Eigenstate analysis of finite-frequency conductivity in graphene
Eigenstate bases are used to study electrical conductivity in graphene in the presence of short-range diagonal disorder and inter-valley scattering. For the first time, the behavior of graphene in a moderate and weak disorderd regime is presented. For disorder strength, W / t ≥ 5, the density...
Saved in:
Published in | The European physical journal. B, Condensed matter physics Vol. 85; no. 10 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer-Verlag
01.10.2012
EDP Sciences Springer |
Subjects | |
Online Access | Get full text |
ISSN | 1434-6028 1434-6036 |
DOI | 10.1140/epjb/e2012-20885-8 |
Cover
Loading…
Abstract | Eigenstate bases are used to study electrical conductivity in graphene in the presence of short-range diagonal disorder and inter-valley scattering. For the first time, the behavior of graphene in a moderate and weak disorderd regime is presented. For disorder strength,
W
/
t
≥ 5, the density of states is flat. A connection is then established with the work of Abrahams et al. using Microscopic Renormalization Group (MRG) approach. For disorder strength,
W
/
t
= 5, results are in good agreement. For low disorder strength,
W
/
t
= 2, energy-resolved current matrix elements squared for different locations of the Fermi energy from the band centre is studied. Explicit dependence of the current matrix elements on Fermi energy is shown. It is found that states close to the band centre are more extended and fall off nearly as 1/E
l
2
as one moves away from the band centre. Further studies on current matrix elements versus disorder strength suggests a cross-over from weakly localized to a very weakly localized system. Using the Kubo-Greenwood formula, conductivity and mobility is calculated. For low disorder strength, conductivity is in a good qualitative agreement with the experiments, even for the on-site disorder. The intensity plots of the eigenstates also reveal clear signatures of puddle formation for very small carrier concentration. We also make comparision with square lattice and find that graphene is more easily localized when subject to disorder. |
---|---|
AbstractList | Eigenstate bases are used to study electrical conductivity in graphene in the presence of shortrange diagonal disorder and inter-valley scattering. For the first time, the behavior of graphene in a moderate and weak disorderd regime is presented. For disorder strength, W/t [greater than or equal to] 5, the density of states is flat. A connection is then established with the work of Abrahams et al. using Microscopic Renormalization Group (MRG) approach. For disorder strength, W/t = 5, results are in good agreement. For low disorder strength, W/t = 2, energy-resolved current matrix elements squared for different locations of the Fermi energy from the band centre is studied. Explicit dependence of the current matrix elements on Fermi energy is shown. It is found that states close to the band centre are more extended and fall off nearly as 1/[E.sup.2.sub.l] as one moves away from the band centre. Further studies on current matrix elements versus disorder strength suggests a cross-over from weakly localized to a very weakly localized system. Using the Kubo- Greenwood formula, conductivity and mobility is calculated. For low disorder strength, conductivity is in a good qualitative agreement with the experiments, even for the on-site disorder. The intensity plots of the eigenstates also reveal clear signatures of puddle formation for very small carrier concentration. We also make comparision with square lattice and find that graphene is more easily localized when subject to disorder. Eigenstate bases are used to study electrical conductivity in graphene in the presence of short-range diagonal disorder and inter-valley scattering. For the first time, the behavior of graphene in a moderate and weak disorderd regime is presented. For disorder strength, W / t ≥ 5, the density of states is flat. A connection is then established with the work of Abrahams et al. using Microscopic Renormalization Group (MRG) approach. For disorder strength, W / t = 5, results are in good agreement. For low disorder strength, W / t = 2, energy-resolved current matrix elements squared for different locations of the Fermi energy from the band centre is studied. Explicit dependence of the current matrix elements on Fermi energy is shown. It is found that states close to the band centre are more extended and fall off nearly as 1/E l 2 as one moves away from the band centre. Further studies on current matrix elements versus disorder strength suggests a cross-over from weakly localized to a very weakly localized system. Using the Kubo-Greenwood formula, conductivity and mobility is calculated. For low disorder strength, conductivity is in a good qualitative agreement with the experiments, even for the on-site disorder. The intensity plots of the eigenstates also reveal clear signatures of puddle formation for very small carrier concentration. We also make comparision with square lattice and find that graphene is more easily localized when subject to disorder. |
ArticleNumber | 334 |
Audience | Academic |
Author | Ray, R. |
Author_xml | – sequence: 1 givenname: R. surname: Ray fullname: Ray, R. email: rray@iitk.ac.in organization: Department of Physics, Indian Institute of Technology Kanpur |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26630542$$DView record in Pascal Francis |
BookMark | eNp9kctKAzEUhoMo2FZfwNVsXLiYmttkpjuLeIOC4GUdMpmTMWXM1CQV5-1NrQp1IVnkcPi-n5B_jPZd7wChE4KnhHB8DqtlfQ4UE5pTXFVFXu2hEeGM5wIzsf870-oQjUNYYoyJIHyELq5sCy5EFSFTTnVDsCHrTWassxFy4-FtDU4Pme5ds9bRvts4ZNZlrVerF3BwhA6M6gIcf98T9Hx99XR5my_ub-4u54tcsxmPuShqI1RFi6YEwZlptKLapLmsCQBLuxk0NTcNbShgXfJaF0RUIAgYU5eMTdB0m9uqDqR1po9e6XQaeLXpcWBs2s-ZoDNRFCVJwtmOkJgIH7FV6xDk3ePDLnu6ZVcqaNUZr5y2Qa68fVV-kFQIhgtOE1dtOe37EDwYqW36OpuivbKdJFhu6pCbOuRXHfKrDlkllf5Rf9L_ldhWCgl2LXi57Nc-1RT-sz4BgISiXA |
CitedBy_id | crossref_primary_10_1007_s11468_024_02278_5 |
Cites_doi | 10.1103/PhysRevLett.61.2015 10.1103/PhysRevLett.101.166803 10.1103/PhysRevLett.97.036802 10.1103/PhysRevLett.101.036808 10.1103/PhysRevLett.97.236802 10.1103/PhysRevLett.102.206603 10.1103/PhysRevB.82.081414 10.1103/PhysRevLett.98.076602 10.1103/RevModPhys.81.109 10.1103/PhysRevLett.96.036801 10.1103/PhysRevLett.102.106401 10.1103/PhysRevB.33.3257 10.1103/PhysRevLett.48.975 10.1103/PhysRevB.77.081410 10.1139/p56-140 10.1103/PhysRevB.33.3263 10.1038/nature04235 10.1103/PhysRevLett.100.036803 10.1016/S1369-7021(06)71788-6 10.1143/JPSJ.67.2421 10.1103/PhysRevB.74.235443 10.1103/PhysRevB.76.214204 10.1088/0370-1328/71/4/306 10.1103/PhysRevLett.97.236801 10.1103/PhysRev.71.622 10.1007/s10909-008-9835-1 10.1103/PhysRevLett.99.166802 10.1038/nmat1849 10.1103/PhysRevLett.100.016602 10.1088/0022-3719/18/10/015 10.1103/PhysRevB.77.115109 10.1103/PhysRevLett.57.2967 10.1103/PhysRev.109.272 10.1103/PhysRevLett.53.2449 10.1103/PhysRevLett.42.673 10.1103/PhysRevB.82.081417 10.1209/0295-5075/90/17003 10.1126/science.1102896 10.1103/PhysRevLett.99.216602 10.1103/PhysRevB.83.165113 10.1098/rsta.2007.2157 10.1103/PhysRevLett.98.186806 10.1134/S0021364008170074 10.1103/PhysRevLett.80.3113 10.1073/pnas.0704772104 10.1038/nature04233 10.1103/PhysRevB.75.125425 |
ContentType | Journal Article |
Copyright | EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012 2014 INIST-CNRS COPYRIGHT 2012 Springer |
Copyright_xml | – notice: EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012 – notice: 2014 INIST-CNRS – notice: COPYRIGHT 2012 Springer |
DBID | AAYXX CITATION IQODW ISR |
DOI | 10.1140/epjb/e2012-20885-8 |
DatabaseName | CrossRef Pascal-Francis Gale In Context: Science |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1434-6036 |
ExternalDocumentID | A362965571 26630542 10_1140_epjb_e2012_20885_8 |
GroupedDBID | -5F -5G -BR -EM -Y2 -~C -~X .VR 06D 0R~ 199 203 28- 29G 29Q 29~ 2J2 2JY 2KG 2KM 2LR 2P1 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN ABAKF ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACPIV ACUHS ACZOJ ADHIR ADINQ ADKNI ADKPE ADMLS ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFFNX AFQWF AFWTZ AFZKB AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHSBF AHYZX AI. AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IGS IHE IKXTQ ISR ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J P9T PF- PT5 QOS R89 R9I RED RID RIG RNS ROL RSV RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UPT UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WJK WK8 YLTOR Z45 Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z88 ZMTXR ~8M 2JN AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION IQODW AEIIB |
ID | FETCH-LOGICAL-c394t-65bf6a825d7e643fdca2cf7e67b1ee3e649edb4fd2d2e0c74bc5168e61effb733 |
IEDL.DBID | U2A |
ISSN | 1434-6028 |
IngestDate | Tue Jun 10 20:43:17 EDT 2025 Fri Jun 27 05:04:22 EDT 2025 Wed Apr 02 07:26:15 EDT 2025 Tue Jul 01 01:17:16 EDT 2025 Thu Apr 24 23:05:25 EDT 2025 Fri Feb 21 02:29:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Solid State and Materials Eigenstates Band structure Kubo formula Electrical conductivity Fermi level Graphene Renormalization group method Microscopic model Square lattices Carrier density Disorder Weak localisation |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-65bf6a825d7e643fdca2cf7e67b1ee3e649edb4fd2d2e0c74bc5168e61effb733 |
ParticipantIDs | gale_infotracacademiconefile_A362965571 gale_incontextgauss_ISR_A362965571 pascalfrancis_primary_26630542 crossref_citationtrail_10_1140_epjb_e2012_20885_8 crossref_primary_10_1140_epjb_e2012_20885_8 springer_journals_10_1140_epjb_e2012_20885_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-10-01 |
PublicationDateYYYYMMDD | 2012-10-01 |
PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Les Ulis |
PublicationSubtitle | Condensed Matter and Complex Systems |
PublicationTitle | The European physical journal. B, Condensed matter physics |
PublicationTitleAbbrev | Eur. Phys. J. B |
PublicationYear | 2012 |
Publisher | Springer-Verlag EDP Sciences Springer |
Publisher_xml | – name: Springer-Verlag – name: EDP Sciences – name: Springer |
References | PereiraV.M.GuineaF.dos SantosJ.M.B.L.PeresN.M.R.NetoA.H. CastroPhys. Rev. Lett.2006960368012006PhRvL..96c6801P10.1103/PhysRevLett.96.036801 AdamS.HwangE.H.GalitskiV.SarmaS. DasProc. Natl. Acad. Sci. USA2007104183922007PNAS..10418392A10.1073/pnas.0704772104 VyurkovV.RyzhiiV.JETP Lett.2008883702008JETPL..88..370V10.1134/S0021364008170074 SinghA.MacMillanW.L.J. Phys. C: Solid State Phys.19851720971985JPhC...18.2097S10.1088/0022-3719/18/10/015 ZhangY.TanY.W.StormerH.L.Philip Kim, Nature20054382012005Natur.438..201Z10.1038/nature04235 AltlandA.Phys. Rev. Lett.2006972368022006PhRvL..97w6802A10.1103/PhysRevLett.97.236802 OstrovskyP.M.GornyiI.V.MirlinA.D.Phys. Rev. B2006742354432006PhRvB..74w5443O10.1103/PhysRevB.74.235443 MorozovS.V.NovoselovK.S.KatsnelsonM.I.SchedinF.EliasD.C.JaszczakJ.A.GeimA.K.Phys. Rev. Lett.20081000166022008PhRvL.100a6602M10.1103/PhysRevLett.100.016602 PonomarenkoL.A.YangR.MohiuddinT.M.MorozovS.M.ZhukovA.A.SchedinF.HillE.W.NovoselovK.S.KatsnelsonM.I.GeimA.K.Phys. Rev. Lett.20091022066032009PhRvL.102t6603P10.1103/PhysRevLett.102.206603 NomuraK.MacDonaldA.H.Phys. Rev. Lett.2007980766022007PhRvL..98g6602N10.1103/PhysRevLett.98.076602 ZeiglerK.Phys. Rev. Lett.19988031131998PhRvL..80.3113Z10.1103/PhysRevLett.80.3113 ZhangY.Y.HuJ.BernevigB.A.WangX.R.XieX.C.LiuW.M.Phys. Rev. Lett.20091021064012009PhRvL.102j6401Z10.1103/PhysRevLett.102.106401 TrushinM.SchliemannJ.Phys. Rev. Lett.2007992166022007PhRvL..99u6602T10.1103/PhysRevLett.99.216602 NovoselovK.S.GeimA.K.MorozovS.V.JiangD.KatsnelsonM.I.GrigorievaI.V.DubonosS.V.FirsovA.A.Nature20054381972005Natur.438..197N10.1038/nature04233 FradkinE.DagottoE.BoyanovskyD.Phys. Rev. Lett.19865729671986PhRvL..57.2967F10.1103/PhysRevLett.57.2967 HwangE.H.AdamS.Das SarmaS.Phys. Rev. Lett.2007981868062007PhRvL..98r6806H10.1103/PhysRevLett.98.186806 PereiraV.M.NilssonJ.Castro NetoA.H.Phys. Rev. Lett.2007991668022007PhRvL..99p6802P10.1103/PhysRevLett.99.166802 KatsnelsonM.I.GeimA.K.Phil. Trans. R. Soc. A20083661952008RSPTA.366..195K10.1098/rsta.2007.2157 XiongShi-JieXiongYePhys. Rev. B2007762142042007PhRvB..76u4204X10.1103/PhysRevB.76.214204 AleinerL.EfetovK.B.Phys. Rev. Lett.2006972368012006PhRvL..97w6801A10.1103/PhysRevLett.97.236801 GreenwoodD.A.Proc. Phys. Soc.1958715851958PPS....71..585G0080.4530210.1088/0370-1328/71/4/30696410 KhveshchenkoD.V.Phys. Rev. Lett.2006970368022006PhRvL..97c6802K10.1103/PhysRevLett.97.036802 KatochJ.ChenJ.-H.TsuchikawaR.SmithC.W.MuccioloE.R.IshigamiMasaPhys. Rev. B2010820814172010PhRvB..82h1417K10.1103/PhysRevB.82.081417 KatsnelsonM.I.Mater. Today2007102010.1016/S1369-7021(06)71788-6 GeimA.K.NovoselovK.S.Nature Mater.200761832007NatMa...6..183G10.1038/nmat1849 WehlingT.O.BalatskyA.V.KatsnelsonM.I.LichtensteinA.I.ScharnbergK.WiesendangerR.Phys. Rev. B2007751254252007PhRvB..75l5425W10.1103/PhysRevB.75.125425 DeserS.JakiwR.TempletonS.Phys. Rev. Lett.1982489751982PhRvL..48..975D10.1103/PhysRevLett.48.975 LherbierA.BlaseX.NiquetY.M.TrizonF.RocheS.Phys. Rev. Lett.20081010368082008PhRvL.101c6808L10.1103/PhysRevLett.101.036808 ShonN.H.AndoT.J. Phys. Soc. Jpn19986724211998JPSJ...67.2421S10.1143/JPSJ.67.2421 HorngJasonChenChi-FanGengBaisongGiritCaglarZhangYuanboHaoZhaoBechtelH.A.MartinM.ZettlA.CrommieM.F.Ron ShenY.WangFengPhys. Rev. B2011831651132011PhRvB..83p5113H10.1103/PhysRevB.83.165113 NovoselovK.S.GeimA.K.MorozovS.V.JiangD.ZhangY.DubonosS.V.GrigorievaI.V.FirsovA.A.Science20043066662004Sci...306..666N10.1126/science.1102896 Castro NetoA.H.GuineaF.PeresN.M.R.NovoselovK.S.GeimA.K.Rev. Mod. Phys.2009811092009RvMP...81..109C10.1103/RevModPhys.81.109 KuboR.Can. J. Phys.19563412741956CaJPh..34.1274K10.1139/p56-14082790 LherbierA.BielB.NiquetYann-MichelRocheS.Phys. Rev. Lett.20081000368032008PhRvL.100c6803L10.1103/PhysRevLett.100.036803 LewenkopfC.H.MuccioloE.R.Castro NetoA.H.Phys. Rev. B2008770814102008PhRvB..77h1410L10.1103/PhysRevB.77.081410 FradkinE.Phys. Rev. B19863332631986PhRvB..33.3263F10.1103/PhysRevB.33.3263 GuineaF.J. Low Temp. Phys.20081533592008JLTP..153..359G10.1007/s10909-008-9835-1 FradkinE.Phys. Rev. B19863332571986PhRvB..33.3257F10.1103/PhysRevB.33.3257 HaldaneF.D.M.Phys. Rev. Lett.19886120151988PhRvL..61.2015H10.1103/PhysRevLett.61.2015955232 RossiE.Das SarmaS.Phys. Rev. Lett.20081011668032008PhRvL.101p6803R10.1103/PhysRevLett.101.166803 AbrahamsE.AndersonP.W.LicciardelloD.C.RamakrishnanT.V.Phys. Rev. Lett.1979426731979PhRvL..42..673A10.1103/PhysRevLett.42.673 AminiM.JafariS.A.ShahbaziF.Eur. Phys. Lett.201090170032010EL.....9017003A10.1209/0295-5075/90/17003 ZeiglerK.Phys. Rev. Lett.200697268802 SemenoffG.W.Phys. Rev. Lett.19845324491984PhRvL..53.2449S10.1103/PhysRevLett.53.2449756206 KlosJ.W.ZozoulenkoI.V.Phys. Rev. B201082081414(R)2010PhRvB..82h1414K10.1103/PhysRevB.82.081414 WallaceP.R.Phys. Rev.1947716221947PhRv...71..622W0033.1430410.1103/PhysRev.71.622 SlonczewskiJ.C.WeissP.R.Phys. Rev.19581092721958PhRv..109..272S10.1103/PhysRev.109.272 PereiraV.M.dos SantosJ.M.B.L.Castro NetoA.H.Phys. Rev. B2008771151092008PhRvB..77k5109P10.1103/PhysRevB.77.115109 L.A. Ponomarenko (660_CR39) 2009; 102 Y. Zhang (660_CR10) 2005; 438 A.H. Castro Neto (660_CR7) 2009; 81 L. Aleiner (660_CR22) 2006; 97 D.V. Khveshchenko (660_CR18) 2006; 97 A. Lherbier (660_CR37) 2008; 100 P.R. Wallace (660_CR6) 1947; 71 A. Altland (660_CR21) 2006; 97 V.M. Pereira (660_CR30) 2007; 99 E. Fradkin (660_CR48) 1986; 33 C.H. Lewenkopf (660_CR33) 2008; 77 M. Trushin (660_CR36) 2007; 99 J.C. Slonczewski (660_CR5) 1958; 109 J.W. Klos (660_CR38) 2010; 82 F. Guinea (660_CR26) 2008; 153 V. Vyurkov (660_CR31) 2008; 88 S. Deser (660_CR1) 1982; 48 M.I. Katsnelson (660_CR25) 2008; 366 F.D.M. Haldane (660_CR4) 1988; 61 K. Nomura (660_CR11) 2007; 98 A. Lherbier (660_CR46) 2008; 101 M.I. Katsnelson (660_CR12) 2007; 10 G.W. Semenoff (660_CR2) 1984; 53 Shi-Jie Xiong (660_CR32) 2007; 76 E.H. Hwang (660_CR29) 2007; 98 E. Fradkin (660_CR47) 1986; 33 K.S. Novoselov (660_CR9) 2005; 438 T.O. Wehling (660_CR16) 2007; 75 Jason Horng (660_CR41) 2011; 83 E. Fradkin (660_CR3) 1986; 57 N.H. Shon (660_CR14) 1998; 67 R. Kubo (660_CR42) 1956; 34 E. Abrahams (660_CR45) 1979; 42 K.S. Novoselov (660_CR8) 2004; 306 D.A. Greenwood (660_CR43) 1958; 71 K. Zeigler (660_CR20) 1998; 80 M. Amini (660_CR35) 2010; 90 A.K. Geim (660_CR13) 2007; 6 E. Rossi (660_CR17) 2008; 101 S. Adam (660_CR19) 2007; 104 Y.Y. Zhang (660_CR34) 2009; 102 V.M. Pereira (660_CR27) 2006; 96 J. Katoch (660_CR40) 2010; 82 A. Singh (660_CR44) 1985; 17 K. Zeigler (660_CR24) 2006; 97 V.M. Pereira (660_CR28) 2008; 77 S.V. Morozov (660_CR15) 2008; 100 P.M. Ostrovsky (660_CR23) 2006; 74 |
References_xml | – reference: OstrovskyP.M.GornyiI.V.MirlinA.D.Phys. Rev. B2006742354432006PhRvB..74w5443O10.1103/PhysRevB.74.235443 – reference: AminiM.JafariS.A.ShahbaziF.Eur. Phys. Lett.201090170032010EL.....9017003A10.1209/0295-5075/90/17003 – reference: ShonN.H.AndoT.J. Phys. Soc. Jpn19986724211998JPSJ...67.2421S10.1143/JPSJ.67.2421 – reference: PereiraV.M.GuineaF.dos SantosJ.M.B.L.PeresN.M.R.NetoA.H. CastroPhys. Rev. Lett.2006960368012006PhRvL..96c6801P10.1103/PhysRevLett.96.036801 – reference: GeimA.K.NovoselovK.S.Nature Mater.200761832007NatMa...6..183G10.1038/nmat1849 – reference: ZhangY.Y.HuJ.BernevigB.A.WangX.R.XieX.C.LiuW.M.Phys. Rev. Lett.20091021064012009PhRvL.102j6401Z10.1103/PhysRevLett.102.106401 – reference: KlosJ.W.ZozoulenkoI.V.Phys. Rev. B201082081414(R)2010PhRvB..82h1414K10.1103/PhysRevB.82.081414 – reference: ZeiglerK.Phys. Rev. Lett.200697268802 – reference: SlonczewskiJ.C.WeissP.R.Phys. Rev.19581092721958PhRv..109..272S10.1103/PhysRev.109.272 – reference: KatochJ.ChenJ.-H.TsuchikawaR.SmithC.W.MuccioloE.R.IshigamiMasaPhys. Rev. B2010820814172010PhRvB..82h1417K10.1103/PhysRevB.82.081417 – reference: HwangE.H.AdamS.Das SarmaS.Phys. Rev. Lett.2007981868062007PhRvL..98r6806H10.1103/PhysRevLett.98.186806 – reference: PereiraV.M.NilssonJ.Castro NetoA.H.Phys. Rev. Lett.2007991668022007PhRvL..99p6802P10.1103/PhysRevLett.99.166802 – reference: LewenkopfC.H.MuccioloE.R.Castro NetoA.H.Phys. Rev. B2008770814102008PhRvB..77h1410L10.1103/PhysRevB.77.081410 – reference: WallaceP.R.Phys. Rev.1947716221947PhRv...71..622W0033.1430410.1103/PhysRev.71.622 – reference: NovoselovK.S.GeimA.K.MorozovS.V.JiangD.ZhangY.DubonosS.V.GrigorievaI.V.FirsovA.A.Science20043066662004Sci...306..666N10.1126/science.1102896 – reference: PonomarenkoL.A.YangR.MohiuddinT.M.MorozovS.M.ZhukovA.A.SchedinF.HillE.W.NovoselovK.S.KatsnelsonM.I.GeimA.K.Phys. Rev. Lett.20091022066032009PhRvL.102t6603P10.1103/PhysRevLett.102.206603 – reference: FradkinE.Phys. Rev. B19863332631986PhRvB..33.3263F10.1103/PhysRevB.33.3263 – reference: FradkinE.DagottoE.BoyanovskyD.Phys. Rev. Lett.19865729671986PhRvL..57.2967F10.1103/PhysRevLett.57.2967 – reference: KatsnelsonM.I.GeimA.K.Phil. Trans. R. Soc. A20083661952008RSPTA.366..195K10.1098/rsta.2007.2157 – reference: NomuraK.MacDonaldA.H.Phys. Rev. Lett.2007980766022007PhRvL..98g6602N10.1103/PhysRevLett.98.076602 – reference: XiongShi-JieXiongYePhys. Rev. B2007762142042007PhRvB..76u4204X10.1103/PhysRevB.76.214204 – reference: MorozovS.V.NovoselovK.S.KatsnelsonM.I.SchedinF.EliasD.C.JaszczakJ.A.GeimA.K.Phys. Rev. Lett.20081000166022008PhRvL.100a6602M10.1103/PhysRevLett.100.016602 – reference: AltlandA.Phys. Rev. Lett.2006972368022006PhRvL..97w6802A10.1103/PhysRevLett.97.236802 – reference: VyurkovV.RyzhiiV.JETP Lett.2008883702008JETPL..88..370V10.1134/S0021364008170074 – reference: NovoselovK.S.GeimA.K.MorozovS.V.JiangD.KatsnelsonM.I.GrigorievaI.V.DubonosS.V.FirsovA.A.Nature20054381972005Natur.438..197N10.1038/nature04233 – reference: HaldaneF.D.M.Phys. Rev. Lett.19886120151988PhRvL..61.2015H10.1103/PhysRevLett.61.2015955232 – reference: GreenwoodD.A.Proc. Phys. Soc.1958715851958PPS....71..585G0080.4530210.1088/0370-1328/71/4/30696410 – reference: ZeiglerK.Phys. Rev. Lett.19988031131998PhRvL..80.3113Z10.1103/PhysRevLett.80.3113 – reference: DeserS.JakiwR.TempletonS.Phys. Rev. Lett.1982489751982PhRvL..48..975D10.1103/PhysRevLett.48.975 – reference: ZhangY.TanY.W.StormerH.L.Philip Kim, Nature20054382012005Natur.438..201Z10.1038/nature04235 – reference: KatsnelsonM.I.Mater. Today2007102010.1016/S1369-7021(06)71788-6 – reference: AleinerL.EfetovK.B.Phys. Rev. Lett.2006972368012006PhRvL..97w6801A10.1103/PhysRevLett.97.236801 – reference: Castro NetoA.H.GuineaF.PeresN.M.R.NovoselovK.S.GeimA.K.Rev. Mod. Phys.2009811092009RvMP...81..109C10.1103/RevModPhys.81.109 – reference: TrushinM.SchliemannJ.Phys. Rev. Lett.2007992166022007PhRvL..99u6602T10.1103/PhysRevLett.99.216602 – reference: GuineaF.J. Low Temp. Phys.20081533592008JLTP..153..359G10.1007/s10909-008-9835-1 – reference: LherbierA.BlaseX.NiquetY.M.TrizonF.RocheS.Phys. Rev. Lett.20081010368082008PhRvL.101c6808L10.1103/PhysRevLett.101.036808 – reference: HorngJasonChenChi-FanGengBaisongGiritCaglarZhangYuanboHaoZhaoBechtelH.A.MartinM.ZettlA.CrommieM.F.Ron ShenY.WangFengPhys. Rev. B2011831651132011PhRvB..83p5113H10.1103/PhysRevB.83.165113 – reference: LherbierA.BielB.NiquetYann-MichelRocheS.Phys. Rev. Lett.20081000368032008PhRvL.100c6803L10.1103/PhysRevLett.100.036803 – reference: KuboR.Can. J. Phys.19563412741956CaJPh..34.1274K10.1139/p56-14082790 – reference: SemenoffG.W.Phys. Rev. Lett.19845324491984PhRvL..53.2449S10.1103/PhysRevLett.53.2449756206 – reference: AbrahamsE.AndersonP.W.LicciardelloD.C.RamakrishnanT.V.Phys. Rev. Lett.1979426731979PhRvL..42..673A10.1103/PhysRevLett.42.673 – reference: RossiE.Das SarmaS.Phys. Rev. Lett.20081011668032008PhRvL.101p6803R10.1103/PhysRevLett.101.166803 – reference: PereiraV.M.dos SantosJ.M.B.L.Castro NetoA.H.Phys. Rev. B2008771151092008PhRvB..77k5109P10.1103/PhysRevB.77.115109 – reference: SinghA.MacMillanW.L.J. Phys. C: Solid State Phys.19851720971985JPhC...18.2097S10.1088/0022-3719/18/10/015 – reference: WehlingT.O.BalatskyA.V.KatsnelsonM.I.LichtensteinA.I.ScharnbergK.WiesendangerR.Phys. Rev. B2007751254252007PhRvB..75l5425W10.1103/PhysRevB.75.125425 – reference: KhveshchenkoD.V.Phys. Rev. Lett.2006970368022006PhRvL..97c6802K10.1103/PhysRevLett.97.036802 – reference: AdamS.HwangE.H.GalitskiV.SarmaS. DasProc. Natl. Acad. Sci. USA2007104183922007PNAS..10418392A10.1073/pnas.0704772104 – reference: FradkinE.Phys. Rev. B19863332571986PhRvB..33.3257F10.1103/PhysRevB.33.3257 – volume: 61 start-page: 2015 year: 1988 ident: 660_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.61.2015 – volume: 101 start-page: 166803 year: 2008 ident: 660_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.166803 – volume: 97 start-page: 036802 year: 2006 ident: 660_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.036802 – volume: 101 start-page: 036808 year: 2008 ident: 660_CR46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.036808 – volume: 97 start-page: 236802 year: 2006 ident: 660_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.236802 – volume: 102 start-page: 206603 year: 2009 ident: 660_CR39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.206603 – volume: 82 start-page: 081414(R) year: 2010 ident: 660_CR38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.081414 – volume: 98 start-page: 076602 year: 2007 ident: 660_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.076602 – volume: 81 start-page: 109 year: 2009 ident: 660_CR7 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.109 – volume: 96 start-page: 036801 year: 2006 ident: 660_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.036801 – volume: 102 start-page: 106401 year: 2009 ident: 660_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.106401 – volume: 33 start-page: 3257 year: 1986 ident: 660_CR47 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.33.3257 – volume: 48 start-page: 975 year: 1982 ident: 660_CR1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.48.975 – volume: 77 start-page: 081410 year: 2008 ident: 660_CR33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.081410 – volume: 34 start-page: 1274 year: 1956 ident: 660_CR42 publication-title: Can. J. Phys. doi: 10.1139/p56-140 – volume: 33 start-page: 3263 year: 1986 ident: 660_CR48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.33.3263 – volume: 438 start-page: 201 year: 2005 ident: 660_CR10 publication-title: Philip Kim, Nature doi: 10.1038/nature04235 – volume: 100 start-page: 036803 year: 2008 ident: 660_CR37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.036803 – volume: 10 start-page: 20 year: 2007 ident: 660_CR12 publication-title: Mater. Today doi: 10.1016/S1369-7021(06)71788-6 – volume: 67 start-page: 2421 year: 1998 ident: 660_CR14 publication-title: J. Phys. Soc. Jpn doi: 10.1143/JPSJ.67.2421 – volume: 74 start-page: 235443 year: 2006 ident: 660_CR23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.235443 – volume: 76 start-page: 214204 year: 2007 ident: 660_CR32 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.214204 – volume: 71 start-page: 585 year: 1958 ident: 660_CR43 publication-title: Proc. Phys. Soc. doi: 10.1088/0370-1328/71/4/306 – volume: 97 start-page: 236801 year: 2006 ident: 660_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.236801 – volume: 71 start-page: 622 year: 1947 ident: 660_CR6 publication-title: Phys. Rev. doi: 10.1103/PhysRev.71.622 – volume: 153 start-page: 359 year: 2008 ident: 660_CR26 publication-title: J. Low Temp. Phys. doi: 10.1007/s10909-008-9835-1 – volume: 99 start-page: 166802 year: 2007 ident: 660_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.166802 – volume: 6 start-page: 183 year: 2007 ident: 660_CR13 publication-title: Nature Mater. doi: 10.1038/nmat1849 – volume: 100 start-page: 016602 year: 2008 ident: 660_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.016602 – volume: 17 start-page: 2097 year: 1985 ident: 660_CR44 publication-title: J. Phys. C: Solid State Phys. doi: 10.1088/0022-3719/18/10/015 – volume: 77 start-page: 115109 year: 2008 ident: 660_CR28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.115109 – volume: 57 start-page: 2967 year: 1986 ident: 660_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.57.2967 – volume: 109 start-page: 272 year: 1958 ident: 660_CR5 publication-title: Phys. Rev. doi: 10.1103/PhysRev.109.272 – volume: 53 start-page: 2449 year: 1984 ident: 660_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.53.2449 – volume: 42 start-page: 673 year: 1979 ident: 660_CR45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.42.673 – volume: 82 start-page: 081417 year: 2010 ident: 660_CR40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.081417 – volume: 97 start-page: 268802 year: 2006 ident: 660_CR24 publication-title: Phys. Rev. Lett. – volume: 90 start-page: 17003 year: 2010 ident: 660_CR35 publication-title: Eur. Phys. Lett. doi: 10.1209/0295-5075/90/17003 – volume: 306 start-page: 666 year: 2004 ident: 660_CR8 publication-title: Science doi: 10.1126/science.1102896 – volume: 99 start-page: 216602 year: 2007 ident: 660_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.216602 – volume: 83 start-page: 165113 year: 2011 ident: 660_CR41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.165113 – volume: 366 start-page: 195 year: 2008 ident: 660_CR25 publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2007.2157 – volume: 98 start-page: 186806 year: 2007 ident: 660_CR29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.186806 – volume: 88 start-page: 370 year: 2008 ident: 660_CR31 publication-title: JETP Lett. doi: 10.1134/S0021364008170074 – volume: 80 start-page: 3113 year: 1998 ident: 660_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.3113 – volume: 104 start-page: 18392 year: 2007 ident: 660_CR19 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0704772104 – volume: 438 start-page: 197 year: 2005 ident: 660_CR9 publication-title: Nature doi: 10.1038/nature04233 – volume: 75 start-page: 125425 year: 2007 ident: 660_CR16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.125425 |
SSID | ssj0001614 |
Score | 2.0119166 |
Snippet | Eigenstate bases are used to study electrical conductivity in graphene in the presence of short-range diagonal disorder and inter-valley scattering. For the... Eigenstate bases are used to study electrical conductivity in graphene in the presence of shortrange diagonal disorder and inter-valley scattering. For the... |
SourceID | gale pascalfrancis crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Analysis Complex Systems Condensed Matter Physics Condensed matter: electronic structure, electrical, magnetic, and optical properties Electric properties Electrical conductivity Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic transport in multilayers, nanoscale materials and structures Exact sciences and technology Fluid- and Aerodynamics Graphene Graphite Localization effects (anderson or weak localization) Physics Physics and Astronomy Regular Article Solid State Physics Surface and interface electron states |
Title | Eigenstate analysis of finite-frequency conductivity in graphene |
URI | https://link.springer.com/article/10.1140/epjb/e2012-20885-8 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_qiSCItLXiWXsEKfTBBvOxH8mbR3vW2toH7YE-LdnNrFhK7jB3D_3vnd1sDo4WoU_5YJJsZjbzkZ35DcB7baTlpdN-pREUoCQ6Jq-Vx4YzgXSIuXb_Ia9-iIspu7zlt6EorO2z3fslSa-pOzzb5BTnv_Qpkr3KSLJFweNiAza5i91pFk-z8Ur_kg_j15JZzmJB5rMvlfnnPdbMUVDKO_OqJQbZrrPFX0uk3vKcv4Td4DJG407Gr-AFNq9hy6dumnYPziYOUNMXBkVVgBiJZjayD86djO1jlyz9J6LI14G7-m4R0UMTeaxqUnVvYHo--fnpIg59EWKTl2wRC66tqCi0qyWSQ2FrU2XG0r7UKWJO50qsNbN1VmeYGMm04akoUKRorZZ5vg-DZtbgAUQo6yQ1Se0AjhiXeaELlpYVmhR5JiQbQtqzR5kAGu56V_xWXUFzohxLlWep8ixVxRBOVtfMO8iMZ6mPHdeVw6JoXLLLfbVsW_X15lqNybiWgnOZDuFDILIzerypQu0AvYSDr1qjHK1JbzUCckRItbFsCB97carwubbPDO_w_8jfwrafXT7b7wgGi8clviOvZaFHsDn-fPX9xm2_3H2bjPykfQJad-kB |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB-qpVQQaWuL51dDKfRBg_nYj-TNQ5Tz86H1wLclu5kVi-QOcz743zu72RwciuBbEibJZiaZ-W125jcAv7WRlpfO-5VG0AQl0TGhVh4bzgTSLuba_Ye8vBKjMTu74TehKKzts937JUnvqTs-2-QAp__1AVK8ysiyRcHjYgk-EhgoXCLXOBvO_S9hGL-WzHIWCwqffanMq9dYCEfBKa9Oq5YUZLvOFi-WSH3kOfkCawEyRsPOxl_hAzbf4JNP3TTtOhweO0JNXxgUVYFiJJrYyN45OBnbhy5Z-imima8jd_XdIqK7JvJc1eTqvsP45Pj6aBSHvgixyUs2iwXXVlQ0taslEqCwtakyY2lb6hQxp2Ml1prZOqszTIxk2vBUFChStFbLPP8By82kwQ2IUNZJapLaERwxLvNCFywtKzQp8kxINoC0V48ygTTc9a64V11Bc6KcSpVXqfIqVcUA9ubnTDvKjDelfzmtK8dF0bhkl9vqsW3V6b-_akjBtRScy3QAf4KQndDtTRVqB-ghHH3VguTugvXmIyAgQq6NZQPY782pwufavjG8zfeJ_4TPo-vLC3VxenW-BSv-TfOZf9uwPHt4xB1CMDO961_YZ-H76Mw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB9ai0UopWrFs60NReiDDZdN9iN569F6qG1Fqge-LdnNbLFI7jDnQ__7zm72jh6K0LckTJLdmc3MbGbmNwAHxionKq_9Kitpg5KZlLxWkVrBJdIpFsb_h_xxJo8n_PRKXP1TxR-y3Rchyb6mwaM0tfPhrHER2zYb4uy3GSLZrpykXJYiLZ_CM1LHzK_rST5a6mLyZ0JcmRc8lWRKF2UzDz5jxTRFBf1iVnfELNd3ubgXLg1WaPwKXkb3MRn18t6EJ9huwXpI47TdNnw-8uCaoUgoqSPcSDJ1ibv2rmXqbvvE6T8JTdcDvYbOEcl1mwTcalJ7r2EyPrr8cpzGHgmpLSo-T6UwTta0zWsUknPhGlvn1tGxMgyxoGsVNoa7Jm9yzKzixgomS5QMnTOqKHZgrZ22uAsJqiZjNms82BEXqihNyVlVo2Uocqn4ANiCPdpGAHHfx-JG98XNmfYs1YGlOrBUlwM4XN4z6-EzHqX-4LmuPS5F6xNfftV3XadPLn7qERnaSgqh2AA-RiI3pdfbOtYR0CQ8lNUK5f6K9JYjIKeE1BzPB_BpIU4dP93ukeHt_R_5e3h-_nWsv5-cfXsDG2GhhSTAt7A2v73Dd-TMzM1-WK9_ASyv7Qg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eigenstate+analysis+of+finite-frequency+conductivity+in+graphene&rft.jtitle=The+European+physical+journal.+B%2C+Condensed+matter+physics&rft.au=RAY%2C+R&rft.date=2012-10-01&rft.pub=EDP+Sciences&rft.issn=1434-6028&rft.volume=85&rft.issue=10&rft_id=info:doi/10.1140%2Fepjb%2Fe2012-20885-8&rft.externalDBID=n%2Fa&rft.externalDocID=26630542 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6028&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6028&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6028&client=summon |