Deep Learning Forecasts of Soil Moisture: Convolutional Neural Network and Gated Recurrent Unit Models Coupled with Satellite-Derived MODIS, Observations and Synoptic-Scale Climate Index Data

Remotely sensed soil moisture forecasting through satellite-based sensors to estimate the future state of the underlying soils plays a critical role in planning and managing water resources and sustainable agricultural practices. In this paper, Deep Learning (DL) hybrid models (i.e., CEEMDAN-CNN-GRU...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 13; no. 4; p. 554
Main Authors Ahmed, A. A. Masrur, Deo, Ravinesh C, Raj, Nawin, Ghahramani, Afshin, Feng, Qi, Yin, Zhenliang, Yang, Linshan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 04.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Remotely sensed soil moisture forecasting through satellite-based sensors to estimate the future state of the underlying soils plays a critical role in planning and managing water resources and sustainable agricultural practices. In this paper, Deep Learning (DL) hybrid models (i.e., CEEMDAN-CNN-GRU) are designed for daily time-step surface soil moisture (SSM) forecasts, employing the gated recurrent unit (GRU), complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and convolutional neural network (CNN). To establish the objective model’s viability for SSM forecasting at multi-step daily horizons, the hybrid CEEMDAN-CNN-GRU model is tested at 1st, 5th, 7th, 14th, 21st, and 30th day ahead period by assimilating a comprehensive pool of 52 predictor dataset obtained from three distinct data sources. Data comprise satellite-derived Global Land Data Assimilation System (GLDAS) repository a global, high-temporal resolution, unique terrestrial modelling system, and ground-based variables from Scientific Information Landowners (SILO) and synoptic-scale climate indices. The results demonstrate the forecasting capability of the hybrid CEEMDAN-CNN-GRU model with respect to the counterpart comparative models. This is supported by a relatively lower value of the mean absolute percentage and root mean square error. In terms of the statistical score metrics and infographics employed to test the final model’s utility, the proposed CEEMDAN-CNN-GRU models are considerably superior compared to a standalone and other hybrid method tested on independent SSM data developed through feature selection approaches. Thus, the proposed approach can be successfully implemented in hydrology and agriculture management.
AbstractList Remotely sensed soil moisture forecasting through satellite-based sensors to estimate the future state of the underlying soils plays a critical role in planning and managing water resources and sustainable agricultural practices. In this paper, Deep Learning (DL) hybrid models (i.e., CEEMDAN-CNN-GRU) are designed for daily time-step surface soil moisture (SSM) forecasts, employing the gated recurrent unit (GRU), complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and convolutional neural network (CNN). To establish the objective model’s viability for SSM forecasting at multi-step daily horizons, the hybrid CEEMDAN-CNN-GRU model is tested at 1st, 5th, 7th, 14th, 21st, and 30th day ahead period by assimilating a comprehensive pool of 52 predictor dataset obtained from three distinct data sources. Data comprise satellite-derived Global Land Data Assimilation System (GLDAS) repository a global, high-temporal resolution, unique terrestrial modelling system, and ground-based variables from Scientific Information Landowners (SILO) and synoptic-scale climate indices. The results demonstrate the forecasting capability of the hybrid CEEMDAN-CNN-GRU model with respect to the counterpart comparative models. This is supported by a relatively lower value of the mean absolute percentage and root mean square error. In terms of the statistical score metrics and infographics employed to test the final model’s utility, the proposed CEEMDAN-CNN-GRU models are considerably superior compared to a standalone and other hybrid method tested on independent SSM data developed through feature selection approaches. Thus, the proposed approach can be successfully implemented in hydrology and agriculture management.
Author Ahmed, A. A. Masrur
Yin, Zhenliang
Ghahramani, Afshin
Feng, Qi
Deo, Ravinesh C
Raj, Nawin
Yang, Linshan
Author_xml – sequence: 1
  givenname: A. A. Masrur
  orcidid: 0000-0002-7941-3902
  surname: Ahmed
  fullname: Ahmed, A. A. Masrur
– sequence: 2
  givenname: Ravinesh C
  orcidid: 0000-0002-2290-6749
  surname: Deo
  fullname: Deo, Ravinesh C
– sequence: 3
  givenname: Nawin
  surname: Raj
  fullname: Raj, Nawin
– sequence: 4
  givenname: Afshin
  surname: Ghahramani
  fullname: Ghahramani, Afshin
– sequence: 5
  givenname: Qi
  orcidid: 0000-0002-5469-1738
  surname: Feng
  fullname: Feng, Qi
– sequence: 6
  givenname: Zhenliang
  orcidid: 0000-0001-9050-6328
  surname: Yin
  fullname: Yin, Zhenliang
– sequence: 7
  givenname: Linshan
  orcidid: 0000-0002-6862-4106
  surname: Yang
  fullname: Yang, Linshan
BookMark eNptkt1uEzEQhVeoSJTSG57AEjcIsdS_613uUEJLpJRILL1eOfZscXDtYHtT-nS8Gm5SAarwzVjj7xwfjeZ5deSDh6p6SfA7xjp8FhNhmGMh-JPqmGJJa047evTP_Vl1mtIGl8MY6TA_rn7NAbZoCSp666_ReYigVcoJhRH1wTp0GWzKU4T3aBb8Lrgp2-CVQ59hivuSb0P8jpQ36EJlMOgL6ClG8BldeZuL3oBLRTxtXXm9tfkb6gvonM1QzyHaXWlfruaL_i1arRPEnbr_Iu0t-zsfttnqutfKAZo5e1O0aOEN_ERzldWL6umoXILTh3pSXZ1__Dr7VC9XF4vZh2WtWcdzLbjgBjjDzEiKR9atJTPAuoZgowRXhLTaKCkFhq6hphG0aZuGt2vRGazAsJNqcfA1QW2GbSw54t0QlB32jRCvBxVLUAeDHBvOGsO4lpRLalqy1lwYLBumuo41xev1wWsbw48JUh5ubNJlIspDmNJAhaAYE8FIQV89QjdhimX-heKtZLhljBbqzYHSMaQUYfwTkODhfjWGv6tRYPwI1jbvR56jsu5_kt_gHr0A
CitedBy_id crossref_primary_10_1007_s11269_023_03731_6
crossref_primary_10_1007_s42107_023_00847_3
crossref_primary_10_1016_j_geoderma_2023_116452
crossref_primary_10_1016_j_scitotenv_2022_154722
crossref_primary_10_1007_s11042_024_18617_x
crossref_primary_10_1007_s11269_022_03270_6
crossref_primary_10_3390_computers11070104
crossref_primary_10_3390_rs14030805
crossref_primary_10_1016_j_jher_2024_09_001
crossref_primary_10_1007_s00521_023_09168_7
crossref_primary_10_3390_agriculture12071033
crossref_primary_10_1016_j_isprsjprs_2022_01_009
crossref_primary_10_1080_19942060_2021_1984992
crossref_primary_10_1016_j_asoc_2023_111003
crossref_primary_10_1016_j_eswa_2022_117653
crossref_primary_10_7745_KJSSF_2024_57_3_225
crossref_primary_10_1007_s10489_024_05921_0
crossref_primary_10_1155_2021_5172658
crossref_primary_10_17108_ActAgrOvar_2024_65_2_43
crossref_primary_10_2139_ssrn_4002418
crossref_primary_10_1007_s00477_022_02177_3
crossref_primary_10_3390_rs14051136
crossref_primary_10_1007_s11356_022_22601_z
crossref_primary_10_1007_s00521_024_10165_7
crossref_primary_10_1016_j_jhydrol_2021_126350
crossref_primary_10_1109_TGRS_2022_3166777
crossref_primary_10_1016_j_horiz_2024_100098
crossref_primary_10_3390_rs14153741
crossref_primary_10_1007_s00477_023_02617_8
crossref_primary_10_1007_s00477_021_02078_x
crossref_primary_10_1007_s00521_022_07744_x
crossref_primary_10_3390_agronomy14092054
crossref_primary_10_1080_03081079_2025_2471993
crossref_primary_10_1007_s42979_022_01554_7
crossref_primary_10_5194_essd_15_395_2023
crossref_primary_10_1109_JSTARS_2022_3166978
crossref_primary_10_1016_j_asoc_2024_112328
crossref_primary_10_1109_ACCESS_2022_3153475
crossref_primary_10_1016_j_scitotenv_2023_167234
crossref_primary_10_3390_rs15205008
crossref_primary_10_1016_j_renene_2022_12_048
crossref_primary_10_1007_s11356_024_35182_w
crossref_primary_10_3390_rs15133410
crossref_primary_10_3390_su142315522
crossref_primary_10_1007_s13762_022_04202_y
crossref_primary_10_3390_math10234533
crossref_primary_10_1016_j_agwat_2024_108772
Cites_doi 10.1029/2009GL037666
10.1007/s11356-012-1451-6
10.1175/JCLI-D-11-00156.1
10.1002/joc.2419
10.5194/gmd-7-1247-2014
10.1016/j.asej.2016.10.014
10.1007/978-1-4842-2766-4
10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
10.3115/v1/D14-1179
10.1016/j.jhydrol.2004.06.021
10.1016/j.catena.2019.02.012
10.1109/GEOINFORMATICS.2010.5567490
10.1109/ICASSP.2011.5947265
10.1007/s10546-005-9011-y
10.1016/j.jhydrol.2019.06.032
10.1080/23311843.2018.1537067
10.1007/978-3-642-38679-4_47
10.1111/j.1752-1688.2006.tb04512.x
10.1016/j.jhydrol.2006.04.030
10.1002/2013WR014650
10.1007/s11269-016-1288-8
10.1016/j.envres.2017.01.035
10.1016/j.neucom.2017.11.027
10.1016/j.envsoft.2010.02.003
10.1016/j.jhydrol.2009.08.003
10.1029/2018JD028375
10.1371/journal.pone.0104663
10.1016/j.jhydrol.2019.124419
10.1175/2009JHM1169.1
10.1002/qj.49709139009
10.3959/1536-1098-69.1.3
10.1016/j.jhydrol.2014.03.057
10.3390/w9020140
10.1016/j.rser.2019.01.009
10.1109/TGRS.2008.2003183
10.1007/s00382-015-2525-1
10.1016/j.rse.2018.05.003
10.1007/s00477-018-1585-2
10.1007/978-981-15-0291-0_92
10.1002/joc.3487
10.1038/nature14539
10.1016/j.jclepro.2019.01.158
10.1016/j.jhydrol.2020.125188
10.1016/j.agwat.2017.06.010
10.1038/srep17252
10.1016/j.apenergy.2019.113541
10.1016/S1364-8152(99)00007-9
10.1016/j.agrformet.2011.01.017
10.1016/j.jhydrol.2014.10.059
10.1175/2009MWR2861.1
10.1016/j.atmosres.2014.10.016
10.3390/w11071387
10.1175/JHM-D-12-09.1
10.1016/0022-1694(70)90255-6
10.3354/cr01194
10.1002/joc.1276
10.1007/s00704-018-2598-y
10.1029/2011JD017069
10.1016/j.rser.2017.01.114
10.1371/journal.pone.0214508
10.1080/1573062X.2016.1236133
10.1142/S1793536909000047
10.1016/j.geoderma.2012.10.021
10.1016/j.scitotenv.2018.08.139
10.1016/j.eja.2018.05.006
10.3390/w8090367
10.1007/s11269-009-9414-5
10.1142/S1793536909000187
10.1016/j.jhydrol.2018.12.060
10.1016/j.geoderma.2018.05.035
10.1007/s00477-021-01969-3
10.3390/w10111543
10.1016/j.jhydrol.2018.04.065
10.1109/TrustCom.2013.279
10.1007/s10661-015-4920-9
10.3844/ajassp.2016.891.899
10.5194/hess-22-6005-2018
10.1007/978-3-642-18336-2_37
10.3390/en12122407
10.1029/1998WR900018
10.1016/S0022-1694(97)00121-2
10.1007/s10661-016-5094-9
10.1016/j.apenergy.2016.01.130
10.1038/302295a0
10.1016/j.atmosres.2017.06.014
10.1029/2009WR008016
10.1016/j.still.2018.03.021
10.1504/IJW.2017.088046
10.1016/j.patcog.2017.10.033
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs13040554
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (New)
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_7f6436d34c72472d81bc45d0763a9936
10_3390_rs13040554
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-5454de4303d720f39b73de39610da54a118cda7750e962d652686648b59d0aed3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:32:05 EDT 2025
Thu Jul 10 23:34:29 EDT 2025
Fri Jul 25 11:57:39 EDT 2025
Tue Jul 01 01:58:29 EDT 2025
Thu Apr 24 23:11:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-5454de4303d720f39b73de39610da54a118cda7750e962d652686648b59d0aed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5469-1738
0000-0002-2290-6749
0000-0002-7941-3902
0000-0002-6862-4106
0000-0001-9050-6328
OpenAccessLink https://doaj.org/article/7f6436d34c72472d81bc45d0763a9936
PQID 2487308332
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_7f6436d34c72472d81bc45d0763a9936
proquest_miscellaneous_2552001531
proquest_journals_2487308332
crossref_primary_10_3390_rs13040554
crossref_citationtrail_10_3390_rs13040554
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210204
PublicationDateYYYYMMDD 2021-02-04
PublicationDate_xml – month: 02
  year: 2021
  text: 20210204
  day: 04
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Deo (ref_9) 2017; 191
Wu (ref_62) 2009; 1
ref_92
Ali (ref_41) 2019; 576
Ghimire (ref_101) 2019; 216
Cornish (ref_33) 2006; 119
Arhami (ref_91) 2013; 20
ref_13
ref_17
Schepen (ref_44) 2012; 25
ref_16
Gedefaw (ref_18) 2018; 4
Deo (ref_71) 2017; 72
Rathinasamy (ref_34) 2014; 50
Chiew (ref_81) 1998; 204
Nikolopoulos (ref_50) 2013; 14
ref_24
Risbey (ref_46) 2009; 137
ref_22
Maier (ref_89) 2000; 15
Yuan (ref_45) 2015; 5
Hijmans (ref_68) 2005; 25
ref_26
Deo (ref_32) 2016; 168
Legates (ref_97) 2013; 33
Ouyang (ref_40) 2016; 30
ref_70
Maier (ref_64) 2010; 25
Wen (ref_60) 2019; 570
ref_77
ref_76
ref_73
Legates (ref_99) 1999; 35
Deo (ref_29) 2016; 188
Deo (ref_74) 2018; 98
Gao (ref_27) 2020; 589
Hu (ref_43) 2013; 193
Oehmcke (ref_55) 2018; 275
LeCun (ref_54) 2015; 521
ref_87
ref_86
Willmott (ref_96) 2012; 32
ref_85
Prasad (ref_11) 2017; 197
Nourani (ref_30) 2009; 23
Seo (ref_37) 2016; 13
Trouet (ref_78) 2013; 69
Prasad (ref_59) 2018; 181
ref_58
ref_57
Henley (ref_83) 2015; 45
Chai (ref_95) 2014; 7
ref_52
Deo (ref_90) 2017; 155
Nourani (ref_31) 2014; 514
Yang (ref_8) 2018; 137
Ahmed (ref_20) 2017; 29
Gupta (ref_94) 2009; 377
Arto (ref_15) 2019; 648
Kratzert (ref_14) 2018; 22
Prasad (ref_23) 2018; 330
Adarsh (ref_42) 2018; 9
ref_69
Laaha (ref_1) 2015; 526
ref_67
ref_66
Troup (ref_84) 1965; 91
Adnan (ref_79) 2016; 12
Ahmed (ref_21) 2017; 29
Prasad (ref_36) 2019; 177
Ahmed (ref_12) 2017; 11
Royce (ref_47) 2011; 151
Tripathi (ref_7) 2006; 330
Nash (ref_93) 1970; 10
Gill (ref_5) 2006; 42
Nunez (ref_56) 2018; 76
Zhang (ref_25) 2018; 561
ref_35
Bowden (ref_63) 2005; 301
Brocca (ref_2) 2010; 46
ref_39
Chang (ref_4) 2015; 187
Deo (ref_10) 2015; 153
ref_38
Wu (ref_61) 2009; 1
Nikolopoulos (ref_51) 2010; 11
Madden (ref_82) 1971; 28
Yin (ref_98) 2018; 32
Berrick (ref_75) 2008; 47
Mouatadid (ref_19) 2017; 14
Ghimire (ref_28) 2019; 253
ref_100
Philander (ref_80) 1983; 302
ref_102
Jayalakshmi (ref_88) 2011; 3
ref_3
Yang (ref_65) 2012; 7
Shuai (ref_48) 2013; 58
ref_49
Deo (ref_72) 2019; 104
Ghimire (ref_53) 2018; 212
ref_6
References_xml – ident: ref_73
  doi: 10.1029/2009GL037666
– volume: 20
  start-page: 4777
  year: 2013
  ident: ref_91
  article-title: Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-012-1451-6
– volume: 25
  start-page: 1230
  year: 2012
  ident: ref_44
  article-title: Evidence for Using Lagged Climate Indices to Forecast Australian Seasonal Rainfall
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-11-00156.1
– ident: ref_100
– volume: 32
  start-page: 2088
  year: 2012
  ident: ref_96
  article-title: A refined index of model performance
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.2419
– volume: 7
  start-page: 1247
  year: 2014
  ident: ref_95
  article-title: Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-7-1247-2014
– volume: 9
  start-page: 1839
  year: 2018
  ident: ref_42
  article-title: Scale dependent prediction of reference evapotranspiration based on Multi-Variate Empirical mode decomposition
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2016.10.014
– ident: ref_85
  doi: 10.1007/978-1-4842-2766-4
– volume: 7
  start-page: 161
  year: 2012
  ident: ref_65
  article-title: Neighborhood Component Feature Selection for High-Dimensional Data
  publication-title: JCP
– volume: 28
  start-page: 702
  year: 1971
  ident: ref_82
  article-title: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
– ident: ref_57
  doi: 10.3115/v1/D14-1179
– volume: 301
  start-page: 75
  year: 2005
  ident: ref_63
  article-title: Input determination for neural network models in water resources applications. Part 1—background and methodology
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2004.06.021
– volume: 177
  start-page: 149
  year: 2019
  ident: ref_36
  article-title: Weekly soil moisture forecasting with multivariate sequential, ensemble empirical mode decomposition and Boruta-random forest hybridiser algorithm approach
  publication-title: Catena
  doi: 10.1016/j.catena.2019.02.012
– ident: ref_76
  doi: 10.1109/GEOINFORMATICS.2010.5567490
– ident: ref_58
  doi: 10.1109/ICASSP.2011.5947265
– volume: 119
  start-page: 339
  year: 2006
  ident: ref_33
  article-title: Maximal overlap wavelet statistical analysis with application to atmospheric turbulence
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1007/s10546-005-9011-y
– volume: 576
  start-page: 164
  year: 2019
  ident: ref_41
  article-title: Improving SPI-derived drought forecasts incorporating synoptic-scale climate indices in multi-phase multivariate empirical mode decomposition model hybridized with simulated annealing and kernel ridge regression algorithms
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.06.032
– volume: 4
  start-page: 1537067
  year: 2018
  ident: ref_18
  article-title: Variable selection methods for water demand forecasting in Ethiopia: Case study Gondar town
  publication-title: Cogent Environ. Sci.
  doi: 10.1080/23311843.2018.1537067
– ident: ref_38
  doi: 10.1007/978-3-642-38679-4_47
– volume: 42
  start-page: 1033
  year: 2006
  ident: ref_5
  article-title: Soil moisture prediction using support vector machines 1
  publication-title: JAWRA J. Am. Water Resour. Assoc.
  doi: 10.1111/j.1752-1688.2006.tb04512.x
– volume: 29
  start-page: 151
  year: 2017
  ident: ref_20
  article-title: Prediction of dissolved oxygen in Surma River by biochemical oxygen demand and chemical oxygen demand using the artificial neural networks (ANNs)
  publication-title: J. King Saud Univ. Eng. Sci.
– volume: 330
  start-page: 621
  year: 2006
  ident: ref_7
  article-title: Downscaling of precipitation for climate change scenarios: A support vector machine approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2006.04.030
– volume: 50
  start-page: 9721
  year: 2014
  ident: ref_34
  article-title: Wavelet-based multiscale performance analysis: An approach to assess and improve hydrological models
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR014650
– volume: 30
  start-page: 2311
  year: 2016
  ident: ref_40
  article-title: Monthly rainfall forecasting using EEMD-SVR based on phase-space reconstruction
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-016-1288-8
– ident: ref_86
– volume: 155
  start-page: 141
  year: 2017
  ident: ref_90
  article-title: Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2017.01.035
– ident: ref_67
– ident: ref_92
– volume: 275
  start-page: 2603
  year: 2018
  ident: ref_55
  article-title: Input quality aware convolutional LSTM networks for virtual marine sensors
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.027
– volume: 25
  start-page: 891
  year: 2010
  ident: ref_64
  article-title: Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2010.02.003
– volume: 377
  start-page: 80
  year: 2009
  ident: ref_94
  article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.08.003
– ident: ref_6
  doi: 10.1029/2018JD028375
– ident: ref_35
  doi: 10.1371/journal.pone.0104663
– ident: ref_49
  doi: 10.1016/j.jhydrol.2019.124419
– volume: 11
  start-page: 520
  year: 2010
  ident: ref_51
  article-title: Understanding the scale relationships of uncertainty propagation of satellite rainfall through a distributed hydrologic model
  publication-title: J. Hydrometeorol.
  doi: 10.1175/2009JHM1169.1
– volume: 91
  start-page: 490
  year: 1965
  ident: ref_84
  article-title: The ‘southern oscillation’
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.49709139009
– volume: 69
  start-page: 3
  year: 2013
  ident: ref_78
  article-title: KNMI Climate Explorer: A web-based research tool for high-resolution paleoclimatology
  publication-title: Tree-Ring Res.
  doi: 10.3959/1536-1098-69.1.3
– volume: 514
  start-page: 358
  year: 2014
  ident: ref_31
  article-title: Applications of hybrid wavelet–Artificial Intelligence models in hydrology: A review
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.03.057
– ident: ref_3
  doi: 10.3390/w9020140
– volume: 104
  start-page: 235
  year: 2019
  ident: ref_72
  article-title: Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: A new approach
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.01.009
– volume: 47
  start-page: 106
  year: 2008
  ident: ref_75
  article-title: Giovanni: A web service workflow-based data visualization and analysis system
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.2003183
– volume: 45
  start-page: 3077
  year: 2015
  ident: ref_83
  article-title: A tripole index for the interdecadal Pacific oscillation
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-015-2525-1
– volume: 212
  start-page: 176
  year: 2018
  ident: ref_53
  article-title: Self-adaptive differential evolutionary extreme learning machines for long-term solar radiation prediction with remotely-sensed MODIS satellite and Reanalysis atmospheric products in solar-rich cities
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.05.003
– ident: ref_70
– volume: 32
  start-page: 2457
  year: 2018
  ident: ref_98
  article-title: Design and evaluation of SVR, MARS and M5Tree models for 1, 2 and 3-day lead time forecasting of river flow data in a semiarid mountainous catchment
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-018-1585-2
– ident: ref_26
  doi: 10.1007/978-981-15-0291-0_92
– volume: 33
  start-page: 1053
  year: 2013
  ident: ref_97
  article-title: A refined index of model performance: A rejoinder
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.3487
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_54
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 216
  start-page: 288
  year: 2019
  ident: ref_101
  article-title: Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cities of Queensland Australia
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.01.158
– volume: 589
  start-page: 125188
  year: 2020
  ident: ref_27
  article-title: Short-term runoff prediction with GRU and LSTM networks without requiring time step optimisation during sample generation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125188
– volume: 191
  start-page: 153
  year: 2017
  ident: ref_9
  article-title: Copula-statistical precipitation forecasting model in Australia’s agro-ecological zones
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2017.06.010
– volume: 5
  start-page: 1
  year: 2015
  ident: ref_45
  article-title: Impacts of IOD, ENSO and ENSO Modoki on the Australian winter wheat yields in recent decades
  publication-title: Sci. Rep.
  doi: 10.1038/srep17252
– volume: 253
  start-page: 113541
  year: 2019
  ident: ref_28
  article-title: Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113541
– volume: 15
  start-page: 101
  year: 2000
  ident: ref_89
  article-title: Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
  publication-title: Environ. Model. Softw.
  doi: 10.1016/S1364-8152(99)00007-9
– volume: 151
  start-page: 817
  year: 2011
  ident: ref_47
  article-title: ENSO classification indices and summer crop yields in the Southeastern USA
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2011.01.017
– volume: 526
  start-page: 3
  year: 2015
  ident: ref_1
  article-title: Hydrological drought severity explained by climate and catchment characteristics
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.10.059
– volume: 137
  start-page: 3233
  year: 2009
  ident: ref_46
  article-title: On the remote drivers of rainfall variability in Australia
  publication-title: Mon. Weather Rev.
  doi: 10.1175/2009MWR2861.1
– volume: 3
  start-page: 1793
  year: 2011
  ident: ref_88
  article-title: Statistical normalization and back propagation for classification
  publication-title: Int. J. Comput. Theory Eng.
– volume: 153
  start-page: 512
  year: 2015
  ident: ref_10
  article-title: Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2014.10.016
– ident: ref_16
  doi: 10.3390/w11071387
– volume: 14
  start-page: 171
  year: 2013
  ident: ref_50
  article-title: Using high-resolution satellite rainfall products to simulate a major flash flood event in northern Italy
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-12-09.1
– volume: 12
  start-page: 23
  year: 2016
  ident: ref_79
  article-title: Influence of natural forcing phenomena on precipitation of Pakistan
  publication-title: Pak. J. Meteorol.
– volume: 10
  start-page: 282
  year: 1970
  ident: ref_93
  article-title: River flow forecasting through conceptual models part I—A discussion of principles
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(70)90255-6
– volume: 58
  start-page: 133
  year: 2013
  ident: ref_48
  article-title: ENSO, climate variability and crop yields in China
  publication-title: Clim. Res.
  doi: 10.3354/cr01194
– volume: 25
  start-page: 1965
  year: 2005
  ident: ref_68
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: Int. J. Climatol. J. R. Meteorol. Soc.
  doi: 10.1002/joc.1276
– ident: ref_69
– volume: 137
  start-page: 323
  year: 2018
  ident: ref_8
  article-title: Application of multivariate recursive nesting bias correction, multiscale wavelet entropy and AI-based models to improve future precipitation projection in upstream of the Heihe River, Northwest China
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-018-2598-y
– ident: ref_52
  doi: 10.1029/2011JD017069
– ident: ref_87
– volume: 72
  start-page: 828
  year: 2017
  ident: ref_71
  article-title: Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.01.114
– ident: ref_102
  doi: 10.1371/journal.pone.0214508
– ident: ref_66
– volume: 14
  start-page: 630
  year: 2017
  ident: ref_19
  article-title: Using extreme learning machines for short-term urban water demand forecasting
  publication-title: Urban Water J.
  doi: 10.1080/1573062X.2016.1236133
– volume: 1
  start-page: 1
  year: 2009
  ident: ref_61
  article-title: Ensemble empirical mode decomposition: A noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
– volume: 29
  start-page: 237
  year: 2017
  ident: ref_21
  article-title: Application of adaptive neuro-fuzzy inference system (ANFIS) to estimate the biochemical oxygen demand (BOD) of Surma River
  publication-title: J. King Saud Univ. Eng. Sci.
– volume: 193
  start-page: 180
  year: 2013
  ident: ref_43
  article-title: Soil water prediction based on its scale-specific control using multivariate empirical mode decomposition
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.10.021
– volume: 648
  start-page: 1284
  year: 2019
  ident: ref_15
  article-title: The socioeconomic future of deltas in a changing environment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.08.139
– volume: 98
  start-page: 65
  year: 2018
  ident: ref_74
  article-title: Modeling the joint influence of multiple synoptic-scale, climate mode indices on Australian wheat yield using a vine copula-based approach
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2018.05.006
– ident: ref_39
  doi: 10.3390/w8090367
– volume: 23
  start-page: 2877
  year: 2009
  ident: ref_30
  article-title: A multivariate ANN-wavelet approach for rainfall–runoff modeling
  publication-title: Water. Resour. Manag.
  doi: 10.1007/s11269-009-9414-5
– volume: 1
  start-page: 339
  year: 2009
  ident: ref_62
  article-title: The multi-dimensional ensemble empirical mode decomposition method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000187
– volume: 570
  start-page: 167
  year: 2019
  ident: ref_60
  article-title: Two-phase extreme learning machines integrated with the complete ensemble empirical mode decomposition with adaptive noise algorithm for multi-scale runoff prediction problems
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.12.060
– volume: 330
  start-page: 136
  year: 2018
  ident: ref_23
  article-title: Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.05.035
– ident: ref_17
  doi: 10.1007/s00477-021-01969-3
– ident: ref_13
  doi: 10.3390/w10111543
– volume: 561
  start-page: 918
  year: 2018
  ident: ref_25
  article-title: Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.04.065
– ident: ref_77
  doi: 10.1109/TrustCom.2013.279
– volume: 187
  start-page: 699
  year: 2015
  ident: ref_4
  article-title: Crop evapotranspiration-based irrigation management during the growing season in the arid region of northwestern China
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-015-4920-9
– volume: 13
  start-page: 891
  year: 2016
  ident: ref_37
  article-title: Hydrological Forecasting Using Hybrid Data-Driven Approach
  publication-title: Am. J. Appl. Sci.
  doi: 10.3844/ajassp.2016.891.899
– volume: 22
  start-page: 6005
  year: 2018
  ident: ref_14
  article-title: Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-6005-2018
– ident: ref_22
  doi: 10.1007/978-3-642-18336-2_37
– ident: ref_24
  doi: 10.3390/en12122407
– volume: 35
  start-page: 233
  year: 1999
  ident: ref_99
  article-title: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation
  publication-title: Water Resour. Res.
  doi: 10.1029/1998WR900018
– volume: 204
  start-page: 138
  year: 1998
  ident: ref_81
  article-title: El Nino/Southern Oscillation and Australian rainfall, streamflow and drought: Links and potential for forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(97)00121-2
– volume: 188
  start-page: 90
  year: 2016
  ident: ref_29
  article-title: An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-016-5094-9
– volume: 168
  start-page: 568
  year: 2016
  ident: ref_32
  article-title: A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.01.130
– volume: 302
  start-page: 295
  year: 1983
  ident: ref_80
  article-title: El Nino southern oscillation phenomena
  publication-title: Nature
  doi: 10.1038/302295a0
– volume: 197
  start-page: 42
  year: 2017
  ident: ref_11
  article-title: Input selection and performance optimisation of ANN-based streamflow forecasts in the drought-prone Murray Darling Basin region using IIS and MODWT algorithm
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2017.06.014
– volume: 46
  start-page: W02516
  year: 2010
  ident: ref_2
  article-title: Spatial—temporal variability of soil moisture and its estimation across scales
  publication-title: Water Resour. Res.
  doi: 10.1029/2009WR008016
– volume: 181
  start-page: 63
  year: 2018
  ident: ref_59
  article-title: Ensemble committee-based data intelligent approach for generating soil moisture forecasts with multivariate hydro-meteorological predictors
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2018.03.021
– volume: 11
  start-page: 363
  year: 2017
  ident: ref_12
  article-title: Application of artificial neural networks to predict peak flow of Surma River in Sylhet Zone of Bangladesh
  publication-title: Int. J. Water
  doi: 10.1504/IJW.2017.088046
– volume: 76
  start-page: 80
  year: 2018
  ident: ref_56
  article-title: Convolutional neural networks and long short-term memory for skeleton-based human activity and hand gesture recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.10.033
SSID ssj0000331904
Score 2.4849908
Snippet Remotely sensed soil moisture forecasting through satellite-based sensors to estimate the future state of the underlying soils plays a critical role in...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 554
SubjectTerms Agricultural management
Agricultural practices
Algorithms
Artificial neural networks
climate
Climate models
Data collection
Decomposition
Deep learning
deep learning algorithm
El Nino
Farm buildings
Forecasting
gated recurrent unit
hybrids
Hydrology
Model testing
MODIS
Neural networks
Precipitation
Rain
Remote sensing
Remote sensors
satellite models of soil moisture
Satellite observation
satellites
Soil moisture
Soil surfaces
soil water
Stream flow
Sustainable agriculture
Sustainable practices
Teaching methods
Temporal resolution
Time series
Variables
viability
Water management
Water resources
Water resources management
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central (New)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtcmgvJX3RbZKi0l4KFXH1sNa9lGQ3ISlsUuIGcjOyJKcBY23X3kB-Xf9aZ7xah9DQk400FoYZjb4ZSd8Q8rFKqpI77Rhe-2SyLC3LpE6YypQAtMHHyuB959lpenwhv1-qy5hwa-OxyrVP7B21CxZz5HsckLUAvCD4t_lvhlWjcHc1ltB4TDbBBY8h-No8ODz9cT5kWRIBJpbIFS-pgPh-b9GC1waUouS9lagn7P_HH_eLzNEWeRbRId1fqfM5eeSbF-RJLFT-6_Yl-TP1fk4jKeoVxcKa1rRdS0NF83Bd01kAvS0X_iudhOYm2hUMiSQc_aM_9U1N4ygmzhw9x4Q7UjRRhJ8Ua6PVLXy8nNfQi2lampuetrPzbAr2egPNs7PpSf6ZnpVDTrfth8xvmwA-yLIcVO_ppL4GQOzpCVIy0qnpzCtycXT4c3LMYg0GZkUmOwYASzovYaFzmieVyEotnBcZoC5nlDQQn1hnNOAOn6Xcpcgek6ZyXKrMJcY78ZpsNKHxbwiVlifOp1mlDQej0CAAsZOWaeKqMbyOyKe1PgobCcqxTkZdQKCCuivudDciHwbZ-YqW40GpA1TrIIFU2n1DWFwVcWYWugJQljohreZScwc43krlEnC8BsAb_NbO2iiKOL_b4s4aR-T90A0zE7dbTOPDEmQUUlrBivLl7f-H2CZPOZ6UwbPgcodsdIul3wWo05Xvoj3_BcJ7_zA
  priority: 102
  providerName: ProQuest
Title Deep Learning Forecasts of Soil Moisture: Convolutional Neural Network and Gated Recurrent Unit Models Coupled with Satellite-Derived MODIS, Observations and Synoptic-Scale Climate Index Data
URI https://www.proquest.com/docview/2487308332
https://www.proquest.com/docview/2552001531
https://doaj.org/article/7f6436d34c72472d81bc45d0763a9936
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgHOCC-BQLZWUEFySiBtuJN721u11axLaooVJvkRM7UClKVptspf66_jXeOOlSBBIXTo7siWVlxp43jv2GsXdlWObCahvQtc9A5XkRJEqHQZREEmhDTCJD950Xx_Hhmfp8Hp3fSvVFZ8J6euD-w-3oEj4ztlIVWigtLGBWoSKL8Fsa-FZPtg2fdyuY8muwhGmFqucjlYjrd1YtVmugk0j95oE8Uf8f67B3LvNH7OGACvleP5rH7I6rn7D7Q4LyH1dP2fXMuSUfyFC_c0qoWZi2a3lT8rS5qPiigb7WK7fLp019OdgTuiTyDV_4097c1JbThpnlp7TRTtRMnGAnp5xoVYuX18sKrbQ9y1Pj6To7F8xgp5eoXpzMjtIP_CTf7OW2vsv0qm6w9hRBCpU7Pq0uAIQdPyIqRj4znXnGzuYH36aHwZB7IShkoroAwEpZp-DgrBZhKZNcS-tkArRlTaQM4pLCGg284ZJY2JhYY-JYTfIosaFxVj5nW3VTuxeMq0KE1sVJqY2AMWgIIGbSKg5tOcHjiL2_0UdWDMTklB-jyhCgkO6yX7obsbcb2WVPx_FXqX1S60aCKLR9BQwrGwwr-5dhjdj2jVFkw7xuM4H4TgK1SjFibzbNmJH0m8XUrllDJiIqK3iSjy__xzhesQeCztHQSXG1zba61dq9BhDq8jG7O5l_GrN7e7PFlxTl_sHx19Oxnwk_AfZkCSQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGeBgvaPwSZQOMgAckrAXbiRskhKChtGzdJLJJe8sc2xmToqQ06VD_Kf4F_jXu0iQTAvG2p1bxxYp0X-4-X-zvCHmReVnKrbIMj30ymaaGhVJ5zA99AWyDD32N551nh8HkRH459U83yM_uLAxuq-xiYhOobWmwRr7HgVkL4AuCv59_Z9g1Cr-udi001rDYd6sfsGSr3k0j8O9LzsefjkcT1nYVYEaEsmZAGaR1EkK3VdzLRJgqYZ0IgUdY7UsNjNtYrSCTujDgNkA9lCCQw9QPraedFTDvDXJTCrgFT6aPP_c1HU8AoD25VkGFcW9vUUGOAE7kyz_yXtMe4K_o36S08Ta53XJR-mENnjtkwxV3yVbbFv3b6h75FTk3p60E6znFNp5GV3VFy4zG5UVOZyWgZLlwb-moLC5bFMOUKPnR_DR7zKkuLMUynaVfsbyPglAUyS7FTmx5BTcv5zmMYlGYxroRCa0di-DtuITLs6NoGr-mR2lfQa6aKeNVUULEMywGoDk6yi-Afjs6RQFIGula3ycn1-KbB2SzKAv3kFBpuGddEGZKc4CgAgNYqSkZeDYbwt8BedX5IzGtHDp25cgTWBah75Ir3w3I8952vhYB-afVR3Rrb4HC3c2FcnGetHEgURlQwMAKaRSXiltYNRjpWw_CvAaqCI-124EiaaNJlVxhf0Ce9cMQB_Djji5cuQQbHwW0IH-9efT_KZ6Srcnx7CA5mB7u75BbHPfo4C50uUs268XSPQaSVadPGmRTcnbdr9JvJu85GQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJwEviJ-iMMAIeEAiqrGduEFCiDWrVka7aWXS3oJjO2NSlJQmHeq_xgv_GndpkgmBeNtTquRiVbrz3XeX83eEvExZmnCrrIfHPj2ZJMYLpWKeH_oC0AYf-hrPO09nwf6J_HTqn26Rn-1ZGGyrbH1i7ahtYbBGPuCArAXgBcEHadMWcRSNPyy-ezhBCr-0tuM0NiZy4NY_IH0r308i0PUrzsd7X0b7XjNhwDMilJUH8EFaJ8GNW8VZKsJECetECJjCal9qQN_GagVR1YUBtwFyowSBHCZ-aJl2VsC618i2gqyI9cj27t7s6Lir8DAB5s3khhNViJANliVEDEBIvvwjCtbDAv6KBXWAG98mtxpkSj9uTOkO2XL5XXKjGZL-bX2P_IqcW9CGkPWM4lBPo8uqpEVK58V5RqcF2Mxq6d7RUZFfNDYNSyIBSH2pO86pzi3Fop2lx1jsR3ooitCX4ly2rISXV4sMnmKJmM51TRlaOS-CvXIBt6eH0WT-hh4mXT25rJecr_MC_J_x5mB2jo6ycwDjjk6QDpJGutL3ycmVaOcB6eVF7h4SKg1n1gVhqjQHg1QgAHmbkgGz6RB-9snrVh-xacjRcUZHFkOShLqLL3XXJy862cWGEuSfUruo1k4CabzrG8XyLG68QqxSAISBFdIoLhW3kEMY6VsGTl8DcIS_tdMaRdz4ljK-3Al98rx7DF4BP_Xo3BUrkPGRTgui2dtH_1_iGbkO2yj-PJkdPCY3OTbsYEu63CG9arlyTwBxVcnTxrQp-XrVu-k35pA-qw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Forecasts+of+Soil+Moisture%3A+Convolutional+Neural+Network+and+Gated+Recurrent+Unit+Models+Coupled+with+Satellite-Derived+MODIS%2C+Observations+and+Synoptic-Scale+Climate+Index+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Ahmed%2C+A.+A.+Masrur&rft.au=Deo%2C+Ravinesh+C&rft.au=Raj%2C+Nawin&rft.au=Ghahramani%2C+Afshin&rft.date=2021-02-04&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=13&rft.issue=4&rft.spage=554&rft_id=info:doi/10.3390%2Frs13040554&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs13040554
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon