Scalable musculoskeletal model for dynamic simulations of upper body movement

A musculoskeletal (MSK) model is a valuable tool for assessing complex biomechanical problems, estimating joint torques during motion, optimizing motion in sports, and designing exoskeletons and prostheses. This study proposes an open-source upper body MSK model that supports biomechanical analysis...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in biomechanics and biomedical engineering Vol. 27; no. 3; pp. 306 - 337
Main Authors Nasr, Ali, Hashemi, Arash, McPhee, John
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 01.03.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1025-5842
1476-8259
1476-8259
DOI10.1080/10255842.2023.2184747

Cover

Abstract A musculoskeletal (MSK) model is a valuable tool for assessing complex biomechanical problems, estimating joint torques during motion, optimizing motion in sports, and designing exoskeletons and prostheses. This study proposes an open-source upper body MSK model that supports biomechanical analysis of human motion. The MSK model of the upper body consists of 8 body segments (torso, head, left/right upper arm, left/right forearm, and left/right hand). The model has 20 degrees of freedom (DoFs) and 40 muscle torque generators (MTGs), which are constructed using experimental data. The model is adjustable for different anthropometric measurements and subject body characteristics: sex, age, body mass, height, dominant side, and physical activity. Joint limits are modeled using experimental dynamometer data within the proposed multi-DoF MTG model. The model equations are verified by simulating the joint range of motion (ROM) and torque; all simulation results have a good agreement with previously published research.
AbstractList A musculoskeletal (MSK) model is a valuable tool for assessing complex biomechanical problems, estimating joint torques during motion, optimizing motion in sports, and designing exoskeletons and prostheses. This study proposes an open-source upper body MSK model that supports biomechanical analysis of human motion. The MSK model of the upper body consists of 8 body segments (torso, head, left/right upper arm, left/right forearm, and left/right hand). The model has 20 degrees of freedom (DoFs) and 40 muscle torque generators (MTGs), which are constructed using experimental data. The model is adjustable for different anthropometric measurements and subject body characteristics: sex, age, body mass, height, dominant side, and physical activity. Joint limits are modeled using experimental dynamometer data within the proposed multi-DoF MTG model. The model equations are verified by simulating the joint range of motion (ROM) and torque; all simulation results have a good agreement with previously published research.
A musculoskeletal (MSK) model is a valuable tool for assessing complex biomechanical problems, estimating joint torques during motion, optimizing motion in sports, and designing exoskeletons and prostheses. This study proposes an open-source upper body MSK model that supports biomechanical analysis of human motion. The MSK model of the upper body consists of 8 body segments (torso, head, left/right upper arm, left/right forearm, and left/right hand). The model has 20 degrees of freedom (DoFs) and 40 muscle torque generators (MTGs), which are constructed using experimental data. The model is adjustable for different anthropometric measurements and subject body characteristics: sex, age, body mass, height, dominant side, and physical activity. Joint limits are modeled using experimental dynamometer data within the proposed multi-DoF MTG model. The model equations are verified by simulating the joint range of motion (ROM) and torque; all simulation results have a good agreement with previously published research.A musculoskeletal (MSK) model is a valuable tool for assessing complex biomechanical problems, estimating joint torques during motion, optimizing motion in sports, and designing exoskeletons and prostheses. This study proposes an open-source upper body MSK model that supports biomechanical analysis of human motion. The MSK model of the upper body consists of 8 body segments (torso, head, left/right upper arm, left/right forearm, and left/right hand). The model has 20 degrees of freedom (DoFs) and 40 muscle torque generators (MTGs), which are constructed using experimental data. The model is adjustable for different anthropometric measurements and subject body characteristics: sex, age, body mass, height, dominant side, and physical activity. Joint limits are modeled using experimental dynamometer data within the proposed multi-DoF MTG model. The model equations are verified by simulating the joint range of motion (ROM) and torque; all simulation results have a good agreement with previously published research.
Author Nasr, Ali
Hashemi, Arash
McPhee, John
Author_xml – sequence: 1
  givenname: Ali
  surname: Nasr
  fullname: Nasr, Ali
  organization: Department of Systems Design Engineering, University of Waterloo
– sequence: 2
  givenname: Arash
  surname: Hashemi
  fullname: Hashemi, Arash
  organization: Department of Systems Design Engineering, University of Waterloo
– sequence: 3
  givenname: John
  surname: McPhee
  fullname: McPhee, John
  organization: Department of Systems Design Engineering, University of Waterloo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36877170$$D View this record in MEDLINE/PubMed
BookMark eNqF0btuFDEUBmALBZELPAJoJBqa2fjuGdGAIm5SUIpAbXnsY8nBYy_2DGjfHi-7oUhBKrv4_mPr_OfoJOUECL0keEPwgC8JpkIMnG4opmxDycAVV0_QGeFK9gMV40m7N9Pv0Sk6r_UOYzw09wydMjkoRRQ-Q19vrYlmitDNa7VrzPUHRFhM7ObsIHY-l87tkpmD7WqY12iWkFPtsu_W7RZKN2W3a_YXzJCW5-ipN7HCi-N5gb5__PDt6nN_ffPpy9X7696ykS-9xExgwdQEXjhBGPd0pFwKqvxIOICEyShLpSCDdZ4PDBx2RJoJKDcNsQv05jB3W_LPFeqi51AtxGgS5LVqqgamRiqVaPT1A3qX15La73R7lCospeJNvTqqdZrB6W0Jsyk7fb-oBsQB2JJrLeD_EYL1vhB9X4jeF6KPhbTc2wc5G5a_O1yKCfHR9LtDOqRWxGx-5xKdXswu5uKLSTZUzf4_4g9WyqJ_
CitedBy_id crossref_primary_10_1007_s42235_023_00453_8
crossref_primary_10_1017_wtc_2023_9
crossref_primary_10_1115_1_4066900
crossref_primary_10_1007_s00371_024_03547_4
crossref_primary_10_1088_1748_3190_adb2ca
crossref_primary_10_3390_s24010063
crossref_primary_10_1080_10255842_2024_2316240
crossref_primary_10_1007_s11044_024_10021_5
Cites_doi 10.1115/DETC2021-69203
10.2519/jospt.1997.26.3.150
10.1016/j.jbiomech.2004.05.046
10.1016/S1672-6529(14)60033-0
10.3233/BME-151364
10.1007/BF02190578
10.1016/S0736-0266(01)00079-1
10.1007/978-3-319-51547-2_8
10.1007/978-94-007-5404-1_6
10.1016/j.jbiomech.2010.11.024
10.1109/IROS.2017.8202200
10.1007/s002230001149
10.1115/1.4046298
10.1115/1.1590359
10.1109/IEMBS.2002.1053318
10.1016/j.humov.2017.09.016
10.1016/0169-8141(95)00042-9
10.1123/jab.20.4.367
10.3389/fncom.2016.00143
10.1007/s12283-009-0020-9
10.1007/s11044-020-09734-0
10.1152/jappl.1990.69.6.2215
10.1080/00140130600967323
10.1016/j.simpat.2006.09.001
10.1523/JNEUROSCI.05-07-01688.1985
10.1016/j.piutam.2011.04.026
10.2519/jospt.1986.7.4.163
10.1111/j.1365-2516.2010.02399.x
10.1055/a-1303-2741
10.1007/s11044-020-09747-9
10.1177/036354659001800201
10.3389/fnbot.2020.00065
10.2519/jospt.1997.25.2.137
10.1088/1741-2552/ac1adc
10.3390/app11093852
10.1007/BF00198959
10.1177/03635465990270051801
10.1186/s40101-016-0112-8
10.1123/jab.22.4.264
10.1016/0021-9290(82)90008-2
10.1155/2018/6019381
10.1177/027836498400300205
10.1080/10255840008908000
10.1097/00024720-200208000-00009
10.1016/S0894-1130(12)80036-6
10.3389/fnbot.2019.00090
10.1016/j.jbiomech.2009.12.012
10.2519/jospt.1983.4.4.217
10.1109/TMRB.2021.3058323
10.1016/j.jbiomech.2004.12.012
10.1007/s11044-022-09852-x
10.1016/j.jbiomech.2007.03.022
10.1155/2015/585409
10.1007/s11044-020-09723-3
10.1109/IEMBS.2007.4352819
10.1109/JSYST.2014.2387426
10.1080/10255842.2022.2065630
10.3390/robotics11010020
10.1249/00003677-199001000-00010
10.1016/S0021-9290(00)00155-X
10.1123/jab.23.1.12
10.1007/s11044-019-09685-1
10.1109/TIE.2017.2784377
10.1016/0010-4825(86)90066-1
10.1097/00007632-199907010-00012
10.1007/s11044-022-09855-8
10.1115/DETC2010-28994
10.5194/ms-7-19-2016
10.1007/978-3-319-40247-5_1
10.1007/s002210050733
10.1016/j.jbiomech.2008.05.002
10.1016/S0021-9290(01)00250-0
10.1123/jab.28.6.726
10.1115/1.4043447
10.1136/bjsm.2005.023408
10.1371/journal.pone.0169329
10.1115/1.1531112
10.3389/fncom.2019.00023
10.1016/j.jbiomech.2006.02.013
10.1080/00140130500489873
10.1016/S1058-2746(97)90001-X
10.1016/0021-9290(93)90045-G
10.1098/rstb.1990.0144
10.1115/1.4053405
10.1177/0954411919847052
10.2519/jospt.1992.15.4.183
10.1080/10255842.2020.1783659
10.1109/ACCESS.2019.2927515
10.1097/00007632-200109010-00018
10.1115/1.2797999
10.1016/j.jbiomech.2004.05.042
10.5114/hm.2019.85095
10.1016/S0268-0033(00)00033-4
10.5040/9781492595809
10.2466/pms.1997.84.3c.1431
10.1007/978-1-4613-9030-5_5
10.1016/0021-9290(80)90170-0
10.1016/j.clinbiomech.2005.02.012
10.1115/1.2834755
10.3389/fncom.2021.759489
10.1097/00005072-196804000-00011
10.1109/TBME.2014.2361324
10.1007/s00421-011-1975-3
10.1016/0021-9290(96)00029-2
10.1113/jphysiol.1939.sp003756
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
NPM
7QO
8FD
FR3
P64
7X8
DOI 10.1080/10255842.2023.2184747
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
Engineering Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1476-8259
EndPage 337
ExternalDocumentID 36877170
10_1080_10255842_2023_2184747
2184747
Genre Research Article
Journal Article
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
GroupedDBID ---
.7F
.QJ
0BK
0R~
29F
2DF
30N
36B
4.4
53G
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACPRK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRAH
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EMOBN
E~A
E~B
F5P
GTTXZ
H13
HF~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADMLS
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
1TA
ACTTO
ADUMR
AFBWG
AFION
AGVKY
AGWUF
ALRRR
BWMZZ
CAG
COF
CYRSC
DAOYK
EJD
NPM
OPCYK
TASJS
7QO
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c394t-60350537bef5d5134f29246527f914ee6eba7c26518cdf483ed0d16abe24a27f3
ISSN 1025-5842
1476-8259
IngestDate Tue Aug 05 09:55:44 EDT 2025
Wed Aug 13 06:40:30 EDT 2025
Mon Jul 21 05:59:51 EDT 2025
Tue Jul 01 03:32:16 EDT 2025
Thu Apr 24 23:00:28 EDT 2025
Wed Dec 25 09:06:54 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords upper body
biomechanics
dynamic simulation
Musculoskeletal system model
muscle torque
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c394t-60350537bef5d5134f29246527f914ee6eba7c26518cdf483ed0d16abe24a27f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 36877170
PQID 2922706674
PQPubID 2045306
PageCount 32
ParticipantIDs proquest_miscellaneous_2783792675
crossref_primary_10_1080_10255842_2023_2184747
crossref_citationtrail_10_1080_10255842_2023_2184747
informaworld_taylorfrancis_310_1080_10255842_2023_2184747
proquest_journals_2922706674
pubmed_primary_36877170
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Mar
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-Mar
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Abingdon
PublicationTitle Computer methods in biomechanics and biomedical engineering
PublicationTitleAlternate Comput Methods Biomech Biomed Engin
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References McNally W (e_1_3_3_61_1) 2018
e_1_3_3_50_1
e_1_3_3_77_1
e_1_3_3_117_1
Zhang L (e_1_3_3_122_1) 2022
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_58_1
e_1_3_3_92_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_54_1
e_1_3_3_96_1
e_1_3_3_113_1
Nasr A (e_1_3_3_73_1) 2022
Bell S (e_1_3_3_9_1) 2022
e_1_3_3_105_1
e_1_3_3_109_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_69_1
e_1_3_3_120_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_65_1
e_1_3_3_84_1
e_1_3_3_101_1
e_1_3_3_124_1
e_1_3_3_30_1
e_1_3_3_76_1
e_1_3_3_99_1
e_1_3_3_116_1
e_1_3_3_19_1
e_1_3_3_38_1
e_1_3_3_91_1
e_1_3_3_15_1
e_1_3_3_57_1
Bańkosz Z (e_1_3_3_8_1) 2018; 17
e_1_3_3_34_1
e_1_3_3_72_1
e_1_3_3_95_1
e_1_3_3_112_1
e_1_3_3_11_1
e_1_3_3_53_1
e_1_3_3_87_1
Nasr A (e_1_3_3_74_1) 2022
Morrison TM (e_1_3_3_78_1) 2018; 5
e_1_3_3_108_1
e_1_3_3_49_1
e_1_3_3_100_1
e_1_3_3_26_1
e_1_3_3_68_1
e_1_3_3_45_1
e_1_3_3_83_1
e_1_3_3_104_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_64_1
e_1_3_3_123_1
e_1_3_3_52_1
e_1_3_3_75_1
e_1_3_3_98_1
Engin AE (e_1_3_3_29_1) 1980; 51
e_1_3_3_71_1
e_1_3_3_79_1
e_1_3_3_18_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_90_1
e_1_3_3_111_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_56_1
e_1_3_3_94_1
e_1_3_3_115_1
Nasr A (e_1_3_3_66_1) 2019
e_1_3_3_40_1
e_1_3_3_63_1
e_1_3_3_86_1
Yamaguchi GT. (e_1_3_3_119_1) 2006
Gentil P (e_1_3_3_39_1) 2015; 55
e_1_3_3_7_1
e_1_3_3_107_1
Nordin M (e_1_3_3_80_1) 2001
e_1_3_3_25_1
e_1_3_3_48_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_67_1
e_1_3_3_82_1
e_1_3_3_103_1
Ghannadi B (e_1_3_3_41_1) 2018
e_1_3_3_97_1
e_1_3_3_51_1
e_1_3_3_70_1
Razavian RS (e_1_3_3_88_1) 2015
e_1_3_3_118_1
e_1_3_3_17_1
e_1_3_3_110_1
e_1_3_3_13_1
e_1_3_3_59_1
e_1_3_3_36_1
e_1_3_3_93_1
e_1_3_3_114_1
e_1_3_3_55_1
e_1_3_3_32_1
e_1_3_3_62_1
e_1_3_3_89_1
e_1_3_3_6_1
e_1_3_3_106_1
e_1_3_3_28_1
e_1_3_3_24_1
e_1_3_3_121_1
e_1_3_3_47_1
e_1_3_3_81_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_125_1
e_1_3_3_43_1
e_1_3_3_85_1
e_1_3_3_102_1
References_xml – ident: e_1_3_3_72_1
  doi: 10.1115/DETC2021-69203
– ident: e_1_3_3_109_1
  doi: 10.2519/jospt.1997.26.3.150
– ident: e_1_3_3_46_1
  doi: 10.1016/j.jbiomech.2004.05.046
– ident: e_1_3_3_91_1
  doi: 10.1016/S1672-6529(14)60033-0
– start-page: 189
  volume-title: Proceedings of the 6th Joint International Conference on Multibody System Dynamics and the 10th Asian Conference on Multibody System Dynamics
  year: 2022
  ident: e_1_3_3_73_1
– ident: e_1_3_3_124_1
  doi: 10.3233/BME-151364
– ident: e_1_3_3_106_1
  doi: 10.1007/BF02190578
– ident: e_1_3_3_32_1
  doi: 10.1016/S0736-0266(01)00079-1
– ident: e_1_3_3_64_1
  doi: 10.1007/978-3-319-51547-2_8
– ident: e_1_3_3_7_1
  doi: 10.1007/978-94-007-5404-1_6
– ident: e_1_3_3_34_1
  doi: 10.1016/j.jbiomech.2010.11.024
– ident: e_1_3_3_40_1
  doi: 10.1109/IROS.2017.8202200
– ident: e_1_3_3_103_1
  doi: 10.1007/s002230001149
– ident: e_1_3_3_20_1
  doi: 10.1115/1.4046298
– ident: e_1_3_3_27_1
  doi: 10.1115/1.1590359
– ident: e_1_3_3_90_1
  doi: 10.1109/IEMBS.2002.1053318
– ident: e_1_3_3_58_1
  doi: 10.1016/j.humov.2017.09.016
– ident: e_1_3_3_56_1
  doi: 10.1016/0169-8141(95)00042-9
– ident: e_1_3_3_14_1
  doi: 10.1123/jab.20.4.367
– ident: e_1_3_3_62_1
  doi: 10.3389/fncom.2016.00143
– ident: e_1_3_3_59_1
  doi: 10.1007/s12283-009-0020-9
– ident: e_1_3_3_19_1
  doi: 10.1007/s11044-020-09734-0
– ident: e_1_3_3_25_1
  doi: 10.1152/jappl.1990.69.6.2215
– ident: e_1_3_3_81_1
  doi: 10.1080/00140130600967323
– ident: e_1_3_3_21_1
  doi: 10.1016/j.simpat.2006.09.001
– ident: e_1_3_3_33_1
  doi: 10.1523/JNEUROSCI.05-07-01688.1985
– ident: e_1_3_3_107_1
  doi: 10.1016/j.piutam.2011.04.026
– ident: e_1_3_3_5_1
  doi: 10.2519/jospt.1986.7.4.163
– ident: e_1_3_3_104_1
  doi: 10.1111/j.1365-2516.2010.02399.x
– ident: e_1_3_3_82_1
  doi: 10.1055/a-1303-2741
– ident: e_1_3_3_49_1
  doi: 10.1007/s11044-020-09747-9
– ident: e_1_3_3_83_1
  doi: 10.1177/036354659001800201
– ident: e_1_3_3_100_1
  doi: 10.3389/fnbot.2020.00065
– ident: e_1_3_3_92_1
  doi: 10.2519/jospt.1997.25.2.137
– ident: e_1_3_3_67_1
  doi: 10.1088/1741-2552/ac1adc
– ident: e_1_3_3_77_1
  doi: 10.3390/app11093852
– ident: e_1_3_3_111_1
  doi: 10.1007/BF00198959
– ident: e_1_3_3_47_1
  doi: 10.1177/03635465990270051801
– ident: e_1_3_3_65_1
  doi: 10.1186/s40101-016-0112-8
– ident: e_1_3_3_54_1
  doi: 10.1123/jab.22.4.264
– ident: e_1_3_3_121_1
  doi: 10.1016/0021-9290(82)90008-2
– ident: e_1_3_3_86_1
  doi: 10.1155/2018/6019381
– ident: e_1_3_3_2_1
  doi: 10.1177/027836498400300205
– ident: e_1_3_3_38_1
  doi: 10.1080/10255840008908000
– ident: e_1_3_3_53_1
  doi: 10.1097/00024720-200208000-00009
– ident: e_1_3_3_55_1
  doi: 10.1016/S0894-1130(12)80036-6
– ident: e_1_3_3_96_1
  doi: 10.3389/fnbot.2019.00090
– ident: e_1_3_3_4_1
  doi: 10.1016/j.jbiomech.2009.12.012
– volume: 5
  start-page: 1
  year: 2018
  ident: e_1_3_3_78_1
  article-title: Advancing regulatory science with computational modeling for medical devices at the FDA’s office of science and engineering laboratories
  publication-title: Medicine
– ident: e_1_3_3_112_1
  doi: 10.2519/jospt.1983.4.4.217
– ident: e_1_3_3_57_1
  doi: 10.1109/TMRB.2021.3058323
– volume: 55
  start-page: 144
  issue: 3
  year: 2015
  ident: e_1_3_3_39_1
  article-title: “Effects of equal-volume resistance training performed one or two times a week in upper body muscle size and strength of untrained young men
  publication-title: J Sports Med Phys Fitness
– ident: e_1_3_3_12_1
– ident: e_1_3_3_120_1
  doi: 10.1016/j.jbiomech.2004.12.012
– ident: e_1_3_3_31_1
  doi: 10.1007/s11044-022-09852-x
– ident: e_1_3_3_10_1
  doi: 10.1016/j.jbiomech.2007.03.022
– ident: e_1_3_3_94_1
  doi: 10.1155/2015/585409
– ident: e_1_3_3_50_1
  doi: 10.1007/s11044-020-09723-3
– ident: e_1_3_3_76_1
  doi: 10.1109/IEMBS.2007.4352819
– start-page: V001T15A001
  volume-title: Proceedings of the ASME dynamic systems and control conference
  year: 2015
  ident: e_1_3_3_88_1
– ident: e_1_3_3_23_1
  doi: 10.1109/JSYST.2014.2387426
– volume-title: Proceedings of the North American Congress on Biomechanics
  year: 2022
  ident: e_1_3_3_74_1
– ident: e_1_3_3_115_1
  doi: 10.1080/10255842.2022.2065630
– ident: e_1_3_3_70_1
  doi: 10.3390/robotics11010020
– ident: e_1_3_3_89_1
  doi: 10.1249/00003677-199001000-00010
– ident: e_1_3_3_11_1
  doi: 10.1016/S0021-9290(00)00155-X
– start-page: 243
  volume-title: Proceedings
  year: 2018
  ident: e_1_3_3_61_1
– ident: e_1_3_3_110_1
  doi: 10.1123/jab.23.1.12
– start-page: 319
  volume-title: Handbook of biomechatronics
  year: 2018
  ident: e_1_3_3_41_1
– ident: e_1_3_3_30_1
  doi: 10.1007/s11044-019-09685-1
– ident: e_1_3_3_123_1
  doi: 10.1109/TIE.2017.2784377
– ident: e_1_3_3_105_1
  doi: 10.1016/0010-4825(86)90066-1
– ident: e_1_3_3_51_1
  doi: 10.1097/00007632-199907010-00012
– volume-title: Proceedings of the 16th annual Ontario Biomechanics Conference
  year: 2019
  ident: e_1_3_3_66_1
– ident: e_1_3_3_68_1
  doi: 10.1007/s11044-022-09855-8
– ident: e_1_3_3_98_1
  doi: 10.1115/DETC2010-28994
– ident: e_1_3_3_95_1
  doi: 10.5194/ms-7-19-2016
– ident: e_1_3_3_36_1
  doi: 10.1007/978-3-319-40247-5_1
– ident: e_1_3_3_97_1
  doi: 10.1007/s002210050733
– ident: e_1_3_3_102_1
  doi: 10.1016/j.jbiomech.2008.05.002
– ident: e_1_3_3_63_1
– ident: e_1_3_3_85_1
  doi: 10.1016/S0021-9290(01)00250-0
– ident: e_1_3_3_35_1
  doi: 10.1123/jab.28.6.726
– ident: e_1_3_3_43_1
  doi: 10.1115/1.4043447
– ident: e_1_3_3_101_1
  doi: 10.1136/bjsm.2005.023408
– ident: e_1_3_3_17_1
  doi: 10.1371/journal.pone.0169329
– ident: e_1_3_3_108_1
  doi: 10.1115/1.1531112
– ident: e_1_3_3_87_1
  doi: 10.3389/fncom.2019.00023
– ident: e_1_3_3_26_1
  doi: 10.1016/j.jbiomech.2006.02.013
– ident: e_1_3_3_24_1
  doi: 10.1080/00140130500489873
– ident: e_1_3_3_37_1
  doi: 10.1016/S1058-2746(97)90001-X
– volume-title: Dynamic modeling of musculoskeletal motion: a vectorized approach for biomechanical analysis in three dimensions
  year: 2006
  ident: e_1_3_3_119_1
– ident: e_1_3_3_116_1
  doi: 10.1016/0021-9290(93)90045-G
– ident: e_1_3_3_3_1
  doi: 10.1098/rstb.1990.0144
– ident: e_1_3_3_69_1
  doi: 10.1115/1.4053405
– ident: e_1_3_3_99_1
  doi: 10.1177/0954411919847052
– ident: e_1_3_3_114_1
  doi: 10.2519/jospt.1992.15.4.183
– volume-title: Proceedings of the North American Congress on Biomechanics
  year: 2022
  ident: e_1_3_3_9_1
– ident: e_1_3_3_45_1
  doi: 10.1080/10255842.2020.1783659
– ident: e_1_3_3_15_1
  doi: 10.1109/ACCESS.2019.2927515
– ident: e_1_3_3_113_1
  doi: 10.1097/00007632-200109010-00018
– ident: e_1_3_3_79_1
  doi: 10.1115/1.2797999
– volume-title: Basic biomechanics of the musculoskeletal system
  year: 2001
  ident: e_1_3_3_80_1
– ident: e_1_3_3_118_1
  doi: 10.1016/j.jbiomech.2004.05.042
– ident: e_1_3_3_125_1
  doi: 10.5114/hm.2019.85095
– ident: e_1_3_3_28_1
  doi: 10.1016/S0268-0033(00)00033-4
– start-page: 1
  year: 2022
  ident: e_1_3_3_122_1
  article-title: A subject-specific musculoskeletal model to predict the tibiofemoral contact forces during daily living activities
  publication-title: Comput Methods Biomech Biomed Eng
– ident: e_1_3_3_93_1
  doi: 10.5040/9781492595809
– ident: e_1_3_3_75_1
  doi: 10.2466/pms.1997.84.3c.1431
– ident: e_1_3_3_117_1
  doi: 10.1007/978-1-4613-9030-5_5
– ident: e_1_3_3_6_1
  doi: 10.1016/0021-9290(80)90170-0
– ident: e_1_3_3_18_1
  doi: 10.1016/j.clinbiomech.2005.02.012
– ident: e_1_3_3_13_1
  doi: 10.1115/1.2834755
– ident: e_1_3_3_71_1
  doi: 10.3389/fncom.2021.759489
– ident: e_1_3_3_16_1
  doi: 10.1097/00005072-196804000-00011
– ident: e_1_3_3_42_1
– volume: 51
  start-page: 551
  issue: 6
  year: 1980
  ident: e_1_3_3_29_1
  article-title: Active muscle torques about long-bone axes of major human joints
  publication-title: Aviat Space Environ Med
– ident: e_1_3_3_84_1
  doi: 10.1109/TBME.2014.2361324
– ident: e_1_3_3_44_1
  doi: 10.1007/s00421-011-1975-3
– volume: 17
  start-page: 330
  issue: 2
  year: 2018
  ident: e_1_3_3_8_1
  article-title: Correlations between angular velocities in selected joints and velocity of table tennis racket during topspin Forehand and Backhand
  publication-title: J Sports Sci Med
– ident: e_1_3_3_22_1
  doi: 10.1016/0021-9290(96)00029-2
– ident: e_1_3_3_52_1
  doi: 10.1113/jphysiol.1939.sp003756
– ident: e_1_3_3_48_1
SSID ssj0008184
Score 2.3964412
Snippet A musculoskeletal (MSK) model is a valuable tool for assessing complex biomechanical problems, estimating joint torques during motion, optimizing motion in...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 306
SubjectTerms Arm
Biomechanical engineering
Biomechanics
Body mass
Degrees of freedom
dynamic simulation
Exoskeleton
Exoskeletons
Human motion
Joints (anatomy)
muscle torque
Musculoskeletal system model
Physical activity
Prostheses
Prosthetics
Simulation
Torque
Torso
upper body
Title Scalable musculoskeletal model for dynamic simulations of upper body movement
URI https://www.tandfonline.com/doi/abs/10.1080/10255842.2023.2184747
https://www.ncbi.nlm.nih.gov/pubmed/36877170
https://www.proquest.com/docview/2922706674
https://www.proquest.com/docview/2783792675
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7WFsEX8e7WKiP4VrImc00eixcWoSLYYvElTJIJFtvdZZMI7W_wR3vmlmRrtdaXECaZmUzOmTO373wHoVc1yeoyUSoykXEixomOFCl5FKuCZaJIqaNrOvgo5kfswzE_nkx-jlBLXVvMyosr_Ur-R6qQBnI1XrI3kGxfKCTAPcgXriBhuP6TjD_DD7auT2edwZMum-8wiBjvRhvfxiIIKxdxfq85OetGsLdutdLrvWJZncO7Pwb4S-As8LEefIBpi5m1jvrGTzjwOjvPfStkPbAa9rvLqnFxsk9PBivXGHoCm7qG-2FP8NM3jwcKwGC_D0HYAMTyptMExoXpjLOt2qUxKSJYg2Zje-u4ALxe0ZHxpLEYjcPUkcH8ZuIdJtLUZiqbmfDvM7NOlY65c5NS-9JQ1wMQE8-MGorJTTG5L-YW2iZSmkP_7f35269f-pEdJjcWpRBaGjzC0vj1ld-zMdfZYML983rGzmsO76G7fkGC95123UcTvXiAbrsQpecP0UHQMXxJx7DVMQyVYa9jeKRjeFljq2PY6BgOOvYIHb1_d_hmHvkQHFFJM9ZGwhw8cyoLXfOKJ5RB3yZMcCLrLGFaC10oWRLBE-jqNUupruIqEarQhCl4iT5GW4vlQj9FWFYlFYpxMF2cVXVZ6LTSGoabMq2VitkUsfCz8tLz05swKaf5X4U1RbM-28oRtFyXIRtLIm_tzljtwtjk9Jq8u0FsubcDTQ5_hEiDFYcmvOwfg5U2R29qoZcdvCNTKjMCq_MpeuLE3X8tFSlom4x3btqSZ-jO0BF30Va77vRzmCK3xQuvub8ADraz6A
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEYIL78dCASNxzSrxK8kRIaoFunuhlXqzbMeWUNvNqpscyq9nJk5WLVLVQ0852I7s8diesWe-D-BL5HX0hbUZMeNkUvGQWe5Vllsna-0qkeCaliu9OJY_T9TJlVwYCqskHzomoIhhr6bFTZfRU0gcftEQriTlUXExJycFjeL78ECh7U5aLvLVbjfGA2l4WSbaVmozZfHc9Jtr59M19NKbbdDhLDp4Cn4aRQpBOZ33nZv7v_8BPN5tmM_gyWiqsq9Jt57DvbB-AQ8TeeXlS1j-xumlxCt23lM0a7s9xSMMbXk2sOswHBJrEt892_45H2nCtqyNrN9swgVzbXOJdQfA8u4VHB98P_q2yEZyhsyLWnaZpidJJUoXompUISTOOpda8TLWhQxBB2dLz7UqUAmirERo8qbQ1gUuLVYSr2Fv3a7DW2Bl44W2UqFSK9lE70LVhIAbka-itbmcgZymxPgRuZwINM5MMQKcTpIyJCkzSmoG812zTYLuuK1BfXW-TTfcmcREcGLELW33J-Uw4y6wNSgRXlIUMQ7h864Y1y89yth1aHusU1airDn6bTN4k5Rq11uhqxLd7fzdHTr2CR4tjpaH5vDH6td7eIxFMoXQ7cNed9GHD2hTde7jsGj-AUaBEcg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BqyIuUMproVAjcc0q8SvJEUFXBdoVElTiZvkpVaWbVZMcyq9nHCcrWqnqoacc7InimfE84vF8AB8DrYMttM4iMk7GBfWZplZkuTa8lqZiqV3TyVIenfJvv8VUTdiOZZUxhw6pUcRgq-PmXrswVcThE-PgisdrVJTNY46CMfFD2JYYnsSqPpYvN8YY_dFwsBxRWyPNdInnttdcc0_XmpfeHoIOrmjxFMy0iFSBcj7vOzO3f2_0d7zXKnfhyRiokk9Js57BA7_ag50EXXn1HE5-onDjtSty0cda1qY9RweGkTwZsHUIroi4hHZP2rOLESSsJU0g_XrtL4lp3BXOHdqVdy_gdHH46_NRNkIzZJbVvMtkPJAUrDQ-CCcKxlHmlEtBy1AX3HvpjS4tlaJAFQi8Yt7lrpDaeMo1TmIvYWvVrPxrIKWzTGouUKUFd8EaXznv0QzZKmid8xnwSSLKjn3LI3zGH1WM7U0nTqnIKTVyagbzDdk6Ne64i6D-X9yqG_6YhARvotgdtPuTbqjRBrQKOULLWEOMS_iwGcbdG49k9Mo3Pc4pK1bWFLO2GbxKOrX5WiarEpPt_M09PuwAHv34slDHX5ff38JjHOGpfm4ftrrL3r_DgKoz74ct8w_NBRBs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+musculoskeletal+model+for+dynamic+simulations+of+upper+body+movement&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering&rft.au=Nasr%2C+Ali&rft.au=Hashemi%2C+Arash&rft.au=McPhee%2C+John&rft.date=2024-03-01&rft.issn=1025-5842&rft.eissn=1476-8259&rft.volume=27&rft.issue=3&rft.spage=306&rft.epage=337&rft_id=info:doi/10.1080%2F10255842.2023.2184747&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10255842_2023_2184747
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1025-5842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1025-5842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1025-5842&client=summon