effective approach named rich embedding features (REFs). Given a reference image accompanied with its annotated mask, our REF constructs rich embedding features of the support object from three perspectives: 1) global embedding to capture the general characteristics; 2) peak embedding to capture the most discriminative information; 3) adaptive embedding to capture the internal long-range dependencies. By combining these informative features, we can easily harvest sufficient and rich guidance even from a single reference image. In addition to REF, we further propose a simple depth-priority context module to obtain useful contextual cues from the query image. This successfully raises the performance of one-shot semantic segmentation to a new level. We conduct experiments on pattern analysis, statical modeling and computational learning (Pascal) visual object classes (VOC) 2012 and common object in context (COCO) to demonstrate the effectiveness of our approach. One-shot semantic segmentation poses the challenging task of segmenting object regions from unseen categories with only one annotated example as guidance. Thus, how to effectively construct robust feature representations from the guidance image is crucial to the success of one-shot semantic segmentation. To this end, we propose in this article a simple, yet effective approach named rich embedding features (REFs). Given a reference image accompanied with its annotated mask, our REF constructs rich embedding features of the support object from three perspectives: 1) global embedding to capture the general characteristics; 2) peak embedding to capture the most discriminative information; 3) adaptive embedding to capture the internal long-range dependencies. By combining these informative features, we can easily harvest sufficient and rich guidance even from a single reference image. In addition to REF, we further propose a simple depth-priority context module to obtain useful contextual cues from the query image. This successfully raises the performance of one-shot semantic segmentation to a new level. We conduct experiments on pattern analysis, statical modeling and computational learning (Pascal) visual object classes (VOC) 2012 and common object in context (COCO) to demonstrate the effectiveness of our approach. |
Author | Yan, Chenggang Zhang, Xiaolin Wei, Yunchao Li, Zhao Yang, Yi |
Author_xml | – sequence: 1 givenname: Xiaolin surname: Zhang fullname: Zhang, Xiaolin email: xiaolin.zhang-3@student.uts.edu.au organization: Australian Artificial Intelligence Institute, University of Technology Sydney, Sydney, NSW, Australia – sequence: 2 givenname: Yunchao orcidid: 0000-0002-2812-8781 surname: Wei fullname: Wei, Yunchao email: wychao1987@gmail.com organization: Institute of Information Science, Beijing Jiaotong University, Beijing, China – sequence: 3 givenname: Zhao surname: Li fullname: Li, Zhao email: liz@sdas.org organization: Shandong Computer Science Center (National Supercomputer Center in Jinan), Shandong Artificial Intelligence Institute, Jinan, China – sequence: 4 givenname: Chenggang orcidid: 0000-0003-1204-0512 surname: Yan fullname: Yan, Chenggang email: cgyan@hdu.edu.cn organization: Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, China – sequence: 5 givenname: Yi orcidid: 0000-0002-0512-880X surname: Yang fullname: Yang, Yi email: yee.i.yang@gmail.com organization: CCAI, College of Computer Science and Technology, Zhejiang University, Hangzhou, China |
BookMark | eNp9kLtOAzEQRS0E4v0D0KxEQ7PB7wcdQgSQokQiINFZjncMRlkv2JuCv2chiCIF08wU54xm7gHaTl0ChE4IHhGCzcXjdDqZjyimZMSwJtKwLbRPiaQ1ZVpv_83qeQ8dl_KGh5JYSG520R7jRBLK-T66fIj-tbppF9A0Mb1UY3D9KkOpQperWYJ6_tr11Rxal_roh-GlhdS7PnbpCO0Etyxw_NsP0dP45vH6rp7Mbu-vrya1Z4b3tXSSOuUDpgF4UAqC1osgmDMNaOGYWUgusAOmjNcL6oURZoBEIJwa1TTsEJ2v977n7mMFpbdtLB6WS5egWxVLBedaY0XFgJ5toG_dKqfhOksVNZIpgdlA6TXlc1dKhmB9XL_UZxeXlmD7HbH9idh-R2x_Ix5UuqG-59i6_Pm_dLqWIgD8CYZLxoxmX3Yfhhw |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1007_s00371_024_03582_1 crossref_primary_10_1109_TMM_2023_3270637 crossref_primary_10_1016_j_patcog_2022_109292 crossref_primary_10_1109_TMM_2024_3352921 crossref_primary_10_1117_1_JEI_32_6_063035 crossref_primary_10_1109_TII_2022_3216900 crossref_primary_10_1007_s11760_024_03531_4 crossref_primary_10_1109_ACCESS_2025_3529812 crossref_primary_10_1007_s00521_023_08758_9 crossref_primary_10_17979_ja_cea_2024_45_10772 crossref_primary_10_1007_s00521_022_07654_y crossref_primary_10_1007_s10489_023_04937_2 crossref_primary_10_1109_TNNLS_2024_3383039 crossref_primary_10_1007_s10489_023_04922_9 crossref_primary_10_1109_JAS_2023_123207 crossref_primary_10_1007_s00521_022_07494_w crossref_primary_10_1080_07038992_2024_2426597 crossref_primary_10_1109_TIM_2023_3246519 crossref_primary_10_1109_TNNLS_2023_3252578 crossref_primary_10_1109_TNNLS_2023_3274127 crossref_primary_10_3390_s24154975 |
Cites_doi | 10.1109/TNNLS.2018.2885591 10.1609/aaai.v35i2.16252 10.1007/978-3-319-10602-1_48 10.1109/ICCV.2015.191 10.1109/ICCV.2017.322 10.1007/978-3-030-01237-3_4 10.1109/CVPR.2019.00536 10.1007/978-3-319-46478-7_34 10.1109/TNNLS.2017.2690453 10.1109/TNNLS.2019.2957187 10.1109/CVPR.2017.687 10.1109/TNNLS.2013.2270314 10.1109/CVPR42600.2020.00422 10.5244/C.31.167 10.1109/ICCV.2019.00968 10.1109/CVPR.2017.181 10.1109/TPAMI.2016.2636150 10.1109/TCYB.2020.2992433 10.1109/CVPR.2015.7298965 10.1109/CVPR.2018.00813 10.1109/ICCV.2019.00929 10.1109/CVPR.2016.90 10.1109/CVPR.2017.64 10.1109/CVPR.2019.00971 10.1109/CVPR.2018.00759 10.1016/j.media.2019.101631 10.1109/ICCV.2019.00535 10.1109/ICCV.2011.6126343 10.1109/TNNLS.2015.2505181 10.1109/CVPR.2016.344 10.1109/CVPR.2018.00770 10.1109/TNNLS.2018.2870182 10.1007/978-3-319-24574-4_28 10.1007/978-3-030-01234-2_49 10.1109/ICCV.2019.00071 10.1109/CVPR.2017.660 10.1109/CVPR42600.2020.00856 10.1109/CVPR42600.2020.01222 10.1109/TNNLS.2017.2742058 10.1109/ICCV.2019.00073 10.1109/CVPR.2017.565 10.1109/CVPR.2018.00195 10.1109/ICCV.2017.81 10.1109/TNNLS.2019.2963282 10.1109/TMM.2020.3001510 10.1007/s11263-014-0733-5 10.1109/TNNLS.2017.2787781 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2021.3081693 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 6493 |
ExternalDocumentID | 10_1109_TNNLS_2021_3081693 9463398 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c394t-6a62a7cf02fe4f77ef88bf53a9de85a39b6450ae379c8b2c59597ef5f14297dd3 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Thu Jul 10 23:43:41 EDT 2025 Mon Jun 30 04:13:39 EDT 2025 Tue Jul 01 00:27:40 EDT 2025 Thu Apr 24 23:09:35 EDT 2025 Wed Aug 27 02:14:42 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-6a62a7cf02fe4f77ef88bf53a9de85a39b6450ae379c8b2c59597ef5f14297dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0512-880X 0000-0002-2812-8781 0000-0003-1204-0512 |
PMID | 34161244 |
PQID | 2729637503 |
PQPubID | 85436 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2729637503 crossref_citationtrail_10_1109_TNNLS_2021_3081693 crossref_primary_10_1109_TNNLS_2021_3081693 proquest_miscellaneous_2544880725 ieee_primary_9463398 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref14 ref53 ref55 ref54 ref17 ref19 Rakelly (ref10) ref18 Vaswani (ref52) Dong (ref11) ref51 Chen (ref25) 2014 ref50 Simonyan (ref16) ref45 ref48 ref47 ref42 ref41 Koch (ref46); 2 ref44 ref43 ref49 ref8 Finn (ref31) 2017 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref37 Annadani (ref33) ref36 ref30 Liu (ref34) ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref20 ref22 ref21 ref28 ref27 ref29 Vinyals (ref32) |
References_xml | – ident: ref20 doi: 10.1109/TNNLS.2018.2885591 – ident: ref30 doi: 10.1609/aaai.v35i2.16252 – start-page: 1 volume-title: Proc. BMVC ident: ref11 article-title: Few-shot semantic segmentation with prototype learning – ident: ref57 doi: 10.1007/978-3-319-10602-1_48 – ident: ref7 doi: 10.1109/ICCV.2015.191 – ident: ref26 doi: 10.1109/ICCV.2017.322 – volume-title: arXiv:1412.7062 year: 2014 ident: ref25 article-title: Semantic image segmentation with deep convolutional nets and fully connected CRFs – ident: ref37 doi: 10.1007/978-3-030-01237-3_4 – ident: ref50 doi: 10.1109/CVPR.2019.00536 – ident: ref8 doi: 10.1007/978-3-319-46478-7_34 – ident: ref21 doi: 10.1109/TNNLS.2017.2690453 – ident: ref28 doi: 10.1109/TNNLS.2019.2957187 – ident: ref2 doi: 10.1109/CVPR.2017.687 – ident: ref42 doi: 10.1109/TNNLS.2013.2270314 – start-page: 1 volume-title: Proc. ICLR ident: ref34 article-title: Learning to propagate labels: Transductive propagation network for few-shot learning – ident: ref54 doi: 10.1109/CVPR42600.2020.00422 – ident: ref9 doi: 10.5244/C.31.167 – ident: ref49 doi: 10.1109/ICCV.2019.00968 – ident: ref6 doi: 10.1109/CVPR.2017.181 – ident: ref3 doi: 10.1109/TPAMI.2016.2636150 – ident: ref47 doi: 10.1109/TCYB.2020.2992433 – ident: ref23 doi: 10.1109/CVPR.2015.7298965 – ident: ref53 doi: 10.1109/CVPR.2018.00813 – ident: ref14 doi: 10.1109/ICCV.2019.00929 – ident: ref17 doi: 10.1109/CVPR.2016.90 – ident: ref44 doi: 10.1109/CVPR.2017.64 – ident: ref45 doi: 10.1109/CVPR.2019.00971 – ident: ref1 doi: 10.1109/CVPR.2018.00759 – ident: ref39 doi: 10.1016/j.media.2019.101631 – ident: ref48 doi: 10.1109/ICCV.2019.00535 – ident: ref56 doi: 10.1109/ICCV.2011.6126343 – ident: ref18 doi: 10.1109/TNNLS.2015.2505181 – ident: ref4 doi: 10.1109/CVPR.2016.344 – start-page: 7603 volume-title: Proc. CVPR ident: ref33 article-title: Preserving semantic relations for zero-shot learning – ident: ref38 doi: 10.1109/CVPR.2018.00770 – volume-title: arXiv:1703.03400 year: 2017 ident: ref31 article-title: Model-agnostic meta-learning for fast adaptation of deep networks – ident: ref19 doi: 10.1109/TNNLS.2018.2870182 – ident: ref24 doi: 10.1007/978-3-319-24574-4_28 – volume: 2 start-page: 1 volume-title: Proc. ICMLW ident: ref46 article-title: Siamese neural networks for one-shot image recognition – ident: ref12 doi: 10.1007/978-3-030-01234-2_49 – ident: ref15 doi: 10.1109/ICCV.2019.00071 – start-page: 1 volume-title: Proc. ICLR ident: ref16 article-title: Very deep convolutional networks for large-scale image recognition – start-page: 3630 volume-title: Proc. NIPS ident: ref32 article-title: Matching networks for one shot learning – ident: ref13 doi: 10.1109/CVPR.2017.660 – start-page: 1 volume-title: Proc. ICLRW ident: ref10 article-title: Conditional networks for few-shot semantic segmentation – ident: ref27 doi: 10.1109/CVPR42600.2020.00856 – ident: ref35 doi: 10.1109/CVPR42600.2020.01222 – ident: ref40 doi: 10.1109/TNNLS.2017.2742058 – ident: ref51 doi: 10.1109/ICCV.2019.00073 – ident: ref36 doi: 10.1109/CVPR.2017.565 – ident: ref5 doi: 10.1109/CVPR.2018.00195 – ident: ref43 doi: 10.1109/ICCV.2017.81 – ident: ref41 doi: 10.1109/TNNLS.2019.2963282 – start-page: 5998 volume-title: Proc. NIPS ident: ref52 article-title: Attention is all you need – ident: ref29 doi: 10.1109/TMM.2020.3001510 – ident: ref55 doi: 10.1007/s11263-014-0733-5 – ident: ref22 doi: 10.1109/TNNLS.2017.2787781 |
SSID | ssj0000605649 |
Score | 2.5375202 |
Snippet | One-shot semantic segmentation poses the challenging task of segmenting object regions from unseen categories with only one annotated example as guidance.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6484 |
SubjectTerms | Computer applications Context Deep learning Embedding Feature extraction few shot segmentation Image segmentation object segmentation Pattern analysis Prototypes Pulse modulation Semantic segmentation Semantics Siamese network Support vector machines Task analysis Visual discrimination learning |
Title | Rich Embedding Features for One-Shot Semantic Segmentation |
URI | https://ieeexplore.ieee.org/document/9463398 https://www.proquest.com/docview/2729637503 https://www.proquest.com/docview/2544880725 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXGhQEEsFBQkbpBtYscvbgi1qhBdDttKe4v8GAOCzSJILvx6xt4kEg8hLpGlOFEy4_F8Y_ubAXguye3EYFmZsnXTxarScmlLK2trnAqMYVqHvFrJy5vm7UZsDuDlzIVBxHz4DJepmffyw84PaanszDSSc6MP4ZACtz1Xa15PqQiXy4x2WS1ZybjaTByZypxdr1bv1hQNsnrJU6kJk-rn8ATuyb394pJyjZU_JubsbS6O4Wr6zv0hk8_LoXdL_-O3FI7_-yN34PYIO4vX-3FyFw6wuwfHU0mHYrTwE3iViPbF-dZhSE6tSAhxoIi8IGxbvO-wXH_c9cUat6SQT54aH7Yjeam7DzcX59dvLsuxvELpuWn6UlrJrPKxYhGbqBRGrV0U3JqAWlhunGxEZZEr47VjXhgKPjCKWJMPUyHwB3DU7Tp8CAWzBEtEaHRsSAdSW6aFctph44KPTi6gniTc-jH3eCqB8aXNMUhl2qygNimoHRW0gBfzM1_3mTf-2fskiXnuOUp4AaeTItvROL-3jAIKydMG7gKezbfJrNJeie1wN1Af0aSpTTHx6O9vfgy3WGJCZFriKRz13wZ8Qvikd0_zwPwJ_zzd3Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcoBLCxTEQoEgwQllm9ixHSNxQNBqS7fLYbfS3oKdjGlVNou6iaryLLwK78Y4m0TiR9wqcYksZWIpnvHMN_b8ALyQZHZcYVjoq3XTw6jQcGlCI2OjrSoYQ38OeTyRo5Pkw1zMN-B7nwuDiE3wGQ79sLnLL5Z57Y_K9nQiOddpG0J5hFeX5KCt3hy-J26-ZOxgf_ZuFLY9BMKc66QKpZHMqNxFzGHilEKXptYJbnSBqTBcW5mIyCBXOk8ty4UmhI1OuJgUtSoKTvPegJuEMwRbZ4f1JzgReQKywdcslixkXM27rJxI780mk_GU_E8WD7lvbqF9xx7u3QkyqL8Ywaaryx-moLFvB9vwo1uZdVjL-bCu7DD_9lvRyP916e7AVgusg7frnXAXNrC8B9td04qg1WE78NqXEgj2FxYLb7YDj4HrC1wFhN6DjyWG09NlFUxxQSJ3ltPg86JNzyrvw8m1_MED2CyXJT6EgBkCXqJIUpcQz2VqWCqUTS0mtsidlQOIO45meVtd3Tf5-JI1Xlaks0YgMi8QWSsQA3jVf_N1XVvkn9Q7nq09ZcvRAex2gpO16meVMXKZJPdX1AN43r8mxeFvg0yJy5poROKVt2Li0d9nfga3RrPjcTY-nBw9htvM5300SZi7sFld1PiE0FhlnzabIoBP1y1KPwFWeTzH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rich+Embedding+Features+for+One-Shot+Semantic+Segmentation&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhang%2C+Xiaolin&rft.au=Wei%2C+Yunchao&rft.au=Li%2C+Zhao&rft.au=Yan%2C+Chenggang&rft.date=2022-11-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=33&rft.issue=11&rft.spage=6484&rft.epage=6493&rft_id=info:doi/10.1109%2FTNNLS.2021.3081693&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2021_3081693 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |