Deep Encoder–Decoder Network-Based Wildfire Segmentation Using Drone Images in Real-Time
Wildfire is a hazardous natural phenomenon that leads to significant human fatalities, catastrophic environmental damages, and economic losses. Over the past few years, the intensity and frequency of fires have increased worldwide. Studies have been conducted to develop distinctive solutions to mini...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 24; p. 6302 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-4292 2072-4292 |
DOI | 10.3390/rs14246302 |
Cover
Loading…
Abstract | Wildfire is a hazardous natural phenomenon that leads to significant human fatalities, catastrophic environmental damages, and economic losses. Over the past few years, the intensity and frequency of fires have increased worldwide. Studies have been conducted to develop distinctive solutions to minimize forest fires. Systems for distant fire detection and monitoring have been established, showing improvements in data collection and fire characterization. However, wildfires cover vast areas, making other proposed ground systems unsuitable for optimal coverage. Unmanned aerial vehicles (UAVs) have become the subject of active research in recent years. Deep learning-based image-processing methods demonstrate improved performance in various tasks, including detection and segmentation, which can be utilized to develop modern forest firefighting techniques. In this study, we established a novel two-pathway encoder–decoder-based model to detect and accurately segment wildfires and smoke from the images captured using UAVs in real-time. Our proposed nested decoder uses pre-activated residual blocks and an attention-gating mechanism, thereby improving segmentation accuracy. Moreover, to facilitate robust and generalized training, we prepared a new dataset comprising actual incidences of forest fires and smoke, varying from small to large areas. In terms of practicality, the experimental results reveal that our method significantly outperforms existing detection and segmentation methods, despite being lightweight. In addition, the proposed model is reliable and robust for detecting and segmenting drone camera images from different viewpoints in the presence of wildfire and smoke. |
---|---|
AbstractList | Wildfire is a hazardous natural phenomenon that leads to significant human fatalities, catastrophic environmental damages, and economic losses. Over the past few years, the intensity and frequency of fires have increased worldwide. Studies have been conducted to develop distinctive solutions to minimize forest fires. Systems for distant fire detection and monitoring have been established, showing improvements in data collection and fire characterization. However, wildfires cover vast areas, making other proposed ground systems unsuitable for optimal coverage. Unmanned aerial vehicles (UAVs) have become the subject of active research in recent years. Deep learning-based image-processing methods demonstrate improved performance in various tasks, including detection and segmentation, which can be utilized to develop modern forest firefighting techniques. In this study, we established a novel two-pathway encoder–decoder-based model to detect and accurately segment wildfires and smoke from the images captured using UAVs in real-time. Our proposed nested decoder uses pre-activated residual blocks and an attention-gating mechanism, thereby improving segmentation accuracy. Moreover, to facilitate robust and generalized training, we prepared a new dataset comprising actual incidences of forest fires and smoke, varying from small to large areas. In terms of practicality, the experimental results reveal that our method significantly outperforms existing detection and segmentation methods, despite being lightweight. In addition, the proposed model is reliable and robust for detecting and segmenting drone camera images from different viewpoints in the presence of wildfire and smoke. |
Author | Muksimova, Shakhnoza Mardieva, Sevara Cho, Young-Im |
Author_xml | – sequence: 1 givenname: Shakhnoza orcidid: 0000-0002-6223-4502 surname: Muksimova fullname: Muksimova, Shakhnoza – sequence: 2 givenname: Sevara surname: Mardieva fullname: Mardieva, Sevara – sequence: 3 givenname: Young-Im orcidid: 0000-0003-0184-7599 surname: Cho fullname: Cho, Young-Im |
BookMark | eNptkc9qFEEQxhuJYIy5-AQNXkQY7b_b00fNRl0ICpogeGlqumuWXme61-5Zgre8Q97QJ3GyqyjBulRR_Orjq6rH5CjlhIQ85eyllJa9KpUroRaSiQfkWDAjGiWsOPqnfkROa92wOaTklqlj8nWJuKXnyeeA5efN7RL3Ff2A03Uu35o3UDHQL3EIfSxIP-N6xDTBFHOiVzWmNV2W2QVdjbDGSmOinxCG5jKO-IQ87GGoePo7n5Crt-eXZ--bi4_vVmevLxovrZoajTqYrtPc2N741gZpOiPbYLiXvDUt51Jb1gIXXi9gZrReGNP1WiMEACNPyOqgGzJs3LbEEcoPlyG6fSOXtYMyRT-g09gaJgSTc1Zc9F0bkHuwmodFsChnrecHrW3J33dYJzfG6nEYIGHeVSeZYkppq-7QZ_fQTd6VNG_qhJkttlzsKXagfMm1Fuydj4fzTQXi4Dhzd79zf383j7y4N_Jnp__AvwCkIpmt |
CitedBy_id | crossref_primary_10_1007_s00530_024_01359_z crossref_primary_10_1016_j_jai_2023_08_003 crossref_primary_10_1016_j_eswa_2023_121962 crossref_primary_10_1016_j_eswa_2024_123935 crossref_primary_10_1080_10095020_2024_2347922 crossref_primary_10_1016_j_engappai_2023_107238 crossref_primary_10_1016_j_aei_2024_102953 |
Cites_doi | 10.1007/978-3-319-24574-4_28 10.1109/ICCV.2019.00925 10.1155/2018/8235127 10.3390/rs14102425 10.1109/CVPR.2018.00913 10.3390/f12060768 10.1109/IECON.2016.7793196 10.1016/j.comnet.2021.108001 10.3390/rs14010190 10.1007/978-3-030-01234-2_49 10.3390/rs14194833 10.18280/ts.380324 10.1007/978-3-319-46493-0_38 10.1109/ICCV.2017.322 10.1109/CVPR.2018.00745 10.1109/ICASERT.2019.8934458 10.1007/s11263-018-1130-2 10.1109/CVPR42600.2020.00860 10.1016/j.firesaf.2019.03.004 10.1109/TRANSDUCERS.2019.8808611 10.2139/ssrn.3724291 10.3390/rs14133109 10.1109/CVPR.2017.106 10.1109/CVPR.2019.00657 10.3390/rs11111369 10.18653/v1/D15-1166 10.1016/j.knosys.2022.109036 10.3390/rs12193177 10.1109/CVPR.2017.472 10.3390/rs14194770 10.23919/ELECO47770.2019.8990608 10.1109/CVPR42600.2020.00382 10.1049/ipr2.12046 10.1007/978-3-030-58523-5_38 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs14246302 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection (ProQuest) Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_5e8702203e87412fb8de1ca951d6d9e3 10_3390_rs14246302 |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c394t-5e5d7bb5179f7c89d37b738d71c318781135908a12c56a9f755677bf55eadaa73 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:15:24 EDT 2025 Fri Sep 05 00:15:14 EDT 2025 Fri Jul 25 09:34:48 EDT 2025 Thu Apr 24 23:13:00 EDT 2025 Tue Jul 01 03:10:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-5e5d7bb5179f7c89d37b738d71c318781135908a12c56a9f755677bf55eadaa73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6223-4502 0000-0003-0184-7599 |
OpenAccessLink | https://doaj.org/article/5e8702203e87412fb8de1ca951d6d9e3 |
PQID | 2756781243 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5e8702203e87412fb8de1ca951d6d9e3 proquest_miscellaneous_3040445943 proquest_journals_2756781243 crossref_citationtrail_10_3390_rs14246302 crossref_primary_10_3390_rs14246302 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wu (ref_11) 2018; 2018 ref_50 ref_14 ref_13 ref_12 Wu (ref_43) 2021; 38 ref_10 ref_54 ref_53 ref_52 ref_51 ref_19 ref_18 ref_17 ref_25 ref_24 ref_23 ref_22 ref_21 ref_20 ref_29 ref_28 ref_36 ref_35 ref_34 ref_33 ref_32 ref_31 ref_30 Wang (ref_45) 2019; 127 ref_39 ref_38 ref_37 Umirzakova (ref_4) 2022; 250 ref_47 ref_46 ref_44 Xu (ref_15) 2019; 105 ref_42 ref_41 ref_40 ref_1 Shamsoshoara (ref_26) 2021; 193 Muksimova (ref_16) 2022; 22 ref_3 ref_2 ref_49 ref_48 ref_9 Frizzi (ref_27) 2021; 15 ref_8 ref_5 ref_7 ref_6 |
References_xml | – ident: ref_9 – ident: ref_25 doi: 10.1007/978-3-319-24574-4_28 – ident: ref_5 – ident: ref_54 doi: 10.1109/ICCV.2019.00925 – volume: 2018 start-page: 8235127 year: 2018 ident: ref_11 article-title: Intelligent Smoke Alarm System with Wireless Sensor Network Using ZigBee publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2018/8235127 – ident: ref_19 doi: 10.3390/rs14102425 – ident: ref_53 doi: 10.1109/CVPR.2018.00913 – ident: ref_39 – ident: ref_8 doi: 10.3390/f12060768 – ident: ref_42 – ident: ref_1 – ident: ref_6 doi: 10.1109/IECON.2016.7793196 – ident: ref_35 – volume: 193 start-page: 108001 year: 2021 ident: ref_26 article-title: Aerial imagery pile burn detection using deep learning: FLAME Dataset publication-title: Comput. Netw. doi: 10.1016/j.comnet.2021.108001 – ident: ref_24 doi: 10.3390/rs14010190 – ident: ref_29 doi: 10.1007/978-3-030-01234-2_49 – ident: ref_3 doi: 10.3390/rs14194833 – ident: ref_31 – volume: 38 start-page: 775 year: 2021 ident: ref_43 article-title: Forest fire recognition based on feature extraction from multi-view images publication-title: Traitement Du Signal doi: 10.18280/ts.380324 – ident: ref_48 – ident: ref_10 – ident: ref_36 doi: 10.1007/978-3-319-46493-0_38 – ident: ref_41 – ident: ref_38 doi: 10.1109/ICCV.2017.322 – ident: ref_30 doi: 10.1109/CVPR.2018.00745 – ident: ref_14 doi: 10.1109/ICASERT.2019.8934458 – volume: 127 start-page: 625 year: 2019 ident: ref_45 article-title: Face mask extraction in video sequence publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-018-1130-2 – ident: ref_49 doi: 10.1109/CVPR42600.2020.00860 – volume: 105 start-page: 277 year: 2019 ident: ref_15 article-title: Video smoke detection based on deep saliency network publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2019.03.004 – ident: ref_13 doi: 10.1109/TRANSDUCERS.2019.8808611 – ident: ref_34 – ident: ref_12 doi: 10.2139/ssrn.3724291 – ident: ref_17 doi: 10.3390/rs14133109 – ident: ref_40 – ident: ref_32 doi: 10.1109/CVPR.2017.106 – ident: ref_52 doi: 10.1109/CVPR.2019.00657 – ident: ref_37 – ident: ref_44 – ident: ref_21 – ident: ref_20 doi: 10.3390/rs11111369 – ident: ref_33 doi: 10.18653/v1/D15-1166 – volume: 250 start-page: 109036 year: 2022 ident: ref_4 article-title: Detailed feature extraction network-based fine-grained face segmentation publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.109036 – volume: 22 start-page: 98 year: 2022 ident: ref_16 article-title: Novel Video Surveillance-Based Fire and Smoke Classification Using Attentional Feature Map in Capsule Networks publication-title: Sensors – ident: ref_50 – ident: ref_2 – ident: ref_28 doi: 10.3390/rs12193177 – ident: ref_46 – ident: ref_51 doi: 10.1109/CVPR.2017.472 – ident: ref_18 doi: 10.3390/rs14194770 – ident: ref_7 doi: 10.23919/ELECO47770.2019.8990608 – ident: ref_23 doi: 10.1109/CVPR42600.2020.00382 – volume: 15 start-page: 634 year: 2021 ident: ref_27 article-title: Convolutional neural network for smoke and fire semantic segmentation publication-title: IET Image Process doi: 10.1049/ipr2.12046 – ident: ref_47 doi: 10.1007/978-3-030-58523-5_38 – ident: ref_22 |
SSID | ssj0000331904 |
Score | 2.4355357 |
Snippet | Wildfire is a hazardous natural phenomenon that leads to significant human fatalities, catastrophic environmental damages, and economic losses. Over the past... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 6302 |
SubjectTerms | Accuracy cameras Coders Data collection Datasets Deep learning drone Drones Economic impact encoder–decoder Environmental degradation False alarms Fire alarms fire detection Fire fighting Forest & brush fires forest fire and smoke segmentation Forest fire detection Forest fires forests humans Image processing Image segmentation Methods Neural networks Real time Remote sensing Remote sensing systems Robustness Semantics Sensors Smoke Unmanned aerial vehicles Wildfires |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BeoBLxVMECloEFw6r2vu0T1VDUhUkIlSoVHGx9lmQqJPa6YFb_wP_sL-EGWeTHkCcbNkjW5qd187OfEPI25obGzSvmfE8MFlLyWprOdPegbcrk40BG5w_zfXxqfx4ps5ywq3PZZUbmzgY6rDwmCPfR5hyg95IHCwvGU6NwtPVPELjLtkBE1ypEdmZzOafT7ZZlkKAiBVyjUsqYH-_3_XY26VFzqNsPNEA2P-XPR6czNEDspujQ3q4Xs6H5E5sH5F7eVD591-PybdpjEs6a7ETvbu5_j2Nwx2dr6u52QScUqCg6iGBLaNf4vlFbi5q6VAdQKfdoo30wwXYkZ7-aOkJRIoMG0GekNOj2df3xyyPR2Be1HLFVFTBOIcYW8n4qg7COCOqYEoPioodpAIHmtuSe6Ut0CjgoHFJKZAea414SkYt_PIZockXRUKoGuuCTFxXiVfWaWlNVQiv_Zi827Cq8Rk7HEdY_GxgD4FsbW7ZOiZvtrTLNWLGP6kmyPEtBaJcDw8W3XmTlaZREawJ54WAqyx5clWIpbcQFAYd6ijGZG-zXk1Wvb65FZQxeb19DUqDJyG2jYurvhFguqRUtRTP__-JF-Q-x36HoX5lj4xW3VV8CVHIyr3KovYHFA3c6Q priority: 102 providerName: ProQuest |
Title | Deep Encoder–Decoder Network-Based Wildfire Segmentation Using Drone Images in Real-Time |
URI | https://www.proquest.com/docview/2756781243 https://www.proquest.com/docview/3040445943 https://doaj.org/article/5e8702203e87412fb8de1ca951d6d9e3 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BOcAF0QIi0EZbwaWHVe192semSSiIRqgPqeJi7ROQqFsl6YEb_4F_yC_pzNoJlUDiwmkt70i25r32zDeEvKm5sUHzmhnPA5O1lKy2ljPtHUS7MtkYsMH5eKaPzuX7C3VxZ9QX1oR18MAd4_ZVBI3ivBCwypInV4VYeguJQdChjhnnE2LencNU9sECVKuQHR6pgHP9_nyBPV1a9N9PVhEoA_X_4YdzcJk-IY_7rJAedG-zSe7Fdos87AeUf_n-lHwax3hNJy12oM9__fg5jvmKzroqbjaCYBQomHhI4MPoafx82TcVtTRXBdDx_KqN9N0l-I8F_drSE8gQGTaAPCPn08nZ4RHrxyIwL2q5ZCqqYJxDbK1kfFUHYZwRVTClBwPFzlGBg8xtyb3SFmiU0sa4pBRojbVGPCcbLTzyBaHJF0VCiBrrgkxcV4lX1mlpTVUIr_2A7K1Y1fgeMxxHV3xr4OyAbG1-s3VAXq9przukjL9SjZDjawpEt843QOZNL_PmXzIfkO2VvJre5BYN4tgbTFdge3e9DcaCf0BsG69uFo0AlyWlqqV4-T_e4xV5xLEbIle3bJON5fwm7kCOsnRDcr-avh2SBwfj4w-nsI4ms48nw6ykt1Wr59Y |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeygXxFMsFDACDhysJrYTxweEWHarXdquUGmlikvwK6VSm12SrVBv_Af-Bz-KX8JMHtsDiFtPiZKRLY1nvhnb8yDkpebK-JRrphz3TGopmTaGs9RZsHZxYYLHBOf9WTo5kh-Ok-M18qvPhcGwyh4TG6D2c4dn5NtYplyhNRJvF98Ydo3C29W-hUYrFrvh8jts2eo30xGs7yvOd8aH7yes6yrAnNByyZKQeGUtlqYqlMu0F8oqkXkVO5BvTLwU2AfcxNwlqQGaBCZWtkgSYLoxSsC4N8gGuBkatGhjOJ59PFid6kQCRDqSbR1UIXS0XdWYS5aK7tymt3xNg4C_8L8xaju3ya3OG6XvWvG5Q9ZCeZdsdo3Rv17eI59HISzouMTM9-r3j5-j0LzRWRs9zoZgBD0FaPEFYCf9FE7Ou2SmkjbRCHRUzctAp-eAWzU9LekBeKYME0_uk6NrYdwDsl7ClA8JLVwUFVgax1gvC55mBc-MTaVRWSRc6gbkdc-q3HW1yrFlxlkOexZka37F1gF5saJdtBU6_kk1RI6vKLCqdvNhXp3knZLmSQD04jwS8JQxL2zmQ-wMOKE-9TqIAdnq1yvvVL3OrwRzQJ6vfoOS4s2LKcP8os4FQKWUiZbi0f-HeEY2J4f7e_nedLb7mNzkmGvRxM5skfVldRGegAe0tE87saPky3VL-h_u4hjb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrQRcEL9ioYARcOBgbWI7cXJAiCW76lJYVYVKFZfg-Kcg0eySbIV64x14Gx6HJ2GcdbYHELeeEiUjJxp_nvHPfDMAT3MmlUlZTqVmhopcCJorxWiqK_R2sVPWeILzu3m6eyjeHCVHW_Cr58L4sMreJnaG2iy03yMf-TTl0nsjPnIhLGK_mL5cfqO-gpQ_ae3LaawhsmfPvuPyrX0xK7CvnzE2nXx4vUtDhQGqeS5WNLGJkVXl01Q5qbPccFlJnhkZa8S6J2FyXxNcxUwnqUKZBH9CVi5JsAOUkhzbvQTbEr1iNoDt8WS-f7DZ4Yk4wjsS65yonOfRqGk9ryzlYQ-n94JdsYC_fEHn4KbX4VqYmZJXayjdgC1b34QroUj657Nb8LGwdkkmtWfBN79__Cxsd0fm60hyOkaHaAiaGePQjpL39vgkEJtq0kUmkKJZ1JbMTtCGteRLTQ5wlko9CeU2HF6I4u7AoMZP3gXidBQ5nyZHVUY4lmaOZapKhZJZxHWqh_C8V1WpQ95yXz7ja4nrF6_W8lytQ3iykV2us3X8U2rsNb6R8Bm2uweL5rgMA7ZMLFoyxiKOVxEzV2XGxlrhhNSkJrd8CDt9f5Vh2LflOUiH8HjzGgesP4VRtV2ctiVHsylEkgt-7_9NPILLiPDy7Wy-dx-uMk-76MJodmCwak7tA5wMraqHAXUEPl000P8AvFAdBw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Encoder%E2%80%93Decoder+Network-Based+Wildfire+Segmentation+Using+Drone+Images+in+Real-Time&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Shakhnoza+Muksimova&rft.au=Sevara+Mardieva&rft.au=Young-Im+Cho&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=24&rft.spage=6302&rft_id=info:doi/10.3390%2Frs14246302&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5e8702203e87412fb8de1ca951d6d9e3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |