High-temperature stable π-phase-shifted fiber Bragg gratings inscribed using infrared femtosecond pulses and a phase mask

NRC publication: Yes

Saved in:
Bibliographic Details
Published inOptics express Vol. 26; no. 18; p. 23550
Main Authors Hnatovsky, Cyril, Grobnic, Dan, Mihailov, Stephen J
Format Journal Article
LanguageEnglish
Published United States OSA 03.09.2018
Online AccessGet full text

Cover

Loading…
Abstract NRC publication: Yes
Type II π-phase-shifted Bragg gratings stable up to ~1000°C are written inside a standard single mode silica optical fiber (SMF-28) with infrared femtosecond pulses and a special phase mask. Inscription through the protective polyimide fiber coating is also demonstrated. The birefringence of the Bragg gratings and, as a result, the polarization dependence of their spectra are strongly affected by the femtosecond laser polarization. Using optimized writing conditions, the full width at half maximum of the π-phase-shifted passband feature can be ~30 pm in transmission, while the polarization-dependent shift of its central wavelength can be less than 8 pm, for a 7 mm long grating structure. This makes such gratings a unique tool for high-resolution measurements of temperature, load and vibration in extreme temperature environments.
AbstractList Type II π-phase-shifted Bragg gratings stable up to ~1000°C are written inside a standard single mode silica optical fiber (SMF-28) with infrared femtosecond pulses and a special phase mask. Inscription through the protective polyimide fiber coating is also demonstrated. The birefringence of the Bragg gratings and, as a result, the polarization dependence of their spectra are strongly affected by the femtosecond laser polarization. Using optimized writing conditions, the full width at half maximum of the π-phase-shifted passband feature can be ~30 pm in transmission, while the polarization-dependent shift of its central wavelength can be less than 8 pm, for a 7 mm long grating structure. This makes such gratings a unique tool for high-resolution measurements of temperature, load and vibration in extreme temperature environments.Type II π-phase-shifted Bragg gratings stable up to ~1000°C are written inside a standard single mode silica optical fiber (SMF-28) with infrared femtosecond pulses and a special phase mask. Inscription through the protective polyimide fiber coating is also demonstrated. The birefringence of the Bragg gratings and, as a result, the polarization dependence of their spectra are strongly affected by the femtosecond laser polarization. Using optimized writing conditions, the full width at half maximum of the π-phase-shifted passband feature can be ~30 pm in transmission, while the polarization-dependent shift of its central wavelength can be less than 8 pm, for a 7 mm long grating structure. This makes such gratings a unique tool for high-resolution measurements of temperature, load and vibration in extreme temperature environments.
NRC publication: Yes
Type II π-phase-shifted Bragg gratings stable up to ~1000°C are written inside a standard single mode silica optical fiber (SMF-28) with infrared femtosecond pulses and a special phase mask. Inscription through the protective polyimide fiber coating is also demonstrated. The birefringence of the Bragg gratings and, as a result, the polarization dependence of their spectra are strongly affected by the femtosecond laser polarization. Using optimized writing conditions, the full width at half maximum of the π-phase-shifted passband feature can be ~30 pm in transmission, while the polarization-dependent shift of its central wavelength can be less than 8 pm, for a 7 mm long grating structure. This makes such gratings a unique tool for high-resolution measurements of temperature, load and vibration in extreme temperature environments.
Author Mihailov, Stephen J
Grobnic, Dan
Hnatovsky, Cyril
Author_xml – sequence: 1
  fullname: Hnatovsky, Cyril
– sequence: 2
  fullname: Grobnic, Dan
– sequence: 3
  fullname: Mihailov, Stephen J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30184854$$D View this record in MEDLINE/PubMed
BookMark eNp1kTtvFDEQxy0URF501MglBXvxa18lRBcOKdI1pLbGj90z7HoX21uEim_IV4ovmyCElMbz-s1_5JlzdOInbxF6R8mG8kpc7bcbVm0I42VJXqEzSlpRCNLUJ__4p-g8xu-EUFG39Rt0ygltRFOKM_Rr5_pDkew42wBpCRbHBGqw-M_vYj5AtEU8uC5ZgzunbMCfA_Q97jPrfB-x81GHXDB4iTmR4y5AONJ2TFO0evIGz8sQbcSQXcCPoniE-OMSve4gV94-2Qt0d7P9dr0rbvdfvl5_ui00b0Uqyhpqm_8GXds2vGpLoVlJVEOUMabhpFG15sYQVuu2LIE3QI0ytgaldKs64Bfow6o7h-nnYmOSo4vaDgN4Oy1RMkoI54xWJKPvn9BFjdbIObgRwr183lcG2AroMMUYbCe1S3kXk08B3CApkcejyP1WskquR8lNH_9retZ9Ad-tuA9agwcDf_kJXB4Yk5PuaGQmpH58YM37GXLEOCGCCcEfAAkYqh8
CitedBy_id crossref_primary_10_1109_JSEN_2020_2990076
crossref_primary_10_3390_s19020433
crossref_primary_10_3390_app10134610
crossref_primary_10_1364_OE_27_001507
crossref_primary_10_3390_photonics9040271
crossref_primary_10_1002_aisy_202200324
crossref_primary_10_1364_OL_381111
crossref_primary_10_1016_j_optlastec_2019_106026
crossref_primary_10_3390_metrology1010001
crossref_primary_10_1364_OE_27_032536
crossref_primary_10_1016_j_measurement_2022_111118
crossref_primary_10_1063_5_0102432
crossref_primary_10_1002_pssa_202100023
crossref_primary_10_1080_09500340_2019_1706771
crossref_primary_10_1109_JLT_2018_2878501
crossref_primary_10_3390_s21041454
crossref_primary_10_1088_2631_7990_abe171
crossref_primary_10_3390_nano13101622
Cites_doi 10.1364/OE.24.017670
10.1364/OE.15.000371
10.1049/el:19940920
10.1364/OL.39.003646
10.1364/JOSAB.23.001511
10.1109/LPT.2008.922967
10.1364/JOSAB.11.002100
10.1109/LPT.2017.2757046
10.1364/OL.29.001458
10.1364/OE.21.024942
10.1364/OME.2.000789
10.1002/lpor.200710031
10.1364/OL.29.001730
10.1111/j.1151-2916.1991.tb06930.x
10.1063/1.4941427
10.1088/1361-6501/aa9f6a
10.1109/JLT.2013.2284240
10.1109/LPT.2005.848408
10.1049/el:19941357
10.1364/OL.20.002051
10.1109/LPT.2017.2752128
10.3390/s17112519
10.1364/OL.41.001161
10.1364/OME.1.000783
10.1002/lapl.200610128
10.1364/OE.18.019844
10.1364/OE.16.001945
10.1364/OL.40.002008
10.1364/OME.3.001161
10.1063/1.4821513
10.1109/LPT.2012.2207715
10.1103/PhysRevLett.96.057404
10.1007/s00340-016-6337-8
10.1016/j.optcom.2008.07.056
10.1364/OL.42.000399
10.1364/OE.25.014247
10.1364/OPEX.13.006111
10.1364/OE.16.001517
10.1007/s00339-011-6489-7
10.1364/OL.41.002017
10.1063/1.2185587
10.1364/OE.23.000086
10.1364/OE.24.028704
10.1364/OE.16.008727
10.1364/OL.36.001833
10.1049/el:20070114
10.1364/OL.24.001091
10.1103/PhysRevLett.91.247405
10.3390/s120201898
10.1364/OL.19.001260
10.1109/JLT.2006.889662
10.1364/OPEX.13.005377
10.1063/1.4880658
10.1117/12.168645
10.1364/OL.31.001603
10.1111/jace.13482
10.1364/OE.25.025435
10.1142/S0217984905008281
10.1364/OL.39.000540
10.1002/lpor.201100033
10.1109/68.817464
10.1109/LPT.2004.826059
10.1109/68.313074
10.1364/OE.24.007456
10.1364/OME.1.000754
10.1364/OE.21.026854
10.1364/OL.40.000081
ContentType Journal Article
DBID -LJ
GXV
AAYXX
CITATION
NPM
7X8
DOI 10.1364/OE.26.023550
DatabaseName National Research Council Canada Archive
CISTI Source
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences
Physics
EISSN 1094-4087
ExternalDocumentID 30184854
10_1364_OE_26_023550
oai_cisti_icist_nrc_cnrc_ca_cistinparc_23004244
Genre Journal Article
GroupedDBID ---
-LJ
123
29N
2WC
8SL
AAFWJ
AAWJZ
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
C1A
CS3
DIK
DSZJF
DU5
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
GXV
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c394t-57a7e550af99836954c250b80bddd8308b7c3dd027c955a38a1dbde7abbc9bfa3
ISSN 1094-4087
IngestDate Fri Jul 11 00:28:16 EDT 2025
Thu Apr 03 06:59:13 EDT 2025
Thu Apr 24 22:51:25 EDT 2025
Tue Jul 01 04:04:24 EDT 2025
Thu Jul 24 23:58:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c394t-57a7e550af99836954c250b80bddd8308b7c3dd027c955a38a1dbde7abbc9bfa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6144-0937
OpenAccessLink https://doi.org/10.1364/oe.26.023550
PMID 30184854
PQID 2100332160
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2100332160
pubmed_primary_30184854
crossref_citationtrail_10_1364_OE_26_023550
crossref_primary_10_1364_OE_26_023550
nrccanada_primary_oai_cisti_icist_nrc_cnrc_ca_cistinparc_23004244
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-03
PublicationDateYYYYMMDD 2018-09-03
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2018
Publisher OSA
Publisher_xml – name: OSA
References LeBlanc (oe-26-18-23550-R3) 1999; 24
Smelser (oe-26-18-23550-R40) 2005; 13
Sheng (oe-26-18-23550-R35) 2005; 13
Robinson (oe-26-18-23550-R31) 1991; 74
Fernandes (oe-26-18-23550-R33) 2013; 31
Hnatovsky (oe-26-18-23550-R63) 2017; 25
Beresna (oe-26-18-23550-R58) 2013; 103
Loh (oe-26-18-23550-R13) 1995; 20
Rosenthal (oe-26-18-23550-R7) 2011; 36
Fedotov (oe-26-18-23550-R53) 2016; 108
Zhang (oe-26-18-23550-R5) 2012; 24
Shimotsuma (oe-26-18-23550-R46) 2005; 19
Marshall (oe-26-18-23550-R14) 2010; 18
Mihailov (oe-26-18-23550-R23) 2007; 43
Huang (oe-26-18-23550-R6) 2016; 24
Vengsarkar (oe-26-18-23550-R67) 1994; 19
Burgmeier (oe-26-18-23550-R15) 2014; 39
Shamir (oe-26-18-23550-R17) 2016; 41
Grobnic (oe-26-18-23550-R24) 2008; 20
Hnatovsky (oe-26-18-23550-R28) 2017; 25
Grobnic (oe-26-18-23550-R64) 2016; 24
Bernier (oe-26-18-23550-R16) 2015; 40
Asai (oe-26-18-23550-R51) 2015; 98
Champion (oe-26-18-23550-R60) 2012; 2
Canning (oe-26-18-23550-R11) 1994; 30
Taylor (oe-26-18-23550-R47) 2008; 2
Wortmann (oe-26-18-23550-R48) 2008; 16
Berger (oe-26-18-23550-R10) 2007; 15
Mihailov (oe-26-18-23550-R21) 2011; 1
Thomas (oe-26-18-23550-R43) 2012; 6
Erdogan (oe-26-18-23550-R66) 1994; 11
Richter (oe-26-18-23550-R65) 2011; 104
Jiang (oe-26-18-23550-R20) 2018; 29
Zimmermann (oe-26-18-23550-R50) 2014; 104
Beresna (oe-26-18-23550-R57) 2011; 1
Belhadj (oe-26-18-23550-R68) 2008; 16
Bernier (oe-26-18-23550-R26) 2014; 39
Sheng (oe-26-18-23550-R34) 2004; 16
Gatti (oe-26-18-23550-R4) 2008; 16
Lu (oe-26-18-23550-R32) 2007; 25
Bhardwaj (oe-26-18-23550-R45) 2006; 96
Champion (oe-26-18-23550-R61) 2013; 21
McMillen (oe-26-18-23550-R62) 2015; 23
Melloni (oe-26-18-23550-R9) 2000; 12
Habel (oe-26-18-23550-R29) 2017; 17
Tremblay (oe-26-18-23550-R36) 2006; 23
Smelser (oe-26-18-23550-R39) 2004; 29
Shimotsuma (oe-26-18-23550-R44) 2003; 91
Williams (oe-26-18-23550-R41) 2013; 21
Bricchi (oe-26-18-23550-R56) 2006; 88
Karpinski (oe-26-18-23550-R54) 2016; 24
Martinez (oe-26-18-23550-R22) 2006; 31
Du (oe-26-18-23550-R19) 2017; 29
Zimmermann (oe-26-18-23550-R55) 2016; 41
Rondinella (oe-26-18-23550-R30) 1994; 2074
Richter (oe-26-18-23550-R49) 2013; 3
Chen (oe-26-18-23550-R1) 2005; 17
Hnatovsky (oe-26-18-23550-R37) 2017; 42
Grobnic (oe-26-18-23550-R27) 2017; 29
Lancry (oe-26-18-23550-R52) 2016; 122
He (oe-26-18-23550-R18) 2015; 40
Mckee (oe-26-18-23550-R12) 1994; 30
Mihailov (oe-26-18-23550-R25) 2008; 281
Agrawal (oe-26-18-23550-R8) 1994; 6
Babin (oe-26-18-23550-R2) 2007; 4
Smelser (oe-26-18-23550-R38) 2004; 29
Mihailov (oe-26-18-23550-R42) 2012; 12
References_xml – volume: 24
  start-page: 17670
  year: 2016
  ident: oe-26-18-23550-R6
  publication-title: Opt. Express
  doi: 10.1364/OE.24.017670
– volume: 15
  start-page: 371
  year: 2007
  ident: oe-26-18-23550-R10
  publication-title: Opt. Express
  doi: 10.1364/OE.15.000371
– volume: 30
  start-page: 1344
  year: 1994
  ident: oe-26-18-23550-R11
  publication-title: Electron. Lett.
  doi: 10.1049/el:19940920
– volume: 39
  start-page: 3646
  year: 2014
  ident: oe-26-18-23550-R26
  publication-title: Opt. Lett.
  doi: 10.1364/OL.39.003646
– volume: 23
  start-page: 1511
  year: 2006
  ident: oe-26-18-23550-R36
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.23.001511
– volume: 20
  start-page: 973
  year: 2008
  ident: oe-26-18-23550-R24
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2008.922967
– volume: 11
  start-page: 2100
  year: 1994
  ident: oe-26-18-23550-R66
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.11.002100
– volume: 29
  start-page: 2143
  year: 2017
  ident: oe-26-18-23550-R19
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2017.2757046
– volume: 29
  start-page: 1458
  year: 2004
  ident: oe-26-18-23550-R38
  publication-title: Opt. Lett.
  doi: 10.1364/OL.29.001458
– volume: 21
  start-page: 24942
  year: 2013
  ident: oe-26-18-23550-R61
  publication-title: Opt. Express
  doi: 10.1364/OE.21.024942
– volume: 2
  start-page: 789
  year: 2012
  ident: oe-26-18-23550-R60
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.2.000789
– volume: 2
  start-page: 26
  year: 2008
  ident: oe-26-18-23550-R47
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.200710031
– volume: 29
  start-page: 1730
  year: 2004
  ident: oe-26-18-23550-R39
  publication-title: Opt. Lett.
  doi: 10.1364/OL.29.001730
– volume: 74
  start-page: 814
  year: 1991
  ident: oe-26-18-23550-R31
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1991.tb06930.x
– volume: 108
  start-page: 071905
  year: 2016
  ident: oe-26-18-23550-R53
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4941427
– volume: 29
  start-page: 045101
  year: 2018
  ident: oe-26-18-23550-R20
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aa9f6a
– volume: 31
  start-page: 3563
  year: 2013
  ident: oe-26-18-23550-R33
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2013.2284240
– volume: 17
  start-page: 1390
  year: 2005
  ident: oe-26-18-23550-R1
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2005.848408
– volume: 30
  start-page: 1977
  year: 1994
  ident: oe-26-18-23550-R12
  publication-title: Electron. Lett.
  doi: 10.1049/el:19941357
– volume: 20
  start-page: 2051
  year: 1995
  ident: oe-26-18-23550-R13
  publication-title: Opt. Lett.
  doi: 10.1364/OL.20.002051
– volume: 29
  start-page: 1780
  year: 2017
  ident: oe-26-18-23550-R27
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2017.2752128
– volume: 17
  start-page: 2519
  year: 2017
  ident: oe-26-18-23550-R29
  publication-title: Sensors (Basel)
  doi: 10.3390/s17112519
– volume: 41
  start-page: 1161
  year: 2016
  ident: oe-26-18-23550-R55
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.001161
– volume: 1
  start-page: 783
  year: 2011
  ident: oe-26-18-23550-R57
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.1.000783
– volume: 4
  start-page: 428
  year: 2007
  ident: oe-26-18-23550-R2
  publication-title: Laser Phys. Lett.
  doi: 10.1002/lapl.200610128
– volume: 18
  start-page: 19844
  year: 2010
  ident: oe-26-18-23550-R14
  publication-title: Opt. Express
  doi: 10.1364/OE.18.019844
– volume: 16
  start-page: 1945
  year: 2008
  ident: oe-26-18-23550-R4
  publication-title: Opt. Express
  doi: 10.1364/OE.16.001945
– volume: 40
  start-page: 2008
  year: 2015
  ident: oe-26-18-23550-R18
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.002008
– volume: 3
  start-page: 1161
  year: 2013
  ident: oe-26-18-23550-R49
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.3.001161
– volume: 103
  start-page: 131903
  year: 2013
  ident: oe-26-18-23550-R58
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4821513
– volume: 24
  start-page: 1519
  year: 2012
  ident: oe-26-18-23550-R5
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2012.2207715
– volume: 96
  start-page: 057404
  year: 2006
  ident: oe-26-18-23550-R45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.057404
– volume: 122
  start-page: 66
  year: 2016
  ident: oe-26-18-23550-R52
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-016-6337-8
– volume: 281
  start-page: 5344
  year: 2008
  ident: oe-26-18-23550-R25
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2008.07.056
– volume: 42
  start-page: 399
  year: 2017
  ident: oe-26-18-23550-R37
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.000399
– volume: 25
  start-page: 14247
  year: 2017
  ident: oe-26-18-23550-R63
  publication-title: Opt. Express
  doi: 10.1364/OE.25.014247
– volume: 13
  start-page: 6111
  year: 2005
  ident: oe-26-18-23550-R35
  publication-title: Opt. Express
  doi: 10.1364/OPEX.13.006111
– volume: 16
  start-page: 1517
  year: 2008
  ident: oe-26-18-23550-R48
  publication-title: Opt. Express
  doi: 10.1364/OE.16.001517
– volume: 104
  start-page: 503
  year: 2011
  ident: oe-26-18-23550-R65
  publication-title: Appl. Phys., A Mater. Sci. Process.
  doi: 10.1007/s00339-011-6489-7
– volume: 41
  start-page: 2017
  year: 2016
  ident: oe-26-18-23550-R17
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.002017
– volume: 88
  start-page: 111119
  year: 2006
  ident: oe-26-18-23550-R56
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2185587
– volume: 23
  start-page: 86
  year: 2015
  ident: oe-26-18-23550-R62
  publication-title: Opt. Express
  doi: 10.1364/OE.23.000086
– volume: 24
  start-page: 28704
  year: 2016
  ident: oe-26-18-23550-R64
  publication-title: Opt. Express
  doi: 10.1364/OE.24.028704
– volume: 16
  start-page: 8727
  year: 2008
  ident: oe-26-18-23550-R68
  publication-title: Opt. Express
  doi: 10.1364/OE.16.008727
– volume: 36
  start-page: 1833
  year: 2011
  ident: oe-26-18-23550-R7
  publication-title: Opt. Lett.
  doi: 10.1364/OL.36.001833
– volume: 43
  start-page: 442
  year: 2007
  ident: oe-26-18-23550-R23
  publication-title: Electron. Lett.
  doi: 10.1049/el:20070114
– volume: 24
  start-page: 1091
  year: 1999
  ident: oe-26-18-23550-R3
  publication-title: Opt. Lett.
  doi: 10.1364/OL.24.001091
– volume: 91
  start-page: 247405
  year: 2003
  ident: oe-26-18-23550-R44
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.247405
– volume: 12
  start-page: 1898
  year: 2012
  ident: oe-26-18-23550-R42
  publication-title: Sensors (Basel)
  doi: 10.3390/s120201898
– volume: 19
  start-page: 1260
  year: 1994
  ident: oe-26-18-23550-R67
  publication-title: Opt. Lett.
  doi: 10.1364/OL.19.001260
– volume: 25
  start-page: 779
  year: 2007
  ident: oe-26-18-23550-R32
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2006.889662
– volume: 13
  start-page: 5377
  year: 2005
  ident: oe-26-18-23550-R40
  publication-title: Opt. Express
  doi: 10.1364/OPEX.13.005377
– volume: 104
  start-page: 211107
  year: 2014
  ident: oe-26-18-23550-R50
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4880658
– volume: 2074
  start-page: 52
  year: 1994
  ident: oe-26-18-23550-R30
  publication-title: Proc. SPIE
  doi: 10.1117/12.168645
– volume: 31
  start-page: 1603
  year: 2006
  ident: oe-26-18-23550-R22
  publication-title: Opt. Lett.
  doi: 10.1364/OL.31.001603
– volume: 98
  start-page: 1471
  year: 2015
  ident: oe-26-18-23550-R51
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.13482
– volume: 25
  start-page: 25435
  year: 2017
  ident: oe-26-18-23550-R28
  publication-title: Opt. Express
  doi: 10.1364/OE.25.025435
– volume: 19
  start-page: 225
  year: 2005
  ident: oe-26-18-23550-R46
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984905008281
– volume: 39
  start-page: 540
  year: 2014
  ident: oe-26-18-23550-R15
  publication-title: Opt. Lett.
  doi: 10.1364/OL.39.000540
– volume: 6
  start-page: 709
  year: 2012
  ident: oe-26-18-23550-R43
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201100033
– volume: 12
  start-page: 42
  year: 2000
  ident: oe-26-18-23550-R9
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/68.817464
– volume: 16
  start-page: 1316
  year: 2004
  ident: oe-26-18-23550-R34
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2004.826059
– volume: 6
  start-page: 995
  year: 1994
  ident: oe-26-18-23550-R8
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/68.313074
– volume: 24
  start-page: 7456
  year: 2016
  ident: oe-26-18-23550-R54
  publication-title: Opt. Express
  doi: 10.1364/OE.24.007456
– volume: 1
  start-page: 754
  year: 2011
  ident: oe-26-18-23550-R21
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.1.000754
– volume: 21
  start-page: 26854
  year: 2013
  ident: oe-26-18-23550-R41
  publication-title: Opt. Express
  doi: 10.1364/OE.21.026854
– volume: 40
  start-page: 81
  year: 2015
  ident: oe-26-18-23550-R16
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.000081
SSID ssj0014797
Score 2.4050353
Snippet NRC publication: Yes
Type II π-phase-shifted Bragg gratings stable up to ~1000°C are written inside a standard single mode silica optical fiber (SMF-28) with infrared femtosecond...
SourceID proquest
pubmed
crossref
nrccanada
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 23550
Title High-temperature stable π-phase-shifted fiber Bragg gratings inscribed using infrared femtosecond pulses and a phase mask
URI https://www.ncbi.nlm.nih.gov/pubmed/30184854
https://www.proquest.com/docview/2100332160
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbx9hexu7LLkWD5Sm480W-PZaQrIy2eUkgb0I3N6atY-KkbH0Y-4f7SzuSZdcpKXR7UYKiyIm_z-cinXOE0JcoUL7HEp3Rk2YOiWXs8DgOHaJt71DXPzdZaSen0dGMfJ-H81vZJWt-IK535pX8D6rQB7jqLNl_QLadFDrgPeALLSAM7b0w1kEaji4uZSsj64UBnQnVH477ieuUC1BRTrXIM21WZjo2BLBkZ2cDXSDCnNeZF1pscPh4U9XZLdnKhKRn6nK9rLS3LAflBvRnXcuZDcykg0tWnXft2klpyj2rH2Ub0qG5UoBLf2WXZ4c_VzfhHN9WS17kwia5t6jnC5ZfLK864Wd228quS3gmiMINOqIUHEfwTq06VTv6rPytM-YbniVdaQrGkLtTzgcRAXAmowM_OnDbYdvltE8ndDw7PqbT0Xz6ED3ywY_QgvDk16jdZiJxffpO87NsZgTM_rU795bN8qRYCROQx-52SoxxMn2OnlmvAh_WFHmBHqjiJXpsontF9Qpd3yYKromC__zeJgk2JMGGJLghCW5Jgg1JcEMS3CEJrkmCgSSYYTMp1iR5jWbj0XR45NhDNxwRpGTthDGLFfxnloEjHkRpSARYyTxxuZQyCdyExyKQ0vVjkYYhCxLmSS5VzDgXKc9Y8AbtFctCvUOYZColcQb6NnIJSHpGpO8pkUWSh4mSbg8NmttKha1Irw9GuaBmmzUidDKifkRrEHqo344u60osd4w7bBFqB-oi6kIrTZrrFwojqDANq_uLEvQK9QMTCkB66HODLAVxq_fQWKGWm4r6nj790PciuM7bGvL2IqArExBw5P09vv0BPb15aD6ivfVqoz6Bebvm-2ZZaN8Q9S_JE6tp
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-temperature+stable+%CF%80-phase-shifted+fiber+Bragg+gratings+inscribed+using+infrared+femtosecond+pulses+and+a+phase+mask&rft.jtitle=Optics+express&rft.au=Hnatovsky%2C+Cyril&rft.au=Grobnic%2C+Dan&rft.au=Mihailov%2C+Stephen+J&rft.date=2018-09-03&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=26&rft.issue=18&rft.spage=23550&rft_id=info:doi/10.1364%2FOE.26.023550&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon