Underwater Image Restoration Based on a Parallel Convolutional Neural Network
Restoring degraded underwater images is a challenging ill-posed problem. The existing prior-based approaches have limited performance in many situations due to the reliance on handcrafted features. In this paper, we propose an effective convolutional neural network (CNN) for underwater image restora...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 11; no. 13; p. 1591 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Restoring degraded underwater images is a challenging ill-posed problem. The existing prior-based approaches have limited performance in many situations due to the reliance on handcrafted features. In this paper, we propose an effective convolutional neural network (CNN) for underwater image restoration. The proposed network consists of two paralleled branches: a transmission estimation network (T-network) and a global ambient light estimation network (A-network); in particular, the T-network employs cross-layer connection and multi-scale estimation to prevent halo artifacts and to preserve edge features. The estimates produced by these two branches are leveraged to restore the clear image according to the underwater optical imaging model. Moreover, we develop a new underwater image synthesizing method for building the training datasets, which can simulate images captured in various underwater environments. Experimental results based on synthetic and real images demonstrate that our restored underwater images exhibit more natural color correction and better visibility improvement against several state-of-the-art methods. |
---|---|
AbstractList | Restoring degraded underwater images is a challenging ill-posed problem. The existing prior-based approaches have limited performance in many situations due to the reliance on handcrafted features. In this paper, we propose an effective convolutional neural network (CNN) for underwater image restoration. The proposed network consists of two paralleled branches: a transmission estimation network (T-network) and a global ambient light estimation network (A-network); in particular, the T-network employs cross-layer connection and multi-scale estimation to prevent halo artifacts and to preserve edge features. The estimates produced by these two branches are leveraged to restore the clear image according to the underwater optical imaging model. Moreover, we develop a new underwater image synthesizing method for building the training datasets, which can simulate images captured in various underwater environments. Experimental results based on synthetic and real images demonstrate that our restored underwater images exhibit more natural color correction and better visibility improvement against several state-of-the-art methods. The whole network consists of two paralleled branches: a transmission estimation sub-network (T-network) and a global ambient light estimation sub-network (A-network), by which the transmission map and the ambient light can be estimated simultaneously. Since in our case no prior information is used to estimate the transmission and ambient light, it avoids the aforementioned mismatch issue commonly encountered in the prior-based methods and helps to improve the accuracy and universality of the estimation method. The input of A-network is a down-sampled underwater image, and the corresponding output is the global ambient light, which is one pixel vector with three color channels, i.e., [ Ar ; Ag ; Ab ]. Since the ambient light value is highly related to the global illumination features instead of the local image details, it is sensible to be estimated from a global perspective. According to Figure 11f, the authors in [25] perform well on contrast enhancement and color correction, but it generates over-enhanced and over-saturated results when the ambient light is significantly brighter than the scene. [...]our method produces images with natural color, enhanced contrast, and visually pleasing visibility, as illustrated in Figure 11h. [...]although the proposed network is trained using synthetic underwater images, it is capable of delivering more satisfactory restoration results on real-world degraded underwater images as compared to the state-of-the-art methods. |
Author | Chen, Jun Zhao, Xi Li, Yunsong Wu, Xianyun Hu, Yan Wang, Keyan |
Author_xml | – sequence: 1 givenname: Keyan orcidid: 0000-0002-9545-718X surname: Wang fullname: Wang, Keyan – sequence: 2 givenname: Yan surname: Hu fullname: Hu, Yan – sequence: 3 givenname: Jun orcidid: 0000-0002-8084-9332 surname: Chen fullname: Chen, Jun – sequence: 4 givenname: Xianyun orcidid: 0000-0002-4450-3801 surname: Wu fullname: Wu, Xianyun – sequence: 5 givenname: Xi surname: Zhao fullname: Zhao, Xi – sequence: 6 givenname: Yunsong surname: Li fullname: Li, Yunsong |
BookMark | eNptkU1PHDEMhiMEUilw6S8YiUtVaWmcj5nkSFfQrkRpVdFz5M140CzZCU1mQP33ZHdBVKi-2LIfv5bt92x_iAMx9gH4mZSWf04ZACRoC3vsUPBGzJSwYv-f-B07yXnFi0kJlqtD9v330FJ6xJFStVjjLVW_KI8x4djHofqCmdqqBFj9xIQhUKjmcXiIYdrUMVTXNKWtGx9jujtmBx2GTCfP_ojdXF7czL_Nrn58XczPr2ZeWjXONIE3nFBbVEJwwKXnhluj29q2VhlNne9Mo-ql10soYF1zpSx5bzUZL4_YYifbRly5-9SvMf11EXu3TcR06zCNvQ_ktFJcatBG1qg6MFZsJoNUwO2SLBStjzut-xT_TGV3t-6zpxBwoDhlJ6yplVC1agp6-gZdxSmVKxRKghC2gUYUiu8on2LOiTrn-3F7zjFhHxxwt_mWe_1Wafn0puVlp__AT84HlCw |
CitedBy_id | crossref_primary_10_1038_s41597_024_04267_z crossref_primary_10_3390_w16050626 crossref_primary_10_3390_rs14174297 crossref_primary_10_1109_ACCESS_2023_3322153 crossref_primary_10_3390_rs12183020 crossref_primary_10_1007_s11042_024_18550_z crossref_primary_10_4018_IJGHPC_2020070106 crossref_primary_10_3390_electronics11162537 crossref_primary_10_1109_ACCESS_2020_3037362 crossref_primary_10_1515_jisys_2024_0058 crossref_primary_10_3390_jmse9060570 crossref_primary_10_1016_j_inffus_2024_102809 crossref_primary_10_3390_jmse10101503 crossref_primary_10_3390_s22218445 crossref_primary_10_1007_s11042_024_20091_4 crossref_primary_10_1109_LSP_2021_3097657 crossref_primary_10_1007_s10489_022_03767_y crossref_primary_10_1016_j_engappai_2023_106196 crossref_primary_10_3390_jmse12091467 crossref_primary_10_1631_FITEE_2000190 crossref_primary_10_1007_s00138_022_01337_3 crossref_primary_10_1142_S0219477522500250 crossref_primary_10_1016_j_image_2020_116088 crossref_primary_10_3390_app15020641 crossref_primary_10_1007_s11063_023_11322_0 crossref_primary_10_1109_TITS_2022_3168806 crossref_primary_10_3390_app14020529 crossref_primary_10_1016_j_sigpro_2024_109408 crossref_primary_10_1007_s11760_024_03592_5 crossref_primary_10_1109_ACCESS_2023_3298304 crossref_primary_10_1109_ACCESS_2023_3339817 crossref_primary_10_1109_JSEN_2023_3251326 crossref_primary_10_3390_jmse12112080 crossref_primary_10_1007_s40032_024_01156_7 crossref_primary_10_3390_app10186392 crossref_primary_10_1007_s11431_023_2614_8 crossref_primary_10_36548_jiip_2024_1_007 crossref_primary_10_3390_electronics11010150 crossref_primary_10_1002_col_22728 crossref_primary_10_1007_s00371_023_03117_0 crossref_primary_10_1007_s42979_023_02133_0 crossref_primary_10_1007_s42979_023_02191_4 crossref_primary_10_1016_j_jfranklin_2021_09_008 crossref_primary_10_1109_ACCESS_2024_3509452 crossref_primary_10_3390_jmse8110924 crossref_primary_10_1364_JOSAA_485307 crossref_primary_10_3390_jmse10020241 |
Cites_doi | 10.1109/ICCPHOT.2017.7951489 10.1109/CVPR.2018.00343 10.1007/978-3-319-46475-6_10 10.3390/rs10101652 10.1016/j.jvcir.2014.11.006 10.1109/CVPR.2015.7299152 10.1109/TIP.2016.2598681 10.1109/ICASSP.2016.7471973 10.1002/col.1049 10.1109/ACCESS.2017.2648845 10.1109/MCG.2016.26 10.1109/OCEANS.2016.7761342 10.1109/TPAMI.2012.213 10.1109/CVPR.2018.00337 10.1007/978-3-319-11752-2_3 10.1109/VSMM.2012.6365924 10.1109/ISPA.2013.6703708 10.1109/VCIP.2017.8305027 10.1016/j.culher.2018.02.017 10.1364/AO.55.008248 10.3390/rs11040396 10.1109/TIP.2011.2179666 10.1109/TPAMI.2010.168 10.1109/ICSMC.2010.5642311 10.1109/TIP.2017.2759252 10.1109/VCIP.2017.8305035 10.1109/ICIP.2018.8451356 10.1109/ICIP.2011.6115744 10.1109/TIP.2016.2612882 10.1109/TIP.2012.2214050 10.3390/rs11040459 10.1109/TIP.2003.819861 10.1109/ICIP.2014.7025927 10.1007/978-3-642-33715-4_54 10.1109/TIP.2015.2491020 10.1109/OCEANS.2010.5664428 10.1016/j.neucom.2017.03.029 10.1109/3DV.2016.32 10.1109/ACCESS.2017.2753796 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs11131591 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_54403515836a4f1892c80e134109be91 10_3390_rs11131591 |
GeographicLocations | United States--US China |
GeographicLocations_xml | – name: China – name: United States--US |
GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c394t-5e1c80ea59a42201abc080985d69d9485efcf8746bc5b10ea660449ecc95e8c3 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:30:21 EDT 2025 Fri Jul 11 02:10:06 EDT 2025 Fri Jul 25 12:05:17 EDT 2025 Thu Apr 24 23:10:51 EDT 2025 Tue Jul 01 04:14:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-5e1c80ea59a42201abc080985d69d9485efcf8746bc5b10ea660449ecc95e8c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8084-9332 0000-0002-4450-3801 0000-0002-9545-718X |
OpenAccessLink | https://www.proquest.com/docview/2312297172?pq-origsite=%requestingapplication% |
PQID | 2312297172 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_54403515836a4f1892c80e134109be91 proquest_miscellaneous_2986424647 proquest_journals_2312297172 crossref_citationtrail_10_3390_rs11131591 crossref_primary_10_3390_rs11131591 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_36 ref_13 ref_12 ref_34 ref_11 ref_33 ref_10 ref_32 ref_31 ref_30 Sun (ref_9) 2016; 55 Luo (ref_42) 2001; 26 Li (ref_24) 2016; 25 He (ref_35) 2013; 35 ref_39 ref_38 ref_15 ref_37 Lu (ref_16) 2017; 5 Menna (ref_3) 2018; 33 Galdran (ref_6) 2015; 26 Mittal (ref_43) 2012; 21 He (ref_18) 2011; 33 ref_25 Wang (ref_41) 2004; 13 Ancuti (ref_17) 2018; 27 ref_22 ref_21 Yang (ref_44) 2015; 24 ref_40 ref_1 Zhang (ref_14) 2017; 245 ref_2 ref_29 ref_28 ref_27 Chiang (ref_19) 2012; 21 Drews (ref_20) 2016; 36 Wang (ref_23) 2017; 5 Cai (ref_26) 2016; 25 Han (ref_8) 2018; 99 ref_5 ref_4 ref_7 |
References_xml | – ident: ref_25 doi: 10.1109/ICCPHOT.2017.7951489 – ident: ref_33 doi: 10.1109/CVPR.2018.00343 – ident: ref_27 doi: 10.1007/978-3-319-46475-6_10 – ident: ref_32 – ident: ref_7 doi: 10.3390/rs10101652 – volume: 26 start-page: 132 year: 2015 ident: ref_6 article-title: Automatic Red-Channel underwater image restoration publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2014.11.006 – ident: ref_38 doi: 10.1109/CVPR.2015.7299152 – volume: 25 start-page: 5187 year: 2016 ident: ref_26 article-title: DehazeNet: An End-to-End System for Single Image Haze Removal publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2598681 – ident: ref_40 – ident: ref_22 doi: 10.1109/ICASSP.2016.7471973 – volume: 26 start-page: 340 year: 2001 ident: ref_42 article-title: The development of the CIE 2000 colour-difference formula: CIEDE2000 publication-title: Color Res. Appl. doi: 10.1002/col.1049 – volume: 5 start-page: 670 year: 2017 ident: ref_16 article-title: Underwater Image Super-Resolution by Descattering and Fusion publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2648845 – volume: 36 start-page: 24 year: 2016 ident: ref_20 article-title: Underwater Depth Estimation and Image Restoration Based on Single Images publication-title: IEEE Comput. Graphics Appl. doi: 10.1109/MCG.2016.26 – ident: ref_29 doi: 10.1109/OCEANS.2016.7761342 – volume: 35 start-page: 1397 year: 2013 ident: ref_35 article-title: Guided image filtering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.213 – ident: ref_34 doi: 10.1109/CVPR.2018.00337 – ident: ref_37 doi: 10.1007/978-3-319-11752-2_3 – ident: ref_1 doi: 10.1109/VSMM.2012.6365924 – ident: ref_10 doi: 10.1109/ISPA.2013.6703708 – ident: ref_12 doi: 10.1109/VCIP.2017.8305027 – volume: 33 start-page: 231 year: 2018 ident: ref_3 article-title: State of the art and applications in archaeological underwater 3D recording and mapping publication-title: J. Cult. Herit. doi: 10.1016/j.culher.2018.02.017 – volume: 55 start-page: 8248 year: 2016 ident: ref_9 article-title: Lower-upper-threshold correlation for underwater range-gated imaging self-adaptive enhancement publication-title: Appl. Opt. doi: 10.1364/AO.55.008248 – ident: ref_5 doi: 10.3390/rs11040396 – volume: 21 start-page: 1756 year: 2012 ident: ref_19 article-title: Underwater image enhancement by wave-length compensation and dehazing publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2179666 – ident: ref_2 – volume: 33 start-page: 2341 year: 2011 ident: ref_18 article-title: Single image haze removal using dark channel prior publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.168 – ident: ref_11 doi: 10.1109/ICSMC.2010.5642311 – volume: 27 start-page: 379 year: 2018 ident: ref_17 article-title: Color Balance and Fusion for Underwater Image Enhancement publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2759252 – ident: ref_28 doi: 10.1109/VCIP.2017.8305035 – ident: ref_30 doi: 10.1109/ICIP.2018.8451356 – volume: 99 start-page: 1 year: 2018 ident: ref_8 article-title: A Review on Intelligence Dehazing and Color Restoration for Underwater Images publication-title: IEEE Trans. Syst. Man Cybern. Syst. – ident: ref_15 doi: 10.1109/ICIP.2011.6115744 – volume: 25 start-page: 5664 year: 2016 ident: ref_24 article-title: Underwater Image Enhancement by Dehazing With Minimum Information Loss and Histogram Distribution Prior publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2612882 – volume: 21 start-page: 4695 year: 2012 ident: ref_43 article-title: No-Reference Image Quality Assessment in the Spatial Domain publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2214050 – ident: ref_4 doi: 10.3390/rs11040459 – ident: ref_36 – volume: 13 start-page: 600 year: 2004 ident: ref_41 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – ident: ref_13 doi: 10.1109/ICIP.2014.7025927 – ident: ref_39 doi: 10.1007/978-3-642-33715-4_54 – volume: 24 start-page: 6062 year: 2015 ident: ref_44 article-title: An Underwater Color Image Quality Evaluation Metric publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2491020 – ident: ref_21 doi: 10.1109/OCEANS.2010.5664428 – volume: 245 start-page: 1 year: 2017 ident: ref_14 article-title: Underwater image enhancement via extended multi-scale Retinex publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.03.029 – ident: ref_31 doi: 10.1109/3DV.2016.32 – volume: 5 start-page: 18941 year: 2017 ident: ref_23 article-title: Underwater Image Restoration via Maximum Attenuation Identification publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2753796 |
SSID | ssj0000331904 |
Score | 2.4408846 |
Snippet | Restoring degraded underwater images is a challenging ill-posed problem. The existing prior-based approaches have limited performance in many situations due to... The whole network consists of two paralleled branches: a transmission estimation sub-network (T-network) and a global ambient light estimation sub-network... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1591 |
SubjectTerms | Artificial neural networks Color convolutional neural network data collection Datasets image analysis Image contrast image degradation Image enhancement Image processing Image restoration Light Methods Neural networks Parameter estimation Pattern recognition Quality Remote sensing Underwater underwater imaging Visibility |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6yi17En1idUtGLh7L-eEmboxuOKUxEJuxWkjbFw-yk2xT_e99LuzlR8OKpoX2U9ntJ3nsk-T7GLjWoKJY-eFoGhQc649jSuVfEsgCR-VzZhfbhvRg8wd2Yj9ekvmhPWE0PXAPX4QC02MWTSCgogkSGWeIboiHzpTb23HqIMW-tmLJzcIRdy4eajzTCur5TzUhUHYN38C0CWaL-H_OwDS79HbbdZIXudf01u2zDlHtssxEof_7YZ0OrT_SOiWHl3r7gHOA-WkkYi6vbxVCUu9hQ7oOqSB1l4vam5VvTrfDNxMFhL3bT9wEb9W9GvYHXKCF4WSRh7nET0F8rLhWEGLKVJoJwmfBcyJz4XUyRFUkMArHWARoK4QNIdI_kJsmiQ9Yqp6U5Yi7ldwXWEHQeFzQYleTgK1UkoLHwiqTDrpbgpFnDEk5iFZMUqwUCMv0C0mEXK9vXmhvjV6suYbyyID5rewO9nDZeTv_yssPaSw-lzSCbpZiahqHEejR02PnqMQ4PWvNQpZku0Ibo50MQEB__x3ecsC2EX9b7ddusNa8W5hSzkrk-sx3wExWQ274 priority: 102 providerName: Directory of Open Access Journals |
Title | Underwater Image Restoration Based on a Parallel Convolutional Neural Network |
URI | https://www.proquest.com/docview/2312297172 https://www.proquest.com/docview/2986424647 https://doaj.org/article/54403515836a4f1892c80e134109be91 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB6V3UO5oNKCWAqrVO2lh4g8xln7hFhgoVUXIaASt8hOHDhAAtmlqP-eGa93EQJxSpSMLGU8nofH-T6AHwZ1OlARhkbFVYimEHRnyrAaqAqzIhLaNdrHJ9nxX_x9KS79htvEH6uc-0TnqMum4D3yHcpDkkRR8ZHs3t2HzBrF3VVPobEEXXLBUnagOzw8OT1b7LJEKZlYhDNc0pTq-512wuTqFMTjF5HIAfa_8scuyIw-wYrPDoO92XSuwgdbf4aPnqj8-v8XGDueokdKENvg1y35guDMUcM4_QZDCkllQDc6ONUts6TcBPtN_c-bF43MWBzu4g5_r8HF6PBi_zj0jAhhkSqchsLGhYysFkpjQqFbGwYKV1KUmSoZ58VWRSUHmJHOTUyCWRYhKpomJaws0nXo1E1tNyDgPK-iWoL_y0WDVssSI60riYYKsFT14OdcOXnh0cKZtOImp6qBFZk_K7IH3xeydzOMjDelhqzjhQTjWrsHTXuV-2WSC0RubQqZZhqrWKqEv5dB5yJlLA-yNZ-h3C-2Sf5sGj34tnhNy4R7H7q2zQPJMAx9ghkONt8f4issk2LV7ETuFnSm7YPdprxjavqwJEdHfejuHYz_nPe9qfVdFf8EsHLaNw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXVF5ioYARcOAQ1UnG2fiAEC0su7RbIbRIvVl24sChJG12S9UfxX9kxkm2QiBuPSWKR1Y8Hntm_Pg-gJcObTrWEiOn4ypCVyh6c2VUjXWFWSGVDRvt86Ns-hU_HavjDfg13IXhY5XDnBgm6rIpeI18l-KQJNGUfCRvT88iZo3i3dWBQqMziwN_eUEp2_LN7D3176skmXxY7E-jnlUgKlKNq0j5uMilt0pbTMj9Wcdg2zpXZaZLxkrxVVHlY8zov11MglkmETU1VSufFylVewNuYkqOnC-mTz6ul3RkSvYssQNBpXK52y6ZyZ0ihvgPtxfYAf6a_INHm2zD7T4UFe8627kDG76-C1s9K_r3y3swD6RIFxSNtmL2gyYe8SXw0ITOFHvk_0pBL1Z8ti1TspyI_ab-2dsy1czAH-ERTprfh8V1KOoBbNZN7R-C4KCyosSFLwGjQ2_zEqW1VY6Osr1Uj-D1oBxT9NDkzJBxYihFYUWaK0WO4MVa9rQD5Pin1B7reC3BINrhQ9N-M_2YNAqR91FVnmYWqzjXCbeXEe6kdp4r2Rl6yPQje2mu7HAEz9fFNCZ5o8XWvjknGca8TzDD8aP_V_EMtqaL-aE5nB0dPIZbpGTdHQXegc1Ve-6fUMCzck-DmQkw12zWvwEFghHX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcKp7q9gFBwIFDtHlMHj6gim276lK6WlVF6i2yExsOJWmzW6r-NP4dM46zFQJx6ylRMrLk8dgz47G_D-CdQhlnIkBfidD4qMqE3lTlm0wYTMsgkbbQfjJLj77i5_PkfA1-9Xdh-FhlvybahbpqSt4jH1EcEkWCko9oZNyxiPnBZO_yymcGKa609nQanYkc69sbSt8WH6cHNNbvo2hyeLZ_5DuGAb-MBS79RIdlHmiZCIkRuUKpGHhb5EmViopxU7QpTZ5hSn1QIQmmaYAoqNsi0XkZU7MPYD3jpGgA6-PD2fx0tcETxGTdAXaQqHEsglG7YF53ih_CP5yg5Qr4yxVY_zZ5AhsuMPU-dZb0FNZ0_QweOY7077fP4cRSJN1QbNp60x-0DHmnlpXGDq03Jm9YefQivblsmaDlwttv6p_OsqllhgGxD3vu_AWc3YeqXsKgbmq9CR6HmIbSGL4SjAq1zCsMpDQ5Ksr9YjGED71yitIBlTNfxkVBCQsrsrhT5BDermQvO3iOf0qNWccrCYbUth-a9lvhZmiRIHJVNcnjVKIJcxFxfxnvLhBKcyM7_QgVbp4vijurHMKb1W-aoVx2kbVurkmGEfAjTDHb-n8Tr-EhmXTxZTo73obHpGPRnQvegcGyvda7FP0s1StnZx4U92zZvwFCphdp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Underwater+Image+Restoration+Based+on+a+Parallel+Convolutional+Neural+Network&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Keyan&rft.au=Hu%2C+Yan&rft.au=Chen%2C+Jun&rft.au=Wu%2C+Xianyun&rft.date=2019-07-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=11&rft.issue=13&rft_id=info:doi/10.3390%2Frs11131591&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |