Deep Encoder–Decoder Network-Based Wildfire Segmentation Using Drone Images in Real-Time

Wildfire is a hazardous natural phenomenon that leads to significant human fatalities, catastrophic environmental damages, and economic losses. Over the past few years, the intensity and frequency of fires have increased worldwide. Studies have been conducted to develop distinctive solutions to mini...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 14; no. 24; p. 6302
Main Authors Muksimova, Shakhnoza, Mardieva, Sevara, Cho, Young-Im
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2022
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs14246302

Cover

Loading…
Abstract Wildfire is a hazardous natural phenomenon that leads to significant human fatalities, catastrophic environmental damages, and economic losses. Over the past few years, the intensity and frequency of fires have increased worldwide. Studies have been conducted to develop distinctive solutions to minimize forest fires. Systems for distant fire detection and monitoring have been established, showing improvements in data collection and fire characterization. However, wildfires cover vast areas, making other proposed ground systems unsuitable for optimal coverage. Unmanned aerial vehicles (UAVs) have become the subject of active research in recent years. Deep learning-based image-processing methods demonstrate improved performance in various tasks, including detection and segmentation, which can be utilized to develop modern forest firefighting techniques. In this study, we established a novel two-pathway encoder–decoder-based model to detect and accurately segment wildfires and smoke from the images captured using UAVs in real-time. Our proposed nested decoder uses pre-activated residual blocks and an attention-gating mechanism, thereby improving segmentation accuracy. Moreover, to facilitate robust and generalized training, we prepared a new dataset comprising actual incidences of forest fires and smoke, varying from small to large areas. In terms of practicality, the experimental results reveal that our method significantly outperforms existing detection and segmentation methods, despite being lightweight. In addition, the proposed model is reliable and robust for detecting and segmenting drone camera images from different viewpoints in the presence of wildfire and smoke.
AbstractList Wildfire is a hazardous natural phenomenon that leads to significant human fatalities, catastrophic environmental damages, and economic losses. Over the past few years, the intensity and frequency of fires have increased worldwide. Studies have been conducted to develop distinctive solutions to minimize forest fires. Systems for distant fire detection and monitoring have been established, showing improvements in data collection and fire characterization. However, wildfires cover vast areas, making other proposed ground systems unsuitable for optimal coverage. Unmanned aerial vehicles (UAVs) have become the subject of active research in recent years. Deep learning-based image-processing methods demonstrate improved performance in various tasks, including detection and segmentation, which can be utilized to develop modern forest firefighting techniques. In this study, we established a novel two-pathway encoder–decoder-based model to detect and accurately segment wildfires and smoke from the images captured using UAVs in real-time. Our proposed nested decoder uses pre-activated residual blocks and an attention-gating mechanism, thereby improving segmentation accuracy. Moreover, to facilitate robust and generalized training, we prepared a new dataset comprising actual incidences of forest fires and smoke, varying from small to large areas. In terms of practicality, the experimental results reveal that our method significantly outperforms existing detection and segmentation methods, despite being lightweight. In addition, the proposed model is reliable and robust for detecting and segmenting drone camera images from different viewpoints in the presence of wildfire and smoke.
Author Muksimova, Shakhnoza
Mardieva, Sevara
Cho, Young-Im
Author_xml – sequence: 1
  givenname: Shakhnoza
  orcidid: 0000-0002-6223-4502
  surname: Muksimova
  fullname: Muksimova, Shakhnoza
– sequence: 2
  givenname: Sevara
  surname: Mardieva
  fullname: Mardieva, Sevara
– sequence: 3
  givenname: Young-Im
  orcidid: 0000-0003-0184-7599
  surname: Cho
  fullname: Cho, Young-Im
BookMark eNptkc9qFEEQxhuJYIy5-AQNXkQY7b_b00fNRl0ICpogeGlqumuWXme61-5Zgre8Q97QJ3GyqyjBulRR_Orjq6rH5CjlhIQ85eyllJa9KpUroRaSiQfkWDAjGiWsOPqnfkROa92wOaTklqlj8nWJuKXnyeeA5efN7RL3Ff2A03Uu35o3UDHQL3EIfSxIP-N6xDTBFHOiVzWmNV2W2QVdjbDGSmOinxCG5jKO-IQ87GGoePo7n5Crt-eXZ--bi4_vVmevLxovrZoajTqYrtPc2N741gZpOiPbYLiXvDUt51Jb1gIXXi9gZrReGNP1WiMEACNPyOqgGzJs3LbEEcoPlyG6fSOXtYMyRT-g09gaJgSTc1Zc9F0bkHuwmodFsChnrecHrW3J33dYJzfG6nEYIGHeVSeZYkppq-7QZ_fQTd6VNG_qhJkttlzsKXagfMm1Fuydj4fzTQXi4Dhzd79zf383j7y4N_Jnp__AvwCkIpmt
CitedBy_id crossref_primary_10_1007_s00530_024_01359_z
crossref_primary_10_1016_j_jai_2023_08_003
crossref_primary_10_1016_j_eswa_2023_121962
crossref_primary_10_1016_j_eswa_2024_123935
crossref_primary_10_1080_10095020_2024_2347922
crossref_primary_10_1016_j_engappai_2023_107238
crossref_primary_10_1016_j_aei_2024_102953
Cites_doi 10.1007/978-3-319-24574-4_28
10.1109/ICCV.2019.00925
10.1155/2018/8235127
10.3390/rs14102425
10.1109/CVPR.2018.00913
10.3390/f12060768
10.1109/IECON.2016.7793196
10.1016/j.comnet.2021.108001
10.3390/rs14010190
10.1007/978-3-030-01234-2_49
10.3390/rs14194833
10.18280/ts.380324
10.1007/978-3-319-46493-0_38
10.1109/ICCV.2017.322
10.1109/CVPR.2018.00745
10.1109/ICASERT.2019.8934458
10.1007/s11263-018-1130-2
10.1109/CVPR42600.2020.00860
10.1016/j.firesaf.2019.03.004
10.1109/TRANSDUCERS.2019.8808611
10.2139/ssrn.3724291
10.3390/rs14133109
10.1109/CVPR.2017.106
10.1109/CVPR.2019.00657
10.3390/rs11111369
10.18653/v1/D15-1166
10.1016/j.knosys.2022.109036
10.3390/rs12193177
10.1109/CVPR.2017.472
10.3390/rs14194770
10.23919/ELECO47770.2019.8990608
10.1109/CVPR42600.2020.00382
10.1049/ipr2.12046
10.1007/978-3-030-58523-5_38
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs14246302
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection (ProQuest)
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database
AGRICOLA
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_5e8702203e87412fb8de1ca951d6d9e3
10_3390_rs14246302
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-5e5d7bb5179f7c89d37b738d71c318781135908a12c56a9f755677bf55eadaa73
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:15:24 EDT 2025
Fri Sep 05 00:15:14 EDT 2025
Fri Jul 25 09:34:48 EDT 2025
Thu Apr 24 23:13:00 EDT 2025
Tue Jul 01 03:10:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-5e5d7bb5179f7c89d37b738d71c318781135908a12c56a9f755677bf55eadaa73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6223-4502
0000-0003-0184-7599
OpenAccessLink https://doaj.org/article/5e8702203e87412fb8de1ca951d6d9e3
PQID 2756781243
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_5e8702203e87412fb8de1ca951d6d9e3
proquest_miscellaneous_3040445943
proquest_journals_2756781243
crossref_citationtrail_10_3390_rs14246302
crossref_primary_10_3390_rs14246302
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wu (ref_11) 2018; 2018
ref_50
ref_14
ref_13
ref_12
Wu (ref_43) 2021; 38
ref_10
ref_54
ref_53
ref_52
ref_51
ref_19
ref_18
ref_17
ref_25
ref_24
ref_23
ref_22
ref_21
ref_20
ref_29
ref_28
ref_36
ref_35
ref_34
ref_33
ref_32
ref_31
ref_30
Wang (ref_45) 2019; 127
ref_39
ref_38
ref_37
Umirzakova (ref_4) 2022; 250
ref_47
ref_46
ref_44
Xu (ref_15) 2019; 105
ref_42
ref_41
ref_40
ref_1
Shamsoshoara (ref_26) 2021; 193
Muksimova (ref_16) 2022; 22
ref_3
ref_2
ref_49
ref_48
ref_9
Frizzi (ref_27) 2021; 15
ref_8
ref_5
ref_7
ref_6
References_xml – ident: ref_9
– ident: ref_25
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref_5
– ident: ref_54
  doi: 10.1109/ICCV.2019.00925
– volume: 2018
  start-page: 8235127
  year: 2018
  ident: ref_11
  article-title: Intelligent Smoke Alarm System with Wireless Sensor Network Using ZigBee
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2018/8235127
– ident: ref_19
  doi: 10.3390/rs14102425
– ident: ref_53
  doi: 10.1109/CVPR.2018.00913
– ident: ref_39
– ident: ref_8
  doi: 10.3390/f12060768
– ident: ref_42
– ident: ref_1
– ident: ref_6
  doi: 10.1109/IECON.2016.7793196
– ident: ref_35
– volume: 193
  start-page: 108001
  year: 2021
  ident: ref_26
  article-title: Aerial imagery pile burn detection using deep learning: FLAME Dataset
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2021.108001
– ident: ref_24
  doi: 10.3390/rs14010190
– ident: ref_29
  doi: 10.1007/978-3-030-01234-2_49
– ident: ref_3
  doi: 10.3390/rs14194833
– ident: ref_31
– volume: 38
  start-page: 775
  year: 2021
  ident: ref_43
  article-title: Forest fire recognition based on feature extraction from multi-view images
  publication-title: Traitement Du Signal
  doi: 10.18280/ts.380324
– ident: ref_48
– ident: ref_10
– ident: ref_36
  doi: 10.1007/978-3-319-46493-0_38
– ident: ref_41
– ident: ref_38
  doi: 10.1109/ICCV.2017.322
– ident: ref_30
  doi: 10.1109/CVPR.2018.00745
– ident: ref_14
  doi: 10.1109/ICASERT.2019.8934458
– volume: 127
  start-page: 625
  year: 2019
  ident: ref_45
  article-title: Face mask extraction in video sequence
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-018-1130-2
– ident: ref_49
  doi: 10.1109/CVPR42600.2020.00860
– volume: 105
  start-page: 277
  year: 2019
  ident: ref_15
  article-title: Video smoke detection based on deep saliency network
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2019.03.004
– ident: ref_13
  doi: 10.1109/TRANSDUCERS.2019.8808611
– ident: ref_34
– ident: ref_12
  doi: 10.2139/ssrn.3724291
– ident: ref_17
  doi: 10.3390/rs14133109
– ident: ref_40
– ident: ref_32
  doi: 10.1109/CVPR.2017.106
– ident: ref_52
  doi: 10.1109/CVPR.2019.00657
– ident: ref_37
– ident: ref_44
– ident: ref_21
– ident: ref_20
  doi: 10.3390/rs11111369
– ident: ref_33
  doi: 10.18653/v1/D15-1166
– volume: 250
  start-page: 109036
  year: 2022
  ident: ref_4
  article-title: Detailed feature extraction network-based fine-grained face segmentation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.109036
– volume: 22
  start-page: 98
  year: 2022
  ident: ref_16
  article-title: Novel Video Surveillance-Based Fire and Smoke Classification Using Attentional Feature Map in Capsule Networks
  publication-title: Sensors
– ident: ref_50
– ident: ref_2
– ident: ref_28
  doi: 10.3390/rs12193177
– ident: ref_46
– ident: ref_51
  doi: 10.1109/CVPR.2017.472
– ident: ref_18
  doi: 10.3390/rs14194770
– ident: ref_7
  doi: 10.23919/ELECO47770.2019.8990608
– ident: ref_23
  doi: 10.1109/CVPR42600.2020.00382
– volume: 15
  start-page: 634
  year: 2021
  ident: ref_27
  article-title: Convolutional neural network for smoke and fire semantic segmentation
  publication-title: IET Image Process
  doi: 10.1049/ipr2.12046
– ident: ref_47
  doi: 10.1007/978-3-030-58523-5_38
– ident: ref_22
SSID ssj0000331904
Score 2.4355357
Snippet Wildfire is a hazardous natural phenomenon that leads to significant human fatalities, catastrophic environmental damages, and economic losses. Over the past...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 6302
SubjectTerms Accuracy
cameras
Coders
Data collection
Datasets
Deep learning
drone
Drones
Economic impact
encoder–decoder
Environmental degradation
False alarms
Fire alarms
fire detection
Fire fighting
Forest & brush fires
forest fire and smoke segmentation
Forest fire detection
Forest fires
forests
humans
Image processing
Image segmentation
Methods
Neural networks
Real time
Remote sensing
Remote sensing systems
Robustness
Semantics
Sensors
Smoke
Unmanned aerial vehicles
Wildfires
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BeoBLxVMECloEFw6r2vu0T1VDUhUkIlSoVHGx9lmQqJPa6YFb_wP_sL-EGWeTHkCcbNkjW5qd187OfEPI25obGzSvmfE8MFlLyWprOdPegbcrk40BG5w_zfXxqfx4ps5ywq3PZZUbmzgY6rDwmCPfR5hyg95IHCwvGU6NwtPVPELjLtkBE1ypEdmZzOafT7ZZlkKAiBVyjUsqYH-_3_XY26VFzqNsPNEA2P-XPR6czNEDspujQ3q4Xs6H5E5sH5F7eVD591-PybdpjEs6a7ETvbu5_j2Nwx2dr6u52QScUqCg6iGBLaNf4vlFbi5q6VAdQKfdoo30wwXYkZ7-aOkJRIoMG0GekNOj2df3xyyPR2Be1HLFVFTBOIcYW8n4qg7COCOqYEoPioodpAIHmtuSe6Ut0CjgoHFJKZAea414SkYt_PIZockXRUKoGuuCTFxXiVfWaWlNVQiv_Zi827Cq8Rk7HEdY_GxgD4FsbW7ZOiZvtrTLNWLGP6kmyPEtBaJcDw8W3XmTlaZREawJ54WAqyx5clWIpbcQFAYd6ijGZG-zXk1Wvb65FZQxeb19DUqDJyG2jYurvhFguqRUtRTP__-JF-Q-x36HoX5lj4xW3VV8CVHIyr3KovYHFA3c6Q
  priority: 102
  providerName: ProQuest
Title Deep Encoder–Decoder Network-Based Wildfire Segmentation Using Drone Images in Real-Time
URI https://www.proquest.com/docview/2756781243
https://www.proquest.com/docview/3040445943
https://doaj.org/article/5e8702203e87412fb8de1ca951d6d9e3
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BOcAF0QIi0EZbwaWHVe192semSSiIRqgPqeJi7ROQqFsl6YEb_4F_yC_pzNoJlUDiwmkt70i25r32zDeEvKm5sUHzmhnPA5O1lKy2ljPtHUS7MtkYsMH5eKaPzuX7C3VxZ9QX1oR18MAd4_ZVBI3ivBCwypInV4VYeguJQdChjhnnE2LencNU9sECVKuQHR6pgHP9_nyBPV1a9N9PVhEoA_X_4YdzcJk-IY_7rJAedG-zSe7Fdos87AeUf_n-lHwax3hNJy12oM9__fg5jvmKzroqbjaCYBQomHhI4MPoafx82TcVtTRXBdDx_KqN9N0l-I8F_drSE8gQGTaAPCPn08nZ4RHrxyIwL2q5ZCqqYJxDbK1kfFUHYZwRVTClBwPFzlGBg8xtyb3SFmiU0sa4pBRojbVGPCcbLTzyBaHJF0VCiBrrgkxcV4lX1mlpTVUIr_2A7K1Y1fgeMxxHV3xr4OyAbG1-s3VAXq9przukjL9SjZDjawpEt843QOZNL_PmXzIfkO2VvJre5BYN4tgbTFdge3e9DcaCf0BsG69uFo0AlyWlqqV4-T_e4xV5xLEbIle3bJON5fwm7kCOsnRDcr-avh2SBwfj4w-nsI4ms48nw6ykt1Wr59Y
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeygXxFMsFDACDhysJrYTxweEWHarXdquUGmlikvwK6VSm12SrVBv_Af-Bz-KX8JMHtsDiFtPiZKRLY1nvhnb8yDkpebK-JRrphz3TGopmTaGs9RZsHZxYYLHBOf9WTo5kh-Ok-M18qvPhcGwyh4TG6D2c4dn5NtYplyhNRJvF98Ydo3C29W-hUYrFrvh8jts2eo30xGs7yvOd8aH7yes6yrAnNByyZKQeGUtlqYqlMu0F8oqkXkVO5BvTLwU2AfcxNwlqQGaBCZWtkgSYLoxSsC4N8gGuBkatGhjOJ59PFid6kQCRDqSbR1UIXS0XdWYS5aK7tymt3xNg4C_8L8xaju3ya3OG6XvWvG5Q9ZCeZdsdo3Rv17eI59HISzouMTM9-r3j5-j0LzRWRs9zoZgBD0FaPEFYCf9FE7Ou2SmkjbRCHRUzctAp-eAWzU9LekBeKYME0_uk6NrYdwDsl7ClA8JLVwUFVgax1gvC55mBc-MTaVRWSRc6gbkdc-q3HW1yrFlxlkOexZka37F1gF5saJdtBU6_kk1RI6vKLCqdvNhXp3knZLmSQD04jwS8JQxL2zmQ-wMOKE-9TqIAdnq1yvvVL3OrwRzQJ6vfoOS4s2LKcP8os4FQKWUiZbi0f-HeEY2J4f7e_nedLb7mNzkmGvRxM5skfVldRGegAe0tE87saPky3VL-h_u4hjb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrQRcEL9ioYARcOBgbWI7cXJAiCW76lJYVYVKFZfg-Kcg0eySbIV64x14Gx6HJ2GcdbYHELeeEiUjJxp_nvHPfDMAT3MmlUlZTqVmhopcCJorxWiqK_R2sVPWeILzu3m6eyjeHCVHW_Cr58L4sMreJnaG2iy03yMf-TTl0nsjPnIhLGK_mL5cfqO-gpQ_ae3LaawhsmfPvuPyrX0xK7CvnzE2nXx4vUtDhQGqeS5WNLGJkVXl01Q5qbPccFlJnhkZa8S6J2FyXxNcxUwnqUKZBH9CVi5JsAOUkhzbvQTbEr1iNoDt8WS-f7DZ4Yk4wjsS65yonOfRqGk9ryzlYQ-n94JdsYC_fEHn4KbX4VqYmZJXayjdgC1b34QroUj657Nb8LGwdkkmtWfBN79__Cxsd0fm60hyOkaHaAiaGePQjpL39vgkEJtq0kUmkKJZ1JbMTtCGteRLTQ5wlko9CeU2HF6I4u7AoMZP3gXidBQ5nyZHVUY4lmaOZapKhZJZxHWqh_C8V1WpQ95yXz7ja4nrF6_W8lytQ3iykV2us3X8U2rsNb6R8Bm2uweL5rgMA7ZMLFoyxiKOVxEzV2XGxlrhhNSkJrd8CDt9f5Vh2LflOUiH8HjzGgesP4VRtV2ctiVHsylEkgt-7_9NPILLiPDy7Wy-dx-uMk-76MJodmCwak7tA5wMraqHAXUEPl000P8AvFAdBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Encoder%E2%80%93Decoder+Network-Based+Wildfire+Segmentation+Using+Drone+Images+in+Real-Time&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Shakhnoza+Muksimova&rft.au=Sevara+Mardieva&rft.au=Young-Im+Cho&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=24&rft.spage=6302&rft_id=info:doi/10.3390%2Frs14246302&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5e8702203e87412fb8de1ca951d6d9e3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon