Comparing Luojia 1-01 and VIIRS Nighttime Light Data in Detecting Urban Spatial Structure Using a Threshold-Based Kernel Density Estimation
Nighttime light (NTL) data are increasingly used in urban studies and urban planning owing to their strong connection with human activities, although the detection capacity is limited by the spatial resolution of older data. In the present study, we comparedthe results of extractions of urban built-...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 13; no. 8; p. 1574 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
19.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nighttime light (NTL) data are increasingly used in urban studies and urban planning owing to their strong connection with human activities, although the detection capacity is limited by the spatial resolution of older data. In the present study, we comparedthe results of extractions of urban built-up areas using data obtained from the first professional NTL satellite Luojia 1-01 with a resolution of 130 m and the Visible Infrared Imaging Radiometer Suite (VIIRS). We applied an analyzing framework combing kernel density estimation (KDE) under different search radii and threshold-based extraction to detect the boundary and spatial structure of urban areas. The results showed that: (1) Benefiting from a higher spatial resolution, Luojia 1-01 data was more sensitive in detecting new emerging urban built-up areas, thus better reflected the spatial structure of urban system, and can achieve a higher extraction accuracy than that of VIIRS data; (2) Combining with a proper threshold, KDE improves the extraction accuracy of NTL data by making use of the spatial autocorrelation of nighttime light, thus better detects the scale of the spatial pattern of urban built-up areas; (3) A proper searching radius for KDE is critical for achieving the optimal result, which was 1000 m for Luojia 1-01 and 1600 m for VIIRS in this study. Our findings indicate the usefulness of the KDE method in applying the upcoming high-resolution NTL data such as Luojia 1-01 data in urban spatial analysis and planning. |
---|---|
AbstractList | Nighttime light (NTL) data are increasingly used in urban studies and urban planning owing to their strong connection with human activities, although the detection capacity is limited by the spatial resolution of older data. In the present study, we comparedthe results of extractions of urban built-up areas using data obtained from the first professional NTL satellite Luojia 1-01 with a resolution of 130 m and the Visible Infrared Imaging Radiometer Suite (VIIRS). We applied an analyzing framework combing kernel density estimation (KDE) under different search radii and threshold-based extraction to detect the boundary and spatial structure of urban areas. The results showed that: (1) Benefiting from a higher spatial resolution, Luojia 1-01 data was more sensitive in detecting new emerging urban built-up areas, thus better reflected the spatial structure of urban system, and can achieve a higher extraction accuracy than that of VIIRS data; (2) Combining with a proper threshold, KDE improves the extraction accuracy of NTL data by making use of the spatial autocorrelation of nighttime light, thus better detects the scale of the spatial pattern of urban built-up areas; (3) A proper searching radius for KDE is critical for achieving the optimal result, which was 1000 m for Luojia 1-01 and 1600 m for VIIRS in this study. Our findings indicate the usefulness of the KDE method in applying the upcoming high-resolution NTL data such as Luojia 1-01 data in urban spatial analysis and planning. |
Author | Shen, Zehao Wang, Yuping |
Author_xml | – sequence: 1 givenname: Yuping surname: Wang fullname: Wang, Yuping – sequence: 2 givenname: Zehao surname: Shen fullname: Shen, Zehao |
BookMark | eNptkc9qGzEQxpeSQNMklz6BoJdS2Fb_1lodWydpTU0KddyrGGm1tsxaciXtIc-Ql642TmkIFQwaRr_vG0bzpjrxwduqekvwR8Yk_hQTYbgljeCvqjOKBa05lfTkWf66ukxph8thjEjMz6qHedgfIDq_Qcsx7BwgUmOCwHfo12Lxc4Vu3Wabs9tbtJwydAUZkPPoymZr8qRbRw0erQ6QHQxoleNo8hgtWqfpFdDdNtq0DUNXf4FkO_TdRm-HYuCTy_foOhX3og3-ojrtYUj28uk-r9Y313fzb_Xyx9fF_POyNkzyXM8aIFQLykEwwZhhjPXEatq0pKXUcgCjjWi4MbrVpGczqalspdGi0wRbzc6rxdG3C7BTh1jax3sVwKnHQogbBTE7M1iFZxS0aHtuZAkyA90KrologbDGyr54vT96HWL4PdqU1d4lY4cBvA1jUrRpKGaUCF7Qdy_QXRijL5NOFOZYyJYUCh8pE0NK0fbKuPz4PTmCGxTBalq2-rfsIvnwQvJ3pv_AfwBotKp6 |
CitedBy_id | crossref_primary_10_1007_s11769_024_1425_x crossref_primary_10_3389_fenvs_2022_974811 crossref_primary_10_3390_ijerph191912198 crossref_primary_10_1016_j_ecolind_2023_111283 crossref_primary_10_1016_j_scs_2023_104565 crossref_primary_10_3390_rs15235617 crossref_primary_10_3390_rs14092087 crossref_primary_10_5194_essd_14_517_2022 crossref_primary_10_1016_j_isprsjprs_2023_05_028 crossref_primary_10_3390_app13053006 crossref_primary_10_1109_LGRS_2023_3244931 crossref_primary_10_3390_rs14040825 crossref_primary_10_3390_rs13183639 crossref_primary_10_3390_ijgi13060179 crossref_primary_10_3390_rs15040920 crossref_primary_10_1016_j_envpol_2021_118359 crossref_primary_10_1080_17538947_2024_2324941 crossref_primary_10_1016_j_tra_2023_103787 crossref_primary_10_1109_ACCESS_2022_3203433 crossref_primary_10_1109_TGRS_2023_3334030 crossref_primary_10_3390_rs14112705 |
Cites_doi | 10.1016/j.aap.2008.12.014 10.1559/152304081784447318 10.1016/j.rse.2020.111942 10.1016/j.rse.2012.10.022 10.1579/0044-7447-29.3.157 10.1016/j.rse.2014.03.004 10.1080/13658816.2014.922186 10.1016/j.rse.2019.111357 10.3390/s18113665 10.1016/j.rse.2017.06.039 10.1016/j.rse.2017.03.003 10.1016/j.rse.2008.05.009 10.1007/s11769-014-0654-9 10.1080/01431161.2016.1274451 10.1016/S0924-2716(01)00040-5 10.1080/01431161.2014.971469 10.1016/S0198-9715(97)01005-3 10.3390/rs6109853 10.1080/01431161.2018.1444291 10.1080/10106049.2018.1559887 10.3390/rs11091126 10.1016/j.rse.2019.02.019 10.3390/en20300595 10.1016/S0034-4257(97)00046-1 10.3390/rs11030264 10.3390/rs10050799 10.1080/01431161.2015.1101650 10.1080/01431161.2015.1073861 10.1080/01431160304982 10.1016/j.rse.2019.111430 10.3390/s18092900 10.1080/13658816.2012.663918 10.1080/01431161.2019.1693661 10.1016/j.ecolecon.2005.03.007 10.1016/j.rse.2017.11.026 10.1080/2150704X.2019.1577573 10.1016/j.rse.2016.02.009 10.1080/2150704X.2014.905728 10.4324/9780203454626 10.1016/j.rse.2009.06.001 10.1007/s11434-006-2006-3 10.1016/S0034-4257(03)00081-6 10.1080/01431161.2017.1339927 10.1080/01431161.2010.496798 10.1016/j.landurbplan.2012.02.013 10.1016/j.rse.2015.06.007 10.1016/j.rse.2004.02.006 10.1080/01431161.2019.1587199 10.2307/2265701 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs13081574 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_062ab78f4c9f4c16ab874b178a135e9f 10_3390_rs13081574 |
GeographicLocations | Jiangsu China China |
GeographicLocations_xml | – name: Jiangsu China – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c394t-65a12b724a73733c333f1eb2581822e4aacbc754ccb8b1f369b2989cb7db10eb3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:28:46 EDT 2025 Fri Jul 11 00:38:07 EDT 2025 Fri Jul 25 09:28:56 EDT 2025 Tue Jul 01 01:58:35 EDT 2025 Thu Apr 24 23:05:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-65a12b724a73733c333f1eb2581822e4aacbc754ccb8b1f369b2989cb7db10eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/062ab78f4c9f4c16ab874b178a135e9f |
PQID | 2550407981 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_062ab78f4c9f4c16ab874b178a135e9f proquest_miscellaneous_2552032174 proquest_journals_2550407981 crossref_citationtrail_10_3390_rs13081574 crossref_primary_10_3390_rs13081574 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210419 |
PublicationDateYYYYMMDD | 2021-04-19 |
PublicationDate_xml | – month: 04 year: 2021 text: 20210419 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Yin (ref_32) 2020; 41 Ou (ref_31) 2019; 81 Goldblatt (ref_39) 2018; 205 Liu (ref_14) 2012; 106 ref_58 Li (ref_62) 2019; 233 Anderson (ref_33) 2010; 31 Cai (ref_55) 2017; 202 ref_56 Henderson (ref_34) 2003; 24 ref_54 Xu (ref_38) 2020; 35 Li (ref_61) 2020; 247 ref_59 Li (ref_18) 2014; 35 Yu (ref_53) 2014; 28 Li (ref_57) 2019; 10 He (ref_51) 2006; 51 Liu (ref_35) 2015; 36 Li (ref_36) 2015; 166 Cao (ref_37) 2009; 113 Sutton (ref_50) 1997; 21 Elvidge (ref_11) 2001; 56 Zhang (ref_40) 2013; 129 Wu (ref_2) 2014; 30 Zhang (ref_25) 2017; 38 ref_28 Anderson (ref_44) 2009; 41 Jensen (ref_8) 1982; 48 Doll (ref_16) 2006; 57 Cai (ref_46) 2013; 27 Shu (ref_52) 2011; 26 Lu (ref_21) 2008; 112 Ying (ref_47) 2014; 24 Kotarba (ref_27) 2016; 176 Elvidge (ref_10) 1997; 63 Milesi (ref_22) 2003; 86 Peng (ref_3) 2014; 33 ref_30 Li (ref_13) 2015; 44 Chen (ref_23) 2019; 12 Imhoff (ref_49) 1997; 61 Zhu (ref_4) 2010; 29 Stokes (ref_17) 2019; 234 Zhuo (ref_42) 2015; 36 Cao (ref_43) 2019; 224 Elvidge (ref_20) 2009; 2 Jensen (ref_7) 1981; 8 Zhou (ref_15) 2014; 147 Seaman (ref_45) 1996; 77 Cao (ref_26) 2018; 39 ref_1 Shi (ref_24) 2014; 5 Li (ref_29) 2017; 38 He (ref_12) 2019; 40 ref_48 Waluda (ref_19) 2004; 91 Ma (ref_41) 2014; 6 Doll (ref_9) 2000; 29 Noam (ref_60) 2017; 193 ref_5 ref_6 |
References_xml | – volume: 41 start-page: 359 year: 2009 ident: ref_44 article-title: Kernel density estimation and k-means clustering to profile road accident hotspots publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2008.12.014 – volume: 8 start-page: 127 year: 1981 ident: ref_7 article-title: Urban change detection mapping using Landsat digital data publication-title: Am. Cartogr. doi: 10.1559/152304081784447318 – ident: ref_5 – volume: 247 start-page: 111942 year: 2020 ident: ref_61 article-title: Monitoring hourly night-time light by an unmanned aerial vehicle and its implications to satellite remote sensing publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111942 – volume: 129 start-page: 32 year: 2013 ident: ref_40 article-title: The vegetation adjusted NTL urban index: A new approach to reduce saturation and increase variation in nighttime luminosity publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.10.022 – volume: 44 start-page: 591 year: 2015 ident: ref_13 article-title: An overview on data mining of nighttime light remote sensing publication-title: Acta Geodaetica Cartogr. Sin. – volume: 29 start-page: 157 year: 2000 ident: ref_9 article-title: Night-time imagery as a tool for global mapping of socioeconomic parameters and greenhouse gas emissions publication-title: AMBIO doi: 10.1579/0044-7447-29.3.157 – volume: 147 start-page: 173 year: 2014 ident: ref_15 article-title: A cluster-based method to map urban area from DMSP/OLS nightlights publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.03.004 – volume: 28 start-page: 2328 year: 2014 ident: ref_53 article-title: Object-based spatial cluster analysis of urban landscape pattern using nighttime light satellite images: A case study of China publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2014.922186 – volume: 233 start-page: 111357 year: 2019 ident: ref_62 article-title: Anisotropic characteristic of artificial light at night—Systematic investigation with VIIRS DNB multi-temporal observations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111357 – ident: ref_28 doi: 10.3390/s18113665 – volume: 202 start-page: 210 year: 2017 ident: ref_55 article-title: Using multi-source geospatial big data to identify the structure of polycentric cities publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.039 – volume: 193 start-page: 150 year: 2017 ident: ref_60 article-title: The impact of seasonal changes on observed nighttime brightness from 2014 to 2015 monthly VIIRS DNB composites publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.003 – volume: 112 start-page: 3668 year: 2008 ident: ref_21 article-title: Regional mapping of human settlements in Southeastern China with multisensor remotely sensed data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.05.009 – volume: 24 start-page: 39 year: 2014 ident: ref_47 article-title: Spatio-temporal patterns of road network and road development priority in three parallel rivers region in Yunnan, China: An evaluation based on modified kernel distance estimate publication-title: Chin. Geogr. Sci. doi: 10.1007/s11769-014-0654-9 – volume: 38 start-page: 6030 year: 2017 ident: ref_29 article-title: Urban mapping using DMSP/OLS stable night-time light: A review publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1274451 – volume: 56 start-page: 81 year: 2001 ident: ref_11 article-title: Night-time lights of the world: 1994–1995 publication-title: ISPRS J. Photogramm. doi: 10.1016/S0924-2716(01)00040-5 – volume: 48 start-page: 629 year: 1982 ident: ref_8 article-title: Detecting residential land-use development at the urban fringe publication-title: Photogramm. Eng. Remote Sens. – volume: 35 start-page: 6648 year: 2014 ident: ref_18 article-title: Can night-time light images play a role in evaluating the Syrian crisis? publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.971469 – volume: 21 start-page: 227 year: 1997 ident: ref_50 article-title: Modeling population density with night-time satellite imagery and GIS publication-title: Comput. Environ. Urban Syst. doi: 10.1016/S0198-9715(97)01005-3 – ident: ref_48 – volume: 63 start-page: 727 year: 1997 ident: ref_10 article-title: Mapping city lights with nighttime data from the DMSP operational linescan system publication-title: Photogramm. Eng. Remote Sens. – volume: 6 start-page: 9853 year: 2014 ident: ref_41 article-title: Evaluating saturation correction methods for DMSP/OLS nighttime light data: A case study from China’s cities publication-title: Remote Sens. doi: 10.3390/rs6109853 – volume: 39 start-page: 3556 year: 2018 ident: ref_26 article-title: An integrated soft and hard classification approach for evaluating urban expansion from multisource remote sensing data: A case study of the Beijing-Tianjin-Tangshan metropolitan region, China publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1444291 – volume: 35 start-page: 1049 year: 2020 ident: ref_38 article-title: Extraction of urban built-up areas from nighttime lights using artificial neural network publication-title: Geocarto Int. doi: 10.1080/10106049.2018.1559887 – ident: ref_58 doi: 10.3390/rs11091126 – volume: 224 start-page: 401 year: 2019 ident: ref_43 article-title: A simple self-adjusting model for correcting the blooming effects in DMSP-OLS nighttime light images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.02.019 – volume: 2 start-page: 595 year: 2009 ident: ref_20 article-title: A fifteen year record of global natural gas flaring derived from satellite data publication-title: Energies doi: 10.3390/en20300595 – volume: 61 start-page: 361 year: 1997 ident: ref_49 article-title: A technique for using composite DMSP/OLS ‘City Lights’ satellite data to map urban area publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(97)00046-1 – volume: 12 start-page: 1143 year: 2019 ident: ref_23 article-title: Mapping global urban areas from 2000 to 2012 using time-series nighttime light data and MODIS products publication-title: IEEE J.-STARS – ident: ref_59 doi: 10.3390/rs11030264 – ident: ref_56 doi: 10.3390/rs10050799 – volume: 36 start-page: 5557 year: 2015 ident: ref_35 article-title: A study of urban expansion of prefectural-level cities in South China using night-time light images publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2015.1101650 – volume: 36 start-page: 4114 year: 2015 ident: ref_42 article-title: An improved method of night-time light saturation reduction based on EVI publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2015.1073861 – volume: 30 start-page: 20 year: 2014 ident: ref_2 article-title: Research on spatial characteristics of urban development based on DMSP-OLS data publication-title: Geog. Geo-Infor. Sci. – volume: 24 start-page: 595 year: 2003 ident: ref_34 article-title: Validation of urban boundaries derived from global night-time satellite imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431160304982 – volume: 234 start-page: 111430 year: 2019 ident: ref_17 article-title: Characterizing urban infrastructural transitions for the sustainable development goals using multi-temporal land, population, and nighttime light data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111430 – ident: ref_30 doi: 10.3390/s18092900 – volume: 27 start-page: 222 year: 2013 ident: ref_46 article-title: Using kernel density estimation to assess the spatial pattern of road density and its impact on landscape fragmentation publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2012.663918 – volume: 33 start-page: 1068 year: 2014 ident: ref_3 article-title: Research progress and prospect on the identification of urban fringe publication-title: Prog. Geog. – volume: 41 start-page: 2603 year: 2020 ident: ref_32 article-title: Mapping urban expansion using night-time light images from Luojia1-01 and international space station publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1693661 – volume: 57 start-page: 75 year: 2006 ident: ref_16 article-title: Mapping regional economic activity from night-time light satellite imagery publication-title: Ecol. Econ. doi: 10.1016/j.ecolecon.2005.03.007 – volume: 26 start-page: 169 year: 2011 ident: ref_52 article-title: Methods for deriving urban built-up area using night-light data: Assessment and application publication-title: Remote Sens. Technol. Appl. – volume: 205 start-page: 253 year: 2018 ident: ref_39 article-title: Using landsat and nighttime lights for supervised pixel-based image classification of urban land cover publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.11.026 – volume: 29 start-page: 43 year: 2010 ident: ref_4 article-title: Urban spatial expansion in less developed region of China: A case study of Nanchong publication-title: Geog. Res. – volume: 10 start-page: 526 year: 2019 ident: ref_57 article-title: A preliminary investigation of Luojia-1 night-time light imagery publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2019.1577573 – volume: 176 start-page: 295 year: 2016 ident: ref_27 article-title: Impervious surface detection with nighttime photography from the international space station publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.009 – ident: ref_6 – volume: 5 start-page: 358 year: 2014 ident: ref_24 article-title: Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2014.905728 – ident: ref_1 doi: 10.4324/9780203454626 – volume: 113 start-page: 2205 year: 2009 ident: ref_37 article-title: A SVM-based method to extract urban areas from DMSP-OLS and SPOT VGT data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.06.001 – ident: ref_54 – volume: 81 start-page: 1 year: 2019 ident: ref_31 article-title: Evaluation of Luojia 1-01 nighttime light imagery for impervious surface detection: A comparison with NPP-VIIRS nighttime light data publication-title: Int. J. Appl. Earth Obs. – volume: 51 start-page: 1614 year: 2006 ident: ref_51 article-title: Restoring urbanization process in china in the 1990s by using non-radiance-calibrated DMSP/OLS nighttime light imagery and statistical data publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-006-2006-3 – volume: 86 start-page: 401 year: 2003 ident: ref_22 article-title: Assessing the impact of urban land development on net primary productivity in the Southeastern United States publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(03)00081-6 – volume: 38 start-page: 6094 year: 2017 ident: ref_25 article-title: A novel method for urban area extraction from VIIRS DNB and MODIS NDVI data: A case study of Chinese cities publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1339927 – volume: 31 start-page: 5733 year: 2010 ident: ref_33 article-title: Characterizing relation-ships between population density and nighttime imagery for Denver, Colorado: Issues of scale and representation publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2010.496798 – volume: 106 start-page: 62 year: 2012 ident: ref_14 article-title: Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008 publication-title: Landscape Urban. Plan. doi: 10.1016/j.landurbplan.2012.02.013 – volume: 166 start-page: 78 year: 2015 ident: ref_36 article-title: A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.06.007 – volume: 91 start-page: 129 year: 2004 ident: ref_19 article-title: Quantifying light-fishing for Dosidicus gigas in the Eastern Pacific using satellite remote sensing publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.02.006 – volume: 40 start-page: 6008 year: 2019 ident: ref_12 article-title: Analyzing the consistency between built-up areas and human activities and the impacts on the urbanization process: A case study of Zhengzhou, China publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1587199 – volume: 77 start-page: 2075 year: 1996 ident: ref_45 article-title: An evaluation of the accuracy of kernel density estimators for home range analysis publication-title: Ecology doi: 10.2307/2265701 |
SSID | ssj0000331904 |
Score | 2.3864098 |
Snippet | Nighttime light (NTL) data are increasingly used in urban studies and urban planning owing to their strong connection with human activities, although the... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1574 |
SubjectTerms | Accuracy autocorrelation Cities Density humans Imaging radiometers Infrared analysis Infrared imaging Infrared radiometers kernel density estimation Kernels Light Luojia 1-01 satellite Night Nighttime nighttime light Radiometry Remote sensing satellites searching radius threshold Spatial analysis Spatial data Spatial discrimination Spatial resolution Urban areas urban built-up area Urban planning Urban studies Vegetation |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPcAF8RQLBRnBhUPU9St2Tohtt2qhrFDbRb1FfqUtqpyS3T3wG_jTzCTerRCIQ6QomURRZjye8Yy_j5B3leciNKEpmnGIheRBFsb4UNjIXam4hQgFNyd_mZWHc_npXJ3nBbdFbqtc-8TeUYfW4xr5LoS-YG-6MuzDzY8CWaOwupopNO6SbXDBBpKv7cl09vVks8oyFmBiYzngkgrI73e7BXhtw5SWf8xEPWD_X_64n2QOHpIHOTqkHwd1PiJ3YnpM7mWi8sufT8ivvYE3MF3Q41X7_cpSTNOpTYF-Ozo6OaUzTLaRMJ4e4xndt0tLrxLdj1gtwOfmnbOJIhUxmB497fFjV12kffMAtfQMtLvAolQxgRku0M-xS_EaXpCwfYNOwScM2x2fkvnB9GzvsMh8CoUXlVwWpbKMO82l1UIL4YUQDYPMWsGkzXmU1nrntZLeO-NYI8rKIT67dzo4Noas-xnZSm2KzwnlKvBKWu-9YVJFVUnHYlTKuAABnXMj8n79b2ufwcaR8-K6hqQD9VDf6mFE3m5kbwaIjX9KTVBFGwmExe4vtN1FnUdZPS65ddo00ldwsNI6o-HLtLFMqFg1I7KzVnCdx-qivrWsEXmzuQ2jDEsnNsV21csg1Tykby_-_4qX5D7HrhdEg6x2yBYoMb6CsGXpXmfb_A0S8O49 priority: 102 providerName: ProQuest |
Title | Comparing Luojia 1-01 and VIIRS Nighttime Light Data in Detecting Urban Spatial Structure Using a Threshold-Based Kernel Density Estimation |
URI | https://www.proquest.com/docview/2550407981 https://www.proquest.com/docview/2552032174 https://doaj.org/article/062ab78f4c9f4c16ab874b178a135e9f |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BOcAF8RSBEi2CCwer2Zd399g0CS2kEWoa1Ju1L0NRtUF5HPgN_GlmbDcUgcSFg2XLHlurnfHMfNrZbwh5YwMXsY51UQ9iKiSPsjAmxMIl7kvFHWQouDn5dFYeL-T7C3Vxo9UX1oS19MDtxB0MSu68NrUMFg5WOm-09Ewbx4RKtkbvCzHvBphqfLAA0xrIlo9UAK4_WK3BWxumtPwtAjVE_X_44Sa4TB6Q-11WSA_b0Twkt1J-RO52Dcq_fH9Mfhy1_QLzZzrdLr9eOorwnLoc6aeTk7M5nSHIxkbxdIpXdOQ2jl5mOkq4SoDvLVbeZYotiMHk6Lzhjd2uEm2KBqij56DVNS5GFUOIbJF-SKucruADGcs26Bh8QbvN8QlZTMbnR8dF10ehCMLKTVEqx7jXXDottBBBCFEzQNQKgjXnSToXfNBKhuCNZ7UorUde9uB19GwAaPsp2cvLnJ4RylXkVroQgmFSJWVBFSkpZXyERM77Hnl7PbdV6EjGsdfFVQVgA_VQ_dJDj7zeyX5rqTX-KjVEFe0kkA67uQFGUnVGUv3LSHpk_1rBVfePrisAU-DBtDWsR17tHsPfhUsmLqfltpHBFvMA257_j3G8IPc41sQgV6TdJ3ug6vQSkpqN75PbZvKuT-4cjk6nczgPx7OPZ_3Gqn8C7g75lg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VcigXxCoCBQYBBw5W7VnsmQNCtGlISJoDTVBvZjaXosouWYT6G_gv_Ebe85IKgbj1YMnyPI8sv33mzfsIeaUd477wRVTEPkSCeREp5XxkArOpZAYiFDycfDRNh3Px8USebJFf3VkYLKvsbGJtqH3lcI18D0JfkLdMq-TdxfcIUaNwd7WD0GjEYhwuf0DKtnw76gN_XzM2OJwdDKMWVSByXItVlEqTMJsxYTKece4450UC-aUE18VYEMY46zIpnLPKJgVPtcUu5c5m3iYx5J4w7w1yU3CuUaPU4MNmTSfmINCxaLqgwni8t1iCj1CJzMQffq-GB_jL-tcubXCH3G5jUfq-EZ67ZCuU98hOC4v-9fI--XnQoBSWp3Syrr6dGYqLAtSUnn4ejT4d0ymm9ghPTyd4R_tmZehZSfsB9ybwvfnCmpIi8DEIOj2uu9WuF4HWpQrU0BnI0hK3wKJ98KeejsOiDOcwQYnFIvQQLFBzuPIBmV_Lf35ItsuqDI8IZdIzLYxzTiVCBqmFTUKQUlkP4aO1PfKm-7e5a1ubI8LGeQ4pDvIhv-JDj7zc0F40DT3-SbWPLNpQYBPu-kG1OM1bnc7jlBmbqUI4DVeSGqsy-LJMmYTLoIse2e0YnLeWYZlfyXGPvNgMg07jRo0pQ7WuaRDYHpLFx_-f4jnZGc6OJvlkNB0_IbcY1ttgH0q9S7aBoeEpBEwr-6yWUkq-XLda_AY1jynU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAIuiKdIKbAIOHCwYu_Dax8QIk2ihoSoahvUm9mXS6vKLnkI9Tfwj_h1zPiRCoG49WDJsserlWdmZ2Zndj5C3qSWcZe7PMhD5wPBnAiSxLpAe2ZiyTR4KHg4-fMs3p-LTyfyZIv8as_CYFlluyZWC7UrLe6R98D1BXlTaRL18qYs4mAw-nD5PUAEKcy0tnAatYhM_NUPCN-W78cD4PVbxkbD4739oEEYCCxPxSqIpY6YUUxoxRXnlnOeRxBrSjBjjHmhtTVWSWGtSUyU8zg12LHcGuVMFEIcCuPeItsKJhZ2yHZ_ODs43OzwhBzEOxR1T1TO07C3WILFSCKpxB9WsAIL-MsWVAZudJ_cazxT-rEWpQdkyxcPyZ0GJP3b1SPyc6_GLCxO6XRdnp9pilsEVBeOfhmPD4_oDAN9BKunU7yjA73S9KygA4-ZCvxuvjC6oAiDDGJPj6reteuFp1XhAtX0GCRriQmxoA_W1dGJXxT-AgYosHSEDmE9qo9aPibzG_nTT0inKAv_lFAmHUuFttYmkZBepsJE3kuZGAfOpDFd8q79t5ltGp0j3sZFBgEP8iG75kOXvN7QXtbtPf5J1UcWbSiwJXf1oFycZo2GZ2HMtFFJLmwKVxRrkyiYmUp0xKVP8y7ZbRmcNevEMruW6i55tXkNGo5pG134cl3RIMw9hI47_x_iJbkNKpFNx7PJM3KXYfENNqVMd0kH-Omfg_e0Mi8aMaXk601rxm_lcS9m |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+Luojia+1-01+and+VIIRS+Nighttime+Light+Data+in+Detecting+Urban+Spatial+Structure+Using+a+Threshold-Based+Kernel+Density+Estimation&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Yuping+Wang&rft.au=Zehao+Shen&rft.date=2021-04-19&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=8&rft.spage=1574&rft_id=info:doi/10.3390%2Frs13081574&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_062ab78f4c9f4c16ab874b178a135e9f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |