Object-Oriented Change Detection Method Based on Spectral–Spatial–Saliency Change Information and Fuzzy Integral Decision Fusion for HR Remote Sensing Images

Spectral features in remote sensing images are extensively utilized to detect land cover changes. However, detection noise appearing in the changing maps due to the abundant spatial details in the high-resolution images makes it difficult to acquire an accurate interpretation result. In this paper,...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 14; no. 14; p. 3297
Main Authors Ge, Chuting, Ding, Haiyong, Molina, Inigo, He, Yongjian, Peng, Daifeng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spectral features in remote sensing images are extensively utilized to detect land cover changes. However, detection noise appearing in the changing maps due to the abundant spatial details in the high-resolution images makes it difficult to acquire an accurate interpretation result. In this paper, an object-oriented change detection approach is proposed which integrates spectral–spatial–saliency change information and fuzzy integral decision fusion for high-resolution remote sensing images with the purpose of eliminating the impact of detection noise. First, to reduce the influence of feature uncertainty, spectral feature change is generated by three independent methods, and spatial change information is obtained by spatial feature set construction and the optimal feature selection strategy. Secondly, the saliency change map of bi-temporal images is obtained with the co-saliency detection method to complement the insufficiency of image features. Then, the image objects are acquired by multi-scale segmentation based on the staking images. Finally, different pixel-level image change information and the segmentation result are fused using the fuzzy integral decision theory to determine the object change probability. Three high-resolution remote sensing image datasets and three comparative experiments were carried out to evaluate the performance of the proposed algorithm. Spectral–spatial–saliency change information was found to play a major role in the change detection of high-resolution remote sensing images, and the fuzzy integral decision strategy was found to effectively obtain reliable changed objects to improve the accuracy and robustness of change detection.
AbstractList Spectral features in remote sensing images are extensively utilized to detect land cover changes. However, detection noise appearing in the changing maps due to the abundant spatial details in the high-resolution images makes it difficult to acquire an accurate interpretation result. In this paper, an object-oriented change detection approach is proposed which integrates spectral–spatial–saliency change information and fuzzy integral decision fusion for high-resolution remote sensing images with the purpose of eliminating the impact of detection noise. First, to reduce the influence of feature uncertainty, spectral feature change is generated by three independent methods, and spatial change information is obtained by spatial feature set construction and the optimal feature selection strategy. Secondly, the saliency change map of bi-temporal images is obtained with the co-saliency detection method to complement the insufficiency of image features. Then, the image objects are acquired by multi-scale segmentation based on the staking images. Finally, different pixel-level image change information and the segmentation result are fused using the fuzzy integral decision theory to determine the object change probability. Three high-resolution remote sensing image datasets and three comparative experiments were carried out to evaluate the performance of the proposed algorithm. Spectral–spatial–saliency change information was found to play a major role in the change detection of high-resolution remote sensing images, and the fuzzy integral decision strategy was found to effectively obtain reliable changed objects to improve the accuracy and robustness of change detection.
Author He, Yongjian
Ge, Chuting
Peng, Daifeng
Ding, Haiyong
Molina, Inigo
Author_xml – sequence: 1
  givenname: Chuting
  surname: Ge
  fullname: Ge, Chuting
– sequence: 2
  givenname: Haiyong
  surname: Ding
  fullname: Ding, Haiyong
– sequence: 3
  givenname: Inigo
  orcidid: 0000-0002-6223-6874
  surname: Molina
  fullname: Molina, Inigo
– sequence: 4
  givenname: Yongjian
  surname: He
  fullname: He, Yongjian
– sequence: 5
  givenname: Daifeng
  surname: Peng
  fullname: Peng, Daifeng
BookMark eNptUk1u1DAUjlCRKKUbThCJDUIK2LETO0uYMu1IRSN1YG059nPqUWIPtrOYrrgDJ-BqPQnuDBWowpv38_1Yz34vixPnHRTFa4zeE9KhDyFiiimpO_asOK0Rqytad_XJP_mL4jzGLcqHENwhelr8WvdbUKlaBwsugS4Xt9INUF5Aym3rXfkF0q3X5ScZM5rrzS4DQY73P35udjLZYybHrFf7R_nKGR8meTCQTpfL-e5un7sJhizN7srGB2w5H0Iml1c35Q1MPkG5ARetG8rVJAeIr4rnRo4Rzv_Es-Lb8vPXxVV1vb5cLT5eV4p0NFWN4RR3WhvMFGUMmca0PZW0Y71mPWEcqJJNgyTH0ALvtdQcAUOMGMxbpMlZsTr6ai-3YhfsJMNeeGnFoeHDIGRIVo0ggBnTG9zghqN8F-EG0x4ahhrEu1rL7PX26LUL_vsMMYnJRgXjKB34OYqaYV5zQluaqW-eULd-Di5PKuq2o4jgtm0zCx1ZKvgYAxihbDo8b_4KOwqMxMMKiL8rkCXvnkgeZ_oP-Te9Z7W2
CitedBy_id crossref_primary_10_1109_JSTARS_2023_3279863
crossref_primary_10_3390_jimaging10010015
crossref_primary_10_3390_rs16132355
crossref_primary_10_1016_j_displa_2024_102840
crossref_primary_10_3390_rs15030658
Cites_doi 10.1109/TGRS.2010.2048116
10.1109/TGRS.2016.2627638
10.1109/JSTARS.2018.2803784
10.1016/j.inffus.2020.08.008
10.1155/2020/2725186
10.1016/j.rse.2015.03.001
10.3390/rs10081238
10.1016/j.isprsjprs.2014.11.009
10.1016/j.rse.2015.02.012
10.3390/rs12060983
10.3390/rs11161903
10.3390/rs12101662
10.1016/j.inffus.2012.05.003
10.1016/j.isprsjprs.2016.07.003
10.1080/07038992.2020.1740083
10.1016/j.rse.2015.05.006
10.1080/10106049.2021.2022013
10.3390/rs13245094
10.3390/rs10070980
10.1109/TGRS.2013.2266673
10.1109/JSTARS.2021.3129318
10.1109/TIP.2006.888195
10.1109/JSTARS.2018.2817121
10.1016/j.isprsjprs.2016.01.018
10.1109/JSTARS.2019.2929514
10.1109/TGRS.2022.3231215
10.1016/j.isprsjprs.2020.06.003
10.1016/j.isprsjprs.2013.11.018
10.3390/app12105158
10.3390/rs10030472
10.1016/j.ecoinf.2021.101310
10.1109/LGRS.2019.2896385
10.1016/j.rse.2017.09.022
10.1109/ACCESS.2019.2922839
10.1109/TGRS.2019.2924684
10.1109/LGRS.2014.2386878
10.1109/TGRS.2009.2022633
10.3390/rs12101688
10.1109/TGRS.2020.2977248
10.1016/j.isprsjprs.2006.09.004
10.1109/ACCESS.2020.3047915
10.1016/j.rse.2012.01.003
10.1109/JSTARS.2020.3046838
10.1109/TGRS.2018.2886643
10.1080/01431161.2016.1232871
10.1016/j.isprsjprs.2020.04.007
10.1109/JSTARS.2012.2200879
10.1016/j.rse.2015.03.003
10.1109/LGRS.2019.2943406
10.1109/ACCESS.2020.3008036
10.3390/rs13081507
10.1109/LGRS.2019.2948660
10.1109/LGRS.2017.2773118
10.1007/s12145-020-00532-y
10.1016/j.rse.2015.12.031
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs14143297
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_e7ffbf15158047738f14be57050892da
10_3390_rs14143297
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-5f8419ddf17c4770f5f6b4a497bd7b378e4ca550a81e6e8bdad80e7073f1860d3
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:30:02 EDT 2025
Fri Jul 11 00:50:38 EDT 2025
Fri Jul 25 09:36:20 EDT 2025
Thu Apr 24 22:57:24 EDT 2025
Tue Jul 01 01:59:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-5f8419ddf17c4770f5f6b4a497bd7b378e4ca550a81e6e8bdad80e7073f1860d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6223-6874
OpenAccessLink https://www.proquest.com/docview/2694031666?pq-origsite=%requestingapplication%
PQID 2694031666
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_e7ffbf15158047738f14be57050892da
proquest_miscellaneous_2718283464
proquest_journals_2694031666
crossref_citationtrail_10_3390_rs14143297
crossref_primary_10_3390_rs14143297
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
DeVries (ref_15) 2015; 161
Du (ref_57) 2012; 5
Zhang (ref_33) 2017; 201
Wu (ref_53) 2020; 17
Dragut (ref_64) 2014; 88
ref_14
Benediktsson (ref_31) 2010; 48
ref_56
ref_11
ref_54
Sun (ref_51) 2022; 60
ref_16
Ansari (ref_28) 2020; 20
Bovolo (ref_19) 2019; 16
Wang (ref_12) 2020; 164
Saha (ref_18) 2019; 57
Khelifi (ref_39) 2020; 8
ref_67
ref_22
Biao (ref_9) 2015; 12
Huang (ref_63) 2020; 2020
Liu (ref_2) 2015; 101
Xiao (ref_27) 2016; 119
ref_29
Pisek (ref_3) 2015; 163
Mayes (ref_17) 2015; 165
Lal (ref_58) 2015; 18
Fang (ref_6) 2022; 19
Singh (ref_24) 2018; 21
Cai (ref_25) 2016; 37
Zhang (ref_34) 2020; 46
Wu (ref_20) 2014; 52
Xiao (ref_32) 2017; 55
ref_35
Hao (ref_48) 2020; 17
Liu (ref_61) 2019; 12
Tarantino (ref_7) 2016; 175
Xue (ref_13) 2021; 14
Ferraris (ref_44) 2020; 64
Afaq (ref_36) 2021; 63
Ye (ref_59) 2016; 114
Wood (ref_4) 2012; 121
Xu (ref_46) 2019; 7
ref_38
Pan (ref_41) 2022; 108
Wu (ref_8) 2018; 15
ref_37
Zhao (ref_52) 2020; 14
Lv (ref_10) 2018; 11
Benedek (ref_66) 2009; 47
Pan (ref_42) 2021; 14
Lv (ref_62) 2020; 58
Nemmour (ref_65) 2006; 61
Chanussot (ref_49) 2022; 60
Zou (ref_60) 2022; 19
Chen (ref_40) 2022; 60
Du (ref_5) 2013; 14
Rokni (ref_45) 2015; 34
Nielsen (ref_21) 2007; 16
Zhang (ref_47) 2018; 11
Leichtle (ref_26) 2017; 54
Zhang (ref_43) 2020; 166
Shao (ref_55) 2022; 19
Grogan (ref_1) 2015; 169
Zhao (ref_23) 2021; 9
Ye (ref_30) 2019; 57
References_xml – volume: 48
  start-page: 3747
  year: 2010
  ident: ref_31
  article-title: Morphological Attribute Profiles for the Analysis of Very High Resolution Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2048116
– volume: 55
  start-page: 1587
  year: 2017
  ident: ref_32
  article-title: Cosegmentation for Object-Based Building Change Detection From High-Resolution Remotely Sensed Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2627638
– volume: 11
  start-page: 1520
  year: 2018
  ident: ref_10
  article-title: Landslide Inventory Mapping From Bitemporal High-Resolution Remote Sensing Images Using Change Detection and Multiscale Segmentation
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2803784
– volume: 64
  start-page: 293
  year: 2020
  ident: ref_44
  article-title: Robust fusion algorithms for unsupervised change detection between multi-band optical images—A comprehensive case study
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.08.008
– volume: 18
  start-page: 279
  year: 2015
  ident: ref_58
  article-title: Semi-supervised change detection approach combining sparse fusion and constrained k means for multi-temporal remote sensing images
  publication-title: Egypt. J. Remote Sens. Space Sci.
– volume: 2020
  start-page: 2725186
  year: 2020
  ident: ref_63
  article-title: Change Detection in Multitemporal High Spatial Resolution Remote-Sensing Images Based on Saliency Detection and Spatial Intuitionistic Fuzzy C-Means Clustering
  publication-title: J. Spectrosc.
  doi: 10.1155/2020/2725186
– volume: 169
  start-page: 438
  year: 2015
  ident: ref_1
  article-title: Cross-border forest disturbance and the role of natural rubber in mainland Southeast Asia using annual Landsat time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.03.001
– ident: ref_56
  doi: 10.3390/rs10081238
– volume: 101
  start-page: 145
  year: 2015
  ident: ref_2
  article-title: A new segmentation method for very high resolution imagery using spectral and morphological information
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.11.009
– volume: 161
  start-page: 107
  year: 2015
  ident: ref_15
  article-title: Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.02.012
– ident: ref_22
  doi: 10.3390/rs12060983
– volume: 19
  start-page: 1
  year: 2022
  ident: ref_6
  article-title: Unsupervised Change Detection Based on Weighted Change Vector Analysis and Improved Markov Random Field for High Spatial Resolution Imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
– ident: ref_29
  doi: 10.3390/rs11161903
– ident: ref_14
  doi: 10.3390/rs12101662
– volume: 14
  start-page: 19
  year: 2013
  ident: ref_5
  article-title: Information fusion techniques for change detection from multi-temporal remote sensing images
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2012.05.003
– volume: 119
  start-page: 402
  year: 2016
  ident: ref_27
  article-title: Change detection of built-up land: A framework of combining pixel-based detection and object-based recognition
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.07.003
– volume: 19
  start-page: 1
  year: 2022
  ident: ref_60
  article-title: Multilevel Information Fusion-Based Change Detection for Multiangle PolSAR Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 46
  start-page: 67
  year: 2020
  ident: ref_34
  article-title: Land–Use and Land-Cover Change Detection Using Dynamic Time Warping–Based Time Series Clustering Method
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2020.1740083
– volume: 165
  start-page: 203
  year: 2015
  ident: ref_17
  article-title: Forest cover change in Miombo Woodlands: Modeling land cover of African dry tropical forests with linear spectral mixture analysis
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.05.006
– ident: ref_35
  doi: 10.1080/10106049.2021.2022013
– ident: ref_67
  doi: 10.3390/rs13245094
– volume: 34
  start-page: 226
  year: 2015
  ident: ref_45
  article-title: A new approach for surface water change detection: Integration of pixel level image fusion and image classification techniques
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_54
  doi: 10.3390/rs10070980
– volume: 52
  start-page: 2858
  year: 2014
  ident: ref_20
  article-title: Slow Feature Analysis for Change Detection in Multispectral Imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2266673
– volume: 14
  start-page: 11974
  year: 2021
  ident: ref_42
  article-title: DCFF-Net: A Densely Connected Feature Fusion Network for Change Detection in High-Resolution Remote Sensing Images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3129318
– volume: 16
  start-page: 463
  year: 2007
  ident: ref_21
  article-title: The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.888195
– volume: 108
  start-page: 102676
  year: 2022
  ident: ref_41
  article-title: MapsNet: Multi-level feature constraint and fusion network for change detection
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 11
  start-page: 2440
  year: 2018
  ident: ref_47
  article-title: High-Resolution Remote Sensing Image Change Detection by Statistical-Object-Based Method
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2817121
– volume: 114
  start-page: 115
  year: 2016
  ident: ref_59
  article-title: A targeted change-detection procedure by combining change vector analysis and post-classification approach
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.018
– volume: 12
  start-page: 3578
  year: 2019
  ident: ref_61
  article-title: Unsupervised Change Detection in Multispectral Remote Sensing Images via Spectral-Spatial Band Expansion
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2929514
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_51
  article-title: Sparse-Constrained Adaptive Structure Consistency-Based Unsupervised Image Regression for Heterogeneous Remote-Sensing Change Detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3231215
– volume: 166
  start-page: 183
  year: 2020
  ident: ref_43
  article-title: A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.06.003
– volume: 88
  start-page: 119
  year: 2014
  ident: ref_64
  article-title: Automated parameterisation for multi-scale image segmentation on multiple layers
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.11.018
– ident: ref_50
  doi: 10.3390/app12105158
– ident: ref_16
  doi: 10.3390/rs10030472
– volume: 63
  start-page: 101310
  year: 2021
  ident: ref_36
  article-title: Analysis on change detection techniques for remote sensing applications: A review
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2021.101310
– volume: 16
  start-page: 1334
  year: 2019
  ident: ref_19
  article-title: An Approach to Multiple Change Detection in VHR Optical Images Based on Iterative Clustering and Adaptive Thresholding
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2896385
– volume: 201
  start-page: 243
  year: 2017
  ident: ref_33
  article-title: Separate segmentation of multi-temporal high-resolution remote sensing images for object-based change detection in urban area
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.09.022
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_40
  article-title: Remote Sensing Image Change Detection With Transformers
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 7
  start-page: 78909
  year: 2019
  ident: ref_46
  article-title: High-Resolution Remote Sensing Image Change Detection Combined With Pixel-Level and Object-Level
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2922839
– volume: 54
  start-page: 15
  year: 2017
  ident: ref_26
  article-title: Unsupervised change detection in VHR remote sensing imagery—An object-based clustering approach in a dynamic urban environment
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 57
  start-page: 9059
  year: 2019
  ident: ref_30
  article-title: Fast and Robust Matching for Multimodal Remote Sensing Image Registration
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2924684
– volume: 12
  start-page: 1151
  year: 2015
  ident: ref_9
  article-title: Object-Based Change Detection of Very High Resolution Satellite Imagery Using the Cross-Sharpening of Multitemporal Data
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2386878
– ident: ref_37
– volume: 47
  start-page: 3416
  year: 2009
  ident: ref_66
  article-title: Change Detection in Optical Aerial Images by a Multilayer Conditional Mixed Markov Model
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2022633
– ident: ref_38
  doi: 10.3390/rs12101688
– volume: 58
  start-page: 6524
  year: 2020
  ident: ref_62
  article-title: Object-Oriented Key Point Vector Distance for Binary Land Cover Change Detection Using VHR Remote Sensing Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2977248
– volume: 61
  start-page: 125
  year: 2006
  ident: ref_65
  article-title: Multiple support vector machines for land cover change detection: An application for mapping urban extensions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2006.09.004
– volume: 9
  start-page: 4673
  year: 2021
  ident: ref_23
  article-title: Change Detection Method of High Resolution Remote Sensing Image Based on D-S Evidence Theory Feature Fusion
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3047915
– volume: 121
  start-page: 516
  year: 2012
  ident: ref_4
  article-title: Image texture as a remotely sensed measure of vegetation structure
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.01.003
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_49
  article-title: Graph Learning Based on Signal Smoothness Representation for Homogeneous and Heterogeneous Change Detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 14
  start-page: 1796
  year: 2021
  ident: ref_13
  article-title: Unsupervised Change Detection Using Multiscale and Multiresolution Gaussian-Mixture-Model Guided by Saliency Enhancement
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.3046838
– volume: 57
  start-page: 3677
  year: 2019
  ident: ref_18
  article-title: Unsupervised Deep Change Vector Analysis for Multiple-Change Detection in VHR Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2886643
– volume: 37
  start-page: 5457
  year: 2016
  ident: ref_25
  article-title: Object-oriented change detection method based on adaptive multi-method combination for remote-sensing images
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1232871
– volume: 19
  start-page: 1
  year: 2022
  ident: ref_55
  article-title: Novel Multiscale Decision Fusion Approach to Unsupervised Change Detection for High-Resolution Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 164
  start-page: 61
  year: 2020
  ident: ref_12
  article-title: Unsupervised change detection between SAR images based on hypergraphs
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.04.007
– volume: 5
  start-page: 1076
  year: 2012
  ident: ref_57
  article-title: Fusion of Difference Images for Change Detection Over Urban Areas
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2012.2200879
– volume: 163
  start-page: 42
  year: 2015
  ident: ref_3
  article-title: Estimation of seasonal dynamics of understory NDVI in northern forests using MODIS BRDF data: Semi-empirical versus physically-based approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.03.003
– volume: 17
  start-page: 1124
  year: 2020
  ident: ref_53
  article-title: Optimal Segmentation Scale Selection for Object-Based Change Detection in Remote Sensing Images Using Kullback–Leibler Divergence
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2943406
– volume: 21
  start-page: 345
  year: 2018
  ident: ref_24
  article-title: Unsupervised change detection in remote sensing images using fusion of spectral and statistical indices
  publication-title: Egypt. J. Remote Sens. Space Sci.
– volume: 8
  start-page: 126385
  year: 2020
  ident: ref_39
  article-title: Deep Learning for Change Detection in Remote Sensing Images: Comprehensive Review and Meta-Analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3008036
– volume: 20
  start-page: 100418
  year: 2020
  ident: ref_28
  article-title: Urban change detection analysis utilizing multiresolution texture features from polarimetric SAR images
  publication-title: Remote Sens. Appl. Soc. Environ.
– ident: ref_11
  doi: 10.3390/rs13081507
– volume: 17
  start-page: 1401
  year: 2020
  ident: ref_48
  article-title: An Advanced Superpixel-Based Markov Random Field Model for Unsupervised Change Detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2948660
– volume: 15
  start-page: 63
  year: 2018
  ident: ref_8
  article-title: Unsupervised Object-Based Change Detection via a Weibull Mixture Model-Based Binarization for High-Resolution Remote Sensing Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2773118
– volume: 14
  start-page: 69
  year: 2020
  ident: ref_52
  article-title: Change detection in SAR images based on superpixel segmentation and image regression
  publication-title: Earth Sci. Inform.
  doi: 10.1007/s12145-020-00532-y
– volume: 175
  start-page: 65
  year: 2016
  ident: ref_7
  article-title: Detection of changes in semi-natural grasslands by cross correlation analysis with WorldView-2 images and new Landsat 8 data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.031
SSID ssj0000331904
Score 2.3471355
Snippet Spectral features in remote sensing images are extensively utilized to detect land cover changes. However, detection noise appearing in the changing maps due...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3297
SubjectTerms Accuracy
Algorithms
Change detection
co-saliency detection
data collection
decision making
Decision theory
Deep learning
fuzzy integral decision fusion
High resolution
Image acquisition
image analysis
Image processing
Image resolution
Image segmentation
Land cover
Methods
Morphology
Noise reduction
Object recognition
object-oriented method
Remote sensing
Salience
Semantics
spectral–spatial features
Staking
Strategy
uncertainty
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTuQwDI4QF7ggWEAMC6ug5cKhop2kTXrkbzSsBEj8SNyqpHEAiS2ImTnAiXfgCfbV9kmwk84w0iJx2VP_3KqKHftzG_tjbBshdp5aAUmN4S7BmegSK8En3gnhM-ugCDxkJ6dF_0r-us6vp6i-aE1YbA8cB24XlPfWU9jVqVRKaJ9JC7lKEVmUXRegEca8qWQq-GCBppXK2I9UYF6_-zTIJGKDLnV3mopAoVH_P344BJfeIltoUSHfi2-zxGag-cbmWoLy2-dl9ufM0geT5IzaEiNI5LEqgB_CMKylavhJoILm-xiVHMdjIpanrxh_X9-Idvgu7iHqplrL8e1tMVJ4gGkc741eXp75cWwhcY9PjwQ8eD5sUJj3z_k5oH6BX9Da9-aGH_9GnzRYYVe9o8uDftKyKyS1KOUwyb2WWemcz1SNA5v63BdWGlkq65QVSoOsDeYvRmdQgLbOOJ2CQpfgM12kTqyy2eahgTXGfa11DakpVeZl7qC01ipw1hgncsjLDtsZj3hVt63HiQHjvsIUhLRTfWinw35OZB9jw41PpfZJcRMJapIdTqDpVK3pVF-ZTodtjNVetTN3UFFlLzo6zOo6bGtyGecc_UgxDTyMUAYDOsIyWcj1__Ee39l8l4oqwiLgDTY7fBrBJkKdof0RrPodq4sAgQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Object-Oriented Change Detection Method Based on Spectral–Spatial–Saliency Change Information and Fuzzy Integral Decision Fusion for HR Remote Sensing Images
URI https://www.proquest.com/docview/2694031666
https://www.proquest.com/docview/2718283464
https://doaj.org/article/e7ffbf15158047738f14be57050892da
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELZo9wAXxK_YUlZGcOEQNVk7sXNC3bbLFrEt2lKpt8iOxwWpzZb9ObQn3oEn4NV4ks443i0SiFP-JpaSsWc-jz3zMfYWIXaeWgFJje4uwZHoEivBJ94J4TProAg8ZOOjYnQqP57lZzHgNo_bKlc2MRhqN60pRr5DGZfYARFtv7_6nhBrFK2uRgqNDdZBE6xx8tUZHBx9nqyjLKnALpbKti6pwPn9zmyeScQIfary9IcnCgX7_7LHwckMH7GHER3y3Vadj9k9aJ6w-5Go_Ov1U_br2FLgJDmm8sQIFnmbHcD3YRH2VDV8HCih-QC9k-N4TQTzFM34_eMn0Q9_a88QfVPO5er1mJQUGjCN48Plzc01P2xLSVxg6y0RD94PBxTmowmfAOoZ-AntgW_O-eEl2qb5M3Y6PPiyN0oiy0JSi1IuktxrmZXO-UzVUqnU576w0shSWaesUBpkbXAeY3QGBWjrjNMpKDQNPtNF6sRzttlMG3jBuK-1riE1pcq8zB2U1loFzhrjRA552WXvVn-8qmMJcmLCuKhwKkLaqe6002Vv1rJXbeGNf0oNSHFrCSqWHW5MZ-dVHHsVKO-tJ-SmU_xCoX0mLeQqRXBa9p3psu2V2qs4gufVXX_rstfrxzj2aEHFNDBdogw6doRnspBb_2_iJXvQp7SJsM13m20uZkt4hWBmYXtsQw8_9Fhnd3_86aQX-28vhAZuAacK_Vw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOZQL4lcsFDACDhyiOrETOweEKGXZpd1WKq3UWxrH44JUsmV_hLYn3oEn4AV4KJ6EGSfZIoG49ZTEmViK58dfHM98jD1DiJ0KKyGqcLqL0BNdZBX4yDspfWwdZIGHbLSbDQ7V-6P0aIX97HJhaFtlFxNDoHbjitbINyjjEg0Q0farsy8RsUbR39WOQqMxi21YfMVPtunL4Rbq93mS9N8evBlELatAVMlczaLUGxXnzvlYV0pr4VOfWVWqXFunrdQGVFUibi9NDBkY60pnBGh0BR-bTDiJ_V5hV5WUOXmU6b9brukIiQYtVFMFFe-Ljck0VohIEqop9ce8F-gB_or-YUrr32DXWyzKXzfGc5OtQH2LrbW06B8Xt9mPPUvLNNEeFUNGaMqbXAS-BbOwg6vmo0BAzTdxLnQcr4nOntZOfn37TmTHn5ozxPqU4dk93qZAhQ7K2vH-_Px8wYdN4YpT7L2h_cH2cEBhPtjn-4BWBfwD7bivT_jwM0bC6R12eCmjf5et1uMa7jHuK2MqEGWuY69SB7m1VoOzZelkCmneYy-6ES-qtuA58W6cFvjhQ9opLrTTY0-XsmdNmY9_Sm2S4pYSVJo7NIwnJ0Xr6QVo760nnGgEvqE0PlYWUi0QCueJK3tsvVN70caLaXFh3T32ZHkbPZ1-35Q1jOcogzACwaDK1P3_d_GYrQ0ORjvFznB3-wG7llDCRthgvM5WZ5M5PEQYNbOPgu1ydnzZzvIbU3c11A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKVgIuiF-xpYARcOAQrbN2YueAEMt2tUvptlqo1Fuw43GpVLJlf4S2J96BJ-A1eByehLGTbJFA3HrabDKxlMyM57MzMx8hzxBiJ8xwiAoMdxF6oo2MABc5y7mLjYU08JDtjdPhoXh7lBxtkJ9NLYxPq2zmxDBR22nh98g7vuISDRDRdsfVaREH_cGrsy-RZ5DyX1obOo3KRHZh9RWXb_OXoz7q-nm3O9j58GYY1QwDUcEzsYgSp0ScWetiWQgpmUtcaoQWmTRWGi4ViEIjhtcqhhSUsdoqBhLdwsUqZZbjuFfIpsRVEWuRzd7O-GCy3uFhHM2biaonKucZ68zmsUB80vUdpv6IgoEs4K9YEALc4Ca5USNT-roypVtkA8rb5FpNkv5pdYf82Dd-0yba962REajSqjKB9mER8rlKuhfoqGkPI6Ol-N-T2_udlF_fvnvq45PqCJG_r_dsbq8LosIAurR0sDw_X9FR1cbiFEevSIDwfPhBYTqc0AmgjQF97_Pvy2M6-ozz4vwuObyU93-PtMppCfcJdYVSBTCdydiJxEJmjJFgjdaWJ5BkbfKieeN5Ubc_9ywcpzkug7x28gvttMnTtexZ1fTjn1I9r7i1hG_UHU5MZ8d57fc5SOeM86hRMXxCrlwsDCSSITDOula3yXaj9ryePeb5ha23yZP1ZfR7_zFHlzBdogyCCoSGIhVb_x_iMbmKjpK_G413H5DrXV-9EbKNt0lrMVvCQ8RUC_OoNl5KPl62v_wGeyU7Zg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object-Oriented+Change+Detection+Method+Based+on+Spectral%E2%80%93Spatial%E2%80%93Saliency+Change+Information+and+Fuzzy+Integral+Decision+Fusion+for+HR+Remote+Sensing+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Ge%2C+Chuting&rft.au=Ding%2C+Haiyong&rft.au=Molina%2C+Inigo&rft.au=He%2C+Yongjian&rft.date=2022-07-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=14&rft.spage=3297&rft_id=info:doi/10.3390%2Frs14143297&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon