Scalable musculoskeletal model for dynamic simulations of upper body movement
A musculoskeletal (MSK) model is a valuable tool for assessing complex biomechanical problems, estimating joint torques during motion, optimizing motion in sports, and designing exoskeletons and prostheses. This study proposes an open-source upper body MSK model that supports biomechanical analysis...
Saved in:
Published in | Computer methods in biomechanics and biomedical engineering Vol. 27; no. 3; pp. 306 - 337 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
01.03.2024
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1025-5842 1476-8259 1476-8259 |
DOI | 10.1080/10255842.2023.2184747 |
Cover
Abstract | A musculoskeletal (MSK) model is a valuable tool for assessing complex biomechanical problems, estimating joint torques during motion, optimizing motion in sports, and designing exoskeletons and prostheses. This study proposes an open-source upper body MSK model that supports biomechanical analysis of human motion. The MSK model of the upper body consists of 8 body segments (torso, head, left/right upper arm, left/right forearm, and left/right hand). The model has 20 degrees of freedom (DoFs) and 40 muscle torque generators (MTGs), which are constructed using experimental data. The model is adjustable for different anthropometric measurements and subject body characteristics: sex, age, body mass, height, dominant side, and physical activity. Joint limits are modeled using experimental dynamometer data within the proposed multi-DoF MTG model. The model equations are verified by simulating the joint range of motion (ROM) and torque; all simulation results have a good agreement with previously published research. |
---|---|
AbstractList | A musculoskeletal (MSK) model is a valuable tool for assessing complex biomechanical problems, estimating joint torques during motion, optimizing motion in sports, and designing exoskeletons and prostheses. This study proposes an open-source upper body MSK model that supports biomechanical analysis of human motion. The MSK model of the upper body consists of 8 body segments (torso, head, left/right upper arm, left/right forearm, and left/right hand). The model has 20 degrees of freedom (DoFs) and 40 muscle torque generators (MTGs), which are constructed using experimental data. The model is adjustable for different anthropometric measurements and subject body characteristics: sex, age, body mass, height, dominant side, and physical activity. Joint limits are modeled using experimental dynamometer data within the proposed multi-DoF MTG model. The model equations are verified by simulating the joint range of motion (ROM) and torque; all simulation results have a good agreement with previously published research. A musculoskeletal (MSK) model is a valuable tool for assessing complex biomechanical problems, estimating joint torques during motion, optimizing motion in sports, and designing exoskeletons and prostheses. This study proposes an open-source upper body MSK model that supports biomechanical analysis of human motion. The MSK model of the upper body consists of 8 body segments (torso, head, left/right upper arm, left/right forearm, and left/right hand). The model has 20 degrees of freedom (DoFs) and 40 muscle torque generators (MTGs), which are constructed using experimental data. The model is adjustable for different anthropometric measurements and subject body characteristics: sex, age, body mass, height, dominant side, and physical activity. Joint limits are modeled using experimental dynamometer data within the proposed multi-DoF MTG model. The model equations are verified by simulating the joint range of motion (ROM) and torque; all simulation results have a good agreement with previously published research.A musculoskeletal (MSK) model is a valuable tool for assessing complex biomechanical problems, estimating joint torques during motion, optimizing motion in sports, and designing exoskeletons and prostheses. This study proposes an open-source upper body MSK model that supports biomechanical analysis of human motion. The MSK model of the upper body consists of 8 body segments (torso, head, left/right upper arm, left/right forearm, and left/right hand). The model has 20 degrees of freedom (DoFs) and 40 muscle torque generators (MTGs), which are constructed using experimental data. The model is adjustable for different anthropometric measurements and subject body characteristics: sex, age, body mass, height, dominant side, and physical activity. Joint limits are modeled using experimental dynamometer data within the proposed multi-DoF MTG model. The model equations are verified by simulating the joint range of motion (ROM) and torque; all simulation results have a good agreement with previously published research. |
Author | Nasr, Ali Hashemi, Arash McPhee, John |
Author_xml | – sequence: 1 givenname: Ali surname: Nasr fullname: Nasr, Ali organization: Department of Systems Design Engineering, University of Waterloo – sequence: 2 givenname: Arash surname: Hashemi fullname: Hashemi, Arash organization: Department of Systems Design Engineering, University of Waterloo – sequence: 3 givenname: John surname: McPhee fullname: McPhee, John organization: Department of Systems Design Engineering, University of Waterloo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36877170$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0btuFDEUBmALBZELPAJoJBqa2fjuGdGAIm5SUIpAbXnsY8nBYy_2DGjfHi-7oUhBKrv4_mPr_OfoJOUECL0keEPwgC8JpkIMnG4opmxDycAVV0_QGeFK9gMV40m7N9Pv0Sk6r_UOYzw09wydMjkoRRQ-Q19vrYlmitDNa7VrzPUHRFhM7ObsIHY-l87tkpmD7WqY12iWkFPtsu_W7RZKN2W3a_YXzJCW5-ipN7HCi-N5gb5__PDt6nN_ffPpy9X7696ykS-9xExgwdQEXjhBGPd0pFwKqvxIOICEyShLpSCDdZ4PDBx2RJoJKDcNsQv05jB3W_LPFeqi51AtxGgS5LVqqgamRiqVaPT1A3qX15La73R7lCospeJNvTqqdZrB6W0Jsyk7fb-oBsQB2JJrLeD_EYL1vhB9X4jeF6KPhbTc2wc5G5a_O1yKCfHR9LtDOqRWxGx-5xKdXswu5uKLSTZUzf4_4g9WyqJ_ |
CitedBy_id | crossref_primary_10_1007_s42235_023_00453_8 crossref_primary_10_1017_wtc_2023_9 crossref_primary_10_1115_1_4066900 crossref_primary_10_1007_s00371_024_03547_4 crossref_primary_10_1088_1748_3190_adb2ca crossref_primary_10_3390_s24010063 crossref_primary_10_1080_10255842_2024_2316240 crossref_primary_10_1007_s11044_024_10021_5 |
Cites_doi | 10.1115/DETC2021-69203 10.2519/jospt.1997.26.3.150 10.1016/j.jbiomech.2004.05.046 10.1016/S1672-6529(14)60033-0 10.3233/BME-151364 10.1007/BF02190578 10.1016/S0736-0266(01)00079-1 10.1007/978-3-319-51547-2_8 10.1007/978-94-007-5404-1_6 10.1016/j.jbiomech.2010.11.024 10.1109/IROS.2017.8202200 10.1007/s002230001149 10.1115/1.4046298 10.1115/1.1590359 10.1109/IEMBS.2002.1053318 10.1016/j.humov.2017.09.016 10.1016/0169-8141(95)00042-9 10.1123/jab.20.4.367 10.3389/fncom.2016.00143 10.1007/s12283-009-0020-9 10.1007/s11044-020-09734-0 10.1152/jappl.1990.69.6.2215 10.1080/00140130600967323 10.1016/j.simpat.2006.09.001 10.1523/JNEUROSCI.05-07-01688.1985 10.1016/j.piutam.2011.04.026 10.2519/jospt.1986.7.4.163 10.1111/j.1365-2516.2010.02399.x 10.1055/a-1303-2741 10.1007/s11044-020-09747-9 10.1177/036354659001800201 10.3389/fnbot.2020.00065 10.2519/jospt.1997.25.2.137 10.1088/1741-2552/ac1adc 10.3390/app11093852 10.1007/BF00198959 10.1177/03635465990270051801 10.1186/s40101-016-0112-8 10.1123/jab.22.4.264 10.1016/0021-9290(82)90008-2 10.1155/2018/6019381 10.1177/027836498400300205 10.1080/10255840008908000 10.1097/00024720-200208000-00009 10.1016/S0894-1130(12)80036-6 10.3389/fnbot.2019.00090 10.1016/j.jbiomech.2009.12.012 10.2519/jospt.1983.4.4.217 10.1109/TMRB.2021.3058323 10.1016/j.jbiomech.2004.12.012 10.1007/s11044-022-09852-x 10.1016/j.jbiomech.2007.03.022 10.1155/2015/585409 10.1007/s11044-020-09723-3 10.1109/IEMBS.2007.4352819 10.1109/JSYST.2014.2387426 10.1080/10255842.2022.2065630 10.3390/robotics11010020 10.1249/00003677-199001000-00010 10.1016/S0021-9290(00)00155-X 10.1123/jab.23.1.12 10.1007/s11044-019-09685-1 10.1109/TIE.2017.2784377 10.1016/0010-4825(86)90066-1 10.1097/00007632-199907010-00012 10.1007/s11044-022-09855-8 10.1115/DETC2010-28994 10.5194/ms-7-19-2016 10.1007/978-3-319-40247-5_1 10.1007/s002210050733 10.1016/j.jbiomech.2008.05.002 10.1016/S0021-9290(01)00250-0 10.1123/jab.28.6.726 10.1115/1.4043447 10.1136/bjsm.2005.023408 10.1371/journal.pone.0169329 10.1115/1.1531112 10.3389/fncom.2019.00023 10.1016/j.jbiomech.2006.02.013 10.1080/00140130500489873 10.1016/S1058-2746(97)90001-X 10.1016/0021-9290(93)90045-G 10.1098/rstb.1990.0144 10.1115/1.4053405 10.1177/0954411919847052 10.2519/jospt.1992.15.4.183 10.1080/10255842.2020.1783659 10.1109/ACCESS.2019.2927515 10.1097/00007632-200109010-00018 10.1115/1.2797999 10.1016/j.jbiomech.2004.05.042 10.5114/hm.2019.85095 10.1016/S0268-0033(00)00033-4 10.5040/9781492595809 10.2466/pms.1997.84.3c.1431 10.1007/978-1-4613-9030-5_5 10.1016/0021-9290(80)90170-0 10.1016/j.clinbiomech.2005.02.012 10.1115/1.2834755 10.3389/fncom.2021.759489 10.1097/00005072-196804000-00011 10.1109/TBME.2014.2361324 10.1007/s00421-011-1975-3 10.1016/0021-9290(96)00029-2 10.1113/jphysiol.1939.sp003756 |
ContentType | Journal Article |
Copyright | 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 2023 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION NPM 7QO 8FD FR3 P64 7X8 |
DOI | 10.1080/10255842.2023.2184747 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Engineering Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1476-8259 |
EndPage | 337 |
ExternalDocumentID | 36877170 10_1080_10255842_2023_2184747 2184747 |
Genre | Research Article Journal Article |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada |
GroupedDBID | --- .7F .QJ 0BK 0R~ 29F 2DF 30N 36B 4.4 53G 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACPRK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRAH AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EMOBN E~A E~B F5P GTTXZ H13 HF~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 P2P RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADMLS ADYSH AFRVT AIYEW AMPGV CITATION 1TA ACTTO ADUMR AFBWG AFION AGVKY AGWUF ALRRR BWMZZ CAG COF CYRSC DAOYK EJD NPM OPCYK TASJS 7QO 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c394t-60350537bef5d5134f29246527f914ee6eba7c26518cdf483ed0d16abe24a27f3 |
ISSN | 1025-5842 1476-8259 |
IngestDate | Tue Aug 05 09:55:44 EDT 2025 Wed Aug 13 06:40:30 EDT 2025 Mon Jul 21 05:59:51 EDT 2025 Tue Jul 01 03:32:16 EDT 2025 Thu Apr 24 23:00:28 EDT 2025 Wed Dec 25 09:06:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | upper body biomechanics dynamic simulation Musculoskeletal system model muscle torque |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c394t-60350537bef5d5134f29246527f914ee6eba7c26518cdf483ed0d16abe24a27f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 36877170 |
PQID | 2922706674 |
PQPubID | 2045306 |
PageCount | 32 |
ParticipantIDs | proquest_miscellaneous_2783792675 crossref_primary_10_1080_10255842_2023_2184747 crossref_citationtrail_10_1080_10255842_2023_2184747 informaworld_taylorfrancis_310_1080_10255842_2023_2184747 proquest_journals_2922706674 pubmed_primary_36877170 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-Mar |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-Mar |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Abingdon |
PublicationTitle | Computer methods in biomechanics and biomedical engineering |
PublicationTitleAlternate | Comput Methods Biomech Biomed Engin |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | McNally W (e_1_3_3_61_1) 2018 e_1_3_3_50_1 e_1_3_3_77_1 e_1_3_3_117_1 Zhang L (e_1_3_3_122_1) 2022 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_58_1 e_1_3_3_92_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_54_1 e_1_3_3_96_1 e_1_3_3_113_1 Nasr A (e_1_3_3_73_1) 2022 Bell S (e_1_3_3_9_1) 2022 e_1_3_3_105_1 e_1_3_3_109_1 e_1_3_3_27_1 e_1_3_3_46_1 e_1_3_3_69_1 e_1_3_3_120_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_42_1 e_1_3_3_65_1 e_1_3_3_84_1 e_1_3_3_101_1 e_1_3_3_124_1 e_1_3_3_30_1 e_1_3_3_76_1 e_1_3_3_99_1 e_1_3_3_116_1 e_1_3_3_19_1 e_1_3_3_38_1 e_1_3_3_91_1 e_1_3_3_15_1 e_1_3_3_57_1 Bańkosz Z (e_1_3_3_8_1) 2018; 17 e_1_3_3_34_1 e_1_3_3_72_1 e_1_3_3_95_1 e_1_3_3_112_1 e_1_3_3_11_1 e_1_3_3_53_1 e_1_3_3_87_1 Nasr A (e_1_3_3_74_1) 2022 Morrison TM (e_1_3_3_78_1) 2018; 5 e_1_3_3_108_1 e_1_3_3_49_1 e_1_3_3_100_1 e_1_3_3_26_1 e_1_3_3_68_1 e_1_3_3_45_1 e_1_3_3_83_1 e_1_3_3_104_1 e_1_3_3_4_1 e_1_3_3_22_1 e_1_3_3_64_1 e_1_3_3_123_1 e_1_3_3_52_1 e_1_3_3_75_1 e_1_3_3_98_1 Engin AE (e_1_3_3_29_1) 1980; 51 e_1_3_3_71_1 e_1_3_3_79_1 e_1_3_3_18_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_90_1 e_1_3_3_111_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_56_1 e_1_3_3_94_1 e_1_3_3_115_1 Nasr A (e_1_3_3_66_1) 2019 e_1_3_3_40_1 e_1_3_3_63_1 e_1_3_3_86_1 Yamaguchi GT. (e_1_3_3_119_1) 2006 Gentil P (e_1_3_3_39_1) 2015; 55 e_1_3_3_7_1 e_1_3_3_107_1 Nordin M (e_1_3_3_80_1) 2001 e_1_3_3_25_1 e_1_3_3_48_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_44_1 e_1_3_3_67_1 e_1_3_3_82_1 e_1_3_3_103_1 Ghannadi B (e_1_3_3_41_1) 2018 e_1_3_3_97_1 e_1_3_3_51_1 e_1_3_3_70_1 Razavian RS (e_1_3_3_88_1) 2015 e_1_3_3_118_1 e_1_3_3_17_1 e_1_3_3_110_1 e_1_3_3_13_1 e_1_3_3_59_1 e_1_3_3_36_1 e_1_3_3_93_1 e_1_3_3_114_1 e_1_3_3_55_1 e_1_3_3_32_1 e_1_3_3_62_1 e_1_3_3_89_1 e_1_3_3_6_1 e_1_3_3_106_1 e_1_3_3_28_1 e_1_3_3_24_1 e_1_3_3_121_1 e_1_3_3_47_1 e_1_3_3_81_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_125_1 e_1_3_3_43_1 e_1_3_3_85_1 e_1_3_3_102_1 |
References_xml | – ident: e_1_3_3_72_1 doi: 10.1115/DETC2021-69203 – ident: e_1_3_3_109_1 doi: 10.2519/jospt.1997.26.3.150 – ident: e_1_3_3_46_1 doi: 10.1016/j.jbiomech.2004.05.046 – ident: e_1_3_3_91_1 doi: 10.1016/S1672-6529(14)60033-0 – start-page: 189 volume-title: Proceedings of the 6th Joint International Conference on Multibody System Dynamics and the 10th Asian Conference on Multibody System Dynamics year: 2022 ident: e_1_3_3_73_1 – ident: e_1_3_3_124_1 doi: 10.3233/BME-151364 – ident: e_1_3_3_106_1 doi: 10.1007/BF02190578 – ident: e_1_3_3_32_1 doi: 10.1016/S0736-0266(01)00079-1 – ident: e_1_3_3_64_1 doi: 10.1007/978-3-319-51547-2_8 – ident: e_1_3_3_7_1 doi: 10.1007/978-94-007-5404-1_6 – ident: e_1_3_3_34_1 doi: 10.1016/j.jbiomech.2010.11.024 – ident: e_1_3_3_40_1 doi: 10.1109/IROS.2017.8202200 – ident: e_1_3_3_103_1 doi: 10.1007/s002230001149 – ident: e_1_3_3_20_1 doi: 10.1115/1.4046298 – ident: e_1_3_3_27_1 doi: 10.1115/1.1590359 – ident: e_1_3_3_90_1 doi: 10.1109/IEMBS.2002.1053318 – ident: e_1_3_3_58_1 doi: 10.1016/j.humov.2017.09.016 – ident: e_1_3_3_56_1 doi: 10.1016/0169-8141(95)00042-9 – ident: e_1_3_3_14_1 doi: 10.1123/jab.20.4.367 – ident: e_1_3_3_62_1 doi: 10.3389/fncom.2016.00143 – ident: e_1_3_3_59_1 doi: 10.1007/s12283-009-0020-9 – ident: e_1_3_3_19_1 doi: 10.1007/s11044-020-09734-0 – ident: e_1_3_3_25_1 doi: 10.1152/jappl.1990.69.6.2215 – ident: e_1_3_3_81_1 doi: 10.1080/00140130600967323 – ident: e_1_3_3_21_1 doi: 10.1016/j.simpat.2006.09.001 – ident: e_1_3_3_33_1 doi: 10.1523/JNEUROSCI.05-07-01688.1985 – ident: e_1_3_3_107_1 doi: 10.1016/j.piutam.2011.04.026 – ident: e_1_3_3_5_1 doi: 10.2519/jospt.1986.7.4.163 – ident: e_1_3_3_104_1 doi: 10.1111/j.1365-2516.2010.02399.x – ident: e_1_3_3_82_1 doi: 10.1055/a-1303-2741 – ident: e_1_3_3_49_1 doi: 10.1007/s11044-020-09747-9 – ident: e_1_3_3_83_1 doi: 10.1177/036354659001800201 – ident: e_1_3_3_100_1 doi: 10.3389/fnbot.2020.00065 – ident: e_1_3_3_92_1 doi: 10.2519/jospt.1997.25.2.137 – ident: e_1_3_3_67_1 doi: 10.1088/1741-2552/ac1adc – ident: e_1_3_3_77_1 doi: 10.3390/app11093852 – ident: e_1_3_3_111_1 doi: 10.1007/BF00198959 – ident: e_1_3_3_47_1 doi: 10.1177/03635465990270051801 – ident: e_1_3_3_65_1 doi: 10.1186/s40101-016-0112-8 – ident: e_1_3_3_54_1 doi: 10.1123/jab.22.4.264 – ident: e_1_3_3_121_1 doi: 10.1016/0021-9290(82)90008-2 – ident: e_1_3_3_86_1 doi: 10.1155/2018/6019381 – ident: e_1_3_3_2_1 doi: 10.1177/027836498400300205 – ident: e_1_3_3_38_1 doi: 10.1080/10255840008908000 – ident: e_1_3_3_53_1 doi: 10.1097/00024720-200208000-00009 – ident: e_1_3_3_55_1 doi: 10.1016/S0894-1130(12)80036-6 – ident: e_1_3_3_96_1 doi: 10.3389/fnbot.2019.00090 – ident: e_1_3_3_4_1 doi: 10.1016/j.jbiomech.2009.12.012 – volume: 5 start-page: 1 year: 2018 ident: e_1_3_3_78_1 article-title: Advancing regulatory science with computational modeling for medical devices at the FDA’s office of science and engineering laboratories publication-title: Medicine – ident: e_1_3_3_112_1 doi: 10.2519/jospt.1983.4.4.217 – ident: e_1_3_3_57_1 doi: 10.1109/TMRB.2021.3058323 – volume: 55 start-page: 144 issue: 3 year: 2015 ident: e_1_3_3_39_1 article-title: “Effects of equal-volume resistance training performed one or two times a week in upper body muscle size and strength of untrained young men publication-title: J Sports Med Phys Fitness – ident: e_1_3_3_12_1 – ident: e_1_3_3_120_1 doi: 10.1016/j.jbiomech.2004.12.012 – ident: e_1_3_3_31_1 doi: 10.1007/s11044-022-09852-x – ident: e_1_3_3_10_1 doi: 10.1016/j.jbiomech.2007.03.022 – ident: e_1_3_3_94_1 doi: 10.1155/2015/585409 – ident: e_1_3_3_50_1 doi: 10.1007/s11044-020-09723-3 – ident: e_1_3_3_76_1 doi: 10.1109/IEMBS.2007.4352819 – start-page: V001T15A001 volume-title: Proceedings of the ASME dynamic systems and control conference year: 2015 ident: e_1_3_3_88_1 – ident: e_1_3_3_23_1 doi: 10.1109/JSYST.2014.2387426 – volume-title: Proceedings of the North American Congress on Biomechanics year: 2022 ident: e_1_3_3_74_1 – ident: e_1_3_3_115_1 doi: 10.1080/10255842.2022.2065630 – ident: e_1_3_3_70_1 doi: 10.3390/robotics11010020 – ident: e_1_3_3_89_1 doi: 10.1249/00003677-199001000-00010 – ident: e_1_3_3_11_1 doi: 10.1016/S0021-9290(00)00155-X – start-page: 243 volume-title: Proceedings year: 2018 ident: e_1_3_3_61_1 – ident: e_1_3_3_110_1 doi: 10.1123/jab.23.1.12 – start-page: 319 volume-title: Handbook of biomechatronics year: 2018 ident: e_1_3_3_41_1 – ident: e_1_3_3_30_1 doi: 10.1007/s11044-019-09685-1 – ident: e_1_3_3_123_1 doi: 10.1109/TIE.2017.2784377 – ident: e_1_3_3_105_1 doi: 10.1016/0010-4825(86)90066-1 – ident: e_1_3_3_51_1 doi: 10.1097/00007632-199907010-00012 – volume-title: Proceedings of the 16th annual Ontario Biomechanics Conference year: 2019 ident: e_1_3_3_66_1 – ident: e_1_3_3_68_1 doi: 10.1007/s11044-022-09855-8 – ident: e_1_3_3_98_1 doi: 10.1115/DETC2010-28994 – ident: e_1_3_3_95_1 doi: 10.5194/ms-7-19-2016 – ident: e_1_3_3_36_1 doi: 10.1007/978-3-319-40247-5_1 – ident: e_1_3_3_97_1 doi: 10.1007/s002210050733 – ident: e_1_3_3_102_1 doi: 10.1016/j.jbiomech.2008.05.002 – ident: e_1_3_3_63_1 – ident: e_1_3_3_85_1 doi: 10.1016/S0021-9290(01)00250-0 – ident: e_1_3_3_35_1 doi: 10.1123/jab.28.6.726 – ident: e_1_3_3_43_1 doi: 10.1115/1.4043447 – ident: e_1_3_3_101_1 doi: 10.1136/bjsm.2005.023408 – ident: e_1_3_3_17_1 doi: 10.1371/journal.pone.0169329 – ident: e_1_3_3_108_1 doi: 10.1115/1.1531112 – ident: e_1_3_3_87_1 doi: 10.3389/fncom.2019.00023 – ident: e_1_3_3_26_1 doi: 10.1016/j.jbiomech.2006.02.013 – ident: e_1_3_3_24_1 doi: 10.1080/00140130500489873 – ident: e_1_3_3_37_1 doi: 10.1016/S1058-2746(97)90001-X – volume-title: Dynamic modeling of musculoskeletal motion: a vectorized approach for biomechanical analysis in three dimensions year: 2006 ident: e_1_3_3_119_1 – ident: e_1_3_3_116_1 doi: 10.1016/0021-9290(93)90045-G – ident: e_1_3_3_3_1 doi: 10.1098/rstb.1990.0144 – ident: e_1_3_3_69_1 doi: 10.1115/1.4053405 – ident: e_1_3_3_99_1 doi: 10.1177/0954411919847052 – ident: e_1_3_3_114_1 doi: 10.2519/jospt.1992.15.4.183 – volume-title: Proceedings of the North American Congress on Biomechanics year: 2022 ident: e_1_3_3_9_1 – ident: e_1_3_3_45_1 doi: 10.1080/10255842.2020.1783659 – ident: e_1_3_3_15_1 doi: 10.1109/ACCESS.2019.2927515 – ident: e_1_3_3_113_1 doi: 10.1097/00007632-200109010-00018 – ident: e_1_3_3_79_1 doi: 10.1115/1.2797999 – volume-title: Basic biomechanics of the musculoskeletal system year: 2001 ident: e_1_3_3_80_1 – ident: e_1_3_3_118_1 doi: 10.1016/j.jbiomech.2004.05.042 – ident: e_1_3_3_125_1 doi: 10.5114/hm.2019.85095 – ident: e_1_3_3_28_1 doi: 10.1016/S0268-0033(00)00033-4 – start-page: 1 year: 2022 ident: e_1_3_3_122_1 article-title: A subject-specific musculoskeletal model to predict the tibiofemoral contact forces during daily living activities publication-title: Comput Methods Biomech Biomed Eng – ident: e_1_3_3_93_1 doi: 10.5040/9781492595809 – ident: e_1_3_3_75_1 doi: 10.2466/pms.1997.84.3c.1431 – ident: e_1_3_3_117_1 doi: 10.1007/978-1-4613-9030-5_5 – ident: e_1_3_3_6_1 doi: 10.1016/0021-9290(80)90170-0 – ident: e_1_3_3_18_1 doi: 10.1016/j.clinbiomech.2005.02.012 – ident: e_1_3_3_13_1 doi: 10.1115/1.2834755 – ident: e_1_3_3_71_1 doi: 10.3389/fncom.2021.759489 – ident: e_1_3_3_16_1 doi: 10.1097/00005072-196804000-00011 – ident: e_1_3_3_42_1 – volume: 51 start-page: 551 issue: 6 year: 1980 ident: e_1_3_3_29_1 article-title: Active muscle torques about long-bone axes of major human joints publication-title: Aviat Space Environ Med – ident: e_1_3_3_84_1 doi: 10.1109/TBME.2014.2361324 – ident: e_1_3_3_44_1 doi: 10.1007/s00421-011-1975-3 – volume: 17 start-page: 330 issue: 2 year: 2018 ident: e_1_3_3_8_1 article-title: Correlations between angular velocities in selected joints and velocity of table tennis racket during topspin Forehand and Backhand publication-title: J Sports Sci Med – ident: e_1_3_3_22_1 doi: 10.1016/0021-9290(96)00029-2 – ident: e_1_3_3_52_1 doi: 10.1113/jphysiol.1939.sp003756 – ident: e_1_3_3_48_1 |
SSID | ssj0008184 |
Score | 2.3964412 |
Snippet | A musculoskeletal (MSK) model is a valuable tool for assessing complex biomechanical problems, estimating joint torques during motion, optimizing motion in... |
SourceID | proquest pubmed crossref informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 306 |
SubjectTerms | Arm Biomechanical engineering Biomechanics Body mass Degrees of freedom dynamic simulation Exoskeleton Exoskeletons Human motion Joints (anatomy) muscle torque Musculoskeletal system model Physical activity Prostheses Prosthetics Simulation Torque Torso upper body |
Title | Scalable musculoskeletal model for dynamic simulations of upper body movement |
URI | https://www.tandfonline.com/doi/abs/10.1080/10255842.2023.2184747 https://www.ncbi.nlm.nih.gov/pubmed/36877170 https://www.proquest.com/docview/2922706674 https://www.proquest.com/docview/2783792675 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7WFsEX8e7WKiP4VrImc00eixcWoSLYYvElTJIJFtvdZZMI7W_wR3vmlmRrtdaXECaZmUzOmTO373wHoVc1yeoyUSoykXEixomOFCl5FKuCZaJIqaNrOvgo5kfswzE_nkx-jlBLXVvMyosr_Ur-R6qQBnI1XrI3kGxfKCTAPcgXriBhuP6TjD_DD7auT2edwZMum-8wiBjvRhvfxiIIKxdxfq85OetGsLdutdLrvWJZncO7Pwb4S-As8LEefIBpi5m1jvrGTzjwOjvPfStkPbAa9rvLqnFxsk9PBivXGHoCm7qG-2FP8NM3jwcKwGC_D0HYAMTyptMExoXpjLOt2qUxKSJYg2Zje-u4ALxe0ZHxpLEYjcPUkcH8ZuIdJtLUZiqbmfDvM7NOlY65c5NS-9JQ1wMQE8-MGorJTTG5L-YW2iZSmkP_7f35269f-pEdJjcWpRBaGjzC0vj1ld-zMdfZYML983rGzmsO76G7fkGC95123UcTvXiAbrsQpecP0UHQMXxJx7DVMQyVYa9jeKRjeFljq2PY6BgOOvYIHb1_d_hmHvkQHFFJM9ZGwhw8cyoLXfOKJ5RB3yZMcCLrLGFaC10oWRLBE-jqNUupruIqEarQhCl4iT5GW4vlQj9FWFYlFYpxMF2cVXVZ6LTSGoabMq2VitkUsfCz8tLz05swKaf5X4U1RbM-28oRtFyXIRtLIm_tzljtwtjk9Jq8u0FsubcDTQ5_hEiDFYcmvOwfg5U2R29qoZcdvCNTKjMCq_MpeuLE3X8tFSlom4x3btqSZ-jO0BF30Va77vRzmCK3xQuvub8ADraz6A |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEYIL78dCASNxzSrxK8kRIaoFunuhlXqzbMeWUNvNqpscyq9nJk5WLVLVQ0852I7s8diesWe-D-BL5HX0hbUZMeNkUvGQWe5Vllsna-0qkeCaliu9OJY_T9TJlVwYCqskHzomoIhhr6bFTZfRU0gcftEQriTlUXExJycFjeL78ECh7U5aLvLVbjfGA2l4WSbaVmozZfHc9Jtr59M19NKbbdDhLDp4Cn4aRQpBOZ33nZv7v_8BPN5tmM_gyWiqsq9Jt57DvbB-AQ8TeeXlS1j-xumlxCt23lM0a7s9xSMMbXk2sOswHBJrEt892_45H2nCtqyNrN9swgVzbXOJdQfA8u4VHB98P_q2yEZyhsyLWnaZpidJJUoXompUISTOOpda8TLWhQxBB2dLz7UqUAmirERo8qbQ1gUuLVYSr2Fv3a7DW2Bl44W2UqFSK9lE70LVhIAbka-itbmcgZymxPgRuZwINM5MMQKcTpIyJCkzSmoG812zTYLuuK1BfXW-TTfcmcREcGLELW33J-Uw4y6wNSgRXlIUMQ7h864Y1y89yth1aHusU1airDn6bTN4k5Rq11uhqxLd7fzdHTr2CR4tjpaH5vDH6td7eIxFMoXQ7cNed9GHD2hTde7jsGj-AUaBEcg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BqyIuUMproVAjcc0q8SvJEUFXBdoVElTiZvkpVaWbVZMcyq9nHCcrWqnqoacc7InimfE84vF8AB8DrYMttM4iMk7GBfWZplZkuTa8lqZiqV3TyVIenfJvv8VUTdiOZZUxhw6pUcRgq-PmXrswVcThE-PgisdrVJTNY46CMfFD2JYYnsSqPpYvN8YY_dFwsBxRWyPNdInnttdcc0_XmpfeHoIOrmjxFMy0iFSBcj7vOzO3f2_0d7zXKnfhyRiokk9Js57BA7_ag50EXXn1HE5-onDjtSty0cda1qY9RweGkTwZsHUIroi4hHZP2rOLESSsJU0g_XrtL4lp3BXOHdqVdy_gdHH46_NRNkIzZJbVvMtkPJAUrDQ-CCcKxlHmlEtBy1AX3HvpjS4tlaJAFQi8Yt7lrpDaeMo1TmIvYWvVrPxrIKWzTGouUKUFd8EaXznv0QzZKmid8xnwSSLKjn3LI3zGH1WM7U0nTqnIKTVyagbzDdk6Ne64i6D-X9yqG_6YhARvotgdtPuTbqjRBrQKOULLWEOMS_iwGcbdG49k9Mo3Pc4pK1bWFLO2GbxKOrX5WiarEpPt_M09PuwAHv34slDHX5ff38JjHOGpfm4ftrrL3r_DgKoz74ct8w_NBRBs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+musculoskeletal+model+for+dynamic+simulations+of+upper+body+movement&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering&rft.au=Nasr%2C+Ali&rft.au=Hashemi%2C+Arash&rft.au=McPhee%2C+John&rft.date=2024-03-01&rft.issn=1025-5842&rft.eissn=1476-8259&rft.volume=27&rft.issue=3&rft.spage=306&rft.epage=337&rft_id=info:doi/10.1080%2F10255842.2023.2184747&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10255842_2023_2184747 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1025-5842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1025-5842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1025-5842&client=summon |