Spatio-Temporal Analysis of Heavy Metals in Arid Soils at the Catchment Scale Using Digital Soil Assessment and a Random Forest Model
Predicting the spatio-temporal distribution of absorbable heavy metals in soil is needed to identify the potential contaminant sources and develop appropriate management plans to control these hazardous pollutants. Therefore, our aim was to develop a model to predict soil adsorbable heavy metals in...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 13; no. 9; p. 1698 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
27.04.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-4292 2072-4292 |
DOI | 10.3390/rs13091698 |
Cover
Loading…
Abstract | Predicting the spatio-temporal distribution of absorbable heavy metals in soil is needed to identify the potential contaminant sources and develop appropriate management plans to control these hazardous pollutants. Therefore, our aim was to develop a model to predict soil adsorbable heavy metals in arid regions of Iran from 1986 to 2016. Soil adsorbable heavy metals were measured in 201 samples from locations selected using the Latin hypercube sampling method in 2016. A random forest (RF) model was used to determine the relationship between a suite of geospatial predictors derived from remote sensing and digital elevation model data with georeferenced measurements of soil absorbable heavy metals. The trained RF model from 2016 was used to reconstruct the spatial distribution of soil absorbable heavy metals at three historical timesteps (1986, 1999, and 2010). Results indicated that the RF model was effective at predicting the distribution of heavy metals with coefficients of determination of 0.53, 0.59, 0.41, 0.45, and 0.60 for Fe, Mn, Ni, Pb, and Zn, respectively. The predicted maps showed high spatio-temporal variability; for example, there were substantial increases in Pb (the 1.5–2 mg/kg−1 class) where its distribution increased by ~25% from 1988 to 2016—similar trends were observed for the other heavy metals. This study provides insights into the spatio-temporal trends and the potential causes of soil heavy metal contamination to facilitate appropriate planning and management strategies to prevent, control, and reduce the impact of heavy metal contamination in soils. |
---|---|
AbstractList | Predicting the spatio-temporal distribution of absorbable heavy metals in soil is needed to identify the potential contaminant sources and develop appropriate management plans to control these hazardous pollutants. Therefore, our aim was to develop a model to predict soil adsorbable heavy metals in arid regions of Iran from 1986 to 2016. Soil adsorbable heavy metals were measured in 201 samples from locations selected using the Latin hypercube sampling method in 2016. A random forest (RF) model was used to determine the relationship between a suite of geospatial predictors derived from remote sensing and digital elevation model data with georeferenced measurements of soil absorbable heavy metals. The trained RF model from 2016 was used to reconstruct the spatial distribution of soil absorbable heavy metals at three historical timesteps (1986, 1999, and 2010). Results indicated that the RF model was effective at predicting the distribution of heavy metals with coefficients of determination of 0.53, 0.59, 0.41, 0.45, and 0.60 for Fe, Mn, Ni, Pb, and Zn, respectively. The predicted maps showed high spatio-temporal variability; for example, there were substantial increases in Pb (the 1.5–2 mg/kg⁻¹ class) where its distribution increased by ~25% from 1988 to 2016—similar trends were observed for the other heavy metals. This study provides insights into the spatio-temporal trends and the potential causes of soil heavy metal contamination to facilitate appropriate planning and management strategies to prevent, control, and reduce the impact of heavy metal contamination in soils. Predicting the spatio-temporal distribution of absorbable heavy metals in soil is needed to identify the potential contaminant sources and develop appropriate management plans to control these hazardous pollutants. Therefore, our aim was to develop a model to predict soil adsorbable heavy metals in arid regions of Iran from 1986 to 2016. Soil adsorbable heavy metals were measured in 201 samples from locations selected using the Latin hypercube sampling method in 2016. A random forest (RF) model was used to determine the relationship between a suite of geospatial predictors derived from remote sensing and digital elevation model data with georeferenced measurements of soil absorbable heavy metals. The trained RF model from 2016 was used to reconstruct the spatial distribution of soil absorbable heavy metals at three historical timesteps (1986, 1999, and 2010). Results indicated that the RF model was effective at predicting the distribution of heavy metals with coefficients of determination of 0.53, 0.59, 0.41, 0.45, and 0.60 for Fe, Mn, Ni, Pb, and Zn, respectively. The predicted maps showed high spatio-temporal variability; for example, there were substantial increases in Pb (the 1.5–2 mg/kg−1 class) where its distribution increased by ~25% from 1988 to 2016—similar trends were observed for the other heavy metals. This study provides insights into the spatio-temporal trends and the potential causes of soil heavy metal contamination to facilitate appropriate planning and management strategies to prevent, control, and reduce the impact of heavy metal contamination in soils. |
Author | Kerry, Ruth Scholten, Thomas Fathizad, Hassan Taghizadeh-Mehrjardi, Ruhollah Ali Hakimzadeh Ardakani, Mohammad Sodaiezadeh, Hamid Heung, Brandon |
Author_xml | – sequence: 1 givenname: Ruhollah orcidid: 0000-0002-4620-6624 surname: Taghizadeh-Mehrjardi fullname: Taghizadeh-Mehrjardi, Ruhollah – sequence: 2 givenname: Hassan surname: Fathizad fullname: Fathizad, Hassan – sequence: 3 givenname: Mohammad surname: Ali Hakimzadeh Ardakani fullname: Ali Hakimzadeh Ardakani, Mohammad – sequence: 4 givenname: Hamid surname: Sodaiezadeh fullname: Sodaiezadeh, Hamid – sequence: 5 givenname: Ruth surname: Kerry fullname: Kerry, Ruth – sequence: 6 givenname: Brandon surname: Heung fullname: Heung, Brandon – sequence: 7 givenname: Thomas orcidid: 0000-0002-4875-2602 surname: Scholten fullname: Scholten, Thomas |
BookMark | eNptkdFqFDEUhoNUsK698QkC3ogwmkySmcnlslpbaBHc9jqcSc5ss8xM1iRb2AfwvU13RaWYm5OE7_wn-f_X5GwOMxLylrOPQmj2KSYumOaN7l6Q85q1dSVrXZ_9s39FLlLasrKE4JrJc_JzvYPsQ3WH0y5EGOlyhvGQfKJhoFcIjwd6ixnGRP1Ml9E7ug6-nCDT_IB0Bdk-TDhnurYwIr1Pft7Qz37jS88RpcuUMKUjA7OjQL-XEiZ6GSKmTG-Dw_ENeTmUGXjxuy7I_eWXu9VVdfPt6_VqeVNZoWWupJNC9l2NrJVCiLrhCgbpmt5yAc6xxjmlsRksOtVy2Ts3MOU63ktted-iWJDrk64LsDW76CeIBxPAm-NFiBsDMXs7ohEcuepQDH3byl53MHBsi2gHWmmtoWi9P2ntYvixL18xk08WxxFmDPtkaqW4bmtVrF6Qd8_QbdjHYvQTJRgXUjddoT6cKBtDShGHPw_kzDwFbP4GXGD2DLbF8pLknCP48X8tvwBGNKj9 |
CitedBy_id | crossref_primary_10_1139_cjss_2022_0012 crossref_primary_10_1016_j_scitotenv_2024_173602 crossref_primary_10_1016_j_jhazmat_2023_131609 crossref_primary_10_3390_rs15123158 crossref_primary_10_3390_su151310043 crossref_primary_10_1016_j_envpol_2023_121243 crossref_primary_10_1007_s10661_023_11145_5 crossref_primary_10_1016_j_scitotenv_2023_164512 crossref_primary_10_1016_j_jhazmat_2024_135699 crossref_primary_10_1016_j_jhazmat_2024_136347 crossref_primary_10_1016_j_catena_2022_106204 crossref_primary_10_1007_s13201_024_02320_1 crossref_primary_10_1016_j_catena_2023_107579 crossref_primary_10_3390_w14182784 crossref_primary_10_1016_j_gexplo_2021_106921 crossref_primary_10_1016_j_geoderma_2023_116365 crossref_primary_10_3389_fenvs_2024_1291917 crossref_primary_10_1002_esp_5980 crossref_primary_10_1016_j_eiar_2024_107777 crossref_primary_10_1007_s10661_024_13184_y crossref_primary_10_1007_s11783_023_1693_1 crossref_primary_10_3390_ijerph20065097 crossref_primary_10_3390_land12061172 crossref_primary_10_1016_j_scitotenv_2022_155583 crossref_primary_10_3390_f13060884 crossref_primary_10_1109_TGRS_2023_3297126 crossref_primary_10_1007_s11270_025_07791_9 crossref_primary_10_3390_agronomy12030628 crossref_primary_10_1007_s11869_025_01702_x crossref_primary_10_1016_j_jenvman_2025_125035 crossref_primary_10_1109_ACCESS_2021_3099107 crossref_primary_10_3390_land11071037 crossref_primary_10_3390_rs14225804 crossref_primary_10_1016_j_ecoinf_2023_102294 crossref_primary_10_1039_D2EM00487A crossref_primary_10_1016_j_scitotenv_2022_158925 |
Cites_doi | 10.1016/j.ecolind.2020.106801 10.3390/ijerph9051874 10.1016/j.geoderma.2020.114233 10.1016/0034-4257(95)00186-7 10.1016/j.geoderma.2013.07.020 10.1016/j.atmosenv.2011.11.041 10.1016/j.geoderma.2020.114890 10.1016/j.still.2019.06.006 10.1016/S1161-0301(03)00075-3 10.2307/1936256 10.1016/j.geoderma.2008.05.010 10.1016/S0016-7061(03)00223-4 10.1007/s00254-002-0523-1 10.1016/j.scitotenv.2013.08.090 10.1080/17583004.2018.1553434 10.1080/01431169008955053 10.1016/j.envpol.2003.07.002 10.1016/j.envpol.2007.05.020 10.1016/j.cageo.2005.12.009 10.1016/j.ecoenv.2020.110406 10.1016/j.envpol.2020.114961 10.1016/j.geoderma.2005.10.009 10.1046/j.1466-822X.2001.00248.x 10.1016/j.chemosphere.2020.126908 10.1016/j.geoderma.2017.12.011 10.1016/j.ecolind.2020.106736 10.1016/S0034-4257(01)00318-2 10.1109/ACCESS.2020.2976902 10.1016/j.geoderma.2015.11.014 10.1016/j.geoderma.2018.09.038 10.1016/j.geodrs.2020.e00260 10.1029/EO081i048p00583 10.1016/j.gexplo.2014.05.015 10.1016/j.agwat.2016.07.007 10.1016/j.geoderma.2016.12.001 10.1016/j.agwat.2004.09.038 10.1016/0146-664X(80)90054-4 10.1016/j.scitotenv.2017.05.239 10.1016/j.rse.2008.03.017 10.1016/j.jafrearsci.2018.04.012 10.1016/j.jhydrol.2010.01.023 10.1016/j.geoderma.2017.12.024 10.1080/17583004.2017.1330593 10.1016/j.geoderma.2020.114552 10.1016/B978-0-12-800137-0.00003-0 10.1186/1560-8115-20-2 10.3846/16486897.2016.1184152 10.1016/j.scitotenv.2018.06.068 10.2136/sssaj2006-0049 10.1016/0034-4257(88)90106-X 10.1016/j.jenvman.2010.11.011 10.1109/ACCESS.2020.3009248 10.1016/S1002-0160(07)60006-X 10.1023/A:1010933404324 10.1016/j.jhazmat.2020.123288 10.1016/j.ecolind.2019.02.026 10.5194/gmd-8-1991-2015 10.1007/s10661-012-2612-2 10.2136/sssaj1978.03615995004200030009x 10.1146/annurev.psych.52.1.653 10.1002/vzj2.20062 10.1016/j.tree.2005.05.011 10.2134/jeq2001.1976 10.1016/j.chemosphere.2006.03.016 10.1016/j.atmosenv.2004.09.011 10.1016/j.scitotenv.2013.02.009 10.1007/978-1-4020-8592-5_1 10.1016/j.geoderma.2008.05.008 10.1016/j.envpol.2006.01.045 10.1080/05704928.2018.1442346 10.1016/S0269-7491(00)00243-8 10.1016/S1002-0160(06)60087-8 10.1109/RSETE.2011.5965202 10.1016/0034-4257(90)90085-Z |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs13091698 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_31e158e3fb774b98af1e77148a95999a 10_3390_rs13091698 |
GeographicLocations | Iran |
GeographicLocations_xml | – name: Iran |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c394t-4d434b82e0743332615af4d6bc13add06dd59e6fced5714bddf05d81b49c1b7e3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:24:22 EDT 2025 Fri Jul 11 10:58:40 EDT 2025 Sun Jul 20 04:20:34 EDT 2025 Thu Apr 24 23:10:42 EDT 2025 Tue Jul 01 01:58:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-4d434b82e0743332615af4d6bc13add06dd59e6fced5714bddf05d81b49c1b7e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4875-2602 0000-0002-4620-6624 |
OpenAccessLink | https://doaj.org/article/31e158e3fb774b98af1e77148a95999a |
PQID | 2530134968 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_31e158e3fb774b98af1e77148a95999a proquest_miscellaneous_2551972503 proquest_journals_2530134968 crossref_primary_10_3390_rs13091698 crossref_citationtrail_10_3390_rs13091698 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210427 |
PublicationDateYYYYMMDD | 2021-04-27 |
PublicationDate_xml | – month: 04 year: 2021 text: 20210427 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Minasny (ref_53) 2006; 32 Adimalla (ref_19) 2020; 194 Subida (ref_8) 2013; 450–451 Major (ref_78) 1990; 11 Peris (ref_2) 2006; 65 Keller (ref_13) 2003; 20 Khan (ref_76) 2005; 77 Li (ref_4) 2014; 468–469 Huete (ref_67) 1988; 25 Choe (ref_43) 2008; 112 Minasny (ref_61) 2014; 213 Behrens (ref_27) 2006; 31 Lindsay (ref_56) 1978; 42 Zhao (ref_17) 2007; 17 Nield (ref_70) 2007; 71 Jordan (ref_73) 1969; 50 ref_15 ref_59 Douaoui (ref_79) 2006; 134 Veronesi (ref_29) 2019; 101 Danielsson (ref_80) 1980; 14 Poppiel (ref_54) 2021; 385 Cao (ref_18) 2020; 8 Fu (ref_9) 2011; 92 McBratney (ref_38) 2003; 117 Mahdianpari (ref_45) 2020; 376 Schmidt (ref_32) 2008; 146 ref_64 Li (ref_21) 2012; 47 Karrari (ref_40) 2012; 20 Wang (ref_10) 2013; 185 Dana (ref_44) 2011; 22 ref_28 Wilson (ref_77) 2002; 80 Tan (ref_14) 2006; 16 He (ref_22) 2020; 255 ref_26 McGrath (ref_24) 2004; 127 Hastie (ref_57) 2001; 52 Biasioli (ref_65) 2008; 152 Lin (ref_1) 2002; 42 Facchinelli (ref_66) 2001; 114 Fathizad (ref_47) 2020; 118 ref_72 Schillaci (ref_31) 2017; 601–602 Neupane (ref_62) 2017; 8 Shokr (ref_42) 2016; 24 Breiman (ref_58) 2001; 45 Rondeaux (ref_71) 1996; 55 Hu (ref_25) 2020; 266 Li (ref_20) 2010; 385 Cao (ref_16) 2020; 8 Grimm (ref_33) 2008; 146 Minasny (ref_36) 2019; 194 Nabiollahi (ref_48) 2018; 318 Chen (ref_41) 2012; 9 Conrad (ref_51) 2015; 8 Tan (ref_5) 2021; 401 Arias (ref_23) 2006; 144 Yang (ref_11) 2018; 642 Fathizad (ref_46) 2020; 365 Galagan (ref_55) 2020; 52 Nabiollahi (ref_63) 2019; 10 Foody (ref_69) 2001; 10 ref_37 Heung (ref_34) 2016; 265 Heung (ref_35) 2017; 290 Kullberg (ref_75) 2017; 179 Shomar (ref_60) 2014; 147 Keller (ref_12) 2001; 30 Pettorelli (ref_74) 2005; 20 Shi (ref_6) 2018; 53 Fathizad (ref_52) 2018; 145 Lombardo (ref_30) 2018; 318 Arrouays (ref_39) 2014; Volume 125 ref_3 Crippen (ref_68) 1990; 34 ref_49 (ref_7) 2004; 38 |
References_xml | – ident: ref_15 doi: 10.1016/j.ecolind.2020.106801 – volume: 9 start-page: 1874 year: 2012 ident: ref_41 article-title: Mapping of Cu and Pb contaminations in soil using combined geochemistry, topography, and remote sensing: A case study in the le’an river floodplain, China publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph9051874 – volume: 365 start-page: 114233 year: 2020 ident: ref_46 article-title: Investigation of the spatial and temporal variation of soil salinity using random forests in the central desert of Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114233 – volume: 55 start-page: 95 year: 1996 ident: ref_71 article-title: Optimization of soil-adjusted vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(95)00186-7 – volume: 213 start-page: 15 year: 2014 ident: ref_61 article-title: Digital mapping of soil salinity in ardakan region, central iran publication-title: Geoderma doi: 10.1016/j.geoderma.2013.07.020 – volume: 47 start-page: 58 year: 2012 ident: ref_21 article-title: Multivariate and geostatistical analyzes of metals in urban soil of Weinan industrial areas, Northwest of China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.11.041 – volume: 385 start-page: 114890 year: 2021 ident: ref_54 article-title: High resolution middle eastern soil attributes mapping via open data and cloud computing publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114890 – volume: 194 start-page: 104289 year: 2019 ident: ref_36 article-title: Some practical aspects of predicting texture data in digital soil mapping publication-title: Soil Tillage Res. doi: 10.1016/j.still.2019.06.006 – volume: 20 start-page: 181 year: 2003 ident: ref_13 article-title: Modelling regional-scale mass balances of phosphorus, cadmium and zinc fluxes on arable and dairy farms publication-title: Eur. J. Agron. doi: 10.1016/S1161-0301(03)00075-3 – volume: 50 start-page: 663 year: 1969 ident: ref_73 article-title: Derivation of Leaf-Area Index from Quality of Light on the Forest Floor publication-title: Ecology doi: 10.2307/1936256 – volume: 146 start-page: 138 year: 2008 ident: ref_32 article-title: Instance selection and classification tree analysis for large spatial datasets in digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2008.05.010 – volume: 117 start-page: 3 year: 2003 ident: ref_38 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – volume: 42 start-page: 1 year: 2002 ident: ref_1 article-title: Multivariate geostatistical methods to identify and map spatial variations of soil heavy metals publication-title: Environ. Geol. doi: 10.1007/s00254-002-0523-1 – volume: 468–469 start-page: 843 year: 2014 ident: ref_4 article-title: A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.08.090 – volume: 10 start-page: 63 year: 2019 ident: ref_63 article-title: Assessing soil organic carbon stocks under land-use change scenarios using random forest models publication-title: Carbon Manag. doi: 10.1080/17583004.2018.1553434 – volume: 11 start-page: 727 year: 1990 ident: ref_78 article-title: A ratio vegetation index adjusted for soil brightness publication-title: Int. J. Remote Sens. doi: 10.1080/01431169008955053 – volume: 127 start-page: 239 year: 2004 ident: ref_24 article-title: Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2003.07.002 – volume: 152 start-page: 73 year: 2008 ident: ref_65 article-title: Metals in particle-size fractions of the soils of five European cities publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2007.05.020 – volume: 32 start-page: 1378 year: 2006 ident: ref_53 article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2005.12.009 – volume: 194 start-page: 110406 year: 2020 ident: ref_19 article-title: Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.110406 – volume: 266 start-page: 114961 year: 2020 ident: ref_25 article-title: Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114961 – volume: 134 start-page: 217 year: 2006 ident: ref_79 article-title: Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data publication-title: Geoderma doi: 10.1016/j.geoderma.2005.10.009 – volume: 10 start-page: 379 year: 2001 ident: ref_69 article-title: Mapping the biomass of Bornean tropical rain forest from remotely sensed data publication-title: Glob. Ecol. Biogeogr. doi: 10.1046/j.1466-822X.2001.00248.x – volume: 255 start-page: 126908 year: 2020 ident: ref_22 article-title: Spatiotemporal modeling of soil heavy metals and early warnings from scenarios-based prediction publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126908 – volume: 318 start-page: 148 year: 2018 ident: ref_30 article-title: Modeling soil organic carbon with Quantile Regression: Dissecting predictors’ effects on carbon stocks publication-title: Geoderma doi: 10.1016/j.geoderma.2017.12.011 – volume: 118 start-page: 106736 year: 2020 ident: ref_47 article-title: Spatio-temporal dynamic of soil quality in the central Iranian desert modeled with machine learning and digital soil assessment techniques publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2020.106736 – volume: 80 start-page: 385 year: 2002 ident: ref_77 article-title: Detection of forest harvest type using multiple dates of Landsat TM imagery publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00318-2 – volume: 8 start-page: 42584 year: 2020 ident: ref_18 article-title: Improved Mapping of Soil Heavy Metals Using a Vis-NIR Spectroscopy Index in an Agricultural Area of Eastern China publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2976902 – volume: 265 start-page: 62 year: 2016 ident: ref_34 article-title: An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2015.11.014 – ident: ref_72 – ident: ref_3 doi: 10.1016/j.geoderma.2018.09.038 – ident: ref_49 doi: 10.1016/j.geodrs.2020.e00260 – ident: ref_59 – ident: ref_50 doi: 10.1029/EO081i048p00583 – volume: 147 start-page: 250 year: 2014 ident: ref_60 article-title: On the quantitative relationships between environmental parameters and heavy metals pollution in Mediterranean soils using GIS regression-trees: The case study of Lebanon publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2014.05.015 – volume: 179 start-page: 64 year: 2017 ident: ref_75 article-title: Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2016.07.007 – volume: 290 start-page: 51 year: 2017 ident: ref_35 article-title: Comparing the use of training data derived from legacy soil pits and soil survey polygons for mapping soil classes publication-title: Geoderma doi: 10.1016/j.geoderma.2016.12.001 – volume: 77 start-page: 96 year: 2005 ident: ref_76 article-title: Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2004.09.038 – volume: 14 start-page: 227 year: 1980 ident: ref_80 article-title: Euclidean distance mapping publication-title: Comput. Graph. Image Process. doi: 10.1016/0146-664X(80)90054-4 – volume: 601–602 start-page: 821 year: 2017 ident: ref_31 article-title: Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: The role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.05.239 – volume: 52 start-page: 103 year: 2020 ident: ref_55 article-title: Geoinformation modeling of soil pollution processes by lead compounds in highway geosystems publication-title: Visnyk V.N. Karazin Kharkiv Natl. Univ. Ser. Geol. Geogr. Ecol. – volume: 112 start-page: 3222 year: 2008 ident: ref_43 article-title: Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar mining area, SE Spain publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.03.017 – volume: 145 start-page: 115 year: 2018 ident: ref_52 article-title: Evaluating desertification using remote sensing technique and object-oriented classification algorithm in the Iranian central desert publication-title: J. African Earth Sci. doi: 10.1016/j.jafrearsci.2018.04.012 – volume: 385 start-page: 51 year: 2010 ident: ref_20 article-title: An improved statistical approach to merge satellite rainfall estimates and raingauge data publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.01.023 – volume: 318 start-page: 16 year: 2018 ident: ref_48 article-title: Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate publication-title: Geoderma doi: 10.1016/j.geoderma.2017.12.024 – volume: 8 start-page: 277 year: 2017 ident: ref_62 article-title: Artificial bee colony feature selection algorithm combined with machine learning algorithms to predict vertical and lateral distribution of soil organic matter in South Dakota, USA publication-title: Carbon Manag. doi: 10.1080/17583004.2017.1330593 – volume: 376 start-page: 114552 year: 2020 ident: ref_45 article-title: Multi-task convolutional neural networks outperformed random forest for mapping soil particle size fractions in central Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114552 – volume: Volume 125 start-page: 93 year: 2014 ident: ref_39 article-title: GlobalSoilMap. Toward a Fine-Resolution Global Grid of Soil Properties publication-title: Advances in Agronomy doi: 10.1016/B978-0-12-800137-0.00003-0 – volume: 20 start-page: 1 year: 2012 ident: ref_40 article-title: A systematic review on status of lead pollution and toxicity in Iran; Guidance for preventive measures publication-title: DARU J. Pharm. Sci. doi: 10.1186/1560-8115-20-2 – volume: 24 start-page: 218 year: 2016 ident: ref_42 article-title: Mapping of heavy metal contamination in alluvial soils of the Middle Nile Delta of Egypt publication-title: J. Environ. Eng. Landsc. Manag. doi: 10.3846/16486897.2016.1184152 – volume: 642 start-page: 690 year: 2018 ident: ref_11 article-title: A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.06.068 – volume: 71 start-page: 245 year: 2007 ident: ref_70 article-title: Digitally Mapping Gypsic and Natric Soil Areas Using Landsat ETM Data publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2006-0049 – volume: 25 start-page: 295 year: 1988 ident: ref_67 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90106-X – volume: 92 start-page: 407 year: 2011 ident: ref_9 article-title: Removal of heavy metal ions from wastewaters: A review publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2010.11.011 – volume: 8 start-page: 129497 year: 2020 ident: ref_16 article-title: A Collaborative Compound Neural Network Model for Soil Heavy Metal Content Prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3009248 – volume: 17 start-page: 44 year: 2007 ident: ref_17 article-title: Spatial Distribution of Heavy Metals in Agricultural Soils of an Industry-Based Peri-Urban Area in Wuxi, China1 1 Project supported by the RURBIFARM (Sustainable Farming at the Rural-Urban Interface) project of the European Union (No. ICA4-CT-2002-10021) publication-title: Pedosphere doi: 10.1016/S1002-0160(07)60006-X – volume: 45 start-page: 5 year: 2001 ident: ref_58 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 401 start-page: 123288 year: 2021 ident: ref_5 article-title: Estimating the distribution trend of soil heavy metals in mining area from HyMap airborne hyperspectral imagery based on ensemble learning publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123288 – volume: 101 start-page: 1032 year: 2019 ident: ref_29 article-title: Comparison between geostatistical and machine learning models as predictors of topsoil organic carbon with a focus on local uncertainty estimation publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2019.02.026 – volume: 8 start-page: 1991 year: 2015 ident: ref_51 article-title: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-8-1991-2015 – volume: 185 start-page: 1041 year: 2013 ident: ref_10 article-title: Distribution and source analysis of aluminum in rivers near Xi’an City, China publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-012-2612-2 – volume: 31 start-page: 353 year: 2006 ident: ref_27 article-title: Chapter 25 A Comparison of Data-Mining Techniques in Predictive Soil Mapping publication-title: Dev. Soil Sci. – volume: 42 start-page: 421 year: 1978 ident: ref_56 article-title: Development of a DTPA soil test for zinc, iron, manganese, and copper publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1978.03615995004200030009x – volume: 52 start-page: 653 year: 2001 ident: ref_57 article-title: Problems for Judgment and Decision Making publication-title: Annu. Rev. Psychol. doi: 10.1146/annurev.psych.52.1.653 – ident: ref_37 doi: 10.1002/vzj2.20062 – volume: 20 start-page: 503 year: 2005 ident: ref_74 article-title: Using the satellite-derived NDVI to assess ecological responses to environmental change publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2005.05.011 – volume: 30 start-page: 1976 year: 2001 ident: ref_12 article-title: A Stochastic Empirical Model for Regional Heavy-Metal Balances in Agroecosystems publication-title: J. Environ. Qual. doi: 10.2134/jeq2001.1976 – volume: 65 start-page: 863 year: 2006 ident: ref_2 article-title: Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis publication-title: Chemosphere doi: 10.1016/j.chemosphere.2006.03.016 – volume: 38 start-page: 6803 year: 2004 ident: ref_7 article-title: Heavy metal distribution in dust, street dust and soils from the work place in Karak Industrial Estate, Jordan publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2004.09.011 – volume: 450–451 start-page: 289 year: 2013 ident: ref_8 article-title: Multivariate methods and artificial neural networks in the assessment of the response of infaunal assemblages to sediment metal contamination and organic enrichment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.02.009 – ident: ref_28 doi: 10.1007/978-1-4020-8592-5_1 – volume: 146 start-page: 102 year: 2008 ident: ref_33 article-title: Soil organic carbon concentrations and stocks on Barro Colorado Island—Digital soil mapping using Random Forests analysis publication-title: Geoderma doi: 10.1016/j.geoderma.2008.05.008 – ident: ref_64 – volume: 144 start-page: 1001 year: 2006 ident: ref_23 article-title: Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2006.01.045 – volume: 53 start-page: 783 year: 2018 ident: ref_6 article-title: Proximal and remote sensing techniques for mapping of soil contamination with heavy metals publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704928.2018.1442346 – volume: 114 start-page: 313 year: 2001 ident: ref_66 article-title: Multivariate statistical and GIS-based approach to identify heavy metal sources in soils publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(00)00243-8 – volume: 16 start-page: 545 year: 2006 ident: ref_14 article-title: Spatial Prediction of Heavy Metal Pollution for Soils in Peri-Urban Beijing, China Based on Fuzzy Set Theory1 1 Project supported by the National Natural Science Foundation of China (Nos. 40571065 and 40235054) and the National Key Basic Research Support publication-title: Pedosphere doi: 10.1016/S1002-0160(06)60087-8 – volume: 22 start-page: 1726 year: 2011 ident: ref_44 article-title: Studies regarding the use of remote sensing satellite data for the identification of heavy metal pollution in agricultural fields publication-title: Ann. DAAAM – ident: ref_26 doi: 10.1109/RSETE.2011.5965202 – volume: 34 start-page: 71 year: 1990 ident: ref_68 article-title: Calculating the vegetation index faster publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(90)90085-Z |
SSID | ssj0000331904 |
Score | 2.452059 |
Snippet | Predicting the spatio-temporal distribution of absorbable heavy metals in soil is needed to identify the potential contaminant sources and develop appropriate... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1698 |
SubjectTerms | algorithms Arid regions Arid zones Catchment scale Chemical contaminants Contaminants Contamination Digital Elevation Models digital soil mapping Geology georeferencing Groundwater Heavy metals Hypercubes Industrial development Iran Land use Latin hypercube sampling Lead machine learning Manganese Metals Nickel Pollutants Pollution control Pollution sources random forest Remote sensing Salinity Sampling methods Sediments soil absorbable heavy metals Soil contamination Soil pollution Soils Spatial distribution Temporal distribution Trends watersheds |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgFYILggLq0oKM4MLBahzb-TihtrSskKhQt5V6i_zZrlSSskkr7Q_gfzPj9aZCIE5RkomlZOzxG3vyHiEfpHc55DeOVRbSVWlkxkxuPOM25KI0UpQ6VvmeFNNz-fVCXaQFtz6VVa5jYgzUrrO4Rr6XK-iKyG5efbr5yVA1CndXk4TGQ7IJIbiC5Gvz4Ojk--m4ypIJ6GKZXPGSCsjv9xY9RG3ARHX1x0wUCfv_isdxkjl-Rp4mdEj3V-58Th74dos8TkLlV8st8uhLVOJdviC_ZrEWmp2tuKXgoUQvQrtAp17fLek3D8i6p_MWGpw7OuvmcKYHCpiPHkIIvsKVQToDL3kaSwfo5_kliohEU7o_knZS3Tqq6Skcuh8U1Tz7gaKK2vVLcn58dHY4ZUlTgVlRy4FJJ4U0Ve4ROgjAblzpIF1hLBcQ6rLCOVX7IljvVMmlcS5kygG2lbXlpvTiFdlou9ZvE6pq7pStkAEulyH42mjNS6cLGzQSm03Ix_X3bWwiHEfdi-sGEg_0RXPviwl5P9rerGg2_ml1gG4aLZAaO17oFpdNGmmN4J6ryotgANmautKB-xJepdK1AjSsJ2R37eQmjde-ue9dE_JuvA0jDbdPdOu7W7TBn3wBMorX_29ihzzJsfIlkywvd8nGsLj1bwC6DOZt6p-_ATBv7u8 priority: 102 providerName: ProQuest |
Title | Spatio-Temporal Analysis of Heavy Metals in Arid Soils at the Catchment Scale Using Digital Soil Assessment and a Random Forest Model |
URI | https://www.proquest.com/docview/2530134968 https://www.proquest.com/docview/2551972503 https://doaj.org/article/31e158e3fb774b98af1e77148a95999a |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagHOCCKAV1oawG0UsPUePYzuO4fSwrRKuq20q9RX6M6UolQd0UqT-A_83YSZdWIPXCyUoySqyZ8fibZPINY9sSXUb5jUtKS-mqNDJNTGYw4dZnojBSFDpW-R7ns3P55UJd3Gv1FWrCenrgXnG7giNXJQpvCKiYqtSeY1EQiNeVInAToRHtefeSqRiDBblWKns-UkF5_e71kqI1YaGqfLADRaL-v-Jw3Fymr9jLARXCpJ_NOnuCzWv2fGhQfnm7wX7NY-VzctYzSZHoQCYCrYcZ6p-3cISEo5ewaOg2CwfzdkFHugNCeLBPAfcyvAeEOdkEIRYKwMHiW2gZEkVhsqLoBN040HBKQ_sdQu_OZQehZ9rVG3Y-PTzbnyVDB4XEikp2iXRSSFNmGICCIKTGlfbS5cZyQYEtzZ1TFebeolOkU-OcT5UjJCsry02B4i1ba9oGNxmoijtly8D3lknvsTJa88Lp3HodaMxGbOdOq7Ud6MVDl4urmtKMYIH6jwVG7NNK9kdPqvFPqb1gnJVEIMKOJ8g96sE96sfcY8S27kxbD6tzWWeKwlpgyqdnfFxdpnUVPpboBtubIBN-6SWAKN79j3m8Zy-yUA2TyiQrtthad32DHwjOdGbMnpbTz2P2bHJw9HVO497h8cnpOPrzb95A9sI |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FIBQuCAKIgQCNgAMHK-7F2wGhkDCZkOXATKTcnG53Oxkp2GHsgOYD-B2-kSpvEQJxy8kau9zSuJZ-3S6_B_BGOStwfWO9OMPlqjLK94wwzuNZLmRklIx00-V7FE6O1eeT4GQFfvXfwlBbZV8Tm0Jty4z2yDdFgKFI7Obxh8tvHqlG0dvVXkKjDYt9t_yBS7bq_d4O-vetEONPs-2J16kKeJlMVO0pq6QysXA0eUpELzzQubKhybjEZPdDa4PEhXnmbBBxZazN_cAiulNJxk3kJI57C27jvQllVDzeHfZ0fIkB7auWBRWv-5uLCucIRGBJ_Me818gD_FX9myltfB_udViUbbXB8wBWXLEOa50s-vlyHe7sNrq_y4fwc9p0XnuzlskKb-rITFiZs4nT35fs0CGOr9i8wAHnlk3LOf7SNUOEybax4J_TPiSbYkw41jQqsJ35GUmWNKZsa6AIZbqwTLMveCi_MtIOrWpGmm0Xj-D4Rp71Y1gtysI9ARYk3AZZTHxzQuW5S4zWPLI6zHJNNGojeNc_3zTr6M1JZeMixWUO-SK99sUIXg-2ly2pxz-tPpKbBgsi4m5OlIuztMvrVHLHg9jJ3CCONkmsc-4i_CuxTgLE3noEG72T0646VOl1LI_g1XAZ85pe1ujClVdkQ58UI0CVT_8_xEtYm8wOD9KDvaP9Z3BXUM-NrzwRbcBqvbhyzxE01eZFE6kMTm86NX4DKxQrVg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVDwuCAqIQIFFwIGDFXt3_Tog1DYNKYWoalqpN7PPNlKxS-yC8gP4U_w6Zv2qEIhbT1GSyUrxzOx8sx5_H8BrbjTF_kZ7icJ2lUvue5JK4wXKUhZLzmJRT_nOoukx_3gSnqzBr-5ZGDdW2e2J9UatC-XOyEc0xFB07ObJyLZjEQfjyfuLb55TkHJ3Wjs5jSZE9s3qB7Zv5bu9Mfr6DaWT3aOdqdcqDHiKpbzyuOaMy4QaV0gZIpkgFJbrSKqAYeL7kdZhaiKrjA7jgEutrR9qRHo8VYGMDcN1b8B6jF2RP4D17d3ZwWF_wuMzDG-fN5yojKX-aFlixUA8liZ_VMFaLOCvWlAXuMk9uNsiU7LVhNJ9WDP5BtxuRdLPVhtw80OtArx6AD_n9Ry2d9TwWuGPWmoTUlgyNeL7inw2iOpLsshxwYUm82KB70RFEG-SHdz-z9ypJJljhBhSjy2Q8eLUCZjUpmSrJwwlItdEkEN8Kb4SpyRaVsQpuJ0_hONrudqPYJAXuXkMJEwDHarEsc9Rbq1JpRBBrEWkrHCkakN4213fTLVk505z4zzDpsf5IrvyxRBe9bYXDcXHP622nZt6C0fLXX9QLE-zNsszFpggTAyzElG1TBNhAxPjX0lEGiISF0PY7JyctXtFmV1F9hBe9l9jlrtbNyI3xaWzcQ8YI1xlT_6_xAu4hWmRfdqb7T-FO9QN4Pjco_EmDKrlpXmGCKqSz9tQJfDlurPjN-blMOg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatio-Temporal+Analysis+of+Heavy+Metals+in+Arid+Soils+at+the+Catchment+Scale+Using+Digital+Soil+Assessment+and+a+Random+Forest+Model&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Ruhollah+Taghizadeh-Mehrjardi&rft.au=Hassan+Fathizad&rft.au=Mohammad+Ali+Hakimzadeh+Ardakani&rft.au=Hamid+Sodaiezadeh&rft.date=2021-04-27&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=9&rft.spage=1698&rft_id=info:doi/10.3390%2Frs13091698&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_31e158e3fb774b98af1e77148a95999a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |