Eigenstate analysis of finite-frequency conductivity in graphene

Eigenstate bases are used to study electrical conductivity in graphene in the presence of short-range diagonal disorder and inter-valley scattering. For the first time, the behavior of graphene in a moderate and weak disorderd regime is presented. For disorder strength, W   /   t  ≥  5, the density...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. B, Condensed matter physics Vol. 85; no. 10
Main Author Ray, R.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.10.2012
EDP Sciences
Springer
Subjects
Online AccessGet full text
ISSN1434-6028
1434-6036
DOI10.1140/epjb/e2012-20885-8

Cover

Loading…
Abstract Eigenstate bases are used to study electrical conductivity in graphene in the presence of short-range diagonal disorder and inter-valley scattering. For the first time, the behavior of graphene in a moderate and weak disorderd regime is presented. For disorder strength, W   /   t  ≥  5, the density of states is flat. A connection is then established with the work of Abrahams et al. using Microscopic Renormalization Group (MRG) approach. For disorder strength, W   /   t  = 5, results are in good agreement. For low disorder strength, W   /   t  = 2, energy-resolved current matrix elements squared for different locations of the Fermi energy from the band centre is studied. Explicit dependence of the current matrix elements on Fermi energy is shown. It is found that states close to the band centre are more extended and fall off nearly as 1/E l 2 as one moves away from the band centre. Further studies on current matrix elements versus disorder strength suggests a cross-over from weakly localized to a very weakly localized system. Using the Kubo-Greenwood formula, conductivity and mobility is calculated. For low disorder strength, conductivity is in a good qualitative agreement with the experiments, even for the on-site disorder. The intensity plots of the eigenstates also reveal clear signatures of puddle formation for very small carrier concentration. We also make comparision with square lattice and find that graphene is more easily localized when subject to disorder.
AbstractList Eigenstate bases are used to study electrical conductivity in graphene in the presence of shortrange diagonal disorder and inter-valley scattering. For the first time, the behavior of graphene in a moderate and weak disorderd regime is presented. For disorder strength, W/t [greater than or equal to] 5, the density of states is flat. A connection is then established with the work of Abrahams et al. using Microscopic Renormalization Group (MRG) approach. For disorder strength, W/t = 5, results are in good agreement. For low disorder strength, W/t = 2, energy-resolved current matrix elements squared for different locations of the Fermi energy from the band centre is studied. Explicit dependence of the current matrix elements on Fermi energy is shown. It is found that states close to the band centre are more extended and fall off nearly as 1/[E.sup.2.sub.l] as one moves away from the band centre. Further studies on current matrix elements versus disorder strength suggests a cross-over from weakly localized to a very weakly localized system. Using the Kubo- Greenwood formula, conductivity and mobility is calculated. For low disorder strength, conductivity is in a good qualitative agreement with the experiments, even for the on-site disorder. The intensity plots of the eigenstates also reveal clear signatures of puddle formation for very small carrier concentration. We also make comparision with square lattice and find that graphene is more easily localized when subject to disorder.
Eigenstate bases are used to study electrical conductivity in graphene in the presence of short-range diagonal disorder and inter-valley scattering. For the first time, the behavior of graphene in a moderate and weak disorderd regime is presented. For disorder strength, W   /   t  ≥  5, the density of states is flat. A connection is then established with the work of Abrahams et al. using Microscopic Renormalization Group (MRG) approach. For disorder strength, W   /   t  = 5, results are in good agreement. For low disorder strength, W   /   t  = 2, energy-resolved current matrix elements squared for different locations of the Fermi energy from the band centre is studied. Explicit dependence of the current matrix elements on Fermi energy is shown. It is found that states close to the band centre are more extended and fall off nearly as 1/E l 2 as one moves away from the band centre. Further studies on current matrix elements versus disorder strength suggests a cross-over from weakly localized to a very weakly localized system. Using the Kubo-Greenwood formula, conductivity and mobility is calculated. For low disorder strength, conductivity is in a good qualitative agreement with the experiments, even for the on-site disorder. The intensity plots of the eigenstates also reveal clear signatures of puddle formation for very small carrier concentration. We also make comparision with square lattice and find that graphene is more easily localized when subject to disorder.
ArticleNumber 334
Audience Academic
Author Ray, R.
Author_xml – sequence: 1
  givenname: R.
  surname: Ray
  fullname: Ray, R.
  email: rray@iitk.ac.in
  organization: Department of Physics, Indian Institute of Technology Kanpur
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26630542$$DView record in Pascal Francis
BookMark eNp9kctKAzEUhoMo2FZfwNVsXLiYmttkpjuLeIOC4GUdMpmTMWXM1CQV5-1NrQp1IVnkcPi-n5B_jPZd7wChE4KnhHB8DqtlfQ4UE5pTXFVFXu2hEeGM5wIzsf870-oQjUNYYoyJIHyELq5sCy5EFSFTTnVDsCHrTWassxFy4-FtDU4Pme5ds9bRvts4ZNZlrVerF3BwhA6M6gIcf98T9Hx99XR5my_ub-4u54tcsxmPuShqI1RFi6YEwZlptKLapLmsCQBLuxk0NTcNbShgXfJaF0RUIAgYU5eMTdB0m9uqDqR1po9e6XQaeLXpcWBs2s-ZoDNRFCVJwtmOkJgIH7FV6xDk3ePDLnu6ZVcqaNUZr5y2Qa68fVV-kFQIhgtOE1dtOe37EDwYqW36OpuivbKdJFhu6pCbOuRXHfKrDlkllf5Rf9L_ldhWCgl2LXi57Nc-1RT-sz4BgISiXA
CitedBy_id crossref_primary_10_1007_s11468_024_02278_5
Cites_doi 10.1103/PhysRevLett.61.2015
10.1103/PhysRevLett.101.166803
10.1103/PhysRevLett.97.036802
10.1103/PhysRevLett.101.036808
10.1103/PhysRevLett.97.236802
10.1103/PhysRevLett.102.206603
10.1103/PhysRevB.82.081414
10.1103/PhysRevLett.98.076602
10.1103/RevModPhys.81.109
10.1103/PhysRevLett.96.036801
10.1103/PhysRevLett.102.106401
10.1103/PhysRevB.33.3257
10.1103/PhysRevLett.48.975
10.1103/PhysRevB.77.081410
10.1139/p56-140
10.1103/PhysRevB.33.3263
10.1038/nature04235
10.1103/PhysRevLett.100.036803
10.1016/S1369-7021(06)71788-6
10.1143/JPSJ.67.2421
10.1103/PhysRevB.74.235443
10.1103/PhysRevB.76.214204
10.1088/0370-1328/71/4/306
10.1103/PhysRevLett.97.236801
10.1103/PhysRev.71.622
10.1007/s10909-008-9835-1
10.1103/PhysRevLett.99.166802
10.1038/nmat1849
10.1103/PhysRevLett.100.016602
10.1088/0022-3719/18/10/015
10.1103/PhysRevB.77.115109
10.1103/PhysRevLett.57.2967
10.1103/PhysRev.109.272
10.1103/PhysRevLett.53.2449
10.1103/PhysRevLett.42.673
10.1103/PhysRevB.82.081417
10.1209/0295-5075/90/17003
10.1126/science.1102896
10.1103/PhysRevLett.99.216602
10.1103/PhysRevB.83.165113
10.1098/rsta.2007.2157
10.1103/PhysRevLett.98.186806
10.1134/S0021364008170074
10.1103/PhysRevLett.80.3113
10.1073/pnas.0704772104
10.1038/nature04233
10.1103/PhysRevB.75.125425
ContentType Journal Article
Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012
2014 INIST-CNRS
COPYRIGHT 2012 Springer
Copyright_xml – notice: EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012
– notice: 2014 INIST-CNRS
– notice: COPYRIGHT 2012 Springer
DBID AAYXX
CITATION
IQODW
ISR
DOI 10.1140/epjb/e2012-20885-8
DatabaseName CrossRef
Pascal-Francis
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1434-6036
ExternalDocumentID A362965571
26630542
10_1140_epjb_e2012_20885_8
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
-~X
.VR
06D
0R~
199
203
28-
29G
29Q
29~
2J2
2JY
2KG
2KM
2LR
2P1
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
ABAKF
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACUHS
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFQWF
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHSBF
AHYZX
AI.
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IGS
IHE
IKXTQ
ISR
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9T
PF-
PT5
QOS
R89
R9I
RED
RID
RIG
RNS
ROL
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
~8M
2JN
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
IQODW
AEIIB
ID FETCH-LOGICAL-c394t-65bf6a825d7e643fdca2cf7e67b1ee3e649edb4fd2d2e0c74bc5168e61effb733
IEDL.DBID U2A
ISSN 1434-6028
IngestDate Tue Jun 10 20:43:17 EDT 2025
Fri Jun 27 05:04:22 EDT 2025
Wed Apr 02 07:26:15 EDT 2025
Tue Jul 01 01:17:16 EDT 2025
Thu Apr 24 23:05:25 EDT 2025
Fri Feb 21 02:29:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Solid State and Materials
Eigenstates
Band structure
Kubo formula
Electrical conductivity
Fermi level
Graphene
Renormalization group method
Microscopic model
Square lattices
Carrier density
Disorder
Weak localisation
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-65bf6a825d7e643fdca2cf7e67b1ee3e649edb4fd2d2e0c74bc5168e61effb733
ParticipantIDs gale_infotracacademiconefile_A362965571
gale_incontextgauss_ISR_A362965571
pascalfrancis_primary_26630542
crossref_citationtrail_10_1140_epjb_e2012_20885_8
crossref_primary_10_1140_epjb_e2012_20885_8
springer_journals_10_1140_epjb_e2012_20885_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10-01
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Les Ulis
PublicationSubtitle Condensed Matter and Complex Systems
PublicationTitle The European physical journal. B, Condensed matter physics
PublicationTitleAbbrev Eur. Phys. J. B
PublicationYear 2012
Publisher Springer-Verlag
EDP Sciences
Springer
Publisher_xml – name: Springer-Verlag
– name: EDP Sciences
– name: Springer
References PereiraV.M.GuineaF.dos SantosJ.M.B.L.PeresN.M.R.NetoA.H. CastroPhys. Rev. Lett.2006960368012006PhRvL..96c6801P10.1103/PhysRevLett.96.036801
AdamS.HwangE.H.GalitskiV.SarmaS. DasProc. Natl. Acad. Sci. USA2007104183922007PNAS..10418392A10.1073/pnas.0704772104
VyurkovV.RyzhiiV.JETP Lett.2008883702008JETPL..88..370V10.1134/S0021364008170074
SinghA.MacMillanW.L.J. Phys. C: Solid State Phys.19851720971985JPhC...18.2097S10.1088/0022-3719/18/10/015
ZhangY.TanY.W.StormerH.L.Philip Kim, Nature20054382012005Natur.438..201Z10.1038/nature04235
AltlandA.Phys. Rev. Lett.2006972368022006PhRvL..97w6802A10.1103/PhysRevLett.97.236802
OstrovskyP.M.GornyiI.V.MirlinA.D.Phys. Rev. B2006742354432006PhRvB..74w5443O10.1103/PhysRevB.74.235443
MorozovS.V.NovoselovK.S.KatsnelsonM.I.SchedinF.EliasD.C.JaszczakJ.A.GeimA.K.Phys. Rev. Lett.20081000166022008PhRvL.100a6602M10.1103/PhysRevLett.100.016602
PonomarenkoL.A.YangR.MohiuddinT.M.MorozovS.M.ZhukovA.A.SchedinF.HillE.W.NovoselovK.S.KatsnelsonM.I.GeimA.K.Phys. Rev. Lett.20091022066032009PhRvL.102t6603P10.1103/PhysRevLett.102.206603
NomuraK.MacDonaldA.H.Phys. Rev. Lett.2007980766022007PhRvL..98g6602N10.1103/PhysRevLett.98.076602
ZeiglerK.Phys. Rev. Lett.19988031131998PhRvL..80.3113Z10.1103/PhysRevLett.80.3113
ZhangY.Y.HuJ.BernevigB.A.WangX.R.XieX.C.LiuW.M.Phys. Rev. Lett.20091021064012009PhRvL.102j6401Z10.1103/PhysRevLett.102.106401
TrushinM.SchliemannJ.Phys. Rev. Lett.2007992166022007PhRvL..99u6602T10.1103/PhysRevLett.99.216602
NovoselovK.S.GeimA.K.MorozovS.V.JiangD.KatsnelsonM.I.GrigorievaI.V.DubonosS.V.FirsovA.A.Nature20054381972005Natur.438..197N10.1038/nature04233
FradkinE.DagottoE.BoyanovskyD.Phys. Rev. Lett.19865729671986PhRvL..57.2967F10.1103/PhysRevLett.57.2967
HwangE.H.AdamS.Das SarmaS.Phys. Rev. Lett.2007981868062007PhRvL..98r6806H10.1103/PhysRevLett.98.186806
PereiraV.M.NilssonJ.Castro NetoA.H.Phys. Rev. Lett.2007991668022007PhRvL..99p6802P10.1103/PhysRevLett.99.166802
KatsnelsonM.I.GeimA.K.Phil. Trans. R. Soc. A20083661952008RSPTA.366..195K10.1098/rsta.2007.2157
XiongShi-JieXiongYePhys. Rev. B2007762142042007PhRvB..76u4204X10.1103/PhysRevB.76.214204
AleinerL.EfetovK.B.Phys. Rev. Lett.2006972368012006PhRvL..97w6801A10.1103/PhysRevLett.97.236801
GreenwoodD.A.Proc. Phys. Soc.1958715851958PPS....71..585G0080.4530210.1088/0370-1328/71/4/30696410
KhveshchenkoD.V.Phys. Rev. Lett.2006970368022006PhRvL..97c6802K10.1103/PhysRevLett.97.036802
KatochJ.ChenJ.-H.TsuchikawaR.SmithC.W.MuccioloE.R.IshigamiMasaPhys. Rev. B2010820814172010PhRvB..82h1417K10.1103/PhysRevB.82.081417
KatsnelsonM.I.Mater. Today2007102010.1016/S1369-7021(06)71788-6
GeimA.K.NovoselovK.S.Nature Mater.200761832007NatMa...6..183G10.1038/nmat1849
WehlingT.O.BalatskyA.V.KatsnelsonM.I.LichtensteinA.I.ScharnbergK.WiesendangerR.Phys. Rev. B2007751254252007PhRvB..75l5425W10.1103/PhysRevB.75.125425
DeserS.JakiwR.TempletonS.Phys. Rev. Lett.1982489751982PhRvL..48..975D10.1103/PhysRevLett.48.975
LherbierA.BlaseX.NiquetY.M.TrizonF.RocheS.Phys. Rev. Lett.20081010368082008PhRvL.101c6808L10.1103/PhysRevLett.101.036808
ShonN.H.AndoT.J. Phys. Soc. Jpn19986724211998JPSJ...67.2421S10.1143/JPSJ.67.2421
HorngJasonChenChi-FanGengBaisongGiritCaglarZhangYuanboHaoZhaoBechtelH.A.MartinM.ZettlA.CrommieM.F.Ron ShenY.WangFengPhys. Rev. B2011831651132011PhRvB..83p5113H10.1103/PhysRevB.83.165113
NovoselovK.S.GeimA.K.MorozovS.V.JiangD.ZhangY.DubonosS.V.GrigorievaI.V.FirsovA.A.Science20043066662004Sci...306..666N10.1126/science.1102896
Castro NetoA.H.GuineaF.PeresN.M.R.NovoselovK.S.GeimA.K.Rev. Mod. Phys.2009811092009RvMP...81..109C10.1103/RevModPhys.81.109
KuboR.Can. J. Phys.19563412741956CaJPh..34.1274K10.1139/p56-14082790
LherbierA.BielB.NiquetYann-MichelRocheS.Phys. Rev. Lett.20081000368032008PhRvL.100c6803L10.1103/PhysRevLett.100.036803
LewenkopfC.H.MuccioloE.R.Castro NetoA.H.Phys. Rev. B2008770814102008PhRvB..77h1410L10.1103/PhysRevB.77.081410
FradkinE.Phys. Rev. B19863332631986PhRvB..33.3263F10.1103/PhysRevB.33.3263
GuineaF.J. Low Temp. Phys.20081533592008JLTP..153..359G10.1007/s10909-008-9835-1
FradkinE.Phys. Rev. B19863332571986PhRvB..33.3257F10.1103/PhysRevB.33.3257
HaldaneF.D.M.Phys. Rev. Lett.19886120151988PhRvL..61.2015H10.1103/PhysRevLett.61.2015955232
RossiE.Das SarmaS.Phys. Rev. Lett.20081011668032008PhRvL.101p6803R10.1103/PhysRevLett.101.166803
AbrahamsE.AndersonP.W.LicciardelloD.C.RamakrishnanT.V.Phys. Rev. Lett.1979426731979PhRvL..42..673A10.1103/PhysRevLett.42.673
AminiM.JafariS.A.ShahbaziF.Eur. Phys. Lett.201090170032010EL.....9017003A10.1209/0295-5075/90/17003
ZeiglerK.Phys. Rev. Lett.200697268802
SemenoffG.W.Phys. Rev. Lett.19845324491984PhRvL..53.2449S10.1103/PhysRevLett.53.2449756206
KlosJ.W.ZozoulenkoI.V.Phys. Rev. B201082081414(R)2010PhRvB..82h1414K10.1103/PhysRevB.82.081414
WallaceP.R.Phys. Rev.1947716221947PhRv...71..622W0033.1430410.1103/PhysRev.71.622
SlonczewskiJ.C.WeissP.R.Phys. Rev.19581092721958PhRv..109..272S10.1103/PhysRev.109.272
PereiraV.M.dos SantosJ.M.B.L.Castro NetoA.H.Phys. Rev. B2008771151092008PhRvB..77k5109P10.1103/PhysRevB.77.115109
L.A. Ponomarenko (660_CR39) 2009; 102
Y. Zhang (660_CR10) 2005; 438
A.H. Castro Neto (660_CR7) 2009; 81
L. Aleiner (660_CR22) 2006; 97
D.V. Khveshchenko (660_CR18) 2006; 97
A. Lherbier (660_CR37) 2008; 100
P.R. Wallace (660_CR6) 1947; 71
A. Altland (660_CR21) 2006; 97
V.M. Pereira (660_CR30) 2007; 99
E. Fradkin (660_CR48) 1986; 33
C.H. Lewenkopf (660_CR33) 2008; 77
M. Trushin (660_CR36) 2007; 99
J.C. Slonczewski (660_CR5) 1958; 109
J.W. Klos (660_CR38) 2010; 82
F. Guinea (660_CR26) 2008; 153
V. Vyurkov (660_CR31) 2008; 88
S. Deser (660_CR1) 1982; 48
M.I. Katsnelson (660_CR25) 2008; 366
F.D.M. Haldane (660_CR4) 1988; 61
K. Nomura (660_CR11) 2007; 98
A. Lherbier (660_CR46) 2008; 101
M.I. Katsnelson (660_CR12) 2007; 10
G.W. Semenoff (660_CR2) 1984; 53
Shi-Jie Xiong (660_CR32) 2007; 76
E.H. Hwang (660_CR29) 2007; 98
E. Fradkin (660_CR47) 1986; 33
K.S. Novoselov (660_CR9) 2005; 438
T.O. Wehling (660_CR16) 2007; 75
Jason Horng (660_CR41) 2011; 83
E. Fradkin (660_CR3) 1986; 57
N.H. Shon (660_CR14) 1998; 67
R. Kubo (660_CR42) 1956; 34
E. Abrahams (660_CR45) 1979; 42
K.S. Novoselov (660_CR8) 2004; 306
D.A. Greenwood (660_CR43) 1958; 71
K. Zeigler (660_CR20) 1998; 80
M. Amini (660_CR35) 2010; 90
A.K. Geim (660_CR13) 2007; 6
E. Rossi (660_CR17) 2008; 101
S. Adam (660_CR19) 2007; 104
Y.Y. Zhang (660_CR34) 2009; 102
V.M. Pereira (660_CR27) 2006; 96
J. Katoch (660_CR40) 2010; 82
A. Singh (660_CR44) 1985; 17
K. Zeigler (660_CR24) 2006; 97
V.M. Pereira (660_CR28) 2008; 77
S.V. Morozov (660_CR15) 2008; 100
P.M. Ostrovsky (660_CR23) 2006; 74
References_xml – reference: OstrovskyP.M.GornyiI.V.MirlinA.D.Phys. Rev. B2006742354432006PhRvB..74w5443O10.1103/PhysRevB.74.235443
– reference: AminiM.JafariS.A.ShahbaziF.Eur. Phys. Lett.201090170032010EL.....9017003A10.1209/0295-5075/90/17003
– reference: ShonN.H.AndoT.J. Phys. Soc. Jpn19986724211998JPSJ...67.2421S10.1143/JPSJ.67.2421
– reference: PereiraV.M.GuineaF.dos SantosJ.M.B.L.PeresN.M.R.NetoA.H. CastroPhys. Rev. Lett.2006960368012006PhRvL..96c6801P10.1103/PhysRevLett.96.036801
– reference: GeimA.K.NovoselovK.S.Nature Mater.200761832007NatMa...6..183G10.1038/nmat1849
– reference: ZhangY.Y.HuJ.BernevigB.A.WangX.R.XieX.C.LiuW.M.Phys. Rev. Lett.20091021064012009PhRvL.102j6401Z10.1103/PhysRevLett.102.106401
– reference: KlosJ.W.ZozoulenkoI.V.Phys. Rev. B201082081414(R)2010PhRvB..82h1414K10.1103/PhysRevB.82.081414
– reference: ZeiglerK.Phys. Rev. Lett.200697268802
– reference: SlonczewskiJ.C.WeissP.R.Phys. Rev.19581092721958PhRv..109..272S10.1103/PhysRev.109.272
– reference: KatochJ.ChenJ.-H.TsuchikawaR.SmithC.W.MuccioloE.R.IshigamiMasaPhys. Rev. B2010820814172010PhRvB..82h1417K10.1103/PhysRevB.82.081417
– reference: HwangE.H.AdamS.Das SarmaS.Phys. Rev. Lett.2007981868062007PhRvL..98r6806H10.1103/PhysRevLett.98.186806
– reference: PereiraV.M.NilssonJ.Castro NetoA.H.Phys. Rev. Lett.2007991668022007PhRvL..99p6802P10.1103/PhysRevLett.99.166802
– reference: LewenkopfC.H.MuccioloE.R.Castro NetoA.H.Phys. Rev. B2008770814102008PhRvB..77h1410L10.1103/PhysRevB.77.081410
– reference: WallaceP.R.Phys. Rev.1947716221947PhRv...71..622W0033.1430410.1103/PhysRev.71.622
– reference: NovoselovK.S.GeimA.K.MorozovS.V.JiangD.ZhangY.DubonosS.V.GrigorievaI.V.FirsovA.A.Science20043066662004Sci...306..666N10.1126/science.1102896
– reference: PonomarenkoL.A.YangR.MohiuddinT.M.MorozovS.M.ZhukovA.A.SchedinF.HillE.W.NovoselovK.S.KatsnelsonM.I.GeimA.K.Phys. Rev. Lett.20091022066032009PhRvL.102t6603P10.1103/PhysRevLett.102.206603
– reference: FradkinE.Phys. Rev. B19863332631986PhRvB..33.3263F10.1103/PhysRevB.33.3263
– reference: FradkinE.DagottoE.BoyanovskyD.Phys. Rev. Lett.19865729671986PhRvL..57.2967F10.1103/PhysRevLett.57.2967
– reference: KatsnelsonM.I.GeimA.K.Phil. Trans. R. Soc. A20083661952008RSPTA.366..195K10.1098/rsta.2007.2157
– reference: NomuraK.MacDonaldA.H.Phys. Rev. Lett.2007980766022007PhRvL..98g6602N10.1103/PhysRevLett.98.076602
– reference: XiongShi-JieXiongYePhys. Rev. B2007762142042007PhRvB..76u4204X10.1103/PhysRevB.76.214204
– reference: MorozovS.V.NovoselovK.S.KatsnelsonM.I.SchedinF.EliasD.C.JaszczakJ.A.GeimA.K.Phys. Rev. Lett.20081000166022008PhRvL.100a6602M10.1103/PhysRevLett.100.016602
– reference: AltlandA.Phys. Rev. Lett.2006972368022006PhRvL..97w6802A10.1103/PhysRevLett.97.236802
– reference: VyurkovV.RyzhiiV.JETP Lett.2008883702008JETPL..88..370V10.1134/S0021364008170074
– reference: NovoselovK.S.GeimA.K.MorozovS.V.JiangD.KatsnelsonM.I.GrigorievaI.V.DubonosS.V.FirsovA.A.Nature20054381972005Natur.438..197N10.1038/nature04233
– reference: HaldaneF.D.M.Phys. Rev. Lett.19886120151988PhRvL..61.2015H10.1103/PhysRevLett.61.2015955232
– reference: GreenwoodD.A.Proc. Phys. Soc.1958715851958PPS....71..585G0080.4530210.1088/0370-1328/71/4/30696410
– reference: ZeiglerK.Phys. Rev. Lett.19988031131998PhRvL..80.3113Z10.1103/PhysRevLett.80.3113
– reference: DeserS.JakiwR.TempletonS.Phys. Rev. Lett.1982489751982PhRvL..48..975D10.1103/PhysRevLett.48.975
– reference: ZhangY.TanY.W.StormerH.L.Philip Kim, Nature20054382012005Natur.438..201Z10.1038/nature04235
– reference: KatsnelsonM.I.Mater. Today2007102010.1016/S1369-7021(06)71788-6
– reference: AleinerL.EfetovK.B.Phys. Rev. Lett.2006972368012006PhRvL..97w6801A10.1103/PhysRevLett.97.236801
– reference: Castro NetoA.H.GuineaF.PeresN.M.R.NovoselovK.S.GeimA.K.Rev. Mod. Phys.2009811092009RvMP...81..109C10.1103/RevModPhys.81.109
– reference: TrushinM.SchliemannJ.Phys. Rev. Lett.2007992166022007PhRvL..99u6602T10.1103/PhysRevLett.99.216602
– reference: GuineaF.J. Low Temp. Phys.20081533592008JLTP..153..359G10.1007/s10909-008-9835-1
– reference: LherbierA.BlaseX.NiquetY.M.TrizonF.RocheS.Phys. Rev. Lett.20081010368082008PhRvL.101c6808L10.1103/PhysRevLett.101.036808
– reference: HorngJasonChenChi-FanGengBaisongGiritCaglarZhangYuanboHaoZhaoBechtelH.A.MartinM.ZettlA.CrommieM.F.Ron ShenY.WangFengPhys. Rev. B2011831651132011PhRvB..83p5113H10.1103/PhysRevB.83.165113
– reference: LherbierA.BielB.NiquetYann-MichelRocheS.Phys. Rev. Lett.20081000368032008PhRvL.100c6803L10.1103/PhysRevLett.100.036803
– reference: KuboR.Can. J. Phys.19563412741956CaJPh..34.1274K10.1139/p56-14082790
– reference: SemenoffG.W.Phys. Rev. Lett.19845324491984PhRvL..53.2449S10.1103/PhysRevLett.53.2449756206
– reference: AbrahamsE.AndersonP.W.LicciardelloD.C.RamakrishnanT.V.Phys. Rev. Lett.1979426731979PhRvL..42..673A10.1103/PhysRevLett.42.673
– reference: RossiE.Das SarmaS.Phys. Rev. Lett.20081011668032008PhRvL.101p6803R10.1103/PhysRevLett.101.166803
– reference: PereiraV.M.dos SantosJ.M.B.L.Castro NetoA.H.Phys. Rev. B2008771151092008PhRvB..77k5109P10.1103/PhysRevB.77.115109
– reference: SinghA.MacMillanW.L.J. Phys. C: Solid State Phys.19851720971985JPhC...18.2097S10.1088/0022-3719/18/10/015
– reference: WehlingT.O.BalatskyA.V.KatsnelsonM.I.LichtensteinA.I.ScharnbergK.WiesendangerR.Phys. Rev. B2007751254252007PhRvB..75l5425W10.1103/PhysRevB.75.125425
– reference: KhveshchenkoD.V.Phys. Rev. Lett.2006970368022006PhRvL..97c6802K10.1103/PhysRevLett.97.036802
– reference: AdamS.HwangE.H.GalitskiV.SarmaS. DasProc. Natl. Acad. Sci. USA2007104183922007PNAS..10418392A10.1073/pnas.0704772104
– reference: FradkinE.Phys. Rev. B19863332571986PhRvB..33.3257F10.1103/PhysRevB.33.3257
– volume: 61
  start-page: 2015
  year: 1988
  ident: 660_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.61.2015
– volume: 101
  start-page: 166803
  year: 2008
  ident: 660_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.166803
– volume: 97
  start-page: 036802
  year: 2006
  ident: 660_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.036802
– volume: 101
  start-page: 036808
  year: 2008
  ident: 660_CR46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.036808
– volume: 97
  start-page: 236802
  year: 2006
  ident: 660_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.236802
– volume: 102
  start-page: 206603
  year: 2009
  ident: 660_CR39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.206603
– volume: 82
  start-page: 081414(R)
  year: 2010
  ident: 660_CR38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.081414
– volume: 98
  start-page: 076602
  year: 2007
  ident: 660_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.076602
– volume: 81
  start-page: 109
  year: 2009
  ident: 660_CR7
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.109
– volume: 96
  start-page: 036801
  year: 2006
  ident: 660_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.036801
– volume: 102
  start-page: 106401
  year: 2009
  ident: 660_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.106401
– volume: 33
  start-page: 3257
  year: 1986
  ident: 660_CR47
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.33.3257
– volume: 48
  start-page: 975
  year: 1982
  ident: 660_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.48.975
– volume: 77
  start-page: 081410
  year: 2008
  ident: 660_CR33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.081410
– volume: 34
  start-page: 1274
  year: 1956
  ident: 660_CR42
  publication-title: Can. J. Phys.
  doi: 10.1139/p56-140
– volume: 33
  start-page: 3263
  year: 1986
  ident: 660_CR48
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.33.3263
– volume: 438
  start-page: 201
  year: 2005
  ident: 660_CR10
  publication-title: Philip Kim, Nature
  doi: 10.1038/nature04235
– volume: 100
  start-page: 036803
  year: 2008
  ident: 660_CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.036803
– volume: 10
  start-page: 20
  year: 2007
  ident: 660_CR12
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(06)71788-6
– volume: 67
  start-page: 2421
  year: 1998
  ident: 660_CR14
  publication-title: J. Phys. Soc. Jpn
  doi: 10.1143/JPSJ.67.2421
– volume: 74
  start-page: 235443
  year: 2006
  ident: 660_CR23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.235443
– volume: 76
  start-page: 214204
  year: 2007
  ident: 660_CR32
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.214204
– volume: 71
  start-page: 585
  year: 1958
  ident: 660_CR43
  publication-title: Proc. Phys. Soc.
  doi: 10.1088/0370-1328/71/4/306
– volume: 97
  start-page: 236801
  year: 2006
  ident: 660_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.236801
– volume: 71
  start-page: 622
  year: 1947
  ident: 660_CR6
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.71.622
– volume: 153
  start-page: 359
  year: 2008
  ident: 660_CR26
  publication-title: J. Low Temp. Phys.
  doi: 10.1007/s10909-008-9835-1
– volume: 99
  start-page: 166802
  year: 2007
  ident: 660_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.166802
– volume: 6
  start-page: 183
  year: 2007
  ident: 660_CR13
  publication-title: Nature Mater.
  doi: 10.1038/nmat1849
– volume: 100
  start-page: 016602
  year: 2008
  ident: 660_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.016602
– volume: 17
  start-page: 2097
  year: 1985
  ident: 660_CR44
  publication-title: J. Phys. C: Solid State Phys.
  doi: 10.1088/0022-3719/18/10/015
– volume: 77
  start-page: 115109
  year: 2008
  ident: 660_CR28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.115109
– volume: 57
  start-page: 2967
  year: 1986
  ident: 660_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.57.2967
– volume: 109
  start-page: 272
  year: 1958
  ident: 660_CR5
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.109.272
– volume: 53
  start-page: 2449
  year: 1984
  ident: 660_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.53.2449
– volume: 42
  start-page: 673
  year: 1979
  ident: 660_CR45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.42.673
– volume: 82
  start-page: 081417
  year: 2010
  ident: 660_CR40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.081417
– volume: 97
  start-page: 268802
  year: 2006
  ident: 660_CR24
  publication-title: Phys. Rev. Lett.
– volume: 90
  start-page: 17003
  year: 2010
  ident: 660_CR35
  publication-title: Eur. Phys. Lett.
  doi: 10.1209/0295-5075/90/17003
– volume: 306
  start-page: 666
  year: 2004
  ident: 660_CR8
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 99
  start-page: 216602
  year: 2007
  ident: 660_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.216602
– volume: 83
  start-page: 165113
  year: 2011
  ident: 660_CR41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.165113
– volume: 366
  start-page: 195
  year: 2008
  ident: 660_CR25
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2007.2157
– volume: 98
  start-page: 186806
  year: 2007
  ident: 660_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.186806
– volume: 88
  start-page: 370
  year: 2008
  ident: 660_CR31
  publication-title: JETP Lett.
  doi: 10.1134/S0021364008170074
– volume: 80
  start-page: 3113
  year: 1998
  ident: 660_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.3113
– volume: 104
  start-page: 18392
  year: 2007
  ident: 660_CR19
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0704772104
– volume: 438
  start-page: 197
  year: 2005
  ident: 660_CR9
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 75
  start-page: 125425
  year: 2007
  ident: 660_CR16
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.125425
SSID ssj0001614
Score 2.0119166
Snippet Eigenstate bases are used to study electrical conductivity in graphene in the presence of short-range diagonal disorder and inter-valley scattering. For the...
Eigenstate bases are used to study electrical conductivity in graphene in the presence of shortrange diagonal disorder and inter-valley scattering. For the...
SourceID gale
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Analysis
Complex Systems
Condensed Matter Physics
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Electric properties
Electrical conductivity
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic transport in multilayers, nanoscale materials and structures
Exact sciences and technology
Fluid- and Aerodynamics
Graphene
Graphite
Localization effects (anderson or weak localization)
Physics
Physics and Astronomy
Regular Article
Solid State Physics
Surface and interface electron states
Title Eigenstate analysis of finite-frequency conductivity in graphene
URI https://link.springer.com/article/10.1140/epjb/e2012-20885-8
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_qiSCItLXiWXsEKfTBBvOxH8mbR3vW2toH7YE-LdnNrFhK7jB3D_3vnd1sDo4WoU_5YJJsZjbzkZ35DcB7baTlpdN-pREUoCQ6Jq-Vx4YzgXSIuXb_Ia9-iIspu7zlt6EorO2z3fslSa-pOzzb5BTnv_Qpkr3KSLJFweNiAza5i91pFk-z8Ur_kg_j15JZzmJB5rMvlfnnPdbMUVDKO_OqJQbZrrPFX0uk3vKcv4Td4DJG407Gr-AFNq9hy6dumnYPziYOUNMXBkVVgBiJZjayD86djO1jlyz9J6LI14G7-m4R0UMTeaxqUnVvYHo--fnpIg59EWKTl2wRC66tqCi0qyWSQ2FrU2XG0r7UKWJO50qsNbN1VmeYGMm04akoUKRorZZ5vg-DZtbgAUQo6yQ1Se0AjhiXeaELlpYVmhR5JiQbQtqzR5kAGu56V_xWXUFzohxLlWep8ixVxRBOVtfMO8iMZ6mPHdeVw6JoXLLLfbVsW_X15lqNybiWgnOZDuFDILIzerypQu0AvYSDr1qjHK1JbzUCckRItbFsCB97carwubbPDO_w_8jfwrafXT7b7wgGi8clviOvZaFHsDn-fPX9xm2_3H2bjPykfQJad-kB
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB-qpVQQaWuL51dDKfRBg_nYj-TNQ5Tz86H1wLclu5kVi-QOcz743zu72RwciuBbEibJZiaZ-W125jcAv7WRlpfO-5VG0AQl0TGhVh4bzgTSLuba_Ye8vBKjMTu74TehKKzts937JUnvqTs-2-QAp__1AVK8ysiyRcHjYgk-EhgoXCLXOBvO_S9hGL-WzHIWCwqffanMq9dYCEfBKa9Oq5YUZLvOFi-WSH3kOfkCawEyRsPOxl_hAzbf4JNP3TTtOhweO0JNXxgUVYFiJJrYyN45OBnbhy5Z-imima8jd_XdIqK7JvJc1eTqvsP45Pj6aBSHvgixyUs2iwXXVlQ0taslEqCwtakyY2lb6hQxp2Ml1prZOqszTIxk2vBUFChStFbLPP8By82kwQ2IUNZJapLaERwxLvNCFywtKzQp8kxINoC0V48ygTTc9a64V11Bc6KcSpVXqfIqVcUA9ubnTDvKjDelfzmtK8dF0bhkl9vqsW3V6b-_akjBtRScy3QAf4KQndDtTRVqB-ghHH3VguTugvXmIyAgQq6NZQPY782pwufavjG8zfeJ_4TPo-vLC3VxenW-BSv-TfOZf9uwPHt4xB1CMDO961_YZ-H76Mw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB9ai0UopWrFs60NReiDDZdN9iN569F6qG1Fqge-LdnNbLFI7jDnQ__7zm72jh6K0LckTJLdmc3MbGbmNwAHxionKq_9Kitpg5KZlLxWkVrBJdIpFsb_h_xxJo8n_PRKXP1TxR-y3Rchyb6mwaM0tfPhrHER2zYb4uy3GSLZrpykXJYiLZ_CM1LHzK_rST5a6mLyZ0JcmRc8lWRKF2UzDz5jxTRFBf1iVnfELNd3ubgXLg1WaPwKXkb3MRn18t6EJ9huwXpI47TdNnw-8uCaoUgoqSPcSDJ1ibv2rmXqbvvE6T8JTdcDvYbOEcl1mwTcalJ7r2EyPrr8cpzGHgmpLSo-T6UwTta0zWsUknPhGlvn1tGxMgyxoGsVNoa7Jm9yzKzixgomS5QMnTOqKHZgrZ22uAsJqiZjNms82BEXqihNyVlVo2Uocqn4ANiCPdpGAHHfx-JG98XNmfYs1YGlOrBUlwM4XN4z6-EzHqX-4LmuPS5F6xNfftV3XadPLn7qERnaSgqh2AA-RiI3pdfbOtYR0CQ8lNUK5f6K9JYjIKeE1BzPB_BpIU4dP93ukeHt_R_5e3h-_nWsv5-cfXsDG2GhhSTAt7A2v73Dd-TMzM1-WK9_ASyv7Qg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eigenstate+analysis+of+finite-frequency+conductivity+in+graphene&rft.jtitle=The+European+physical+journal.+B%2C+Condensed+matter+physics&rft.au=RAY%2C+R&rft.date=2012-10-01&rft.pub=EDP+Sciences&rft.issn=1434-6028&rft.volume=85&rft.issue=10&rft_id=info:doi/10.1140%2Fepjb%2Fe2012-20885-8&rft.externalDBID=n%2Fa&rft.externalDocID=26630542
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6028&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6028&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6028&client=summon