Spatio-Temporal Analysis of Heavy Metals in Arid Soils at the Catchment Scale Using Digital Soil Assessment and a Random Forest Model

Predicting the spatio-temporal distribution of absorbable heavy metals in soil is needed to identify the potential contaminant sources and develop appropriate management plans to control these hazardous pollutants. Therefore, our aim was to develop a model to predict soil adsorbable heavy metals in...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 13; no. 9; p. 1698
Main Authors Taghizadeh-Mehrjardi, Ruhollah, Fathizad, Hassan, Ali Hakimzadeh Ardakani, Mohammad, Sodaiezadeh, Hamid, Kerry, Ruth, Heung, Brandon, Scholten, Thomas
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 27.04.2021
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs13091698

Cover

Loading…
Abstract Predicting the spatio-temporal distribution of absorbable heavy metals in soil is needed to identify the potential contaminant sources and develop appropriate management plans to control these hazardous pollutants. Therefore, our aim was to develop a model to predict soil adsorbable heavy metals in arid regions of Iran from 1986 to 2016. Soil adsorbable heavy metals were measured in 201 samples from locations selected using the Latin hypercube sampling method in 2016. A random forest (RF) model was used to determine the relationship between a suite of geospatial predictors derived from remote sensing and digital elevation model data with georeferenced measurements of soil absorbable heavy metals. The trained RF model from 2016 was used to reconstruct the spatial distribution of soil absorbable heavy metals at three historical timesteps (1986, 1999, and 2010). Results indicated that the RF model was effective at predicting the distribution of heavy metals with coefficients of determination of 0.53, 0.59, 0.41, 0.45, and 0.60 for Fe, Mn, Ni, Pb, and Zn, respectively. The predicted maps showed high spatio-temporal variability; for example, there were substantial increases in Pb (the 1.5–2 mg/kg−1 class) where its distribution increased by ~25% from 1988 to 2016—similar trends were observed for the other heavy metals. This study provides insights into the spatio-temporal trends and the potential causes of soil heavy metal contamination to facilitate appropriate planning and management strategies to prevent, control, and reduce the impact of heavy metal contamination in soils.
AbstractList Predicting the spatio-temporal distribution of absorbable heavy metals in soil is needed to identify the potential contaminant sources and develop appropriate management plans to control these hazardous pollutants. Therefore, our aim was to develop a model to predict soil adsorbable heavy metals in arid regions of Iran from 1986 to 2016. Soil adsorbable heavy metals were measured in 201 samples from locations selected using the Latin hypercube sampling method in 2016. A random forest (RF) model was used to determine the relationship between a suite of geospatial predictors derived from remote sensing and digital elevation model data with georeferenced measurements of soil absorbable heavy metals. The trained RF model from 2016 was used to reconstruct the spatial distribution of soil absorbable heavy metals at three historical timesteps (1986, 1999, and 2010). Results indicated that the RF model was effective at predicting the distribution of heavy metals with coefficients of determination of 0.53, 0.59, 0.41, 0.45, and 0.60 for Fe, Mn, Ni, Pb, and Zn, respectively. The predicted maps showed high spatio-temporal variability; for example, there were substantial increases in Pb (the 1.5–2 mg/kg⁻¹ class) where its distribution increased by ~25% from 1988 to 2016—similar trends were observed for the other heavy metals. This study provides insights into the spatio-temporal trends and the potential causes of soil heavy metal contamination to facilitate appropriate planning and management strategies to prevent, control, and reduce the impact of heavy metal contamination in soils.
Predicting the spatio-temporal distribution of absorbable heavy metals in soil is needed to identify the potential contaminant sources and develop appropriate management plans to control these hazardous pollutants. Therefore, our aim was to develop a model to predict soil adsorbable heavy metals in arid regions of Iran from 1986 to 2016. Soil adsorbable heavy metals were measured in 201 samples from locations selected using the Latin hypercube sampling method in 2016. A random forest (RF) model was used to determine the relationship between a suite of geospatial predictors derived from remote sensing and digital elevation model data with georeferenced measurements of soil absorbable heavy metals. The trained RF model from 2016 was used to reconstruct the spatial distribution of soil absorbable heavy metals at three historical timesteps (1986, 1999, and 2010). Results indicated that the RF model was effective at predicting the distribution of heavy metals with coefficients of determination of 0.53, 0.59, 0.41, 0.45, and 0.60 for Fe, Mn, Ni, Pb, and Zn, respectively. The predicted maps showed high spatio-temporal variability; for example, there were substantial increases in Pb (the 1.5–2 mg/kg−1 class) where its distribution increased by ~25% from 1988 to 2016—similar trends were observed for the other heavy metals. This study provides insights into the spatio-temporal trends and the potential causes of soil heavy metal contamination to facilitate appropriate planning and management strategies to prevent, control, and reduce the impact of heavy metal contamination in soils.
Author Kerry, Ruth
Scholten, Thomas
Fathizad, Hassan
Taghizadeh-Mehrjardi, Ruhollah
Ali Hakimzadeh Ardakani, Mohammad
Sodaiezadeh, Hamid
Heung, Brandon
Author_xml – sequence: 1
  givenname: Ruhollah
  orcidid: 0000-0002-4620-6624
  surname: Taghizadeh-Mehrjardi
  fullname: Taghizadeh-Mehrjardi, Ruhollah
– sequence: 2
  givenname: Hassan
  surname: Fathizad
  fullname: Fathizad, Hassan
– sequence: 3
  givenname: Mohammad
  surname: Ali Hakimzadeh Ardakani
  fullname: Ali Hakimzadeh Ardakani, Mohammad
– sequence: 4
  givenname: Hamid
  surname: Sodaiezadeh
  fullname: Sodaiezadeh, Hamid
– sequence: 5
  givenname: Ruth
  surname: Kerry
  fullname: Kerry, Ruth
– sequence: 6
  givenname: Brandon
  surname: Heung
  fullname: Heung, Brandon
– sequence: 7
  givenname: Thomas
  orcidid: 0000-0002-4875-2602
  surname: Scholten
  fullname: Scholten, Thomas
BookMark eNptkdFqFDEUhoNUsK698QkC3ogwmkySmcnlslpbaBHc9jqcSc5ss8xM1iRb2AfwvU13RaWYm5OE7_wn-f_X5GwOMxLylrOPQmj2KSYumOaN7l6Q85q1dSVrXZ_9s39FLlLasrKE4JrJc_JzvYPsQ3WH0y5EGOlyhvGQfKJhoFcIjwd6ixnGRP1Ml9E7ug6-nCDT_IB0Bdk-TDhnurYwIr1Pft7Qz37jS88RpcuUMKUjA7OjQL-XEiZ6GSKmTG-Dw_ENeTmUGXjxuy7I_eWXu9VVdfPt6_VqeVNZoWWupJNC9l2NrJVCiLrhCgbpmt5yAc6xxjmlsRksOtVy2Ts3MOU63ktted-iWJDrk64LsDW76CeIBxPAm-NFiBsDMXs7ohEcuepQDH3byl53MHBsi2gHWmmtoWi9P2ntYvixL18xk08WxxFmDPtkaqW4bmtVrF6Qd8_QbdjHYvQTJRgXUjddoT6cKBtDShGHPw_kzDwFbP4GXGD2DLbF8pLknCP48X8tvwBGNKj9
CitedBy_id crossref_primary_10_1139_cjss_2022_0012
crossref_primary_10_1016_j_scitotenv_2024_173602
crossref_primary_10_1016_j_jhazmat_2023_131609
crossref_primary_10_3390_rs15123158
crossref_primary_10_3390_su151310043
crossref_primary_10_1016_j_envpol_2023_121243
crossref_primary_10_1007_s10661_023_11145_5
crossref_primary_10_1016_j_scitotenv_2023_164512
crossref_primary_10_1016_j_jhazmat_2024_135699
crossref_primary_10_1016_j_jhazmat_2024_136347
crossref_primary_10_1016_j_catena_2022_106204
crossref_primary_10_1007_s13201_024_02320_1
crossref_primary_10_1016_j_catena_2023_107579
crossref_primary_10_3390_w14182784
crossref_primary_10_1016_j_gexplo_2021_106921
crossref_primary_10_1016_j_geoderma_2023_116365
crossref_primary_10_3389_fenvs_2024_1291917
crossref_primary_10_1002_esp_5980
crossref_primary_10_1016_j_eiar_2024_107777
crossref_primary_10_1007_s10661_024_13184_y
crossref_primary_10_1007_s11783_023_1693_1
crossref_primary_10_3390_ijerph20065097
crossref_primary_10_3390_land12061172
crossref_primary_10_1016_j_scitotenv_2022_155583
crossref_primary_10_3390_f13060884
crossref_primary_10_1109_TGRS_2023_3297126
crossref_primary_10_1007_s11270_025_07791_9
crossref_primary_10_3390_agronomy12030628
crossref_primary_10_1007_s11869_025_01702_x
crossref_primary_10_1016_j_jenvman_2025_125035
crossref_primary_10_1109_ACCESS_2021_3099107
crossref_primary_10_3390_land11071037
crossref_primary_10_3390_rs14225804
crossref_primary_10_1016_j_ecoinf_2023_102294
crossref_primary_10_1039_D2EM00487A
crossref_primary_10_1016_j_scitotenv_2022_158925
Cites_doi 10.1016/j.ecolind.2020.106801
10.3390/ijerph9051874
10.1016/j.geoderma.2020.114233
10.1016/0034-4257(95)00186-7
10.1016/j.geoderma.2013.07.020
10.1016/j.atmosenv.2011.11.041
10.1016/j.geoderma.2020.114890
10.1016/j.still.2019.06.006
10.1016/S1161-0301(03)00075-3
10.2307/1936256
10.1016/j.geoderma.2008.05.010
10.1016/S0016-7061(03)00223-4
10.1007/s00254-002-0523-1
10.1016/j.scitotenv.2013.08.090
10.1080/17583004.2018.1553434
10.1080/01431169008955053
10.1016/j.envpol.2003.07.002
10.1016/j.envpol.2007.05.020
10.1016/j.cageo.2005.12.009
10.1016/j.ecoenv.2020.110406
10.1016/j.envpol.2020.114961
10.1016/j.geoderma.2005.10.009
10.1046/j.1466-822X.2001.00248.x
10.1016/j.chemosphere.2020.126908
10.1016/j.geoderma.2017.12.011
10.1016/j.ecolind.2020.106736
10.1016/S0034-4257(01)00318-2
10.1109/ACCESS.2020.2976902
10.1016/j.geoderma.2015.11.014
10.1016/j.geoderma.2018.09.038
10.1016/j.geodrs.2020.e00260
10.1029/EO081i048p00583
10.1016/j.gexplo.2014.05.015
10.1016/j.agwat.2016.07.007
10.1016/j.geoderma.2016.12.001
10.1016/j.agwat.2004.09.038
10.1016/0146-664X(80)90054-4
10.1016/j.scitotenv.2017.05.239
10.1016/j.rse.2008.03.017
10.1016/j.jafrearsci.2018.04.012
10.1016/j.jhydrol.2010.01.023
10.1016/j.geoderma.2017.12.024
10.1080/17583004.2017.1330593
10.1016/j.geoderma.2020.114552
10.1016/B978-0-12-800137-0.00003-0
10.1186/1560-8115-20-2
10.3846/16486897.2016.1184152
10.1016/j.scitotenv.2018.06.068
10.2136/sssaj2006-0049
10.1016/0034-4257(88)90106-X
10.1016/j.jenvman.2010.11.011
10.1109/ACCESS.2020.3009248
10.1016/S1002-0160(07)60006-X
10.1023/A:1010933404324
10.1016/j.jhazmat.2020.123288
10.1016/j.ecolind.2019.02.026
10.5194/gmd-8-1991-2015
10.1007/s10661-012-2612-2
10.2136/sssaj1978.03615995004200030009x
10.1146/annurev.psych.52.1.653
10.1002/vzj2.20062
10.1016/j.tree.2005.05.011
10.2134/jeq2001.1976
10.1016/j.chemosphere.2006.03.016
10.1016/j.atmosenv.2004.09.011
10.1016/j.scitotenv.2013.02.009
10.1007/978-1-4020-8592-5_1
10.1016/j.geoderma.2008.05.008
10.1016/j.envpol.2006.01.045
10.1080/05704928.2018.1442346
10.1016/S0269-7491(00)00243-8
10.1016/S1002-0160(06)60087-8
10.1109/RSETE.2011.5965202
10.1016/0034-4257(90)90085-Z
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs13091698
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_31e158e3fb774b98af1e77148a95999a
10_3390_rs13091698
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-4d434b82e0743332615af4d6bc13add06dd59e6fced5714bddf05d81b49c1b7e3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:24:22 EDT 2025
Fri Jul 11 10:58:40 EDT 2025
Sun Jul 20 04:20:34 EDT 2025
Thu Apr 24 23:10:42 EDT 2025
Tue Jul 01 01:58:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-4d434b82e0743332615af4d6bc13add06dd59e6fced5714bddf05d81b49c1b7e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4875-2602
0000-0002-4620-6624
OpenAccessLink https://doaj.org/article/31e158e3fb774b98af1e77148a95999a
PQID 2530134968
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_31e158e3fb774b98af1e77148a95999a
proquest_miscellaneous_2551972503
proquest_journals_2530134968
crossref_primary_10_3390_rs13091698
crossref_citationtrail_10_3390_rs13091698
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210427
PublicationDateYYYYMMDD 2021-04-27
PublicationDate_xml – month: 04
  year: 2021
  text: 20210427
  day: 27
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Minasny (ref_53) 2006; 32
Adimalla (ref_19) 2020; 194
Subida (ref_8) 2013; 450–451
Major (ref_78) 1990; 11
Peris (ref_2) 2006; 65
Keller (ref_13) 2003; 20
Khan (ref_76) 2005; 77
Li (ref_4) 2014; 468–469
Huete (ref_67) 1988; 25
Choe (ref_43) 2008; 112
Minasny (ref_61) 2014; 213
Behrens (ref_27) 2006; 31
Lindsay (ref_56) 1978; 42
Zhao (ref_17) 2007; 17
Nield (ref_70) 2007; 71
Jordan (ref_73) 1969; 50
ref_15
ref_59
Douaoui (ref_79) 2006; 134
Veronesi (ref_29) 2019; 101
Danielsson (ref_80) 1980; 14
Poppiel (ref_54) 2021; 385
Cao (ref_18) 2020; 8
Fu (ref_9) 2011; 92
McBratney (ref_38) 2003; 117
Mahdianpari (ref_45) 2020; 376
Schmidt (ref_32) 2008; 146
ref_64
Li (ref_21) 2012; 47
Karrari (ref_40) 2012; 20
Wang (ref_10) 2013; 185
Dana (ref_44) 2011; 22
ref_28
Wilson (ref_77) 2002; 80
Tan (ref_14) 2006; 16
He (ref_22) 2020; 255
ref_26
McGrath (ref_24) 2004; 127
Hastie (ref_57) 2001; 52
Biasioli (ref_65) 2008; 152
Lin (ref_1) 2002; 42
Facchinelli (ref_66) 2001; 114
Fathizad (ref_47) 2020; 118
ref_72
Schillaci (ref_31) 2017; 601–602
Neupane (ref_62) 2017; 8
Shokr (ref_42) 2016; 24
Breiman (ref_58) 2001; 45
Rondeaux (ref_71) 1996; 55
Hu (ref_25) 2020; 266
Li (ref_20) 2010; 385
Cao (ref_16) 2020; 8
Grimm (ref_33) 2008; 146
Minasny (ref_36) 2019; 194
Nabiollahi (ref_48) 2018; 318
Chen (ref_41) 2012; 9
Conrad (ref_51) 2015; 8
Tan (ref_5) 2021; 401
Arias (ref_23) 2006; 144
Yang (ref_11) 2018; 642
Fathizad (ref_46) 2020; 365
Galagan (ref_55) 2020; 52
Nabiollahi (ref_63) 2019; 10
Foody (ref_69) 2001; 10
ref_37
Heung (ref_34) 2016; 265
Heung (ref_35) 2017; 290
Kullberg (ref_75) 2017; 179
Shomar (ref_60) 2014; 147
Keller (ref_12) 2001; 30
Pettorelli (ref_74) 2005; 20
Shi (ref_6) 2018; 53
Fathizad (ref_52) 2018; 145
Lombardo (ref_30) 2018; 318
Arrouays (ref_39) 2014; Volume 125
ref_3
Crippen (ref_68) 1990; 34
ref_49
(ref_7) 2004; 38
References_xml – ident: ref_15
  doi: 10.1016/j.ecolind.2020.106801
– volume: 9
  start-page: 1874
  year: 2012
  ident: ref_41
  article-title: Mapping of Cu and Pb contaminations in soil using combined geochemistry, topography, and remote sensing: A case study in the le’an river floodplain, China
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph9051874
– volume: 365
  start-page: 114233
  year: 2020
  ident: ref_46
  article-title: Investigation of the spatial and temporal variation of soil salinity using random forests in the central desert of Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114233
– volume: 55
  start-page: 95
  year: 1996
  ident: ref_71
  article-title: Optimization of soil-adjusted vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(95)00186-7
– volume: 213
  start-page: 15
  year: 2014
  ident: ref_61
  article-title: Digital mapping of soil salinity in ardakan region, central iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.07.020
– volume: 47
  start-page: 58
  year: 2012
  ident: ref_21
  article-title: Multivariate and geostatistical analyzes of metals in urban soil of Weinan industrial areas, Northwest of China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.11.041
– volume: 385
  start-page: 114890
  year: 2021
  ident: ref_54
  article-title: High resolution middle eastern soil attributes mapping via open data and cloud computing
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114890
– volume: 194
  start-page: 104289
  year: 2019
  ident: ref_36
  article-title: Some practical aspects of predicting texture data in digital soil mapping
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2019.06.006
– volume: 20
  start-page: 181
  year: 2003
  ident: ref_13
  article-title: Modelling regional-scale mass balances of phosphorus, cadmium and zinc fluxes on arable and dairy farms
  publication-title: Eur. J. Agron.
  doi: 10.1016/S1161-0301(03)00075-3
– volume: 50
  start-page: 663
  year: 1969
  ident: ref_73
  article-title: Derivation of Leaf-Area Index from Quality of Light on the Forest Floor
  publication-title: Ecology
  doi: 10.2307/1936256
– volume: 146
  start-page: 138
  year: 2008
  ident: ref_32
  article-title: Instance selection and classification tree analysis for large spatial datasets in digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.05.010
– volume: 117
  start-page: 3
  year: 2003
  ident: ref_38
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– volume: 42
  start-page: 1
  year: 2002
  ident: ref_1
  article-title: Multivariate geostatistical methods to identify and map spatial variations of soil heavy metals
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-002-0523-1
– volume: 468–469
  start-page: 843
  year: 2014
  ident: ref_4
  article-title: A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.08.090
– volume: 10
  start-page: 63
  year: 2019
  ident: ref_63
  article-title: Assessing soil organic carbon stocks under land-use change scenarios using random forest models
  publication-title: Carbon Manag.
  doi: 10.1080/17583004.2018.1553434
– volume: 11
  start-page: 727
  year: 1990
  ident: ref_78
  article-title: A ratio vegetation index adjusted for soil brightness
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169008955053
– volume: 127
  start-page: 239
  year: 2004
  ident: ref_24
  article-title: Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2003.07.002
– volume: 152
  start-page: 73
  year: 2008
  ident: ref_65
  article-title: Metals in particle-size fractions of the soils of five European cities
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2007.05.020
– volume: 32
  start-page: 1378
  year: 2006
  ident: ref_53
  article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2005.12.009
– volume: 194
  start-page: 110406
  year: 2020
  ident: ref_19
  article-title: Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.110406
– volume: 266
  start-page: 114961
  year: 2020
  ident: ref_25
  article-title: Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.114961
– volume: 134
  start-page: 217
  year: 2006
  ident: ref_79
  article-title: Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.10.009
– volume: 10
  start-page: 379
  year: 2001
  ident: ref_69
  article-title: Mapping the biomass of Bornean tropical rain forest from remotely sensed data
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1046/j.1466-822X.2001.00248.x
– volume: 255
  start-page: 126908
  year: 2020
  ident: ref_22
  article-title: Spatiotemporal modeling of soil heavy metals and early warnings from scenarios-based prediction
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126908
– volume: 318
  start-page: 148
  year: 2018
  ident: ref_30
  article-title: Modeling soil organic carbon with Quantile Regression: Dissecting predictors’ effects on carbon stocks
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.12.011
– volume: 118
  start-page: 106736
  year: 2020
  ident: ref_47
  article-title: Spatio-temporal dynamic of soil quality in the central Iranian desert modeled with machine learning and digital soil assessment techniques
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2020.106736
– volume: 80
  start-page: 385
  year: 2002
  ident: ref_77
  article-title: Detection of forest harvest type using multiple dates of Landsat TM imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00318-2
– volume: 8
  start-page: 42584
  year: 2020
  ident: ref_18
  article-title: Improved Mapping of Soil Heavy Metals Using a Vis-NIR Spectroscopy Index in an Agricultural Area of Eastern China
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2976902
– volume: 265
  start-page: 62
  year: 2016
  ident: ref_34
  article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.11.014
– ident: ref_72
– ident: ref_3
  doi: 10.1016/j.geoderma.2018.09.038
– ident: ref_49
  doi: 10.1016/j.geodrs.2020.e00260
– ident: ref_59
– ident: ref_50
  doi: 10.1029/EO081i048p00583
– volume: 147
  start-page: 250
  year: 2014
  ident: ref_60
  article-title: On the quantitative relationships between environmental parameters and heavy metals pollution in Mediterranean soils using GIS regression-trees: The case study of Lebanon
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2014.05.015
– volume: 179
  start-page: 64
  year: 2017
  ident: ref_75
  article-title: Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2016.07.007
– volume: 290
  start-page: 51
  year: 2017
  ident: ref_35
  article-title: Comparing the use of training data derived from legacy soil pits and soil survey polygons for mapping soil classes
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.12.001
– volume: 77
  start-page: 96
  year: 2005
  ident: ref_76
  article-title: Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2004.09.038
– volume: 14
  start-page: 227
  year: 1980
  ident: ref_80
  article-title: Euclidean distance mapping
  publication-title: Comput. Graph. Image Process.
  doi: 10.1016/0146-664X(80)90054-4
– volume: 601–602
  start-page: 821
  year: 2017
  ident: ref_31
  article-title: Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: The role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.05.239
– volume: 52
  start-page: 103
  year: 2020
  ident: ref_55
  article-title: Geoinformation modeling of soil pollution processes by lead compounds in highway geosystems
  publication-title: Visnyk V.N. Karazin Kharkiv Natl. Univ. Ser. Geol. Geogr. Ecol.
– volume: 112
  start-page: 3222
  year: 2008
  ident: ref_43
  article-title: Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar mining area, SE Spain
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.03.017
– volume: 145
  start-page: 115
  year: 2018
  ident: ref_52
  article-title: Evaluating desertification using remote sensing technique and object-oriented classification algorithm in the Iranian central desert
  publication-title: J. African Earth Sci.
  doi: 10.1016/j.jafrearsci.2018.04.012
– volume: 385
  start-page: 51
  year: 2010
  ident: ref_20
  article-title: An improved statistical approach to merge satellite rainfall estimates and raingauge data
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.01.023
– volume: 318
  start-page: 16
  year: 2018
  ident: ref_48
  article-title: Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.12.024
– volume: 8
  start-page: 277
  year: 2017
  ident: ref_62
  article-title: Artificial bee colony feature selection algorithm combined with machine learning algorithms to predict vertical and lateral distribution of soil organic matter in South Dakota, USA
  publication-title: Carbon Manag.
  doi: 10.1080/17583004.2017.1330593
– volume: 376
  start-page: 114552
  year: 2020
  ident: ref_45
  article-title: Multi-task convolutional neural networks outperformed random forest for mapping soil particle size fractions in central Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114552
– volume: Volume 125
  start-page: 93
  year: 2014
  ident: ref_39
  article-title: GlobalSoilMap. Toward a Fine-Resolution Global Grid of Soil Properties
  publication-title: Advances in Agronomy
  doi: 10.1016/B978-0-12-800137-0.00003-0
– volume: 20
  start-page: 1
  year: 2012
  ident: ref_40
  article-title: A systematic review on status of lead pollution and toxicity in Iran; Guidance for preventive measures
  publication-title: DARU J. Pharm. Sci.
  doi: 10.1186/1560-8115-20-2
– volume: 24
  start-page: 218
  year: 2016
  ident: ref_42
  article-title: Mapping of heavy metal contamination in alluvial soils of the Middle Nile Delta of Egypt
  publication-title: J. Environ. Eng. Landsc. Manag.
  doi: 10.3846/16486897.2016.1184152
– volume: 642
  start-page: 690
  year: 2018
  ident: ref_11
  article-title: A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.068
– volume: 71
  start-page: 245
  year: 2007
  ident: ref_70
  article-title: Digitally Mapping Gypsic and Natric Soil Areas Using Landsat ETM Data
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2006-0049
– volume: 25
  start-page: 295
  year: 1988
  ident: ref_67
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90106-X
– volume: 92
  start-page: 407
  year: 2011
  ident: ref_9
  article-title: Removal of heavy metal ions from wastewaters: A review
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2010.11.011
– volume: 8
  start-page: 129497
  year: 2020
  ident: ref_16
  article-title: A Collaborative Compound Neural Network Model for Soil Heavy Metal Content Prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3009248
– volume: 17
  start-page: 44
  year: 2007
  ident: ref_17
  article-title: Spatial Distribution of Heavy Metals in Agricultural Soils of an Industry-Based Peri-Urban Area in Wuxi, China1 1 Project supported by the RURBIFARM (Sustainable Farming at the Rural-Urban Interface) project of the European Union (No. ICA4-CT-2002-10021)
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(07)60006-X
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_58
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 401
  start-page: 123288
  year: 2021
  ident: ref_5
  article-title: Estimating the distribution trend of soil heavy metals in mining area from HyMap airborne hyperspectral imagery based on ensemble learning
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123288
– volume: 101
  start-page: 1032
  year: 2019
  ident: ref_29
  article-title: Comparison between geostatistical and machine learning models as predictors of topsoil organic carbon with a focus on local uncertainty estimation
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2019.02.026
– volume: 8
  start-page: 1991
  year: 2015
  ident: ref_51
  article-title: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-8-1991-2015
– volume: 185
  start-page: 1041
  year: 2013
  ident: ref_10
  article-title: Distribution and source analysis of aluminum in rivers near Xi’an City, China
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-012-2612-2
– volume: 31
  start-page: 353
  year: 2006
  ident: ref_27
  article-title: Chapter 25 A Comparison of Data-Mining Techniques in Predictive Soil Mapping
  publication-title: Dev. Soil Sci.
– volume: 42
  start-page: 421
  year: 1978
  ident: ref_56
  article-title: Development of a DTPA soil test for zinc, iron, manganese, and copper
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1978.03615995004200030009x
– volume: 52
  start-page: 653
  year: 2001
  ident: ref_57
  article-title: Problems for Judgment and Decision Making
  publication-title: Annu. Rev. Psychol.
  doi: 10.1146/annurev.psych.52.1.653
– ident: ref_37
  doi: 10.1002/vzj2.20062
– volume: 20
  start-page: 503
  year: 2005
  ident: ref_74
  article-title: Using the satellite-derived NDVI to assess ecological responses to environmental change
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2005.05.011
– volume: 30
  start-page: 1976
  year: 2001
  ident: ref_12
  article-title: A Stochastic Empirical Model for Regional Heavy-Metal Balances in Agroecosystems
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2001.1976
– volume: 65
  start-page: 863
  year: 2006
  ident: ref_2
  article-title: Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.03.016
– volume: 38
  start-page: 6803
  year: 2004
  ident: ref_7
  article-title: Heavy metal distribution in dust, street dust and soils from the work place in Karak Industrial Estate, Jordan
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2004.09.011
– volume: 450–451
  start-page: 289
  year: 2013
  ident: ref_8
  article-title: Multivariate methods and artificial neural networks in the assessment of the response of infaunal assemblages to sediment metal contamination and organic enrichment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.02.009
– ident: ref_28
  doi: 10.1007/978-1-4020-8592-5_1
– volume: 146
  start-page: 102
  year: 2008
  ident: ref_33
  article-title: Soil organic carbon concentrations and stocks on Barro Colorado Island—Digital soil mapping using Random Forests analysis
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.05.008
– ident: ref_64
– volume: 144
  start-page: 1001
  year: 2006
  ident: ref_23
  article-title: Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2006.01.045
– volume: 53
  start-page: 783
  year: 2018
  ident: ref_6
  article-title: Proximal and remote sensing techniques for mapping of soil contamination with heavy metals
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2018.1442346
– volume: 114
  start-page: 313
  year: 2001
  ident: ref_66
  article-title: Multivariate statistical and GIS-based approach to identify heavy metal sources in soils
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(00)00243-8
– volume: 16
  start-page: 545
  year: 2006
  ident: ref_14
  article-title: Spatial Prediction of Heavy Metal Pollution for Soils in Peri-Urban Beijing, China Based on Fuzzy Set Theory1 1 Project supported by the National Natural Science Foundation of China (Nos. 40571065 and 40235054) and the National Key Basic Research Support
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(06)60087-8
– volume: 22
  start-page: 1726
  year: 2011
  ident: ref_44
  article-title: Studies regarding the use of remote sensing satellite data for the identification of heavy metal pollution in agricultural fields
  publication-title: Ann. DAAAM
– ident: ref_26
  doi: 10.1109/RSETE.2011.5965202
– volume: 34
  start-page: 71
  year: 1990
  ident: ref_68
  article-title: Calculating the vegetation index faster
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(90)90085-Z
SSID ssj0000331904
Score 2.452059
Snippet Predicting the spatio-temporal distribution of absorbable heavy metals in soil is needed to identify the potential contaminant sources and develop appropriate...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1698
SubjectTerms algorithms
Arid regions
Arid zones
Catchment scale
Chemical contaminants
Contaminants
Contamination
Digital Elevation Models
digital soil mapping
Geology
georeferencing
Groundwater
Heavy metals
Hypercubes
Industrial development
Iran
Land use
Latin hypercube sampling
Lead
machine learning
Manganese
Metals
Nickel
Pollutants
Pollution control
Pollution sources
random forest
Remote sensing
Salinity
Sampling methods
Sediments
soil absorbable heavy metals
Soil contamination
Soil pollution
Soils
Spatial distribution
Temporal distribution
Trends
watersheds
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgFYILggLq0oKM4MLBahzb-TihtrSskKhQt5V6i_zZrlSSskkr7Q_gfzPj9aZCIE5RkomlZOzxG3vyHiEfpHc55DeOVRbSVWlkxkxuPOM25KI0UpQ6VvmeFNNz-fVCXaQFtz6VVa5jYgzUrrO4Rr6XK-iKyG5efbr5yVA1CndXk4TGQ7IJIbiC5Gvz4Ojk--m4ypIJ6GKZXPGSCsjv9xY9RG3ARHX1x0wUCfv_isdxkjl-Rp4mdEj3V-58Th74dos8TkLlV8st8uhLVOJdviC_ZrEWmp2tuKXgoUQvQrtAp17fLek3D8i6p_MWGpw7OuvmcKYHCpiPHkIIvsKVQToDL3kaSwfo5_kliohEU7o_knZS3Tqq6Skcuh8U1Tz7gaKK2vVLcn58dHY4ZUlTgVlRy4FJJ4U0Ve4ROgjAblzpIF1hLBcQ6rLCOVX7IljvVMmlcS5kygG2lbXlpvTiFdlou9ZvE6pq7pStkAEulyH42mjNS6cLGzQSm03Ix_X3bWwiHEfdi-sGEg_0RXPviwl5P9rerGg2_ml1gG4aLZAaO17oFpdNGmmN4J6ryotgANmautKB-xJepdK1AjSsJ2R37eQmjde-ue9dE_JuvA0jDbdPdOu7W7TBn3wBMorX_29ihzzJsfIlkywvd8nGsLj1bwC6DOZt6p-_ATBv7u8
  priority: 102
  providerName: ProQuest
Title Spatio-Temporal Analysis of Heavy Metals in Arid Soils at the Catchment Scale Using Digital Soil Assessment and a Random Forest Model
URI https://www.proquest.com/docview/2530134968
https://www.proquest.com/docview/2551972503
https://doaj.org/article/31e158e3fb774b98af1e77148a95999a
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagHOCCKAV1oawG0UsPUePYzuO4fSwrRKuq20q9RX6M6UolQd0UqT-A_83YSZdWIPXCyUoySqyZ8fibZPINY9sSXUb5jUtKS-mqNDJNTGYw4dZnojBSFDpW-R7ns3P55UJd3Gv1FWrCenrgXnG7giNXJQpvCKiYqtSeY1EQiNeVInAToRHtefeSqRiDBblWKns-UkF5_e71kqI1YaGqfLADRaL-v-Jw3Fymr9jLARXCpJ_NOnuCzWv2fGhQfnm7wX7NY-VzctYzSZHoQCYCrYcZ6p-3cISEo5ewaOg2CwfzdkFHugNCeLBPAfcyvAeEOdkEIRYKwMHiW2gZEkVhsqLoBN040HBKQ_sdQu_OZQehZ9rVG3Y-PTzbnyVDB4XEikp2iXRSSFNmGICCIKTGlfbS5cZyQYEtzZ1TFebeolOkU-OcT5UjJCsry02B4i1ba9oGNxmoijtly8D3lknvsTJa88Lp3HodaMxGbOdOq7Ud6MVDl4urmtKMYIH6jwVG7NNK9kdPqvFPqb1gnJVEIMKOJ8g96sE96sfcY8S27kxbD6tzWWeKwlpgyqdnfFxdpnUVPpboBtubIBN-6SWAKN79j3m8Zy-yUA2TyiQrtthad32DHwjOdGbMnpbTz2P2bHJw9HVO497h8cnpOPrzb95A9sI
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FIBQuCAKIgQCNgAMHK-7F2wGhkDCZkOXATKTcnG53Oxkp2GHsgOYD-B2-kSpvEQJxy8kau9zSuJZ-3S6_B_BGOStwfWO9OMPlqjLK94wwzuNZLmRklIx00-V7FE6O1eeT4GQFfvXfwlBbZV8Tm0Jty4z2yDdFgKFI7Obxh8tvHqlG0dvVXkKjDYt9t_yBS7bq_d4O-vetEONPs-2J16kKeJlMVO0pq6QysXA0eUpELzzQubKhybjEZPdDa4PEhXnmbBBxZazN_cAiulNJxk3kJI57C27jvQllVDzeHfZ0fIkB7auWBRWv-5uLCucIRGBJ_Me818gD_FX9myltfB_udViUbbXB8wBWXLEOa50s-vlyHe7sNrq_y4fwc9p0XnuzlskKb-rITFiZs4nT35fs0CGOr9i8wAHnlk3LOf7SNUOEybax4J_TPiSbYkw41jQqsJ35GUmWNKZsa6AIZbqwTLMveCi_MtIOrWpGmm0Xj-D4Rp71Y1gtysI9ARYk3AZZTHxzQuW5S4zWPLI6zHJNNGojeNc_3zTr6M1JZeMixWUO-SK99sUIXg-2ly2pxz-tPpKbBgsi4m5OlIuztMvrVHLHg9jJ3CCONkmsc-4i_CuxTgLE3noEG72T0646VOl1LI_g1XAZ85pe1ujClVdkQ58UI0CVT_8_xEtYm8wOD9KDvaP9Z3BXUM-NrzwRbcBqvbhyzxE01eZFE6kMTm86NX4DKxQrVg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVDwuCAqIQIFFwIGDFXt3_Tog1DYNKYWoalqpN7PPNlKxS-yC8gP4U_w6Zv2qEIhbT1GSyUrxzOx8sx5_H8BrbjTF_kZ7icJ2lUvue5JK4wXKUhZLzmJRT_nOoukx_3gSnqzBr-5ZGDdW2e2J9UatC-XOyEc0xFB07ObJyLZjEQfjyfuLb55TkHJ3Wjs5jSZE9s3qB7Zv5bu9Mfr6DaWT3aOdqdcqDHiKpbzyuOaMy4QaV0gZIpkgFJbrSKqAYeL7kdZhaiKrjA7jgEutrR9qRHo8VYGMDcN1b8B6jF2RP4D17d3ZwWF_wuMzDG-fN5yojKX-aFlixUA8liZ_VMFaLOCvWlAXuMk9uNsiU7LVhNJ9WDP5BtxuRdLPVhtw80OtArx6AD_n9Ry2d9TwWuGPWmoTUlgyNeL7inw2iOpLsshxwYUm82KB70RFEG-SHdz-z9ypJJljhBhSjy2Q8eLUCZjUpmSrJwwlItdEkEN8Kb4SpyRaVsQpuJ0_hONrudqPYJAXuXkMJEwDHarEsc9Rbq1JpRBBrEWkrHCkakN4213fTLVk505z4zzDpsf5IrvyxRBe9bYXDcXHP622nZt6C0fLXX9QLE-zNsszFpggTAyzElG1TBNhAxPjX0lEGiISF0PY7JyctXtFmV1F9hBe9l9jlrtbNyI3xaWzcQ8YI1xlT_6_xAu4hWmRfdqb7T-FO9QN4Pjco_EmDKrlpXmGCKqSz9tQJfDlurPjN-blMOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatio-Temporal+Analysis+of+Heavy+Metals+in+Arid+Soils+at+the+Catchment+Scale+Using+Digital+Soil+Assessment+and+a+Random+Forest+Model&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Ruhollah+Taghizadeh-Mehrjardi&rft.au=Hassan+Fathizad&rft.au=Mohammad+Ali+Hakimzadeh+Ardakani&rft.au=Hamid+Sodaiezadeh&rft.date=2021-04-27&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=9&rft.spage=1698&rft_id=info:doi/10.3390%2Frs13091698&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_31e158e3fb774b98af1e77148a95999a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon