Underwater Image Restoration Based on a Parallel Convolutional Neural Network

Restoring degraded underwater images is a challenging ill-posed problem. The existing prior-based approaches have limited performance in many situations due to the reliance on handcrafted features. In this paper, we propose an effective convolutional neural network (CNN) for underwater image restora...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 11; no. 13; p. 1591
Main Authors Wang, Keyan, Hu, Yan, Chen, Jun, Wu, Xianyun, Zhao, Xi, Li, Yunsong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Restoring degraded underwater images is a challenging ill-posed problem. The existing prior-based approaches have limited performance in many situations due to the reliance on handcrafted features. In this paper, we propose an effective convolutional neural network (CNN) for underwater image restoration. The proposed network consists of two paralleled branches: a transmission estimation network (T-network) and a global ambient light estimation network (A-network); in particular, the T-network employs cross-layer connection and multi-scale estimation to prevent halo artifacts and to preserve edge features. The estimates produced by these two branches are leveraged to restore the clear image according to the underwater optical imaging model. Moreover, we develop a new underwater image synthesizing method for building the training datasets, which can simulate images captured in various underwater environments. Experimental results based on synthetic and real images demonstrate that our restored underwater images exhibit more natural color correction and better visibility improvement against several state-of-the-art methods.
AbstractList Restoring degraded underwater images is a challenging ill-posed problem. The existing prior-based approaches have limited performance in many situations due to the reliance on handcrafted features. In this paper, we propose an effective convolutional neural network (CNN) for underwater image restoration. The proposed network consists of two paralleled branches: a transmission estimation network (T-network) and a global ambient light estimation network (A-network); in particular, the T-network employs cross-layer connection and multi-scale estimation to prevent halo artifacts and to preserve edge features. The estimates produced by these two branches are leveraged to restore the clear image according to the underwater optical imaging model. Moreover, we develop a new underwater image synthesizing method for building the training datasets, which can simulate images captured in various underwater environments. Experimental results based on synthetic and real images demonstrate that our restored underwater images exhibit more natural color correction and better visibility improvement against several state-of-the-art methods.
The whole network consists of two paralleled branches: a transmission estimation sub-network (T-network) and a global ambient light estimation sub-network (A-network), by which the transmission map and the ambient light can be estimated simultaneously. Since in our case no prior information is used to estimate the transmission and ambient light, it avoids the aforementioned mismatch issue commonly encountered in the prior-based methods and helps to improve the accuracy and universality of the estimation method. The input of A-network is a down-sampled underwater image, and the corresponding output is the global ambient light, which is one pixel vector with three color channels, i.e., [ Ar ; Ag ; Ab ]. Since the ambient light value is highly related to the global illumination features instead of the local image details, it is sensible to be estimated from a global perspective. According to Figure 11f, the authors in [25] perform well on contrast enhancement and color correction, but it generates over-enhanced and over-saturated results when the ambient light is significantly brighter than the scene. [...]our method produces images with natural color, enhanced contrast, and visually pleasing visibility, as illustrated in Figure 11h. [...]although the proposed network is trained using synthetic underwater images, it is capable of delivering more satisfactory restoration results on real-world degraded underwater images as compared to the state-of-the-art methods.
Author Chen, Jun
Zhao, Xi
Li, Yunsong
Wu, Xianyun
Hu, Yan
Wang, Keyan
Author_xml – sequence: 1
  givenname: Keyan
  orcidid: 0000-0002-9545-718X
  surname: Wang
  fullname: Wang, Keyan
– sequence: 2
  givenname: Yan
  surname: Hu
  fullname: Hu, Yan
– sequence: 3
  givenname: Jun
  orcidid: 0000-0002-8084-9332
  surname: Chen
  fullname: Chen, Jun
– sequence: 4
  givenname: Xianyun
  orcidid: 0000-0002-4450-3801
  surname: Wu
  fullname: Wu, Xianyun
– sequence: 5
  givenname: Xi
  surname: Zhao
  fullname: Zhao, Xi
– sequence: 6
  givenname: Yunsong
  surname: Li
  fullname: Li, Yunsong
BookMark eNptkU1PHDEMhiMEUilw6S8YiUtVaWmcj5nkSFfQrkRpVdFz5M140CzZCU1mQP33ZHdBVKi-2LIfv5bt92x_iAMx9gH4mZSWf04ZACRoC3vsUPBGzJSwYv-f-B07yXnFi0kJlqtD9v330FJ6xJFStVjjLVW_KI8x4djHofqCmdqqBFj9xIQhUKjmcXiIYdrUMVTXNKWtGx9jujtmBx2GTCfP_ojdXF7czL_Nrn58XczPr2ZeWjXONIE3nFBbVEJwwKXnhluj29q2VhlNne9Mo-ql10soYF1zpSx5bzUZL4_YYifbRly5-9SvMf11EXu3TcR06zCNvQ_ktFJcatBG1qg6MFZsJoNUwO2SLBStjzut-xT_TGV3t-6zpxBwoDhlJ6yplVC1agp6-gZdxSmVKxRKghC2gUYUiu8on2LOiTrn-3F7zjFhHxxwt_mWe_1Wafn0puVlp__AT84HlCw
CitedBy_id crossref_primary_10_1038_s41597_024_04267_z
crossref_primary_10_3390_w16050626
crossref_primary_10_3390_rs14174297
crossref_primary_10_1109_ACCESS_2023_3322153
crossref_primary_10_3390_rs12183020
crossref_primary_10_1007_s11042_024_18550_z
crossref_primary_10_4018_IJGHPC_2020070106
crossref_primary_10_3390_electronics11162537
crossref_primary_10_1109_ACCESS_2020_3037362
crossref_primary_10_1515_jisys_2024_0058
crossref_primary_10_3390_jmse9060570
crossref_primary_10_1016_j_inffus_2024_102809
crossref_primary_10_3390_jmse10101503
crossref_primary_10_3390_s22218445
crossref_primary_10_1007_s11042_024_20091_4
crossref_primary_10_1109_LSP_2021_3097657
crossref_primary_10_1007_s10489_022_03767_y
crossref_primary_10_1016_j_engappai_2023_106196
crossref_primary_10_3390_jmse12091467
crossref_primary_10_1631_FITEE_2000190
crossref_primary_10_1007_s00138_022_01337_3
crossref_primary_10_1142_S0219477522500250
crossref_primary_10_1016_j_image_2020_116088
crossref_primary_10_3390_app15020641
crossref_primary_10_1007_s11063_023_11322_0
crossref_primary_10_1109_TITS_2022_3168806
crossref_primary_10_3390_app14020529
crossref_primary_10_1016_j_sigpro_2024_109408
crossref_primary_10_1007_s11760_024_03592_5
crossref_primary_10_1109_ACCESS_2023_3298304
crossref_primary_10_1109_ACCESS_2023_3339817
crossref_primary_10_1109_JSEN_2023_3251326
crossref_primary_10_3390_jmse12112080
crossref_primary_10_1007_s40032_024_01156_7
crossref_primary_10_3390_app10186392
crossref_primary_10_1007_s11431_023_2614_8
crossref_primary_10_36548_jiip_2024_1_007
crossref_primary_10_3390_electronics11010150
crossref_primary_10_1002_col_22728
crossref_primary_10_1007_s00371_023_03117_0
crossref_primary_10_1007_s42979_023_02133_0
crossref_primary_10_1007_s42979_023_02191_4
crossref_primary_10_1016_j_jfranklin_2021_09_008
crossref_primary_10_1109_ACCESS_2024_3509452
crossref_primary_10_3390_jmse8110924
crossref_primary_10_1364_JOSAA_485307
crossref_primary_10_3390_jmse10020241
Cites_doi 10.1109/ICCPHOT.2017.7951489
10.1109/CVPR.2018.00343
10.1007/978-3-319-46475-6_10
10.3390/rs10101652
10.1016/j.jvcir.2014.11.006
10.1109/CVPR.2015.7299152
10.1109/TIP.2016.2598681
10.1109/ICASSP.2016.7471973
10.1002/col.1049
10.1109/ACCESS.2017.2648845
10.1109/MCG.2016.26
10.1109/OCEANS.2016.7761342
10.1109/TPAMI.2012.213
10.1109/CVPR.2018.00337
10.1007/978-3-319-11752-2_3
10.1109/VSMM.2012.6365924
10.1109/ISPA.2013.6703708
10.1109/VCIP.2017.8305027
10.1016/j.culher.2018.02.017
10.1364/AO.55.008248
10.3390/rs11040396
10.1109/TIP.2011.2179666
10.1109/TPAMI.2010.168
10.1109/ICSMC.2010.5642311
10.1109/TIP.2017.2759252
10.1109/VCIP.2017.8305035
10.1109/ICIP.2018.8451356
10.1109/ICIP.2011.6115744
10.1109/TIP.2016.2612882
10.1109/TIP.2012.2214050
10.3390/rs11040459
10.1109/TIP.2003.819861
10.1109/ICIP.2014.7025927
10.1007/978-3-642-33715-4_54
10.1109/TIP.2015.2491020
10.1109/OCEANS.2010.5664428
10.1016/j.neucom.2017.03.029
10.1109/3DV.2016.32
10.1109/ACCESS.2017.2753796
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs11131591
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_54403515836a4f1892c80e134109be91
10_3390_rs11131591
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-5e1c80ea59a42201abc080985d69d9485efcf8746bc5b10ea660449ecc95e8c3
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:30:21 EDT 2025
Fri Jul 11 02:10:06 EDT 2025
Fri Jul 25 12:05:17 EDT 2025
Thu Apr 24 23:10:51 EDT 2025
Tue Jul 01 04:14:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-5e1c80ea59a42201abc080985d69d9485efcf8746bc5b10ea660449ecc95e8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8084-9332
0000-0002-4450-3801
0000-0002-9545-718X
OpenAccessLink https://www.proquest.com/docview/2312297172?pq-origsite=%requestingapplication%
PQID 2312297172
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_54403515836a4f1892c80e134109be91
proquest_miscellaneous_2986424647
proquest_journals_2312297172
crossref_citationtrail_10_3390_rs11131591
crossref_primary_10_3390_rs11131591
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_36
ref_13
ref_12
ref_34
ref_11
ref_33
ref_10
ref_32
ref_31
ref_30
Sun (ref_9) 2016; 55
Luo (ref_42) 2001; 26
Li (ref_24) 2016; 25
He (ref_35) 2013; 35
ref_39
ref_38
ref_15
ref_37
Lu (ref_16) 2017; 5
Menna (ref_3) 2018; 33
Galdran (ref_6) 2015; 26
Mittal (ref_43) 2012; 21
He (ref_18) 2011; 33
ref_25
Wang (ref_41) 2004; 13
Ancuti (ref_17) 2018; 27
ref_22
ref_21
Yang (ref_44) 2015; 24
ref_40
ref_1
Zhang (ref_14) 2017; 245
ref_2
ref_29
ref_28
ref_27
Chiang (ref_19) 2012; 21
Drews (ref_20) 2016; 36
Wang (ref_23) 2017; 5
Cai (ref_26) 2016; 25
Han (ref_8) 2018; 99
ref_5
ref_4
ref_7
References_xml – ident: ref_25
  doi: 10.1109/ICCPHOT.2017.7951489
– ident: ref_33
  doi: 10.1109/CVPR.2018.00343
– ident: ref_27
  doi: 10.1007/978-3-319-46475-6_10
– ident: ref_32
– ident: ref_7
  doi: 10.3390/rs10101652
– volume: 26
  start-page: 132
  year: 2015
  ident: ref_6
  article-title: Automatic Red-Channel underwater image restoration
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2014.11.006
– ident: ref_38
  doi: 10.1109/CVPR.2015.7299152
– volume: 25
  start-page: 5187
  year: 2016
  ident: ref_26
  article-title: DehazeNet: An End-to-End System for Single Image Haze Removal
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2598681
– ident: ref_40
– ident: ref_22
  doi: 10.1109/ICASSP.2016.7471973
– volume: 26
  start-page: 340
  year: 2001
  ident: ref_42
  article-title: The development of the CIE 2000 colour-difference formula: CIEDE2000
  publication-title: Color Res. Appl.
  doi: 10.1002/col.1049
– volume: 5
  start-page: 670
  year: 2017
  ident: ref_16
  article-title: Underwater Image Super-Resolution by Descattering and Fusion
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2648845
– volume: 36
  start-page: 24
  year: 2016
  ident: ref_20
  article-title: Underwater Depth Estimation and Image Restoration Based on Single Images
  publication-title: IEEE Comput. Graphics Appl.
  doi: 10.1109/MCG.2016.26
– ident: ref_29
  doi: 10.1109/OCEANS.2016.7761342
– volume: 35
  start-page: 1397
  year: 2013
  ident: ref_35
  article-title: Guided image filtering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.213
– ident: ref_34
  doi: 10.1109/CVPR.2018.00337
– ident: ref_37
  doi: 10.1007/978-3-319-11752-2_3
– ident: ref_1
  doi: 10.1109/VSMM.2012.6365924
– ident: ref_10
  doi: 10.1109/ISPA.2013.6703708
– ident: ref_12
  doi: 10.1109/VCIP.2017.8305027
– volume: 33
  start-page: 231
  year: 2018
  ident: ref_3
  article-title: State of the art and applications in archaeological underwater 3D recording and mapping
  publication-title: J. Cult. Herit.
  doi: 10.1016/j.culher.2018.02.017
– volume: 55
  start-page: 8248
  year: 2016
  ident: ref_9
  article-title: Lower-upper-threshold correlation for underwater range-gated imaging self-adaptive enhancement
  publication-title: Appl. Opt.
  doi: 10.1364/AO.55.008248
– ident: ref_5
  doi: 10.3390/rs11040396
– volume: 21
  start-page: 1756
  year: 2012
  ident: ref_19
  article-title: Underwater image enhancement by wave-length compensation and dehazing
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2179666
– ident: ref_2
– volume: 33
  start-page: 2341
  year: 2011
  ident: ref_18
  article-title: Single image haze removal using dark channel prior
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.168
– ident: ref_11
  doi: 10.1109/ICSMC.2010.5642311
– volume: 27
  start-page: 379
  year: 2018
  ident: ref_17
  article-title: Color Balance and Fusion for Underwater Image Enhancement
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2759252
– ident: ref_28
  doi: 10.1109/VCIP.2017.8305035
– ident: ref_30
  doi: 10.1109/ICIP.2018.8451356
– volume: 99
  start-page: 1
  year: 2018
  ident: ref_8
  article-title: A Review on Intelligence Dehazing and Color Restoration for Underwater Images
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– ident: ref_15
  doi: 10.1109/ICIP.2011.6115744
– volume: 25
  start-page: 5664
  year: 2016
  ident: ref_24
  article-title: Underwater Image Enhancement by Dehazing With Minimum Information Loss and Histogram Distribution Prior
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2612882
– volume: 21
  start-page: 4695
  year: 2012
  ident: ref_43
  article-title: No-Reference Image Quality Assessment in the Spatial Domain
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2214050
– ident: ref_4
  doi: 10.3390/rs11040459
– ident: ref_36
– volume: 13
  start-page: 600
  year: 2004
  ident: ref_41
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– ident: ref_13
  doi: 10.1109/ICIP.2014.7025927
– ident: ref_39
  doi: 10.1007/978-3-642-33715-4_54
– volume: 24
  start-page: 6062
  year: 2015
  ident: ref_44
  article-title: An Underwater Color Image Quality Evaluation Metric
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2491020
– ident: ref_21
  doi: 10.1109/OCEANS.2010.5664428
– volume: 245
  start-page: 1
  year: 2017
  ident: ref_14
  article-title: Underwater image enhancement via extended multi-scale Retinex
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.03.029
– ident: ref_31
  doi: 10.1109/3DV.2016.32
– volume: 5
  start-page: 18941
  year: 2017
  ident: ref_23
  article-title: Underwater Image Restoration via Maximum Attenuation Identification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2753796
SSID ssj0000331904
Score 2.4408846
Snippet Restoring degraded underwater images is a challenging ill-posed problem. The existing prior-based approaches have limited performance in many situations due to...
The whole network consists of two paralleled branches: a transmission estimation sub-network (T-network) and a global ambient light estimation sub-network...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1591
SubjectTerms Artificial neural networks
Color
convolutional neural network
data collection
Datasets
image analysis
Image contrast
image degradation
Image enhancement
Image processing
Image restoration
Light
Methods
Neural networks
Parameter estimation
Pattern recognition
Quality
Remote sensing
Underwater
underwater imaging
Visibility
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6yi17En1idUtGLh7L-eEmboxuOKUxEJuxWkjbFw-yk2xT_e99LuzlR8OKpoX2U9ntJ3nsk-T7GLjWoKJY-eFoGhQc649jSuVfEsgCR-VzZhfbhvRg8wd2Yj9ekvmhPWE0PXAPX4QC02MWTSCgogkSGWeIboiHzpTb23HqIMW-tmLJzcIRdy4eajzTCur5TzUhUHYN38C0CWaL-H_OwDS79HbbdZIXudf01u2zDlHtssxEof_7YZ0OrT_SOiWHl3r7gHOA-WkkYi6vbxVCUu9hQ7oOqSB1l4vam5VvTrfDNxMFhL3bT9wEb9W9GvYHXKCF4WSRh7nET0F8rLhWEGLKVJoJwmfBcyJz4XUyRFUkMArHWARoK4QNIdI_kJsmiQ9Yqp6U5Yi7ldwXWEHQeFzQYleTgK1UkoLHwiqTDrpbgpFnDEk5iFZMUqwUCMv0C0mEXK9vXmhvjV6suYbyyID5rewO9nDZeTv_yssPaSw-lzSCbpZiahqHEejR02PnqMQ4PWvNQpZku0Ibo50MQEB__x3ecsC2EX9b7ddusNa8W5hSzkrk-sx3wExWQ274
  priority: 102
  providerName: Directory of Open Access Journals
Title Underwater Image Restoration Based on a Parallel Convolutional Neural Network
URI https://www.proquest.com/docview/2312297172
https://www.proquest.com/docview/2986424647
https://doaj.org/article/54403515836a4f1892c80e134109be91
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB6V3UO5oNKCWAqrVO2lh4g8xln7hFhgoVUXIaASt8hOHDhAAtmlqP-eGa93EQJxSpSMLGU8nofH-T6AHwZ1OlARhkbFVYimEHRnyrAaqAqzIhLaNdrHJ9nxX_x9KS79htvEH6uc-0TnqMum4D3yHcpDkkRR8ZHs3t2HzBrF3VVPobEEXXLBUnagOzw8OT1b7LJEKZlYhDNc0pTq-512wuTqFMTjF5HIAfa_8scuyIw-wYrPDoO92XSuwgdbf4aPnqj8-v8XGDueokdKENvg1y35guDMUcM4_QZDCkllQDc6ONUts6TcBPtN_c-bF43MWBzu4g5_r8HF6PBi_zj0jAhhkSqchsLGhYysFkpjQqFbGwYKV1KUmSoZ58VWRSUHmJHOTUyCWRYhKpomJaws0nXo1E1tNyDgPK-iWoL_y0WDVssSI60riYYKsFT14OdcOXnh0cKZtOImp6qBFZk_K7IH3xeydzOMjDelhqzjhQTjWrsHTXuV-2WSC0RubQqZZhqrWKqEv5dB5yJlLA-yNZ-h3C-2Sf5sGj34tnhNy4R7H7q2zQPJMAx9ghkONt8f4issk2LV7ETuFnSm7YPdprxjavqwJEdHfejuHYz_nPe9qfVdFf8EsHLaNw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXVF5ioYARcOAQ1UnG2fiAEC0su7RbIbRIvVl24sChJG12S9UfxX9kxkm2QiBuPSWKR1Y8Hntm_Pg-gJcObTrWEiOn4ypCVyh6c2VUjXWFWSGVDRvt86Ns-hU_HavjDfg13IXhY5XDnBgm6rIpeI18l-KQJNGUfCRvT88iZo3i3dWBQqMziwN_eUEp2_LN7D3176skmXxY7E-jnlUgKlKNq0j5uMilt0pbTMj9Wcdg2zpXZaZLxkrxVVHlY8zov11MglkmETU1VSufFylVewNuYkqOnC-mTz6ul3RkSvYssQNBpXK52y6ZyZ0ihvgPtxfYAf6a_INHm2zD7T4UFe8627kDG76-C1s9K_r3y3swD6RIFxSNtmL2gyYe8SXw0ITOFHvk_0pBL1Z8ti1TspyI_ab-2dsy1czAH-ERTprfh8V1KOoBbNZN7R-C4KCyosSFLwGjQ2_zEqW1VY6Osr1Uj-D1oBxT9NDkzJBxYihFYUWaK0WO4MVa9rQD5Pin1B7reC3BINrhQ9N-M_2YNAqR91FVnmYWqzjXCbeXEe6kdp4r2Rl6yPQje2mu7HAEz9fFNCZ5o8XWvjknGca8TzDD8aP_V_EMtqaL-aE5nB0dPIZbpGTdHQXegc1Ve-6fUMCzck-DmQkw12zWvwEFghHX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcKp7q9gFBwIFDtHlMHj6gim276lK6WlVF6i2yExsOJWmzW6r-NP4dM46zFQJx6ylRMrLk8dgz47G_D-CdQhlnIkBfidD4qMqE3lTlm0wYTMsgkbbQfjJLj77i5_PkfA1-9Xdh-FhlvybahbpqSt4jH1EcEkWCko9oZNyxiPnBZO_yymcGKa609nQanYkc69sbSt8WH6cHNNbvo2hyeLZ_5DuGAb-MBS79RIdlHmiZCIkRuUKpGHhb5EmViopxU7QpTZ5hSn1QIQmmaYAoqNsi0XkZU7MPYD3jpGgA6-PD2fx0tcETxGTdAXaQqHEsglG7YF53ih_CP5yg5Qr4yxVY_zZ5AhsuMPU-dZb0FNZ0_QweOY7077fP4cRSJN1QbNp60x-0DHmnlpXGDq03Jm9YefQivblsmaDlwttv6p_OsqllhgGxD3vu_AWc3YeqXsKgbmq9CR6HmIbSGL4SjAq1zCsMpDQ5Ksr9YjGED71yitIBlTNfxkVBCQsrsrhT5BDermQvO3iOf0qNWccrCYbUth-a9lvhZmiRIHJVNcnjVKIJcxFxfxnvLhBKcyM7_QgVbp4vijurHMKb1W-aoVx2kbVurkmGEfAjTDHb-n8Tr-EhmXTxZTo73obHpGPRnQvegcGyvda7FP0s1StnZx4U92zZvwFCphdp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Underwater+Image+Restoration+Based+on+a+Parallel+Convolutional+Neural+Network&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Keyan&rft.au=Hu%2C+Yan&rft.au=Chen%2C+Jun&rft.au=Wu%2C+Xianyun&rft.date=2019-07-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=11&rft.issue=13&rft_id=info:doi/10.3390%2Frs11131591&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon