Multispectral Image Change Detection Based on Single-Band Slow Feature Analysis
Due to differences in external imaging conditions, multispectral images taken at different periods are subject to radiation differences, which severely affect the detection accuracy. To solve this problem, a modified algorithm based on slow feature analysis is proposed for multispectral image change...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 13; no. 15; p. 2969 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to differences in external imaging conditions, multispectral images taken at different periods are subject to radiation differences, which severely affect the detection accuracy. To solve this problem, a modified algorithm based on slow feature analysis is proposed for multispectral image change detection. First, single-band slow feature analysis is performed to process bitemporal multispectral images band by band. In this way, the differences between unchanged pixels in each pair of single-band images can be sufficiently suppressed to obtain multiple feature-difference images containing real change information. Then, the feature-difference images of each band are fused into a grayscale distance image using the Euclidean distance. After Gaussian filtering of the grayscale distance image, false detection points can be further reduced. Finally, the k-means clustering method is performed on the filtered grayscale distance image to obtain the binary change map. Experiments reveal that our proposed algorithm is less affected by radiation differences and has obvious advantages in time complexity and detection accuracy. |
---|---|
AbstractList | Due to differences in external imaging conditions, multispectral images taken at different periods are subject to radiation differences, which severely affect the detection accuracy. To solve this problem, a modified algorithm based on slow feature analysis is proposed for multispectral image change detection. First, single-band slow feature analysis is performed to process bitemporal multispectral images band by band. In this way, the differences between unchanged pixels in each pair of single-band images can be sufficiently suppressed to obtain multiple feature-difference images containing real change information. Then, the feature-difference images of each band are fused into a grayscale distance image using the Euclidean distance. After Gaussian filtering of the grayscale distance image, false detection points can be further reduced. Finally, the k-means clustering method is performed on the filtered grayscale distance image to obtain the binary change map. Experiments reveal that our proposed algorithm is less affected by radiation differences and has obvious advantages in time complexity and detection accuracy. |
Author | Jia, Zhenhong Yang, Jie He, Youxi Kasabov, Nikola K. |
Author_xml | – sequence: 1 givenname: Youxi orcidid: 0000-0002-6490-5373 surname: He fullname: He, Youxi – sequence: 2 givenname: Zhenhong surname: Jia fullname: Jia, Zhenhong – sequence: 3 givenname: Jie surname: Yang fullname: Yang, Jie – sequence: 4 givenname: Nikola K. surname: Kasabov fullname: Kasabov, Nikola K. |
BookMark | eNptkV9vFCEUxYmpibX2xU8wiS_GZCpw-bM8tmtrN6npQ9tnwjKXlQ07rDAT029f6ho1jbzcw8mPE-C8JUdjHpGQ94yeARj6uVQGTHKjzCtyzKnmveCGH_2j35DTWre0LQBmqDgmt9_mNMW6Rz8Vl7rVzm2wW353YxtfcGp2zGN34SoOXRN3cdwk7C_cOHR3Kf_srtBNc8HufHTpscb6jrwOLlU8_T1PyMPV5f3yur-5_bpant_0HoyYeomIVA2Mey7XSi5EcwGcFg4MR6WVCk0qvQ4KJfM-KIomaIbKawouwAlZHXKH7LZ2X-LOlUebXbS_jFw21pUp-oRWBwEiBKHBeCGFWpu28Uoav1hwhKFlfTxk7Uv-MWOd7C5Wjym5EfNcLVegJHAA3dAPL9Btnkt7e6OkXBjGtZSN-nSgfMm1Fgx_Lsiofa7K_q2qwfQF7OPknr-9NRLT_448ASnqlXU |
CitedBy_id | crossref_primary_10_3390_rs13183697 crossref_primary_10_3390_rs14215368 crossref_primary_10_3390_rs14122834 crossref_primary_10_3390_e24020291 crossref_primary_10_1109_ACCESS_2022_3194000 |
Cites_doi | 10.1109/TGRS.2013.2266673 10.1109/WHISPERS.2019.8920976 10.1016/j.isprsjprs.2015.02.005 10.3390/rs12111781 10.1109/TPAMI.2011.157 10.1109/IGARSS.2010.5652663 10.1109/ACCESS.2019.2922839 10.1109/TGRS.2011.2171493 10.1016/j.rse.2017.07.009 10.1109/TCYB.2016.2531179 10.1080/22797254.2019.1707124 10.1109/LGRS.2017.2762694 10.1080/01431168908903939 10.1109/LGRS.2009.2025059 10.1109/TGRS.2012.2236683 10.1109/LGRS.2010.2068537 10.1016/0034-4257(95)00233-2 10.1109/IGARSS.2018.8517375 10.3390/rs12244190 10.1109/JSTARS.2012.2200879 10.1109/JSTARS.2018.2869549 10.1109/ICIVC.2018.8492758 10.3390/rs9030252 10.1016/j.neucom.2014.09.058 10.1109/TGRS.2016.2642125 10.1109/TIP.2006.888195 10.3390/rs12101619 10.1109/ACCESS.2019.2901286 10.1109/JSTARS.2017.2712119 10.1016/j.isprsjprs.2020.03.002 10.1109/TGRS.2013.2295263 10.1109/TGRS.2019.2930682 10.1109/IGARSS.2018.8518015 10.1016/j.inffus.2012.05.003 10.1002/aic.14888 10.3390/rs11030240 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs13152969 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_7f434ff4739c4546b9ff4c659c882e3d 10_3390_rs13152969 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c394t-5eee06d12c25b658439433a74a392e6766f4a367bf6e51ccf60e9f71e6c703af3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:30:36 EDT 2025 Fri Jul 11 05:34:37 EDT 2025 Fri Jul 25 11:54:46 EDT 2025 Thu Apr 24 23:11:10 EDT 2025 Tue Jul 01 01:58:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-5eee06d12c25b658439433a74a392e6766f4a367bf6e51ccf60e9f71e6c703af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6490-5373 |
OpenAccessLink | https://doaj.org/article/7f434ff4739c4546b9ff4c659c882e3d |
PQID | 2558912755 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7f434ff4739c4546b9ff4c659c882e3d proquest_miscellaneous_2636532337 proquest_journals_2558912755 crossref_primary_10_3390_rs13152969 crossref_citationtrail_10_3390_rs13152969 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wu (ref_19) 2017; 199 Peijun (ref_36) 2012; 16 Li (ref_5) 2020; 163 Ma (ref_6) 2019; 7 Morsier (ref_24) 2013; 51 Du (ref_35) 2013; 14 Lu (ref_17) 2017; 47 ref_13 ref_12 Gong (ref_27) 2017; 14 Wu (ref_18) 2014; 52 Ma (ref_23) 2020; 53 Wu (ref_14) 2015; 151 Zhang (ref_37) 2012; 34 ref_16 ref_38 Du (ref_11) 2018; 11 ref_15 Zhang (ref_7) 2005; 9 Wu (ref_32) 2017; 55 Du (ref_34) 2012; 5 Zhang (ref_33) 2014; 52 Nielsen (ref_31) 2007; 16 Xu (ref_25) 2019; 7 Bovolo (ref_29) 2012; 50 Volpi (ref_41) 2015; 107 Celik (ref_10) 2009; 6 ref_22 ref_20 Collins (ref_9) 1996; 56 ref_40 Shang (ref_39) 2015; 61 ref_3 Liu (ref_28) 2017; 10 ref_2 ref_26 ref_8 Du (ref_21) 2019; 57 Chen (ref_30) 2011; 8 Singh (ref_1) 1989; 10 ref_4 |
References_xml | – volume: 52 start-page: 2858 year: 2014 ident: ref_18 article-title: Slow Feature Analysis for Change Detection in Multispectral Imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2266673 – ident: ref_22 doi: 10.1109/WHISPERS.2019.8920976 – volume: 107 start-page: 50 year: 2015 ident: ref_41 article-title: Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical correlation analysis publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.02.005 – ident: ref_4 doi: 10.3390/rs12111781 – volume: 34 start-page: 436 year: 2012 ident: ref_37 article-title: Slow Feature Analysis for Human Action Recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.157 – ident: ref_13 doi: 10.1109/IGARSS.2010.5652663 – volume: 7 start-page: 78909 year: 2019 ident: ref_25 article-title: High-Resolution Remote Sensing Image Change Detection Combined With Pixel-Level and Object-Level publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2922839 – volume: 50 start-page: 2196 year: 2012 ident: ref_29 article-title: A Framework for Automatic and Unsupervised Detection of Multiple Changes in Multitemporal Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2171493 – volume: 199 start-page: 241 year: 2017 ident: ref_19 article-title: A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.07.009 – volume: 47 start-page: 884 year: 2017 ident: ref_17 article-title: Joint Dictionary Learning for Multispectral Change Detection publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2531179 – volume: 53 start-page: 1 year: 2020 ident: ref_23 article-title: Multi-spectral image change detection based on single-band iterative weighting and fuzzy C-means clustering publication-title: Eur. J. Remote Sens. doi: 10.1080/22797254.2019.1707124 – volume: 14 start-page: 2310 year: 2017 ident: ref_27 article-title: Generative Adversarial Networks for Change Detection in Multispectral Imagery publication-title: Ieee Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2762694 – volume: 10 start-page: 989 year: 1989 ident: ref_1 article-title: Review Article Digital change detection techniques using remotely-sensed data publication-title: Int. J. Remote Sens. doi: 10.1080/01431168908903939 – volume: 6 start-page: 772 year: 2009 ident: ref_10 article-title: Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and k-Means Clustering publication-title: Ieee Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2009.2025059 – volume: 51 start-page: 1939 year: 2013 ident: ref_24 article-title: Semi-Supervised Novelty Detection Using SVM Entire Solution Path publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2236683 – volume: 8 start-page: 317 year: 2011 ident: ref_30 article-title: Change Vector Analysis in Posterior Probability Space: A New Method for Land Cover Change Detection publication-title: IEEE Geosci. Remote Sensing Lett. doi: 10.1109/LGRS.2010.2068537 – volume: 56 start-page: 66 year: 1996 ident: ref_9 article-title: An assessment of several linear change detection techniques for mapping forest mortality using multitemporal landsat TM data publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(95)00233-2 – ident: ref_16 doi: 10.1109/IGARSS.2018.8517375 – ident: ref_3 doi: 10.3390/rs12244190 – volume: 5 start-page: 1076 year: 2012 ident: ref_34 article-title: Fusion of Difference Images for Change Detection Over Urban Areas publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2012.2200879 – volume: 11 start-page: 4676 year: 2018 ident: ref_11 article-title: Unsupervised Scene Change Detection via Latent Dirichlet Allocation and Multivariate Alteration Detection publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2869549 – ident: ref_20 doi: 10.1109/ICIVC.2018.8492758 – ident: ref_2 doi: 10.3390/rs9030252 – volume: 151 start-page: 175 year: 2015 ident: ref_14 article-title: Hyperspectral anomaly change detection with slow feature analysis publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.09.058 – volume: 55 start-page: 2367 year: 2017 ident: ref_32 article-title: Kernel Slow Feature Analysis for Scene Change Detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2642125 – volume: 16 start-page: 463 year: 2007 ident: ref_31 article-title: The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.888195 – ident: ref_26 doi: 10.3390/rs12101619 – volume: 7 start-page: 27948 year: 2019 ident: ref_6 article-title: Multi-Spectral Image Change Detection Based on Band Selection and Single-Band Iterative Weighting publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2901286 – ident: ref_8 – volume: 10 start-page: 4124 year: 2017 ident: ref_28 article-title: Multiscale Morphological Compressed Change Vector Analysis for Unsupervised Multiple Change Detection publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2712119 – volume: 163 start-page: 137 year: 2020 ident: ref_5 article-title: A method to improve the accuracy of SAR image change detection by using an image enhancement method publication-title: Isprs J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.03.002 – volume: 9 start-page: 294 year: 2005 ident: ref_7 article-title: Automatic land use and land cover change detection with one temporary remote sensing image publication-title: J. Remote Sens. Beijing – ident: ref_12 – volume: 52 start-page: 6141 year: 2014 ident: ref_33 article-title: Automatic Radiometric Normalization for Multitemporal Remote Sensing Imagery With Iterative Slow Feature Analysis publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2295263 – volume: 16 start-page: 663 year: 2012 ident: ref_36 article-title: Change detection from multi-temporal remote sensing images by integrating multiple features publication-title: J. Remote Sens. – volume: 57 start-page: 9976 year: 2019 ident: ref_21 article-title: Unsupervised Deep Slow Feature Analysis for Change Detection in Multi-Temporal Remote Sensing Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2930682 – ident: ref_38 – ident: ref_15 doi: 10.1109/IGARSS.2018.8518015 – volume: 14 start-page: 19 year: 2013 ident: ref_35 article-title: Information fusion techniques for change detection from multi-temporal remote sensing images publication-title: Inf. Fusion doi: 10.1016/j.inffus.2012.05.003 – volume: 61 start-page: 3666 year: 2015 ident: ref_39 article-title: Concurrent monitoring of operating condition deviations and process dynamics anomalies with slow feature analysis publication-title: Aiche J. doi: 10.1002/aic.14888 – ident: ref_40 doi: 10.3390/rs11030240 |
SSID | ssj0000331904 |
Score | 2.3222682 |
Snippet | Due to differences in external imaging conditions, multispectral images taken at different periods are subject to radiation differences, which severely affect... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2969 |
SubjectTerms | Accuracy Algorithms Change detection Cluster analysis Clustering Deep learning Dictionaries Euclidean geometry filters Gray scale image analysis Image filters Machine learning multispectral imagery multispectral remote sensing image Neural networks Noise Principal components analysis problem solving Radiation Remote sensing slow feature analysis Vector quantization |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4BL1fIQSx8yggsHq0n8ik9Vtw-1HAqiVOotcuxxOSxJye4K8e879nq3QlS9Oc4oisaeh8cz3xDyyUcIdqkNw7_kTHipGHohhrWxrtgI8CKkBNlLdX4tvtzImxxwm-W0ypVOTIra9y7GyA_Q9a1NRCOXh3e_WewaFW9XcwuN52QDVXBdj8jG5PTy2_d1lKXguMUKscQl5Xi-PxhmJS_jZaP5xxIlwP7_9HEyMmdbZDN7h_RouZzb5Bl0r8iL3Kj859_X5GsqmE3lkQMSXvxCdUCXFQL0BOYpr6qjEzRNnuLgCg3TFNjEdp5eTfs_NHp8iwHoCovkDbk-O_1xfM5yTwTmuBFzJgGgUL6sXCXb6D3gLOdWC4uODiitVMCh0m1QIEvngirABF2CcijbNvC3ZNT1HbwjFKQPFfeu5LUTVle28KG2ppLWurJUakw-r_jTuAwYHvtWTBs8OEReNg-8HJOPa9q7JUzGo1STyOY1RYS2ThP9cNtkSWl0EFyEIDQ3TkihWoMPTknj8DAA3I_J7mqRmixvs-Zhd4zJh_VrlJR4_WE76BdIo7iSvOJcv3_6EzvkZRUzV1Ka3y4ZzYcF7KHrMW_38_66BxW72Es priority: 102 providerName: ProQuest |
Title | Multispectral Image Change Detection Based on Single-Band Slow Feature Analysis |
URI | https://www.proquest.com/docview/2558912755 https://www.proquest.com/docview/2636532337 https://doaj.org/article/7f434ff4739c4546b9ff4c659c882e3d |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB5BOcClKi8RWiIjuHBYNbvjR3xsaENBUBChUm8rrz0Wh7BBaaKq_75j7yYUgcSF03rtOVgz9jzkmW8AXocEwa6MLXiXWMigdMFeiC2aVFdsJQUZc4LsmT49lx8u1MWtVl8pJ6yDB-4Yd2iiRBmjNGi9VFI3ln-8Vtazb0gYkvZlm3crmMo6GPlojWSHR4oc1x8uL0ss0yOj_c0CZaD-P_RwNi7TPdjtvUJx1O3mIdyh9hHc7xuUf79-DJ9zoWwui1wy4fsfrAZEVxkgjmmV86laMWGTFAQPZmyQ5lRMXBvEbL64EsnTWy9JbDBInsD59OTb29Oi74VQeLRyVSgiGulQVr5STfIaeBbRGenYwSFttI481KaJmlTpfdQjstGUpD3faRfxKey0i5aegSAVYoXBlzj20pnKjUIcO1sp53xZaj2ANxv-1L4HCk_9KuY1BwyJl_UvXg7g1Zb2ZweP8VeqSWLzliJBWucJFnTdC7r-l6AHcLARUt3fs8uaA6KxTRj1agAvt8t8Q9Kzh2tpsWYajVphhWie_4997MODKuW15CTAA9hZLdf0gh2TVTOEu-PpuyHcOzr-9HHG38nJ2Zevw3wybwDW9ONn |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKoVxQeYmlBYyAA4eoiV9ZH6qKpSy7tJRDW6m34PhRDkvSZndV9af4xo6dZCsE4tZbYk-saDxPex4A72wowS5yleBfsoRbIRO0QlRShrxixZ3lPgbIHsnJKf96Js7W4HefCxPCKnuZGAW1rU04I99B03eoQjVysXdxmYSuUeF2tW-h0ZLFgbu-Qpdtvjvdx_19T-n488mnSdJ1FUgMU3yRCOdcKm1GDRVl0L84ypjOuUZTwclcSo-PMi-9dCIzxsvUKZ9nThrkDu0ZrnsP7uM3Kjh7w_GX1ZlOypCgU95WQcX5dKeZZywLV5vqD70X2wP8Jf2jShtvwsPOFiUfW-J5BGuuegwbXVv0n9dP4HtMz43JmA0CTn-h8CFtPgLZd4sYxVWRESpCS_DhGNXgzCUjXVlyPKuvSLAvl40jfeWTp3B6J7h6ButVXbnnQJywnjJrMjY0XOdUp9YPtaJCa5NlUg7gQ4-fwnTlyUOXjFmBbkrAZXGLywG8XcFetEU5_gk1CmheQYRC2nGgbs6Lji-L3HPGvec5U4YLLkuFL0YKZdD1cMwOYLvfpKLj7nlxS4sDeLOaRr4Mly26cvUSYSSTglHG8hf_X-I1bExOvh0Wh9Ojgy14QEPMTAww3Ib1RbN0L9HoWZSvIqUR-HHXpH0DYYgTZg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKcIFFgEHDhYsb2v7AEhQho1FIWKUqk3s94HHIJdnERV_xq_jtm1nQqBuPVmr0cra3ZmZ2Z35huAlzZAsHOpEvxLmjDLRYJeiErKUFesmLPMxwTZhTg4YR9O-ekO_OprYUJaZb8nxo3a1iackY_Q9R2rgEbOR75Liziazt6e_UxCB6lw09q302hF5NBdnGP4tnozn-Jav8rz2f6X9wdJ12EgMVSxdcKdc6mwWW5yXgZbjKOUask0ug1OSCE8PgpZeuF4ZowXqVNeZk4Y1BTtKc57DXZliIoGsDvZXxx93p7wpBTFO2UtJiqlKh01q4xm4aJT_WEFY7OAv2xBNHCz23Cr80zJu1aU7sCOq-7Cja5J-veLe_ApFuvG0swGCec_cCsibXUCmbp1zOmqyATNoiX4cIxGcemSia4sOV7W5yR4m5vGkR4H5T6cXAm3HsCgqiv3EIjj1ufUmoyODdMy16n1Y61yrrXJMiGG8LrnT2E6sPLQM2NZYNASeFlc8nIIL7a0Zy1Exz-pJoHNW4oAqx0H6uZb0WlpIT2jzHsmqTKMM1EqfDGCK4OBiKN2CHv9IhWdrq-KS8kcwvPtZ9TScPWiK1dvkEZQwWlOqXz0_ymewXUU6-LjfHH4GG7mIYEmZhvuwWDdbNwT9IDW5dNO1Ah8vWrp_g2x4Bj4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multispectral+Image+Change+Detection+Based+on+Single-Band+Slow+Feature+Analysis&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Youxi+He&rft.au=Zhenhong+Jia&rft.au=Jie+Yang&rft.au=Nikola+K.+Kasabov&rft.date=2021-08-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=15&rft.spage=2969&rft_id=info:doi/10.3390%2Frs13152969&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7f434ff4739c4546b9ff4c659c882e3d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |