Multispectral Image Change Detection Based on Single-Band Slow Feature Analysis

Due to differences in external imaging conditions, multispectral images taken at different periods are subject to radiation differences, which severely affect the detection accuracy. To solve this problem, a modified algorithm based on slow feature analysis is proposed for multispectral image change...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 13; no. 15; p. 2969
Main Authors He, Youxi, Jia, Zhenhong, Yang, Jie, Kasabov, Nikola K.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to differences in external imaging conditions, multispectral images taken at different periods are subject to radiation differences, which severely affect the detection accuracy. To solve this problem, a modified algorithm based on slow feature analysis is proposed for multispectral image change detection. First, single-band slow feature analysis is performed to process bitemporal multispectral images band by band. In this way, the differences between unchanged pixels in each pair of single-band images can be sufficiently suppressed to obtain multiple feature-difference images containing real change information. Then, the feature-difference images of each band are fused into a grayscale distance image using the Euclidean distance. After Gaussian filtering of the grayscale distance image, false detection points can be further reduced. Finally, the k-means clustering method is performed on the filtered grayscale distance image to obtain the binary change map. Experiments reveal that our proposed algorithm is less affected by radiation differences and has obvious advantages in time complexity and detection accuracy.
AbstractList Due to differences in external imaging conditions, multispectral images taken at different periods are subject to radiation differences, which severely affect the detection accuracy. To solve this problem, a modified algorithm based on slow feature analysis is proposed for multispectral image change detection. First, single-band slow feature analysis is performed to process bitemporal multispectral images band by band. In this way, the differences between unchanged pixels in each pair of single-band images can be sufficiently suppressed to obtain multiple feature-difference images containing real change information. Then, the feature-difference images of each band are fused into a grayscale distance image using the Euclidean distance. After Gaussian filtering of the grayscale distance image, false detection points can be further reduced. Finally, the k-means clustering method is performed on the filtered grayscale distance image to obtain the binary change map. Experiments reveal that our proposed algorithm is less affected by radiation differences and has obvious advantages in time complexity and detection accuracy.
Author Jia, Zhenhong
Yang, Jie
He, Youxi
Kasabov, Nikola K.
Author_xml – sequence: 1
  givenname: Youxi
  orcidid: 0000-0002-6490-5373
  surname: He
  fullname: He, Youxi
– sequence: 2
  givenname: Zhenhong
  surname: Jia
  fullname: Jia, Zhenhong
– sequence: 3
  givenname: Jie
  surname: Yang
  fullname: Yang, Jie
– sequence: 4
  givenname: Nikola K.
  surname: Kasabov
  fullname: Kasabov, Nikola K.
BookMark eNptkV9vFCEUxYmpibX2xU8wiS_GZCpw-bM8tmtrN6npQ9tnwjKXlQ07rDAT029f6ho1jbzcw8mPE-C8JUdjHpGQ94yeARj6uVQGTHKjzCtyzKnmveCGH_2j35DTWre0LQBmqDgmt9_mNMW6Rz8Vl7rVzm2wW353YxtfcGp2zGN34SoOXRN3cdwk7C_cOHR3Kf_srtBNc8HufHTpscb6jrwOLlU8_T1PyMPV5f3yur-5_bpant_0HoyYeomIVA2Mey7XSi5EcwGcFg4MR6WVCk0qvQ4KJfM-KIomaIbKawouwAlZHXKH7LZ2X-LOlUebXbS_jFw21pUp-oRWBwEiBKHBeCGFWpu28Uoav1hwhKFlfTxk7Uv-MWOd7C5Wjym5EfNcLVegJHAA3dAPL9Btnkt7e6OkXBjGtZSN-nSgfMm1Fgx_Lsiofa7K_q2qwfQF7OPknr-9NRLT_448ASnqlXU
CitedBy_id crossref_primary_10_3390_rs13183697
crossref_primary_10_3390_rs14215368
crossref_primary_10_3390_rs14122834
crossref_primary_10_3390_e24020291
crossref_primary_10_1109_ACCESS_2022_3194000
Cites_doi 10.1109/TGRS.2013.2266673
10.1109/WHISPERS.2019.8920976
10.1016/j.isprsjprs.2015.02.005
10.3390/rs12111781
10.1109/TPAMI.2011.157
10.1109/IGARSS.2010.5652663
10.1109/ACCESS.2019.2922839
10.1109/TGRS.2011.2171493
10.1016/j.rse.2017.07.009
10.1109/TCYB.2016.2531179
10.1080/22797254.2019.1707124
10.1109/LGRS.2017.2762694
10.1080/01431168908903939
10.1109/LGRS.2009.2025059
10.1109/TGRS.2012.2236683
10.1109/LGRS.2010.2068537
10.1016/0034-4257(95)00233-2
10.1109/IGARSS.2018.8517375
10.3390/rs12244190
10.1109/JSTARS.2012.2200879
10.1109/JSTARS.2018.2869549
10.1109/ICIVC.2018.8492758
10.3390/rs9030252
10.1016/j.neucom.2014.09.058
10.1109/TGRS.2016.2642125
10.1109/TIP.2006.888195
10.3390/rs12101619
10.1109/ACCESS.2019.2901286
10.1109/JSTARS.2017.2712119
10.1016/j.isprsjprs.2020.03.002
10.1109/TGRS.2013.2295263
10.1109/TGRS.2019.2930682
10.1109/IGARSS.2018.8518015
10.1016/j.inffus.2012.05.003
10.1002/aic.14888
10.3390/rs11030240
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs13152969
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_7f434ff4739c4546b9ff4c659c882e3d
10_3390_rs13152969
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-5eee06d12c25b658439433a74a392e6766f4a367bf6e51ccf60e9f71e6c703af3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:30:36 EDT 2025
Fri Jul 11 05:34:37 EDT 2025
Fri Jul 25 11:54:46 EDT 2025
Thu Apr 24 23:11:10 EDT 2025
Tue Jul 01 01:58:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-5eee06d12c25b658439433a74a392e6766f4a367bf6e51ccf60e9f71e6c703af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6490-5373
OpenAccessLink https://doaj.org/article/7f434ff4739c4546b9ff4c659c882e3d
PQID 2558912755
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_7f434ff4739c4546b9ff4c659c882e3d
proquest_miscellaneous_2636532337
proquest_journals_2558912755
crossref_primary_10_3390_rs13152969
crossref_citationtrail_10_3390_rs13152969
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wu (ref_19) 2017; 199
Peijun (ref_36) 2012; 16
Li (ref_5) 2020; 163
Ma (ref_6) 2019; 7
Morsier (ref_24) 2013; 51
Du (ref_35) 2013; 14
Lu (ref_17) 2017; 47
ref_13
ref_12
Gong (ref_27) 2017; 14
Wu (ref_18) 2014; 52
Ma (ref_23) 2020; 53
Wu (ref_14) 2015; 151
Zhang (ref_37) 2012; 34
ref_16
ref_38
Du (ref_11) 2018; 11
ref_15
Zhang (ref_7) 2005; 9
Wu (ref_32) 2017; 55
Du (ref_34) 2012; 5
Zhang (ref_33) 2014; 52
Nielsen (ref_31) 2007; 16
Xu (ref_25) 2019; 7
Bovolo (ref_29) 2012; 50
Volpi (ref_41) 2015; 107
Celik (ref_10) 2009; 6
ref_22
ref_20
Collins (ref_9) 1996; 56
ref_40
Shang (ref_39) 2015; 61
ref_3
Liu (ref_28) 2017; 10
ref_2
ref_26
ref_8
Du (ref_21) 2019; 57
Chen (ref_30) 2011; 8
Singh (ref_1) 1989; 10
ref_4
References_xml – volume: 52
  start-page: 2858
  year: 2014
  ident: ref_18
  article-title: Slow Feature Analysis for Change Detection in Multispectral Imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2266673
– ident: ref_22
  doi: 10.1109/WHISPERS.2019.8920976
– volume: 107
  start-page: 50
  year: 2015
  ident: ref_41
  article-title: Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical correlation analysis
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.02.005
– ident: ref_4
  doi: 10.3390/rs12111781
– volume: 34
  start-page: 436
  year: 2012
  ident: ref_37
  article-title: Slow Feature Analysis for Human Action Recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.157
– ident: ref_13
  doi: 10.1109/IGARSS.2010.5652663
– volume: 7
  start-page: 78909
  year: 2019
  ident: ref_25
  article-title: High-Resolution Remote Sensing Image Change Detection Combined With Pixel-Level and Object-Level
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2922839
– volume: 50
  start-page: 2196
  year: 2012
  ident: ref_29
  article-title: A Framework for Automatic and Unsupervised Detection of Multiple Changes in Multitemporal Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2171493
– volume: 199
  start-page: 241
  year: 2017
  ident: ref_19
  article-title: A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.07.009
– volume: 47
  start-page: 884
  year: 2017
  ident: ref_17
  article-title: Joint Dictionary Learning for Multispectral Change Detection
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2531179
– volume: 53
  start-page: 1
  year: 2020
  ident: ref_23
  article-title: Multi-spectral image change detection based on single-band iterative weighting and fuzzy C-means clustering
  publication-title: Eur. J. Remote Sens.
  doi: 10.1080/22797254.2019.1707124
– volume: 14
  start-page: 2310
  year: 2017
  ident: ref_27
  article-title: Generative Adversarial Networks for Change Detection in Multispectral Imagery
  publication-title: Ieee Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2762694
– volume: 10
  start-page: 989
  year: 1989
  ident: ref_1
  article-title: Review Article Digital change detection techniques using remotely-sensed data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431168908903939
– volume: 6
  start-page: 772
  year: 2009
  ident: ref_10
  article-title: Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and k-Means Clustering
  publication-title: Ieee Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2009.2025059
– volume: 51
  start-page: 1939
  year: 2013
  ident: ref_24
  article-title: Semi-Supervised Novelty Detection Using SVM Entire Solution Path
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2236683
– volume: 8
  start-page: 317
  year: 2011
  ident: ref_30
  article-title: Change Vector Analysis in Posterior Probability Space: A New Method for Land Cover Change Detection
  publication-title: IEEE Geosci. Remote Sensing Lett.
  doi: 10.1109/LGRS.2010.2068537
– volume: 56
  start-page: 66
  year: 1996
  ident: ref_9
  article-title: An assessment of several linear change detection techniques for mapping forest mortality using multitemporal landsat TM data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(95)00233-2
– ident: ref_16
  doi: 10.1109/IGARSS.2018.8517375
– ident: ref_3
  doi: 10.3390/rs12244190
– volume: 5
  start-page: 1076
  year: 2012
  ident: ref_34
  article-title: Fusion of Difference Images for Change Detection Over Urban Areas
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2012.2200879
– volume: 11
  start-page: 4676
  year: 2018
  ident: ref_11
  article-title: Unsupervised Scene Change Detection via Latent Dirichlet Allocation and Multivariate Alteration Detection
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2869549
– ident: ref_20
  doi: 10.1109/ICIVC.2018.8492758
– ident: ref_2
  doi: 10.3390/rs9030252
– volume: 151
  start-page: 175
  year: 2015
  ident: ref_14
  article-title: Hyperspectral anomaly change detection with slow feature analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.058
– volume: 55
  start-page: 2367
  year: 2017
  ident: ref_32
  article-title: Kernel Slow Feature Analysis for Scene Change Detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2642125
– volume: 16
  start-page: 463
  year: 2007
  ident: ref_31
  article-title: The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.888195
– ident: ref_26
  doi: 10.3390/rs12101619
– volume: 7
  start-page: 27948
  year: 2019
  ident: ref_6
  article-title: Multi-Spectral Image Change Detection Based on Band Selection and Single-Band Iterative Weighting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2901286
– ident: ref_8
– volume: 10
  start-page: 4124
  year: 2017
  ident: ref_28
  article-title: Multiscale Morphological Compressed Change Vector Analysis for Unsupervised Multiple Change Detection
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2712119
– volume: 163
  start-page: 137
  year: 2020
  ident: ref_5
  article-title: A method to improve the accuracy of SAR image change detection by using an image enhancement method
  publication-title: Isprs J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.03.002
– volume: 9
  start-page: 294
  year: 2005
  ident: ref_7
  article-title: Automatic land use and land cover change detection with one temporary remote sensing image
  publication-title: J. Remote Sens. Beijing
– ident: ref_12
– volume: 52
  start-page: 6141
  year: 2014
  ident: ref_33
  article-title: Automatic Radiometric Normalization for Multitemporal Remote Sensing Imagery With Iterative Slow Feature Analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2295263
– volume: 16
  start-page: 663
  year: 2012
  ident: ref_36
  article-title: Change detection from multi-temporal remote sensing images by integrating multiple features
  publication-title: J. Remote Sens.
– volume: 57
  start-page: 9976
  year: 2019
  ident: ref_21
  article-title: Unsupervised Deep Slow Feature Analysis for Change Detection in Multi-Temporal Remote Sensing Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2930682
– ident: ref_38
– ident: ref_15
  doi: 10.1109/IGARSS.2018.8518015
– volume: 14
  start-page: 19
  year: 2013
  ident: ref_35
  article-title: Information fusion techniques for change detection from multi-temporal remote sensing images
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2012.05.003
– volume: 61
  start-page: 3666
  year: 2015
  ident: ref_39
  article-title: Concurrent monitoring of operating condition deviations and process dynamics anomalies with slow feature analysis
  publication-title: Aiche J.
  doi: 10.1002/aic.14888
– ident: ref_40
  doi: 10.3390/rs11030240
SSID ssj0000331904
Score 2.3222682
Snippet Due to differences in external imaging conditions, multispectral images taken at different periods are subject to radiation differences, which severely affect...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2969
SubjectTerms Accuracy
Algorithms
Change detection
Cluster analysis
Clustering
Deep learning
Dictionaries
Euclidean geometry
filters
Gray scale
image analysis
Image filters
Machine learning
multispectral imagery
multispectral remote sensing image
Neural networks
Noise
Principal components analysis
problem solving
Radiation
Remote sensing
slow feature analysis
Vector quantization
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4BL1fIQSx8yggsHq0n8ik9Vtw-1HAqiVOotcuxxOSxJye4K8e879nq3QlS9Oc4oisaeh8cz3xDyyUcIdqkNw7_kTHipGHohhrWxrtgI8CKkBNlLdX4tvtzImxxwm-W0ypVOTIra9y7GyA_Q9a1NRCOXh3e_WewaFW9XcwuN52QDVXBdj8jG5PTy2_d1lKXguMUKscQl5Xi-PxhmJS_jZaP5xxIlwP7_9HEyMmdbZDN7h_RouZzb5Bl0r8iL3Kj859_X5GsqmE3lkQMSXvxCdUCXFQL0BOYpr6qjEzRNnuLgCg3TFNjEdp5eTfs_NHp8iwHoCovkDbk-O_1xfM5yTwTmuBFzJgGgUL6sXCXb6D3gLOdWC4uODiitVMCh0m1QIEvngirABF2CcijbNvC3ZNT1HbwjFKQPFfeu5LUTVle28KG2ppLWurJUakw-r_jTuAwYHvtWTBs8OEReNg-8HJOPa9q7JUzGo1STyOY1RYS2ThP9cNtkSWl0EFyEIDQ3TkihWoMPTknj8DAA3I_J7mqRmixvs-Zhd4zJh_VrlJR4_WE76BdIo7iSvOJcv3_6EzvkZRUzV1Ka3y4ZzYcF7KHrMW_38_66BxW72Es
  priority: 102
  providerName: ProQuest
Title Multispectral Image Change Detection Based on Single-Band Slow Feature Analysis
URI https://www.proquest.com/docview/2558912755
https://www.proquest.com/docview/2636532337
https://doaj.org/article/7f434ff4739c4546b9ff4c659c882e3d
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB5BOcClKi8RWiIjuHBYNbvjR3xsaENBUBChUm8rrz0Wh7BBaaKq_75j7yYUgcSF03rtOVgz9jzkmW8AXocEwa6MLXiXWMigdMFeiC2aVFdsJQUZc4LsmT49lx8u1MWtVl8pJ6yDB-4Yd2iiRBmjNGi9VFI3ln-8Vtazb0gYkvZlm3crmMo6GPlojWSHR4oc1x8uL0ss0yOj_c0CZaD-P_RwNi7TPdjtvUJx1O3mIdyh9hHc7xuUf79-DJ9zoWwui1wy4fsfrAZEVxkgjmmV86laMWGTFAQPZmyQ5lRMXBvEbL64EsnTWy9JbDBInsD59OTb29Oi74VQeLRyVSgiGulQVr5STfIaeBbRGenYwSFttI481KaJmlTpfdQjstGUpD3faRfxKey0i5aegSAVYoXBlzj20pnKjUIcO1sp53xZaj2ANxv-1L4HCk_9KuY1BwyJl_UvXg7g1Zb2ZweP8VeqSWLzliJBWucJFnTdC7r-l6AHcLARUt3fs8uaA6KxTRj1agAvt8t8Q9Kzh2tpsWYajVphhWie_4997MODKuW15CTAA9hZLdf0gh2TVTOEu-PpuyHcOzr-9HHG38nJ2Zevw3wybwDW9ONn
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKoVxQeYmlBYyAA4eoiV9ZH6qKpSy7tJRDW6m34PhRDkvSZndV9af4xo6dZCsE4tZbYk-saDxPex4A72wowS5yleBfsoRbIRO0QlRShrxixZ3lPgbIHsnJKf96Js7W4HefCxPCKnuZGAW1rU04I99B03eoQjVysXdxmYSuUeF2tW-h0ZLFgbu-Qpdtvjvdx_19T-n488mnSdJ1FUgMU3yRCOdcKm1GDRVl0L84ypjOuUZTwclcSo-PMi-9dCIzxsvUKZ9nThrkDu0ZrnsP7uM3Kjh7w_GX1ZlOypCgU95WQcX5dKeZZywLV5vqD70X2wP8Jf2jShtvwsPOFiUfW-J5BGuuegwbXVv0n9dP4HtMz43JmA0CTn-h8CFtPgLZd4sYxVWRESpCS_DhGNXgzCUjXVlyPKuvSLAvl40jfeWTp3B6J7h6ButVXbnnQJywnjJrMjY0XOdUp9YPtaJCa5NlUg7gQ4-fwnTlyUOXjFmBbkrAZXGLywG8XcFetEU5_gk1CmheQYRC2nGgbs6Lji-L3HPGvec5U4YLLkuFL0YKZdD1cMwOYLvfpKLj7nlxS4sDeLOaRr4Mly26cvUSYSSTglHG8hf_X-I1bExOvh0Wh9Ojgy14QEPMTAww3Ib1RbN0L9HoWZSvIqUR-HHXpH0DYYgTZg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKcIFFgEHDhYsb2v7AEhQho1FIWKUqk3s94HHIJdnERV_xq_jtm1nQqBuPVmr0cra3ZmZ2Z35huAlzZAsHOpEvxLmjDLRYJeiErKUFesmLPMxwTZhTg4YR9O-ekO_OprYUJaZb8nxo3a1iackY_Q9R2rgEbOR75Liziazt6e_UxCB6lw09q302hF5NBdnGP4tnozn-Jav8rz2f6X9wdJ12EgMVSxdcKdc6mwWW5yXgZbjKOUask0ug1OSCE8PgpZeuF4ZowXqVNeZk4Y1BTtKc57DXZliIoGsDvZXxx93p7wpBTFO2UtJiqlKh01q4xm4aJT_WEFY7OAv2xBNHCz23Cr80zJu1aU7sCOq-7Cja5J-veLe_ApFuvG0swGCec_cCsibXUCmbp1zOmqyATNoiX4cIxGcemSia4sOV7W5yR4m5vGkR4H5T6cXAm3HsCgqiv3EIjj1ufUmoyODdMy16n1Y61yrrXJMiGG8LrnT2E6sPLQM2NZYNASeFlc8nIIL7a0Zy1Exz-pJoHNW4oAqx0H6uZb0WlpIT2jzHsmqTKMM1EqfDGCK4OBiKN2CHv9IhWdrq-KS8kcwvPtZ9TScPWiK1dvkEZQwWlOqXz0_ymewXUU6-LjfHH4GG7mIYEmZhvuwWDdbNwT9IDW5dNO1Ah8vWrp_g2x4Bj4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multispectral+Image+Change+Detection+Based+on+Single-Band+Slow+Feature+Analysis&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Youxi+He&rft.au=Zhenhong+Jia&rft.au=Jie+Yang&rft.au=Nikola+K.+Kasabov&rft.date=2021-08-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=15&rft.spage=2969&rft_id=info:doi/10.3390%2Frs13152969&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7f434ff4739c4546b9ff4c659c882e3d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon