Deep Learning Forecasts of Soil Moisture: Convolutional Neural Network and Gated Recurrent Unit Models Coupled with Satellite-Derived MODIS, Observations and Synoptic-Scale Climate Index Data
Remotely sensed soil moisture forecasting through satellite-based sensors to estimate the future state of the underlying soils plays a critical role in planning and managing water resources and sustainable agricultural practices. In this paper, Deep Learning (DL) hybrid models (i.e., CEEMDAN-CNN-GRU...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 13; no. 4; p. 554 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
04.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Remotely sensed soil moisture forecasting through satellite-based sensors to estimate the future state of the underlying soils plays a critical role in planning and managing water resources and sustainable agricultural practices. In this paper, Deep Learning (DL) hybrid models (i.e., CEEMDAN-CNN-GRU) are designed for daily time-step surface soil moisture (SSM) forecasts, employing the gated recurrent unit (GRU), complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and convolutional neural network (CNN). To establish the objective model’s viability for SSM forecasting at multi-step daily horizons, the hybrid CEEMDAN-CNN-GRU model is tested at 1st, 5th, 7th, 14th, 21st, and 30th day ahead period by assimilating a comprehensive pool of 52 predictor dataset obtained from three distinct data sources. Data comprise satellite-derived Global Land Data Assimilation System (GLDAS) repository a global, high-temporal resolution, unique terrestrial modelling system, and ground-based variables from Scientific Information Landowners (SILO) and synoptic-scale climate indices. The results demonstrate the forecasting capability of the hybrid CEEMDAN-CNN-GRU model with respect to the counterpart comparative models. This is supported by a relatively lower value of the mean absolute percentage and root mean square error. In terms of the statistical score metrics and infographics employed to test the final model’s utility, the proposed CEEMDAN-CNN-GRU models are considerably superior compared to a standalone and other hybrid method tested on independent SSM data developed through feature selection approaches. Thus, the proposed approach can be successfully implemented in hydrology and agriculture management. |
---|---|
AbstractList | Remotely sensed soil moisture forecasting through satellite-based sensors to estimate the future state of the underlying soils plays a critical role in planning and managing water resources and sustainable agricultural practices. In this paper, Deep Learning (DL) hybrid models (i.e., CEEMDAN-CNN-GRU) are designed for daily time-step surface soil moisture (SSM) forecasts, employing the gated recurrent unit (GRU), complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and convolutional neural network (CNN). To establish the objective model’s viability for SSM forecasting at multi-step daily horizons, the hybrid CEEMDAN-CNN-GRU model is tested at 1st, 5th, 7th, 14th, 21st, and 30th day ahead period by assimilating a comprehensive pool of 52 predictor dataset obtained from three distinct data sources. Data comprise satellite-derived Global Land Data Assimilation System (GLDAS) repository a global, high-temporal resolution, unique terrestrial modelling system, and ground-based variables from Scientific Information Landowners (SILO) and synoptic-scale climate indices. The results demonstrate the forecasting capability of the hybrid CEEMDAN-CNN-GRU model with respect to the counterpart comparative models. This is supported by a relatively lower value of the mean absolute percentage and root mean square error. In terms of the statistical score metrics and infographics employed to test the final model’s utility, the proposed CEEMDAN-CNN-GRU models are considerably superior compared to a standalone and other hybrid method tested on independent SSM data developed through feature selection approaches. Thus, the proposed approach can be successfully implemented in hydrology and agriculture management. |
Author | Ahmed, A. A. Masrur Yin, Zhenliang Ghahramani, Afshin Feng, Qi Deo, Ravinesh C Raj, Nawin Yang, Linshan |
Author_xml | – sequence: 1 givenname: A. A. Masrur orcidid: 0000-0002-7941-3902 surname: Ahmed fullname: Ahmed, A. A. Masrur – sequence: 2 givenname: Ravinesh C orcidid: 0000-0002-2290-6749 surname: Deo fullname: Deo, Ravinesh C – sequence: 3 givenname: Nawin surname: Raj fullname: Raj, Nawin – sequence: 4 givenname: Afshin surname: Ghahramani fullname: Ghahramani, Afshin – sequence: 5 givenname: Qi orcidid: 0000-0002-5469-1738 surname: Feng fullname: Feng, Qi – sequence: 6 givenname: Zhenliang orcidid: 0000-0001-9050-6328 surname: Yin fullname: Yin, Zhenliang – sequence: 7 givenname: Linshan orcidid: 0000-0002-6862-4106 surname: Yang fullname: Yang, Linshan |
BookMark | eNptkt1uEzEQhVeoSJTSG57AEjcIsdS_613uUEJLpJRILL1eOfZscXDtYHtT-nS8Gm5SAarwzVjj7xwfjeZ5deSDh6p6SfA7xjp8FhNhmGMh-JPqmGJJa047evTP_Vl1mtIGl8MY6TA_rn7NAbZoCSp666_ReYigVcoJhRH1wTp0GWzKU4T3aBb8Lrgp2-CVQ59hivuSb0P8jpQ36EJlMOgL6ClG8BldeZuL3oBLRTxtXXm9tfkb6gvonM1QzyHaXWlfruaL_i1arRPEnbr_Iu0t-zsfttnqutfKAZo5e1O0aOEN_ERzldWL6umoXILTh3pSXZ1__Dr7VC9XF4vZh2WtWcdzLbjgBjjDzEiKR9atJTPAuoZgowRXhLTaKCkFhq6hphG0aZuGt2vRGazAsJNqcfA1QW2GbSw54t0QlB32jRCvBxVLUAeDHBvOGsO4lpRLalqy1lwYLBumuo41xev1wWsbw48JUh5ubNJlIspDmNJAhaAYE8FIQV89QjdhimX-heKtZLhljBbqzYHSMaQUYfwTkODhfjWGv6tRYPwI1jbvR56jsu5_kt_gHr0A |
CitedBy_id | crossref_primary_10_1007_s11269_023_03731_6 crossref_primary_10_1007_s42107_023_00847_3 crossref_primary_10_1016_j_geoderma_2023_116452 crossref_primary_10_1016_j_scitotenv_2022_154722 crossref_primary_10_1007_s11042_024_18617_x crossref_primary_10_1007_s11269_022_03270_6 crossref_primary_10_3390_computers11070104 crossref_primary_10_3390_rs14030805 crossref_primary_10_1016_j_jher_2024_09_001 crossref_primary_10_1007_s00521_023_09168_7 crossref_primary_10_3390_agriculture12071033 crossref_primary_10_1016_j_isprsjprs_2022_01_009 crossref_primary_10_1080_19942060_2021_1984992 crossref_primary_10_1016_j_asoc_2023_111003 crossref_primary_10_1016_j_eswa_2022_117653 crossref_primary_10_7745_KJSSF_2024_57_3_225 crossref_primary_10_1007_s10489_024_05921_0 crossref_primary_10_1155_2021_5172658 crossref_primary_10_17108_ActAgrOvar_2024_65_2_43 crossref_primary_10_2139_ssrn_4002418 crossref_primary_10_1007_s00477_022_02177_3 crossref_primary_10_3390_rs14051136 crossref_primary_10_1007_s11356_022_22601_z crossref_primary_10_1007_s00521_024_10165_7 crossref_primary_10_1016_j_jhydrol_2021_126350 crossref_primary_10_1109_TGRS_2022_3166777 crossref_primary_10_1016_j_horiz_2024_100098 crossref_primary_10_3390_rs14153741 crossref_primary_10_1007_s00477_023_02617_8 crossref_primary_10_1007_s00477_021_02078_x crossref_primary_10_1007_s00521_022_07744_x crossref_primary_10_3390_agronomy14092054 crossref_primary_10_1080_03081079_2025_2471993 crossref_primary_10_1007_s42979_022_01554_7 crossref_primary_10_5194_essd_15_395_2023 crossref_primary_10_1109_JSTARS_2022_3166978 crossref_primary_10_1016_j_asoc_2024_112328 crossref_primary_10_1109_ACCESS_2022_3153475 crossref_primary_10_1016_j_scitotenv_2023_167234 crossref_primary_10_3390_rs15205008 crossref_primary_10_1016_j_renene_2022_12_048 crossref_primary_10_1007_s11356_024_35182_w crossref_primary_10_3390_rs15133410 crossref_primary_10_3390_su142315522 crossref_primary_10_1007_s13762_022_04202_y crossref_primary_10_3390_math10234533 crossref_primary_10_1016_j_agwat_2024_108772 |
Cites_doi | 10.1029/2009GL037666 10.1007/s11356-012-1451-6 10.1175/JCLI-D-11-00156.1 10.1002/joc.2419 10.5194/gmd-7-1247-2014 10.1016/j.asej.2016.10.014 10.1007/978-1-4842-2766-4 10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2 10.3115/v1/D14-1179 10.1016/j.jhydrol.2004.06.021 10.1016/j.catena.2019.02.012 10.1109/GEOINFORMATICS.2010.5567490 10.1109/ICASSP.2011.5947265 10.1007/s10546-005-9011-y 10.1016/j.jhydrol.2019.06.032 10.1080/23311843.2018.1537067 10.1007/978-3-642-38679-4_47 10.1111/j.1752-1688.2006.tb04512.x 10.1016/j.jhydrol.2006.04.030 10.1002/2013WR014650 10.1007/s11269-016-1288-8 10.1016/j.envres.2017.01.035 10.1016/j.neucom.2017.11.027 10.1016/j.envsoft.2010.02.003 10.1016/j.jhydrol.2009.08.003 10.1029/2018JD028375 10.1371/journal.pone.0104663 10.1016/j.jhydrol.2019.124419 10.1175/2009JHM1169.1 10.1002/qj.49709139009 10.3959/1536-1098-69.1.3 10.1016/j.jhydrol.2014.03.057 10.3390/w9020140 10.1016/j.rser.2019.01.009 10.1109/TGRS.2008.2003183 10.1007/s00382-015-2525-1 10.1016/j.rse.2018.05.003 10.1007/s00477-018-1585-2 10.1007/978-981-15-0291-0_92 10.1002/joc.3487 10.1038/nature14539 10.1016/j.jclepro.2019.01.158 10.1016/j.jhydrol.2020.125188 10.1016/j.agwat.2017.06.010 10.1038/srep17252 10.1016/j.apenergy.2019.113541 10.1016/S1364-8152(99)00007-9 10.1016/j.agrformet.2011.01.017 10.1016/j.jhydrol.2014.10.059 10.1175/2009MWR2861.1 10.1016/j.atmosres.2014.10.016 10.3390/w11071387 10.1175/JHM-D-12-09.1 10.1016/0022-1694(70)90255-6 10.3354/cr01194 10.1002/joc.1276 10.1007/s00704-018-2598-y 10.1029/2011JD017069 10.1016/j.rser.2017.01.114 10.1371/journal.pone.0214508 10.1080/1573062X.2016.1236133 10.1142/S1793536909000047 10.1016/j.geoderma.2012.10.021 10.1016/j.scitotenv.2018.08.139 10.1016/j.eja.2018.05.006 10.3390/w8090367 10.1007/s11269-009-9414-5 10.1142/S1793536909000187 10.1016/j.jhydrol.2018.12.060 10.1016/j.geoderma.2018.05.035 10.1007/s00477-021-01969-3 10.3390/w10111543 10.1016/j.jhydrol.2018.04.065 10.1109/TrustCom.2013.279 10.1007/s10661-015-4920-9 10.3844/ajassp.2016.891.899 10.5194/hess-22-6005-2018 10.1007/978-3-642-18336-2_37 10.3390/en12122407 10.1029/1998WR900018 10.1016/S0022-1694(97)00121-2 10.1007/s10661-016-5094-9 10.1016/j.apenergy.2016.01.130 10.1038/302295a0 10.1016/j.atmosres.2017.06.014 10.1029/2009WR008016 10.1016/j.still.2018.03.021 10.1504/IJW.2017.088046 10.1016/j.patcog.2017.10.033 |
ContentType | Journal Article |
Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs13040554 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (New) Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_7f6436d34c72472d81bc45d0763a9936 10_3390_rs13040554 |
GeographicLocations | Australia |
GeographicLocations_xml | – name: Australia |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c394t-5454de4303d720f39b73de39610da54a118cda7750e962d652686648b59d0aed3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:32:05 EDT 2025 Thu Jul 10 23:34:29 EDT 2025 Fri Jul 25 11:57:39 EDT 2025 Tue Jul 01 01:58:29 EDT 2025 Thu Apr 24 23:11:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-5454de4303d720f39b73de39610da54a118cda7750e962d652686648b59d0aed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5469-1738 0000-0002-2290-6749 0000-0002-7941-3902 0000-0002-6862-4106 0000-0001-9050-6328 |
OpenAccessLink | https://doaj.org/article/7f6436d34c72472d81bc45d0763a9936 |
PQID | 2487308332 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7f6436d34c72472d81bc45d0763a9936 proquest_miscellaneous_2552001531 proquest_journals_2487308332 crossref_primary_10_3390_rs13040554 crossref_citationtrail_10_3390_rs13040554 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210204 |
PublicationDateYYYYMMDD | 2021-02-04 |
PublicationDate_xml | – month: 02 year: 2021 text: 20210204 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Deo (ref_9) 2017; 191 Wu (ref_62) 2009; 1 ref_92 Ali (ref_41) 2019; 576 Ghimire (ref_101) 2019; 216 Cornish (ref_33) 2006; 119 Arhami (ref_91) 2013; 20 ref_13 ref_17 Schepen (ref_44) 2012; 25 ref_16 Gedefaw (ref_18) 2018; 4 Deo (ref_71) 2017; 72 Rathinasamy (ref_34) 2014; 50 Chiew (ref_81) 1998; 204 Nikolopoulos (ref_50) 2013; 14 ref_24 Risbey (ref_46) 2009; 137 ref_22 Maier (ref_89) 2000; 15 Yuan (ref_45) 2015; 5 Hijmans (ref_68) 2005; 25 ref_26 Deo (ref_32) 2016; 168 Legates (ref_97) 2013; 33 Ouyang (ref_40) 2016; 30 ref_70 Maier (ref_64) 2010; 25 Wen (ref_60) 2019; 570 ref_77 ref_76 ref_73 Legates (ref_99) 1999; 35 Deo (ref_29) 2016; 188 Deo (ref_74) 2018; 98 Gao (ref_27) 2020; 589 Hu (ref_43) 2013; 193 Oehmcke (ref_55) 2018; 275 LeCun (ref_54) 2015; 521 ref_87 ref_86 Willmott (ref_96) 2012; 32 ref_85 Prasad (ref_11) 2017; 197 Nourani (ref_30) 2009; 23 Seo (ref_37) 2016; 13 Trouet (ref_78) 2013; 69 Prasad (ref_59) 2018; 181 ref_58 ref_57 Henley (ref_83) 2015; 45 Chai (ref_95) 2014; 7 ref_52 Deo (ref_90) 2017; 155 Nourani (ref_31) 2014; 514 Yang (ref_8) 2018; 137 Ahmed (ref_20) 2017; 29 Gupta (ref_94) 2009; 377 Arto (ref_15) 2019; 648 Kratzert (ref_14) 2018; 22 Prasad (ref_23) 2018; 330 Adarsh (ref_42) 2018; 9 ref_69 Laaha (ref_1) 2015; 526 ref_67 ref_66 Troup (ref_84) 1965; 91 Adnan (ref_79) 2016; 12 Ahmed (ref_21) 2017; 29 Prasad (ref_36) 2019; 177 Ahmed (ref_12) 2017; 11 Royce (ref_47) 2011; 151 Tripathi (ref_7) 2006; 330 Nash (ref_93) 1970; 10 Gill (ref_5) 2006; 42 Nunez (ref_56) 2018; 76 Zhang (ref_25) 2018; 561 ref_35 Bowden (ref_63) 2005; 301 Brocca (ref_2) 2010; 46 ref_39 Chang (ref_4) 2015; 187 Deo (ref_10) 2015; 153 ref_38 Wu (ref_61) 2009; 1 Nikolopoulos (ref_51) 2010; 11 Madden (ref_82) 1971; 28 Yin (ref_98) 2018; 32 Berrick (ref_75) 2008; 47 Mouatadid (ref_19) 2017; 14 Ghimire (ref_28) 2019; 253 ref_100 Philander (ref_80) 1983; 302 ref_102 Jayalakshmi (ref_88) 2011; 3 ref_3 Yang (ref_65) 2012; 7 Shuai (ref_48) 2013; 58 ref_49 Deo (ref_72) 2019; 104 Ghimire (ref_53) 2018; 212 ref_6 |
References_xml | – ident: ref_73 doi: 10.1029/2009GL037666 – volume: 20 start-page: 4777 year: 2013 ident: ref_91 article-title: Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-012-1451-6 – volume: 25 start-page: 1230 year: 2012 ident: ref_44 article-title: Evidence for Using Lagged Climate Indices to Forecast Australian Seasonal Rainfall publication-title: J. Clim. doi: 10.1175/JCLI-D-11-00156.1 – ident: ref_100 – volume: 32 start-page: 2088 year: 2012 ident: ref_96 article-title: A refined index of model performance publication-title: Int. J. Climatol. doi: 10.1002/joc.2419 – volume: 7 start-page: 1247 year: 2014 ident: ref_95 article-title: Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature publication-title: Geosci. Model Dev. doi: 10.5194/gmd-7-1247-2014 – volume: 9 start-page: 1839 year: 2018 ident: ref_42 article-title: Scale dependent prediction of reference evapotranspiration based on Multi-Variate Empirical mode decomposition publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2016.10.014 – ident: ref_85 doi: 10.1007/978-1-4842-2766-4 – volume: 7 start-page: 161 year: 2012 ident: ref_65 article-title: Neighborhood Component Feature Selection for High-Dimensional Data publication-title: JCP – volume: 28 start-page: 702 year: 1971 ident: ref_82 article-title: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2 – ident: ref_57 doi: 10.3115/v1/D14-1179 – volume: 301 start-page: 75 year: 2005 ident: ref_63 article-title: Input determination for neural network models in water resources applications. Part 1—background and methodology publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2004.06.021 – volume: 177 start-page: 149 year: 2019 ident: ref_36 article-title: Weekly soil moisture forecasting with multivariate sequential, ensemble empirical mode decomposition and Boruta-random forest hybridiser algorithm approach publication-title: Catena doi: 10.1016/j.catena.2019.02.012 – ident: ref_76 doi: 10.1109/GEOINFORMATICS.2010.5567490 – ident: ref_58 doi: 10.1109/ICASSP.2011.5947265 – volume: 119 start-page: 339 year: 2006 ident: ref_33 article-title: Maximal overlap wavelet statistical analysis with application to atmospheric turbulence publication-title: Bound.-Layer Meteorol. doi: 10.1007/s10546-005-9011-y – volume: 576 start-page: 164 year: 2019 ident: ref_41 article-title: Improving SPI-derived drought forecasts incorporating synoptic-scale climate indices in multi-phase multivariate empirical mode decomposition model hybridized with simulated annealing and kernel ridge regression algorithms publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.06.032 – volume: 4 start-page: 1537067 year: 2018 ident: ref_18 article-title: Variable selection methods for water demand forecasting in Ethiopia: Case study Gondar town publication-title: Cogent Environ. Sci. doi: 10.1080/23311843.2018.1537067 – ident: ref_38 doi: 10.1007/978-3-642-38679-4_47 – volume: 42 start-page: 1033 year: 2006 ident: ref_5 article-title: Soil moisture prediction using support vector machines 1 publication-title: JAWRA J. Am. Water Resour. Assoc. doi: 10.1111/j.1752-1688.2006.tb04512.x – volume: 29 start-page: 151 year: 2017 ident: ref_20 article-title: Prediction of dissolved oxygen in Surma River by biochemical oxygen demand and chemical oxygen demand using the artificial neural networks (ANNs) publication-title: J. King Saud Univ. Eng. Sci. – volume: 330 start-page: 621 year: 2006 ident: ref_7 article-title: Downscaling of precipitation for climate change scenarios: A support vector machine approach publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2006.04.030 – volume: 50 start-page: 9721 year: 2014 ident: ref_34 article-title: Wavelet-based multiscale performance analysis: An approach to assess and improve hydrological models publication-title: Water Resour. Res. doi: 10.1002/2013WR014650 – volume: 30 start-page: 2311 year: 2016 ident: ref_40 article-title: Monthly rainfall forecasting using EEMD-SVR based on phase-space reconstruction publication-title: Water Resour. Manag. doi: 10.1007/s11269-016-1288-8 – ident: ref_86 – volume: 155 start-page: 141 year: 2017 ident: ref_90 article-title: Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle publication-title: Environ. Res. doi: 10.1016/j.envres.2017.01.035 – ident: ref_67 – ident: ref_92 – volume: 275 start-page: 2603 year: 2018 ident: ref_55 article-title: Input quality aware convolutional LSTM networks for virtual marine sensors publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.027 – volume: 25 start-page: 891 year: 2010 ident: ref_64 article-title: Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2010.02.003 – volume: 377 start-page: 80 year: 2009 ident: ref_94 article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.08.003 – ident: ref_6 doi: 10.1029/2018JD028375 – ident: ref_35 doi: 10.1371/journal.pone.0104663 – ident: ref_49 doi: 10.1016/j.jhydrol.2019.124419 – volume: 11 start-page: 520 year: 2010 ident: ref_51 article-title: Understanding the scale relationships of uncertainty propagation of satellite rainfall through a distributed hydrologic model publication-title: J. Hydrometeorol. doi: 10.1175/2009JHM1169.1 – volume: 91 start-page: 490 year: 1965 ident: ref_84 article-title: The ‘southern oscillation’ publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.49709139009 – volume: 69 start-page: 3 year: 2013 ident: ref_78 article-title: KNMI Climate Explorer: A web-based research tool for high-resolution paleoclimatology publication-title: Tree-Ring Res. doi: 10.3959/1536-1098-69.1.3 – volume: 514 start-page: 358 year: 2014 ident: ref_31 article-title: Applications of hybrid wavelet–Artificial Intelligence models in hydrology: A review publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.03.057 – ident: ref_3 doi: 10.3390/w9020140 – volume: 104 start-page: 235 year: 2019 ident: ref_72 article-title: Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: A new approach publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.01.009 – volume: 47 start-page: 106 year: 2008 ident: ref_75 article-title: Giovanni: A web service workflow-based data visualization and analysis system publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2003183 – volume: 45 start-page: 3077 year: 2015 ident: ref_83 article-title: A tripole index for the interdecadal Pacific oscillation publication-title: Clim. Dyn. doi: 10.1007/s00382-015-2525-1 – volume: 212 start-page: 176 year: 2018 ident: ref_53 article-title: Self-adaptive differential evolutionary extreme learning machines for long-term solar radiation prediction with remotely-sensed MODIS satellite and Reanalysis atmospheric products in solar-rich cities publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.05.003 – ident: ref_70 – volume: 32 start-page: 2457 year: 2018 ident: ref_98 article-title: Design and evaluation of SVR, MARS and M5Tree models for 1, 2 and 3-day lead time forecasting of river flow data in a semiarid mountainous catchment publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-018-1585-2 – ident: ref_26 doi: 10.1007/978-981-15-0291-0_92 – volume: 33 start-page: 1053 year: 2013 ident: ref_97 article-title: A refined index of model performance: A rejoinder publication-title: Int. J. Climatol. doi: 10.1002/joc.3487 – volume: 521 start-page: 436 year: 2015 ident: ref_54 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 216 start-page: 288 year: 2019 ident: ref_101 article-title: Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cities of Queensland Australia publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.01.158 – volume: 589 start-page: 125188 year: 2020 ident: ref_27 article-title: Short-term runoff prediction with GRU and LSTM networks without requiring time step optimisation during sample generation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125188 – volume: 191 start-page: 153 year: 2017 ident: ref_9 article-title: Copula-statistical precipitation forecasting model in Australia’s agro-ecological zones publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2017.06.010 – volume: 5 start-page: 1 year: 2015 ident: ref_45 article-title: Impacts of IOD, ENSO and ENSO Modoki on the Australian winter wheat yields in recent decades publication-title: Sci. Rep. doi: 10.1038/srep17252 – volume: 253 start-page: 113541 year: 2019 ident: ref_28 article-title: Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113541 – volume: 15 start-page: 101 year: 2000 ident: ref_89 article-title: Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications publication-title: Environ. Model. Softw. doi: 10.1016/S1364-8152(99)00007-9 – volume: 151 start-page: 817 year: 2011 ident: ref_47 article-title: ENSO classification indices and summer crop yields in the Southeastern USA publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2011.01.017 – volume: 526 start-page: 3 year: 2015 ident: ref_1 article-title: Hydrological drought severity explained by climate and catchment characteristics publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.10.059 – volume: 137 start-page: 3233 year: 2009 ident: ref_46 article-title: On the remote drivers of rainfall variability in Australia publication-title: Mon. Weather Rev. doi: 10.1175/2009MWR2861.1 – volume: 3 start-page: 1793 year: 2011 ident: ref_88 article-title: Statistical normalization and back propagation for classification publication-title: Int. J. Comput. Theory Eng. – volume: 153 start-page: 512 year: 2015 ident: ref_10 article-title: Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2014.10.016 – ident: ref_16 doi: 10.3390/w11071387 – volume: 14 start-page: 171 year: 2013 ident: ref_50 article-title: Using high-resolution satellite rainfall products to simulate a major flash flood event in northern Italy publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-12-09.1 – volume: 12 start-page: 23 year: 2016 ident: ref_79 article-title: Influence of natural forcing phenomena on precipitation of Pakistan publication-title: Pak. J. Meteorol. – volume: 10 start-page: 282 year: 1970 ident: ref_93 article-title: River flow forecasting through conceptual models part I—A discussion of principles publication-title: J. Hydrol. doi: 10.1016/0022-1694(70)90255-6 – volume: 58 start-page: 133 year: 2013 ident: ref_48 article-title: ENSO, climate variability and crop yields in China publication-title: Clim. Res. doi: 10.3354/cr01194 – volume: 25 start-page: 1965 year: 2005 ident: ref_68 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: Int. J. Climatol. J. R. Meteorol. Soc. doi: 10.1002/joc.1276 – ident: ref_69 – volume: 137 start-page: 323 year: 2018 ident: ref_8 article-title: Application of multivariate recursive nesting bias correction, multiscale wavelet entropy and AI-based models to improve future precipitation projection in upstream of the Heihe River, Northwest China publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-018-2598-y – ident: ref_52 doi: 10.1029/2011JD017069 – ident: ref_87 – volume: 72 start-page: 828 year: 2017 ident: ref_71 article-title: Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.01.114 – ident: ref_102 doi: 10.1371/journal.pone.0214508 – ident: ref_66 – volume: 14 start-page: 630 year: 2017 ident: ref_19 article-title: Using extreme learning machines for short-term urban water demand forecasting publication-title: Urban Water J. doi: 10.1080/1573062X.2016.1236133 – volume: 1 start-page: 1 year: 2009 ident: ref_61 article-title: Ensemble empirical mode decomposition: A noise-assisted data analysis method publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536909000047 – volume: 29 start-page: 237 year: 2017 ident: ref_21 article-title: Application of adaptive neuro-fuzzy inference system (ANFIS) to estimate the biochemical oxygen demand (BOD) of Surma River publication-title: J. King Saud Univ. Eng. Sci. – volume: 193 start-page: 180 year: 2013 ident: ref_43 article-title: Soil water prediction based on its scale-specific control using multivariate empirical mode decomposition publication-title: Geoderma doi: 10.1016/j.geoderma.2012.10.021 – volume: 648 start-page: 1284 year: 2019 ident: ref_15 article-title: The socioeconomic future of deltas in a changing environment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.08.139 – volume: 98 start-page: 65 year: 2018 ident: ref_74 article-title: Modeling the joint influence of multiple synoptic-scale, climate mode indices on Australian wheat yield using a vine copula-based approach publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2018.05.006 – ident: ref_39 doi: 10.3390/w8090367 – volume: 23 start-page: 2877 year: 2009 ident: ref_30 article-title: A multivariate ANN-wavelet approach for rainfall–runoff modeling publication-title: Water. Resour. Manag. doi: 10.1007/s11269-009-9414-5 – volume: 1 start-page: 339 year: 2009 ident: ref_62 article-title: The multi-dimensional ensemble empirical mode decomposition method publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536909000187 – volume: 570 start-page: 167 year: 2019 ident: ref_60 article-title: Two-phase extreme learning machines integrated with the complete ensemble empirical mode decomposition with adaptive noise algorithm for multi-scale runoff prediction problems publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.12.060 – volume: 330 start-page: 136 year: 2018 ident: ref_23 article-title: Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition publication-title: Geoderma doi: 10.1016/j.geoderma.2018.05.035 – ident: ref_17 doi: 10.1007/s00477-021-01969-3 – ident: ref_13 doi: 10.3390/w10111543 – volume: 561 start-page: 918 year: 2018 ident: ref_25 article-title: Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.04.065 – ident: ref_77 doi: 10.1109/TrustCom.2013.279 – volume: 187 start-page: 699 year: 2015 ident: ref_4 article-title: Crop evapotranspiration-based irrigation management during the growing season in the arid region of northwestern China publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-015-4920-9 – volume: 13 start-page: 891 year: 2016 ident: ref_37 article-title: Hydrological Forecasting Using Hybrid Data-Driven Approach publication-title: Am. J. Appl. Sci. doi: 10.3844/ajassp.2016.891.899 – volume: 22 start-page: 6005 year: 2018 ident: ref_14 article-title: Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-6005-2018 – ident: ref_22 doi: 10.1007/978-3-642-18336-2_37 – ident: ref_24 doi: 10.3390/en12122407 – volume: 35 start-page: 233 year: 1999 ident: ref_99 article-title: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation publication-title: Water Resour. Res. doi: 10.1029/1998WR900018 – volume: 204 start-page: 138 year: 1998 ident: ref_81 article-title: El Nino/Southern Oscillation and Australian rainfall, streamflow and drought: Links and potential for forecasting publication-title: J. Hydrol. doi: 10.1016/S0022-1694(97)00121-2 – volume: 188 start-page: 90 year: 2016 ident: ref_29 article-title: An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-016-5094-9 – volume: 168 start-page: 568 year: 2016 ident: ref_32 article-title: A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.01.130 – volume: 302 start-page: 295 year: 1983 ident: ref_80 article-title: El Nino southern oscillation phenomena publication-title: Nature doi: 10.1038/302295a0 – volume: 197 start-page: 42 year: 2017 ident: ref_11 article-title: Input selection and performance optimisation of ANN-based streamflow forecasts in the drought-prone Murray Darling Basin region using IIS and MODWT algorithm publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2017.06.014 – volume: 46 start-page: W02516 year: 2010 ident: ref_2 article-title: Spatial—temporal variability of soil moisture and its estimation across scales publication-title: Water Resour. Res. doi: 10.1029/2009WR008016 – volume: 181 start-page: 63 year: 2018 ident: ref_59 article-title: Ensemble committee-based data intelligent approach for generating soil moisture forecasts with multivariate hydro-meteorological predictors publication-title: Soil Tillage Res. doi: 10.1016/j.still.2018.03.021 – volume: 11 start-page: 363 year: 2017 ident: ref_12 article-title: Application of artificial neural networks to predict peak flow of Surma River in Sylhet Zone of Bangladesh publication-title: Int. J. Water doi: 10.1504/IJW.2017.088046 – volume: 76 start-page: 80 year: 2018 ident: ref_56 article-title: Convolutional neural networks and long short-term memory for skeleton-based human activity and hand gesture recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.10.033 |
SSID | ssj0000331904 |
Score | 2.4849908 |
Snippet | Remotely sensed soil moisture forecasting through satellite-based sensors to estimate the future state of the underlying soils plays a critical role in... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 554 |
SubjectTerms | Agricultural management Agricultural practices Algorithms Artificial neural networks climate Climate models Data collection Decomposition Deep learning deep learning algorithm El Nino Farm buildings Forecasting gated recurrent unit hybrids Hydrology Model testing MODIS Neural networks Precipitation Rain Remote sensing Remote sensors satellite models of soil moisture Satellite observation satellites Soil moisture Soil surfaces soil water Stream flow Sustainable agriculture Sustainable practices Teaching methods Temporal resolution Time series Variables viability Water management Water resources Water resources management Wavelet transforms |
SummonAdditionalLinks | – databaseName: ProQuest Central (New) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtcmgvJX3RbZKi0l4KFXH1sNa9lGQ3ISlsUuIGcjOyJKcBY23X3kB-Xf9aZ7xah9DQk400FoYZjb4ZSd8Q8rFKqpI77Rhe-2SyLC3LpE6YypQAtMHHyuB959lpenwhv1-qy5hwa-OxyrVP7B21CxZz5HsckLUAvCD4t_lvhlWjcHc1ltB4TDbBBY8h-No8ODz9cT5kWRIBJpbIFS-pgPh-b9GC1waUouS9lagn7P_HH_eLzNEWeRbRId1fqfM5eeSbF-RJLFT-6_Yl-TP1fk4jKeoVxcKa1rRdS0NF83Bd01kAvS0X_iudhOYm2hUMiSQc_aM_9U1N4ygmzhw9x4Q7UjRRhJ8Ua6PVLXy8nNfQi2lampuetrPzbAr2egPNs7PpSf6ZnpVDTrfth8xvmwA-yLIcVO_ppL4GQOzpCVIy0qnpzCtycXT4c3LMYg0GZkUmOwYASzovYaFzmieVyEotnBcZoC5nlDQQn1hnNOAOn6Xcpcgek6ZyXKrMJcY78ZpsNKHxbwiVlifOp1mlDQej0CAAsZOWaeKqMbyOyKe1PgobCcqxTkZdQKCCuivudDciHwbZ-YqW40GpA1TrIIFU2n1DWFwVcWYWugJQljohreZScwc43krlEnC8BsAb_NbO2iiKOL_b4s4aR-T90A0zE7dbTOPDEmQUUlrBivLl7f-H2CZPOZ6UwbPgcodsdIul3wWo05Xvoj3_BcJ7_zA priority: 102 providerName: ProQuest |
Title | Deep Learning Forecasts of Soil Moisture: Convolutional Neural Network and Gated Recurrent Unit Models Coupled with Satellite-Derived MODIS, Observations and Synoptic-Scale Climate Index Data |
URI | https://www.proquest.com/docview/2487308332 https://www.proquest.com/docview/2552001531 https://doaj.org/article/7f6436d34c72472d81bc45d0763a9936 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgHOCC-BQLZWUEFySiBtuJN721u11axLaooVJvkRM7UClKVptspf66_jXeOOlSBBIXTo7siWVlxp43jv2GsXdlWObCahvQtc9A5XkRJEqHQZREEmhDTCJD950Xx_Hhmfp8Hp3fSvVFZ8J6euD-w-3oEj4ztlIVWigtLGBWoSKL8Fsa-FZPtg2fdyuY8muwhGmFqucjlYjrd1YtVmugk0j95oE8Uf8f67B3LvNH7OGACvleP5rH7I6rn7D7Q4LyH1dP2fXMuSUfyFC_c0qoWZi2a3lT8rS5qPiigb7WK7fLp019OdgTuiTyDV_4097c1JbThpnlp7TRTtRMnGAnp5xoVYuX18sKrbQ9y1Pj6To7F8xgp5eoXpzMjtIP_CTf7OW2vsv0qm6w9hRBCpU7Pq0uAIQdPyIqRj4znXnGzuYH36aHwZB7IShkoroAwEpZp-DgrBZhKZNcS-tkArRlTaQM4pLCGg284ZJY2JhYY-JYTfIosaFxVj5nW3VTuxeMq0KE1sVJqY2AMWgIIGbSKg5tOcHjiL2_0UdWDMTklB-jyhCgkO6yX7obsbcb2WVPx_FXqX1S60aCKLR9BQwrGwwr-5dhjdj2jVFkw7xuM4H4TgK1SjFibzbNmJH0m8XUrllDJiIqK3iSjy__xzhesQeCztHQSXG1zba61dq9BhDq8jG7O5l_GrN7e7PFlxTl_sHx19Oxnwk_AfZkCSQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGeBgvaPwSZQOMgAckrAXbiRskhKChtGzdJLJJe8sc2xmToqQ06VD_Kf4F_jXu0iQTAvG2p1bxxYp0X-4-X-zvCHmReVnKrbIMj30ymaaGhVJ5zA99AWyDD32N551nh8HkRH459U83yM_uLAxuq-xiYhOobWmwRr7HgVkL4AuCv59_Z9g1Cr-udi001rDYd6sfsGSr3k0j8O9LzsefjkcT1nYVYEaEsmZAGaR1EkK3VdzLRJgqYZ0IgUdY7UsNjNtYrSCTujDgNkA9lCCQw9QPraedFTDvDXJTCrgFT6aPP_c1HU8AoD25VkGFcW9vUUGOAE7kyz_yXtMe4K_o36S08Ta53XJR-mENnjtkwxV3yVbbFv3b6h75FTk3p60E6znFNp5GV3VFy4zG5UVOZyWgZLlwb-moLC5bFMOUKPnR_DR7zKkuLMUynaVfsbyPglAUyS7FTmx5BTcv5zmMYlGYxroRCa0di-DtuITLs6NoGr-mR2lfQa6aKeNVUULEMywGoDk6yi-Afjs6RQFIGula3ycn1-KbB2SzKAv3kFBpuGddEGZKc4CgAgNYqSkZeDYbwt8BedX5IzGtHDp25cgTWBah75Ir3w3I8952vhYB-afVR3Rrb4HC3c2FcnGetHEgURlQwMAKaRSXiltYNRjpWw_CvAaqCI-124EiaaNJlVxhf0Ce9cMQB_Djji5cuQQbHwW0IH-9efT_KZ6Srcnx7CA5mB7u75BbHPfo4C50uUs268XSPQaSVadPGmRTcnbdr9JvJu85GQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJwEviJ-iMMAIeEAiqrGduEFCiDWrVka7aWXS3oJjO2NSlJQmHeq_xgv_GndpkgmBeNtTquRiVbrz3XeX83eEvExZmnCrrIfHPj2ZJMYLpWKeH_oC0AYf-hrPO09nwf6J_HTqn26Rn-1ZGGyrbH1i7ahtYbBGPuCArAXgBcEHadMWcRSNPyy-ezhBCr-0tuM0NiZy4NY_IH0r308i0PUrzsd7X0b7XjNhwDMilJUH8EFaJ8GNW8VZKsJECetECJjCal9qQN_GagVR1YUBtwFyowSBHCZ-aJl2VsC618i2gqyI9cj27t7s6Lir8DAB5s3khhNViJANliVEDEBIvvwjCtbDAv6KBXWAG98mtxpkSj9uTOkO2XL5XXKjGZL-bX2P_IqcW9CGkPWM4lBPo8uqpEVK58V5RqcF2Mxq6d7RUZFfNDYNSyIBSH2pO86pzi3Fop2lx1jsR3ooitCX4ly2rISXV4sMnmKJmM51TRlaOS-CvXIBt6eH0WT-hh4mXT25rJecr_MC_J_x5mB2jo6ycwDjjk6QDpJGutL3ycmVaOcB6eVF7h4SKg1n1gVhqjQHg1QgAHmbkgGz6RB-9snrVh-xacjRcUZHFkOShLqLL3XXJy862cWGEuSfUruo1k4CabzrG8XyLG68QqxSAISBFdIoLhW3kEMY6VsGTl8DcIS_tdMaRdz4ljK-3Al98rx7DF4BP_Xo3BUrkPGRTgui2dtH_1_iGbkO2yj-PJkdPCY3OTbsYEu63CG9arlyTwBxVcnTxrQp-XrVu-k35pA-qw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Forecasts+of+Soil+Moisture%3A+Convolutional+Neural+Network+and+Gated+Recurrent+Unit+Models+Coupled+with+Satellite-Derived+MODIS%2C+Observations+and+Synoptic-Scale+Climate+Index+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Ahmed%2C+A.+A.+Masrur&rft.au=Deo%2C+Ravinesh+C&rft.au=Raj%2C+Nawin&rft.au=Ghahramani%2C+Afshin&rft.date=2021-02-04&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=13&rft.issue=4&rft.spage=554&rft_id=info:doi/10.3390%2Frs13040554&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs13040554 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |