Object-Oriented Change Detection Method Based on Spectral–Spatial–Saliency Change Information and Fuzzy Integral Decision Fusion for HR Remote Sensing Images
Spectral features in remote sensing images are extensively utilized to detect land cover changes. However, detection noise appearing in the changing maps due to the abundant spatial details in the high-resolution images makes it difficult to acquire an accurate interpretation result. In this paper,...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 14; p. 3297 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spectral features in remote sensing images are extensively utilized to detect land cover changes. However, detection noise appearing in the changing maps due to the abundant spatial details in the high-resolution images makes it difficult to acquire an accurate interpretation result. In this paper, an object-oriented change detection approach is proposed which integrates spectral–spatial–saliency change information and fuzzy integral decision fusion for high-resolution remote sensing images with the purpose of eliminating the impact of detection noise. First, to reduce the influence of feature uncertainty, spectral feature change is generated by three independent methods, and spatial change information is obtained by spatial feature set construction and the optimal feature selection strategy. Secondly, the saliency change map of bi-temporal images is obtained with the co-saliency detection method to complement the insufficiency of image features. Then, the image objects are acquired by multi-scale segmentation based on the staking images. Finally, different pixel-level image change information and the segmentation result are fused using the fuzzy integral decision theory to determine the object change probability. Three high-resolution remote sensing image datasets and three comparative experiments were carried out to evaluate the performance of the proposed algorithm. Spectral–spatial–saliency change information was found to play a major role in the change detection of high-resolution remote sensing images, and the fuzzy integral decision strategy was found to effectively obtain reliable changed objects to improve the accuracy and robustness of change detection. |
---|---|
AbstractList | Spectral features in remote sensing images are extensively utilized to detect land cover changes. However, detection noise appearing in the changing maps due to the abundant spatial details in the high-resolution images makes it difficult to acquire an accurate interpretation result. In this paper, an object-oriented change detection approach is proposed which integrates spectral–spatial–saliency change information and fuzzy integral decision fusion for high-resolution remote sensing images with the purpose of eliminating the impact of detection noise. First, to reduce the influence of feature uncertainty, spectral feature change is generated by three independent methods, and spatial change information is obtained by spatial feature set construction and the optimal feature selection strategy. Secondly, the saliency change map of bi-temporal images is obtained with the co-saliency detection method to complement the insufficiency of image features. Then, the image objects are acquired by multi-scale segmentation based on the staking images. Finally, different pixel-level image change information and the segmentation result are fused using the fuzzy integral decision theory to determine the object change probability. Three high-resolution remote sensing image datasets and three comparative experiments were carried out to evaluate the performance of the proposed algorithm. Spectral–spatial–saliency change information was found to play a major role in the change detection of high-resolution remote sensing images, and the fuzzy integral decision strategy was found to effectively obtain reliable changed objects to improve the accuracy and robustness of change detection. |
Author | He, Yongjian Ge, Chuting Peng, Daifeng Ding, Haiyong Molina, Inigo |
Author_xml | – sequence: 1 givenname: Chuting surname: Ge fullname: Ge, Chuting – sequence: 2 givenname: Haiyong surname: Ding fullname: Ding, Haiyong – sequence: 3 givenname: Inigo orcidid: 0000-0002-6223-6874 surname: Molina fullname: Molina, Inigo – sequence: 4 givenname: Yongjian surname: He fullname: He, Yongjian – sequence: 5 givenname: Daifeng surname: Peng fullname: Peng, Daifeng |
BookMark | eNptUk1u1DAUjlCRKKUbThCJDUIK2LETO0uYMu1IRSN1YG059nPqUWIPtrOYrrgDJ-BqPQnuDBWowpv38_1Yz34vixPnHRTFa4zeE9KhDyFiiimpO_asOK0Rqytad_XJP_mL4jzGLcqHENwhelr8WvdbUKlaBwsugS4Xt9INUF5Aym3rXfkF0q3X5ScZM5rrzS4DQY73P35udjLZYybHrFf7R_nKGR8meTCQTpfL-e5un7sJhizN7srGB2w5H0Iml1c35Q1MPkG5ARetG8rVJAeIr4rnRo4Rzv_Es-Lb8vPXxVV1vb5cLT5eV4p0NFWN4RR3WhvMFGUMmca0PZW0Y71mPWEcqJJNgyTH0ALvtdQcAUOMGMxbpMlZsTr6ai-3YhfsJMNeeGnFoeHDIGRIVo0ggBnTG9zghqN8F-EG0x4ahhrEu1rL7PX26LUL_vsMMYnJRgXjKB34OYqaYV5zQluaqW-eULd-Di5PKuq2o4jgtm0zCx1ZKvgYAxihbDo8b_4KOwqMxMMKiL8rkCXvnkgeZ_oP-Te9Z7W2 |
CitedBy_id | crossref_primary_10_1109_JSTARS_2023_3279863 crossref_primary_10_3390_jimaging10010015 crossref_primary_10_3390_rs16132355 crossref_primary_10_1016_j_displa_2024_102840 crossref_primary_10_3390_rs15030658 |
Cites_doi | 10.1109/TGRS.2010.2048116 10.1109/TGRS.2016.2627638 10.1109/JSTARS.2018.2803784 10.1016/j.inffus.2020.08.008 10.1155/2020/2725186 10.1016/j.rse.2015.03.001 10.3390/rs10081238 10.1016/j.isprsjprs.2014.11.009 10.1016/j.rse.2015.02.012 10.3390/rs12060983 10.3390/rs11161903 10.3390/rs12101662 10.1016/j.inffus.2012.05.003 10.1016/j.isprsjprs.2016.07.003 10.1080/07038992.2020.1740083 10.1016/j.rse.2015.05.006 10.1080/10106049.2021.2022013 10.3390/rs13245094 10.3390/rs10070980 10.1109/TGRS.2013.2266673 10.1109/JSTARS.2021.3129318 10.1109/TIP.2006.888195 10.1109/JSTARS.2018.2817121 10.1016/j.isprsjprs.2016.01.018 10.1109/JSTARS.2019.2929514 10.1109/TGRS.2022.3231215 10.1016/j.isprsjprs.2020.06.003 10.1016/j.isprsjprs.2013.11.018 10.3390/app12105158 10.3390/rs10030472 10.1016/j.ecoinf.2021.101310 10.1109/LGRS.2019.2896385 10.1016/j.rse.2017.09.022 10.1109/ACCESS.2019.2922839 10.1109/TGRS.2019.2924684 10.1109/LGRS.2014.2386878 10.1109/TGRS.2009.2022633 10.3390/rs12101688 10.1109/TGRS.2020.2977248 10.1016/j.isprsjprs.2006.09.004 10.1109/ACCESS.2020.3047915 10.1016/j.rse.2012.01.003 10.1109/JSTARS.2020.3046838 10.1109/TGRS.2018.2886643 10.1080/01431161.2016.1232871 10.1016/j.isprsjprs.2020.04.007 10.1109/JSTARS.2012.2200879 10.1016/j.rse.2015.03.003 10.1109/LGRS.2019.2943406 10.1109/ACCESS.2020.3008036 10.3390/rs13081507 10.1109/LGRS.2019.2948660 10.1109/LGRS.2017.2773118 10.1007/s12145-020-00532-y 10.1016/j.rse.2015.12.031 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs14143297 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_e7ffbf15158047738f14be57050892da 10_3390_rs14143297 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c394t-5f8419ddf17c4770f5f6b4a497bd7b378e4ca550a81e6e8bdad80e7073f1860d3 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:30:02 EDT 2025 Fri Jul 11 00:50:38 EDT 2025 Fri Jul 25 09:36:20 EDT 2025 Thu Apr 24 22:57:24 EDT 2025 Tue Jul 01 01:59:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-5f8419ddf17c4770f5f6b4a497bd7b378e4ca550a81e6e8bdad80e7073f1860d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6223-6874 |
OpenAccessLink | https://www.proquest.com/docview/2694031666?pq-origsite=%requestingapplication% |
PQID | 2694031666 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e7ffbf15158047738f14be57050892da proquest_miscellaneous_2718283464 proquest_journals_2694031666 crossref_citationtrail_10_3390_rs14143297 crossref_primary_10_3390_rs14143297 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 DeVries (ref_15) 2015; 161 Du (ref_57) 2012; 5 Zhang (ref_33) 2017; 201 Wu (ref_53) 2020; 17 Dragut (ref_64) 2014; 88 ref_14 Benediktsson (ref_31) 2010; 48 ref_56 ref_11 ref_54 Sun (ref_51) 2022; 60 ref_16 Ansari (ref_28) 2020; 20 Bovolo (ref_19) 2019; 16 Wang (ref_12) 2020; 164 Saha (ref_18) 2019; 57 Khelifi (ref_39) 2020; 8 ref_67 ref_22 Biao (ref_9) 2015; 12 Huang (ref_63) 2020; 2020 Liu (ref_2) 2015; 101 Xiao (ref_27) 2016; 119 ref_29 Pisek (ref_3) 2015; 163 Mayes (ref_17) 2015; 165 Lal (ref_58) 2015; 18 Fang (ref_6) 2022; 19 Singh (ref_24) 2018; 21 Cai (ref_25) 2016; 37 Zhang (ref_34) 2020; 46 Wu (ref_20) 2014; 52 Xiao (ref_32) 2017; 55 ref_35 Hao (ref_48) 2020; 17 Liu (ref_61) 2019; 12 Tarantino (ref_7) 2016; 175 Xue (ref_13) 2021; 14 Ferraris (ref_44) 2020; 64 Afaq (ref_36) 2021; 63 Ye (ref_59) 2016; 114 Wood (ref_4) 2012; 121 Xu (ref_46) 2019; 7 ref_38 Pan (ref_41) 2022; 108 Wu (ref_8) 2018; 15 ref_37 Zhao (ref_52) 2020; 14 Lv (ref_10) 2018; 11 Benedek (ref_66) 2009; 47 Pan (ref_42) 2021; 14 Lv (ref_62) 2020; 58 Nemmour (ref_65) 2006; 61 Chanussot (ref_49) 2022; 60 Zou (ref_60) 2022; 19 Chen (ref_40) 2022; 60 Du (ref_5) 2013; 14 Rokni (ref_45) 2015; 34 Nielsen (ref_21) 2007; 16 Zhang (ref_47) 2018; 11 Leichtle (ref_26) 2017; 54 Zhang (ref_43) 2020; 166 Shao (ref_55) 2022; 19 Grogan (ref_1) 2015; 169 Zhao (ref_23) 2021; 9 Ye (ref_30) 2019; 57 |
References_xml | – volume: 48 start-page: 3747 year: 2010 ident: ref_31 article-title: Morphological Attribute Profiles for the Analysis of Very High Resolution Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2048116 – volume: 55 start-page: 1587 year: 2017 ident: ref_32 article-title: Cosegmentation for Object-Based Building Change Detection From High-Resolution Remotely Sensed Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2627638 – volume: 11 start-page: 1520 year: 2018 ident: ref_10 article-title: Landslide Inventory Mapping From Bitemporal High-Resolution Remote Sensing Images Using Change Detection and Multiscale Segmentation publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2803784 – volume: 64 start-page: 293 year: 2020 ident: ref_44 article-title: Robust fusion algorithms for unsupervised change detection between multi-band optical images—A comprehensive case study publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.08.008 – volume: 18 start-page: 279 year: 2015 ident: ref_58 article-title: Semi-supervised change detection approach combining sparse fusion and constrained k means for multi-temporal remote sensing images publication-title: Egypt. J. Remote Sens. Space Sci. – volume: 2020 start-page: 2725186 year: 2020 ident: ref_63 article-title: Change Detection in Multitemporal High Spatial Resolution Remote-Sensing Images Based on Saliency Detection and Spatial Intuitionistic Fuzzy C-Means Clustering publication-title: J. Spectrosc. doi: 10.1155/2020/2725186 – volume: 169 start-page: 438 year: 2015 ident: ref_1 article-title: Cross-border forest disturbance and the role of natural rubber in mainland Southeast Asia using annual Landsat time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.03.001 – ident: ref_56 doi: 10.3390/rs10081238 – volume: 101 start-page: 145 year: 2015 ident: ref_2 article-title: A new segmentation method for very high resolution imagery using spectral and morphological information publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.11.009 – volume: 161 start-page: 107 year: 2015 ident: ref_15 article-title: Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.02.012 – ident: ref_22 doi: 10.3390/rs12060983 – volume: 19 start-page: 1 year: 2022 ident: ref_6 article-title: Unsupervised Change Detection Based on Weighted Change Vector Analysis and Improved Markov Random Field for High Spatial Resolution Imagery publication-title: IEEE Geosci. Remote Sens. Lett. – ident: ref_29 doi: 10.3390/rs11161903 – ident: ref_14 doi: 10.3390/rs12101662 – volume: 14 start-page: 19 year: 2013 ident: ref_5 article-title: Information fusion techniques for change detection from multi-temporal remote sensing images publication-title: Inf. Fusion doi: 10.1016/j.inffus.2012.05.003 – volume: 119 start-page: 402 year: 2016 ident: ref_27 article-title: Change detection of built-up land: A framework of combining pixel-based detection and object-based recognition publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.07.003 – volume: 19 start-page: 1 year: 2022 ident: ref_60 article-title: Multilevel Information Fusion-Based Change Detection for Multiangle PolSAR Images publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 46 start-page: 67 year: 2020 ident: ref_34 article-title: Land–Use and Land-Cover Change Detection Using Dynamic Time Warping–Based Time Series Clustering Method publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.2020.1740083 – volume: 165 start-page: 203 year: 2015 ident: ref_17 article-title: Forest cover change in Miombo Woodlands: Modeling land cover of African dry tropical forests with linear spectral mixture analysis publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.05.006 – ident: ref_35 doi: 10.1080/10106049.2021.2022013 – ident: ref_67 doi: 10.3390/rs13245094 – volume: 34 start-page: 226 year: 2015 ident: ref_45 article-title: A new approach for surface water change detection: Integration of pixel level image fusion and image classification techniques publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_54 doi: 10.3390/rs10070980 – volume: 52 start-page: 2858 year: 2014 ident: ref_20 article-title: Slow Feature Analysis for Change Detection in Multispectral Imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2266673 – volume: 14 start-page: 11974 year: 2021 ident: ref_42 article-title: DCFF-Net: A Densely Connected Feature Fusion Network for Change Detection in High-Resolution Remote Sensing Images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3129318 – volume: 16 start-page: 463 year: 2007 ident: ref_21 article-title: The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.888195 – volume: 108 start-page: 102676 year: 2022 ident: ref_41 article-title: MapsNet: Multi-level feature constraint and fusion network for change detection publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 11 start-page: 2440 year: 2018 ident: ref_47 article-title: High-Resolution Remote Sensing Image Change Detection by Statistical-Object-Based Method publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2817121 – volume: 114 start-page: 115 year: 2016 ident: ref_59 article-title: A targeted change-detection procedure by combining change vector analysis and post-classification approach publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.018 – volume: 12 start-page: 3578 year: 2019 ident: ref_61 article-title: Unsupervised Change Detection in Multispectral Remote Sensing Images via Spectral-Spatial Band Expansion publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2929514 – volume: 60 start-page: 1 year: 2022 ident: ref_51 article-title: Sparse-Constrained Adaptive Structure Consistency-Based Unsupervised Image Regression for Heterogeneous Remote-Sensing Change Detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3231215 – volume: 166 start-page: 183 year: 2020 ident: ref_43 article-title: A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.06.003 – volume: 88 start-page: 119 year: 2014 ident: ref_64 article-title: Automated parameterisation for multi-scale image segmentation on multiple layers publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.11.018 – ident: ref_50 doi: 10.3390/app12105158 – ident: ref_16 doi: 10.3390/rs10030472 – volume: 63 start-page: 101310 year: 2021 ident: ref_36 article-title: Analysis on change detection techniques for remote sensing applications: A review publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2021.101310 – volume: 16 start-page: 1334 year: 2019 ident: ref_19 article-title: An Approach to Multiple Change Detection in VHR Optical Images Based on Iterative Clustering and Adaptive Thresholding publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2896385 – volume: 201 start-page: 243 year: 2017 ident: ref_33 article-title: Separate segmentation of multi-temporal high-resolution remote sensing images for object-based change detection in urban area publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.09.022 – volume: 60 start-page: 1 year: 2022 ident: ref_40 article-title: Remote Sensing Image Change Detection With Transformers publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 7 start-page: 78909 year: 2019 ident: ref_46 article-title: High-Resolution Remote Sensing Image Change Detection Combined With Pixel-Level and Object-Level publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2922839 – volume: 54 start-page: 15 year: 2017 ident: ref_26 article-title: Unsupervised change detection in VHR remote sensing imagery—An object-based clustering approach in a dynamic urban environment publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 57 start-page: 9059 year: 2019 ident: ref_30 article-title: Fast and Robust Matching for Multimodal Remote Sensing Image Registration publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2924684 – volume: 12 start-page: 1151 year: 2015 ident: ref_9 article-title: Object-Based Change Detection of Very High Resolution Satellite Imagery Using the Cross-Sharpening of Multitemporal Data publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2386878 – ident: ref_37 – volume: 47 start-page: 3416 year: 2009 ident: ref_66 article-title: Change Detection in Optical Aerial Images by a Multilayer Conditional Mixed Markov Model publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2022633 – ident: ref_38 doi: 10.3390/rs12101688 – volume: 58 start-page: 6524 year: 2020 ident: ref_62 article-title: Object-Oriented Key Point Vector Distance for Binary Land Cover Change Detection Using VHR Remote Sensing Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2977248 – volume: 61 start-page: 125 year: 2006 ident: ref_65 article-title: Multiple support vector machines for land cover change detection: An application for mapping urban extensions publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2006.09.004 – volume: 9 start-page: 4673 year: 2021 ident: ref_23 article-title: Change Detection Method of High Resolution Remote Sensing Image Based on D-S Evidence Theory Feature Fusion publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3047915 – volume: 121 start-page: 516 year: 2012 ident: ref_4 article-title: Image texture as a remotely sensed measure of vegetation structure publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.01.003 – volume: 60 start-page: 1 year: 2022 ident: ref_49 article-title: Graph Learning Based on Signal Smoothness Representation for Homogeneous and Heterogeneous Change Detection publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 14 start-page: 1796 year: 2021 ident: ref_13 article-title: Unsupervised Change Detection Using Multiscale and Multiresolution Gaussian-Mixture-Model Guided by Saliency Enhancement publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.3046838 – volume: 57 start-page: 3677 year: 2019 ident: ref_18 article-title: Unsupervised Deep Change Vector Analysis for Multiple-Change Detection in VHR Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2886643 – volume: 37 start-page: 5457 year: 2016 ident: ref_25 article-title: Object-oriented change detection method based on adaptive multi-method combination for remote-sensing images publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1232871 – volume: 19 start-page: 1 year: 2022 ident: ref_55 article-title: Novel Multiscale Decision Fusion Approach to Unsupervised Change Detection for High-Resolution Images publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 164 start-page: 61 year: 2020 ident: ref_12 article-title: Unsupervised change detection between SAR images based on hypergraphs publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.04.007 – volume: 5 start-page: 1076 year: 2012 ident: ref_57 article-title: Fusion of Difference Images for Change Detection Over Urban Areas publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2012.2200879 – volume: 163 start-page: 42 year: 2015 ident: ref_3 article-title: Estimation of seasonal dynamics of understory NDVI in northern forests using MODIS BRDF data: Semi-empirical versus physically-based approach publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.03.003 – volume: 17 start-page: 1124 year: 2020 ident: ref_53 article-title: Optimal Segmentation Scale Selection for Object-Based Change Detection in Remote Sensing Images Using Kullback–Leibler Divergence publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2943406 – volume: 21 start-page: 345 year: 2018 ident: ref_24 article-title: Unsupervised change detection in remote sensing images using fusion of spectral and statistical indices publication-title: Egypt. J. Remote Sens. Space Sci. – volume: 8 start-page: 126385 year: 2020 ident: ref_39 article-title: Deep Learning for Change Detection in Remote Sensing Images: Comprehensive Review and Meta-Analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3008036 – volume: 20 start-page: 100418 year: 2020 ident: ref_28 article-title: Urban change detection analysis utilizing multiresolution texture features from polarimetric SAR images publication-title: Remote Sens. Appl. Soc. Environ. – ident: ref_11 doi: 10.3390/rs13081507 – volume: 17 start-page: 1401 year: 2020 ident: ref_48 article-title: An Advanced Superpixel-Based Markov Random Field Model for Unsupervised Change Detection publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2948660 – volume: 15 start-page: 63 year: 2018 ident: ref_8 article-title: Unsupervised Object-Based Change Detection via a Weibull Mixture Model-Based Binarization for High-Resolution Remote Sensing Images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2773118 – volume: 14 start-page: 69 year: 2020 ident: ref_52 article-title: Change detection in SAR images based on superpixel segmentation and image regression publication-title: Earth Sci. Inform. doi: 10.1007/s12145-020-00532-y – volume: 175 start-page: 65 year: 2016 ident: ref_7 article-title: Detection of changes in semi-natural grasslands by cross correlation analysis with WorldView-2 images and new Landsat 8 data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.12.031 |
SSID | ssj0000331904 |
Score | 2.3471355 |
Snippet | Spectral features in remote sensing images are extensively utilized to detect land cover changes. However, detection noise appearing in the changing maps due... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 3297 |
SubjectTerms | Accuracy Algorithms Change detection co-saliency detection data collection decision making Decision theory Deep learning fuzzy integral decision fusion High resolution Image acquisition image analysis Image processing Image resolution Image segmentation Land cover Methods Morphology Noise reduction Object recognition object-oriented method Remote sensing Salience Semantics spectral–spatial features Staking Strategy uncertainty |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTuQwDI4QF7ggWEAMC6ug5cKhop2kTXrkbzSsBEj8SNyqpHEAiS2ImTnAiXfgCfbV9kmwk84w0iJx2VP_3KqKHftzG_tjbBshdp5aAUmN4S7BmegSK8En3gnhM-ugCDxkJ6dF_0r-us6vp6i-aE1YbA8cB24XlPfWU9jVqVRKaJ9JC7lKEVmUXRegEca8qWQq-GCBppXK2I9UYF6_-zTIJGKDLnV3mopAoVH_P344BJfeIltoUSHfi2-zxGag-cbmWoLy2-dl9ufM0geT5IzaEiNI5LEqgB_CMKylavhJoILm-xiVHMdjIpanrxh_X9-Idvgu7iHqplrL8e1tMVJ4gGkc741eXp75cWwhcY9PjwQ8eD5sUJj3z_k5oH6BX9Da9-aGH_9GnzRYYVe9o8uDftKyKyS1KOUwyb2WWemcz1SNA5v63BdWGlkq65QVSoOsDeYvRmdQgLbOOJ2CQpfgM12kTqyy2eahgTXGfa11DakpVeZl7qC01ipw1hgncsjLDtsZj3hVt63HiQHjvsIUhLRTfWinw35OZB9jw41PpfZJcRMJapIdTqDpVK3pVF-ZTodtjNVetTN3UFFlLzo6zOo6bGtyGecc_UgxDTyMUAYDOsIyWcj1__Ee39l8l4oqwiLgDTY7fBrBJkKdof0RrPodq4sAgQ priority: 102 providerName: Directory of Open Access Journals |
Title | Object-Oriented Change Detection Method Based on Spectral–Spatial–Saliency Change Information and Fuzzy Integral Decision Fusion for HR Remote Sensing Images |
URI | https://www.proquest.com/docview/2694031666 https://www.proquest.com/docview/2718283464 https://doaj.org/article/e7ffbf15158047738f14be57050892da |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELZo9wAXxK_YUlZGcOEQNVk7sXNC3bbLFrEt2lKpt8iOxwWpzZb9ObQn3oEn4NV4ks443i0SiFP-JpaSsWc-jz3zMfYWIXaeWgFJje4uwZHoEivBJ94J4TProAg8ZOOjYnQqP57lZzHgNo_bKlc2MRhqN60pRr5DGZfYARFtv7_6nhBrFK2uRgqNDdZBE6xx8tUZHBx9nqyjLKnALpbKti6pwPn9zmyeScQIfary9IcnCgX7_7LHwckMH7GHER3y3Vadj9k9aJ6w-5Go_Ov1U_br2FLgJDmm8sQIFnmbHcD3YRH2VDV8HCih-QC9k-N4TQTzFM34_eMn0Q9_a88QfVPO5er1mJQUGjCN48Plzc01P2xLSVxg6y0RD94PBxTmowmfAOoZ-AntgW_O-eEl2qb5M3Y6PPiyN0oiy0JSi1IuktxrmZXO-UzVUqnU576w0shSWaesUBpkbXAeY3QGBWjrjNMpKDQNPtNF6sRzttlMG3jBuK-1riE1pcq8zB2U1loFzhrjRA552WXvVn-8qmMJcmLCuKhwKkLaqe6002Vv1rJXbeGNf0oNSHFrCSqWHW5MZ-dVHHsVKO-tJ-SmU_xCoX0mLeQqRXBa9p3psu2V2qs4gufVXX_rstfrxzj2aEHFNDBdogw6doRnspBb_2_iJXvQp7SJsM13m20uZkt4hWBmYXtsQw8_9Fhnd3_86aQX-28vhAZuAacK_Vw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOZQL4lcsFDACDhyiOrETOweEKGXZpd1WKq3UWxrH44JUsmV_hLYn3oEn4AV4KJ6EGSfZIoG49ZTEmViK58dfHM98jD1DiJ0KKyGqcLqL0BNdZBX4yDspfWwdZIGHbLSbDQ7V-6P0aIX97HJhaFtlFxNDoHbjitbINyjjEg0Q0farsy8RsUbR39WOQqMxi21YfMVPtunL4Rbq93mS9N8evBlELatAVMlczaLUGxXnzvlYV0pr4VOfWVWqXFunrdQGVFUibi9NDBkY60pnBGh0BR-bTDiJ_V5hV5WUOXmU6b9brukIiQYtVFMFFe-Ljck0VohIEqop9ce8F-gB_or-YUrr32DXWyzKXzfGc5OtQH2LrbW06B8Xt9mPPUvLNNEeFUNGaMqbXAS-BbOwg6vmo0BAzTdxLnQcr4nOntZOfn37TmTHn5ozxPqU4dk93qZAhQ7K2vH-_Px8wYdN4YpT7L2h_cH2cEBhPtjn-4BWBfwD7bivT_jwM0bC6R12eCmjf5et1uMa7jHuK2MqEGWuY69SB7m1VoOzZelkCmneYy-6ES-qtuA58W6cFvjhQ9opLrTTY0-XsmdNmY9_Sm2S4pYSVJo7NIwnJ0Xr6QVo760nnGgEvqE0PlYWUi0QCueJK3tsvVN70caLaXFh3T32ZHkbPZ1-35Q1jOcogzACwaDK1P3_d_GYrQ0ORjvFznB3-wG7llDCRthgvM5WZ5M5PEQYNbOPgu1ydnzZzvIbU3c11A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKVgIuiF-xpYARcOAQrbN2YueAEMt2tUvptlqo1Fuw43GpVLJlf4S2J96BJ-A1eByehLGTbJFA3HrabDKxlMyM57MzMx8hzxBiJ8xwiAoMdxF6oo2MABc5y7mLjYU08JDtjdPhoXh7lBxtkJ9NLYxPq2zmxDBR22nh98g7vuISDRDRdsfVaREH_cGrsy-RZ5DyX1obOo3KRHZh9RWXb_OXoz7q-nm3O9j58GYY1QwDUcEzsYgSp0ScWetiWQgpmUtcaoQWmTRWGi4ViEIjhtcqhhSUsdoqBhLdwsUqZZbjuFfIpsRVEWuRzd7O-GCy3uFhHM2biaonKucZ68zmsUB80vUdpv6IgoEs4K9YEALc4Ca5USNT-roypVtkA8rb5FpNkv5pdYf82Dd-0yba962REajSqjKB9mER8rlKuhfoqGkPI6Ol-N-T2_udlF_fvnvq45PqCJG_r_dsbq8LosIAurR0sDw_X9FR1cbiFEevSIDwfPhBYTqc0AmgjQF97_Pvy2M6-ozz4vwuObyU93-PtMppCfcJdYVSBTCdydiJxEJmjJFgjdaWJ5BkbfKieeN5Ubc_9ywcpzkug7x28gvttMnTtexZ1fTjn1I9r7i1hG_UHU5MZ8d57fc5SOeM86hRMXxCrlwsDCSSITDOula3yXaj9ryePeb5ha23yZP1ZfR7_zFHlzBdogyCCoSGIhVb_x_iMbmKjpK_G413H5DrXV-9EbKNt0lrMVvCQ8RUC_OoNl5KPl62v_wGeyU7Zg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object-Oriented+Change+Detection+Method+Based+on+Spectral%E2%80%93Spatial%E2%80%93Saliency+Change+Information+and+Fuzzy+Integral+Decision+Fusion+for+HR+Remote+Sensing+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Ge%2C+Chuting&rft.au=Ding%2C+Haiyong&rft.au=Molina%2C+Inigo&rft.au=He%2C+Yongjian&rft.date=2022-07-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=14&rft.spage=3297&rft_id=info:doi/10.3390%2Frs14143297&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |