Establishing an Empirical Model for Surface Soil Moisture Retrieval at the U.S. Climate Reference Network Using Sentinel-1 Backscatter and Ancillary Data
Progress in sensor technologies has allowed real-time monitoring of soil water. It is a challenge to model soil water content based on remote sensing data. Here, we retrieved and modeled surface soil moisture (SSM) at the U.S. Climate Reference Network (USCRN) stations using Sentinel-1 backscatter d...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 12; no. 8; p. 1242 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Progress in sensor technologies has allowed real-time monitoring of soil water. It is a challenge to model soil water content based on remote sensing data. Here, we retrieved and modeled surface soil moisture (SSM) at the U.S. Climate Reference Network (USCRN) stations using Sentinel-1 backscatter data from 2016 to 2018 and ancillary data. Empirical machine learning models were established between soil water content measured at the USCRN stations with Sentinel-1 data from 2016 to 2017, the National Land Cover Dataset, terrain parameters, and Polaris soil data, and were evaluated in 2018 at the same USCRN stations. The Cubist model performed better than the multiple linear regression (MLR) and Random Forest (RF) model (R2 = 0.68 and RMSE = 0.06 m3 m-3 for validation). The Cubist model performed best in Shrub/Scrub, followed by Herbaceous and Cultivated Crops but poorly in Hay/Pasture. The success of SSM retrieval was mostly attributed to soil properties, followed by Sentinel-1 backscatter data, terrain parameters, and land cover. The approach shows the potential for retrieving SSM using Sentinel-1 data in a combination of high-resolution ancillary data across the conterminous United States (CONUS). Future work is required to improve the model performance by including more SSM network measurements, assimilating Sentinel-1 data with other microwave, optical and thermal remote sensing products. There is also a need to improve the spatial resolution and accuracy of land surface parameter products (e.g., soil properties and terrain parameters) at the regional and global scales. |
---|---|
AbstractList | Progress in sensor technologies has allowed real-time monitoring of soil water. It is a challenge to model soil water content based on remote sensing data. Here, we retrieved and modeled surface soil moisture (SSM) at the U.S. Climate Reference Network (USCRN) stations using Sentinel-1 backscatter data from 2016 to 2018 and ancillary data. Empirical machine learning models were established between soil water content measured at the USCRN stations with Sentinel-1 data from 2016 to 2017, the National Land Cover Dataset, terrain parameters, and Polaris soil data, and were evaluated in 2018 at the same USCRN stations. The Cubist model performed better than the multiple linear regression (MLR) and Random Forest (RF) model (R² = 0.68 and RMSE = 0.06 m³ m⁻³ for validation). The Cubist model performed best in Shrub/Scrub, followed by Herbaceous and Cultivated Crops but poorly in Hay/Pasture. The success of SSM retrieval was mostly attributed to soil properties, followed by Sentinel-1 backscatter data, terrain parameters, and land cover. The approach shows the potential for retrieving SSM using Sentinel-1 data in a combination of high-resolution ancillary data across the conterminous United States (CONUS). Future work is required to improve the model performance by including more SSM network measurements, assimilating Sentinel-1 data with other microwave, optical and thermal remote sensing products. There is also a need to improve the spatial resolution and accuracy of land surface parameter products (e.g., soil properties and terrain parameters) at the regional and global scales. Progress in sensor technologies has allowed real-time monitoring of soil water. It is a challenge to model soil water content based on remote sensing data. Here, we retrieved and modeled surface soil moisture (SSM) at the U.S. Climate Reference Network (USCRN) stations using Sentinel-1 backscatter data from 2016 to 2018 and ancillary data. Empirical machine learning models were established between soil water content measured at the USCRN stations with Sentinel-1 data from 2016 to 2017, the National Land Cover Dataset, terrain parameters, and Polaris soil data, and were evaluated in 2018 at the same USCRN stations. The Cubist model performed better than the multiple linear regression (MLR) and Random Forest (RF) model (R2 = 0.68 and RMSE = 0.06 m3 m-3 for validation). The Cubist model performed best in Shrub/Scrub, followed by Herbaceous and Cultivated Crops but poorly in Hay/Pasture. The success of SSM retrieval was mostly attributed to soil properties, followed by Sentinel-1 backscatter data, terrain parameters, and land cover. The approach shows the potential for retrieving SSM using Sentinel-1 data in a combination of high-resolution ancillary data across the conterminous United States (CONUS). Future work is required to improve the model performance by including more SSM network measurements, assimilating Sentinel-1 data with other microwave, optical and thermal remote sensing products. There is also a need to improve the spatial resolution and accuracy of land surface parameter products (e.g., soil properties and terrain parameters) at the regional and global scales. |
Author | Hartemink, Alfred E. Chatterjee, Sumanta Huang, Jingyi |
Author_xml | – sequence: 1 givenname: Sumanta orcidid: 0000-0003-4805-5732 surname: Chatterjee fullname: Chatterjee, Sumanta – sequence: 2 givenname: Jingyi orcidid: 0000-0002-1209-9699 surname: Huang fullname: Huang, Jingyi – sequence: 3 givenname: Alfred E. surname: Hartemink fullname: Hartemink, Alfred E. |
BookMark | eNptkd1u1DAQhSNUJErpDU9giRuElMW_iXNZtgtUKiCx7LU1cSatt1l7sR1QH4W3xcuCQBW-8Wj8nTM-mqfViQ8eq-o5owshOvo6JsapZlzyR9Uppy2vJe_4yT_1k-o8pS0tRwjWUXla_VilDP3k0q3zNwQ8We32LjoLE_kQBpzIGCJZz3EEi2Qd3KHtUp4jks-Yo8NvhYRM8i2SzWK9IMvJ7SAfXkeM6IvqI-bvId6RTTqMWKPPzuNUM_IG7F2ykDPGMnkgF966aYJ4Ty4hw7Pq8QhTwvPf91m1ebv6snxfX396d7W8uK6t6GSuJWimlBWi0S2g0r1ssEMlSz20suEwyJa12iJSqSj2DVWqH5WmWvOGtlacVVdH3yHA1uxj-X68NwGc-dUI8cZAzM5OaKwepcauARRWihH7QY9cNQOMtGm0UsXr5dFrH8PXGVM2O5csllAew5wM73TDOkGFLuiLB-g2zNGXpIaLjjFJGROFokfKxpBSxNFYlyG74HMENxlGzWH15u_qi-TVA8mfTP-BfwInfq-9 |
CitedBy_id | crossref_primary_10_1080_01431161_2024_2329529 crossref_primary_10_48084_etasr_6986 crossref_primary_10_3390_agronomy14030421 crossref_primary_10_3390_w12082160 crossref_primary_10_1080_22797254_2023_2300985 crossref_primary_10_1016_j_jhydrol_2022_129020 crossref_primary_10_1016_j_gsd_2024_101177 crossref_primary_10_3390_rs12172815 crossref_primary_10_3390_rs13112088 crossref_primary_10_3390_rs13112099 crossref_primary_10_1016_j_srs_2024_100135 crossref_primary_10_1109_JSTARS_2024_3422071 crossref_primary_10_1016_j_catena_2021_105190 crossref_primary_10_1016_j_catena_2022_106485 crossref_primary_10_3390_rs14164042 crossref_primary_10_3390_w13152003 crossref_primary_10_1142_S0219467823500481 crossref_primary_10_1007_s40003_023_00691_6 crossref_primary_10_1007_s00704_021_03710_0 crossref_primary_10_3390_rs14030792 |
Cites_doi | 10.1175/BAMS-D-13-00263.1 10.1109/JSTARS.2013.2257698 10.1016/j.jhydrol.2019.05.075 10.1016/j.advwatres.2006.05.006 10.1080/01431160305001 10.1016/j.asr.2011.03.029 10.5589/m11-015 10.1016/j.geoderma.2004.06.007 10.1016/j.isprsjprs.2018.09.006 10.1371/journal.pone.0169748 10.3390/rs8120986 10.1016/j.jhydrol.2012.06.001 10.1139/cjss-2019-0006 10.1016/j.agwat.2016.05.030 10.1175/JHM-D-12-0146.1 10.1109/TGRS.2012.2187666 10.2136/vzj2005.0033 10.1007/978-0-387-84858-7 10.1016/j.rse.2011.01.017 10.1109/JPROC.2010.2043918 10.1016/j.rse.2018.04.040 10.3390/w11050910 10.1016/j.biosystemseng.2016.04.018 10.1016/j.jhydrol.2013.12.008 10.3390/s17091966 10.5194/hess-12-1323-2008 10.1016/j.jhydrol.2016.10.005 10.1016/j.earscirev.2010.02.004 10.1127/zfg_suppl/2016/0328 10.1016/j.geoderma.2016.09.027 10.1016/j.jhydrol.2013.11.061 10.1109/TGRS.2016.2519842 10.1016/S0924-2716(02)00124-7 10.1016/j.ecolind.2017.10.011 10.1016/S0309-1708(01)00034-3 10.1016/j.rse.2019.111380 10.1016/0034-4257(91)90013-V 10.5194/hess-16-1607-2012 10.1002/2017GL073904 10.2136/sssaj2017.04.0122 10.1016/S0308-521X(02)00051-3 10.1175/JHM-D-13-0200.1 10.1109/TGRS.2019.2961008 10.1007/s11707-009-0023-7 10.1016/j.rse.2007.06.021 10.1109/IGARSS.2019.8900189 10.1175/JHM-D-19-0150.1 10.1016/j.rse.2017.08.023 10.1016/S0034-4257(99)00036-X 10.1029/2018WR024535 10.1111/ejss.12776 10.5194/hess-15-1675-2011 10.5194/essd-9-529-2017 10.1109/TGRS.2012.2186581 10.1109/IGARSS.2017.8128248 10.1016/j.agrformet.2008.06.015 10.1016/j.pce.2015.02.009 10.3390/rs10071030 10.1016/j.rse.2013.02.027 10.1029/2018WR022797 10.3390/s17061455 10.1080/13658810601169899 10.1163/156939302X01119 10.1016/j.isprsjprs.2014.09.002 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs12081242 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection AGRICOLA AGRICOLA - Academic Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_c8f48e96ae3c43febd8f256daf066855 10_3390_rs12081242 |
GeographicLocations | United States--US United States |
GeographicLocations_xml | – name: United States--US – name: United States |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c394t-4a8155c33687ae58b46e9e54ae5d7462ad47178cee0450eb6055bf580882607c3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:08:35 EDT 2025 Fri Jul 11 15:52:20 EDT 2025 Fri Jul 25 12:05:35 EDT 2025 Thu Apr 24 23:11:10 EDT 2025 Tue Jul 01 04:15:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-4a8155c33687ae58b46e9e54ae5d7462ad47178cee0450eb6055bf580882607c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1209-9699 0000-0003-4805-5732 |
OpenAccessLink | https://doaj.org/article/c8f48e96ae3c43febd8f256daf066855 |
PQID | 2391140113 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c8f48e96ae3c43febd8f256daf066855 proquest_miscellaneous_2986193038 proquest_journals_2391140113 crossref_citationtrail_10_3390_rs12081242 crossref_primary_10_3390_rs12081242 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Engman (ref_14) 1991; 35 ref_50 Huang (ref_65) 2019; 575 Sadeghi (ref_72) 2020; 21 ref_56 ref_53 ref_51 Das (ref_68) 2006; 5 Freeman (ref_19) 2018; 57 Wang (ref_24) 2009; 3 Yang (ref_34) 2018; 146 ref_59 Seneviratne (ref_4) 2010; 99 Quiring (ref_8) 2016; 97 Lievens (ref_26) 2017; 44 Montzka (ref_67) 2017; 9 Vereecken (ref_7) 2014; 516 Wagner (ref_13) 2012; 7 Morellos (ref_46) 2016; 152 Ludeno (ref_74) 2018; 212 Ahmed (ref_60) 2011; 2 ref_61 Li (ref_12) 2019; 99 Ochsner (ref_11) 2019; 55 Rabus (ref_32) 2003; 57 Jawson (ref_33) 2007; 30 Cui (ref_2) 2016; 543 Baghdadi (ref_54) 2012; 16 Pierdicca (ref_55) 2014; 7 Fung (ref_73) 2002; 16 Petropoulos (ref_15) 2015; 83 Chuvieco (ref_25) 2011; 115 ref_21 Albergel (ref_71) 2008; 12 Henderson (ref_49) 2005; 124 ref_62 ref_28 Chen (ref_58) 2015; 103 Dorigo (ref_1) 2016; 48 Parinussa (ref_18) 2015; 16 Dorigo (ref_9) 2011; 15 Yang (ref_44) 2003; 76 Michniewicz (ref_39) 2017; 61 Ramcharan (ref_52) 2018; 82 Thoma (ref_22) 2008; 112 Szymura (ref_40) 2018; 85 Huang (ref_45) 2003; 24 ref_35 Santi (ref_23) 2016; 48 Xiao (ref_48) 2008; 148 Entekhabi (ref_16) 2010; 98 Wagner (ref_70) 1999; 70 ref_38 ref_37 Ma (ref_47) 2017; 200 Liang (ref_66) 2016; 176 Huang (ref_69) 2017; 285 Bell (ref_30) 2013; 14 Das (ref_29) 2019; 233 Hosseini (ref_64) 2011; 37 ref_43 Vreugdenhil (ref_20) 2016; 54 Yost (ref_42) 2019; 70 Saradjian (ref_63) 2011; 48 Chaney (ref_41) 2019; 55 Reuter (ref_57) 2007; 21 Mohanty (ref_36) 2001; 24 Leroux (ref_10) 2012; 50 Santi (ref_27) 2018; 65 Paloscia (ref_31) 2013; 134 ref_5 Fang (ref_3) 2014; 516 Calamita (ref_6) 2012; 454 Mecklenburg (ref_17) 2012; 50 |
References_xml | – volume: 97 start-page: 1441 year: 2016 ident: ref_8 article-title: The North American soil moisture database: Development and applications publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-13-00263.1 – volume: 2 start-page: 028001 year: 2011 ident: ref_60 article-title: 2011. Review and evaluation of remote sensing methods for soil-moisture estimation publication-title: SPIE Rev. – ident: ref_5 – volume: 7 start-page: 153 year: 2014 ident: ref_55 article-title: A prototype software package to retrieve soil moisture from Sentinel-1 data by using a bayesian multitemporal algorithm publication-title: IEEE J. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2013.2257698 – volume: 575 start-page: 780 year: 2019 ident: ref_65 article-title: Unraveling Location-specific and Time-dependent Interactions between Soil Water Content and Environmental Factors in Cropped Sandy Soils Using Sentinel-1 and Moisture Probes publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.05.075 – volume: 30 start-page: 366 year: 2007 ident: ref_33 article-title: Spatial patterns from EOF analysis of soil moisture at a large scale and their dependence on soil, land-use, and topographic properties publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2006.05.006 – volume: 24 start-page: 75 year: 2003 ident: ref_45 article-title: A stepwise regression tree for nonlinear approximation: Applications to estimating subpixel land cover publication-title: Int. J. Remote Sens. doi: 10.1080/01431160305001 – volume: 48 start-page: 278 year: 2011 ident: ref_63 article-title: Soil moisture estimation by using multipolarization SAR image publication-title: Adv. Space Res. doi: 10.1016/j.asr.2011.03.029 – volume: 37 start-page: 112 year: 2011 ident: ref_64 article-title: Soil moisture estimation based on integration of optical and SAR images publication-title: Can. J. Remote Sens. doi: 10.5589/m11-015 – volume: 124 start-page: 383 year: 2005 ident: ref_49 article-title: Australia-wide predictions of soil properties using decision trees publication-title: Geoderma doi: 10.1016/j.geoderma.2004.06.007 – volume: 146 start-page: 108 year: 2018 ident: ref_34 article-title: A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.09.006 – ident: ref_59 doi: 10.1371/journal.pone.0169748 – ident: ref_35 doi: 10.3390/rs8120986 – volume: 454 start-page: 101 year: 2012 ident: ref_6 article-title: Electrical resistivity and TDR methods for soil moisture estimation in central Italy test-sites publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.06.001 – volume: 99 start-page: 277 year: 2019 ident: ref_12 article-title: Regional spatial variability of root-zone soil moisture in arid regions and the driving factors—A case study of Xinjiang, China publication-title: Can. J. Soil Sci. doi: 10.1139/cjss-2019-0006 – volume: 176 start-page: 170 year: 2016 ident: ref_66 article-title: Scheduling irrigation using an approach based on the van Genuchten model. Agric publication-title: Water Manag. doi: 10.1016/j.agwat.2016.05.030 – volume: 14 start-page: 977 year: 2013 ident: ref_30 article-title: US Climate Reference Network soil moisture and temperature observations publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-12-0146.1 – volume: 50 start-page: 1354 year: 2012 ident: ref_17 article-title: ESA’s soil moisture and ocean salinity mission: Mission performance and operations publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2187666 – volume: 5 start-page: 296 year: 2006 ident: ref_68 article-title: Root zone soil moisture assessment using remote sensing and vadose zone modeling publication-title: Vadose Zone J. doi: 10.2136/vzj2005.0033 – ident: ref_51 doi: 10.1007/978-0-387-84858-7 – volume: 115 start-page: 1369 year: 2011 ident: ref_25 article-title: Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.01.017 – volume: 98 start-page: 704 year: 2010 ident: ref_16 article-title: The soil moisture active passive (SMAP) mission publication-title: Proc. IEEE doi: 10.1109/JPROC.2010.2043918 – volume: 212 start-page: 90 year: 2018 ident: ref_74 article-title: Assessment of a micro-UAV system for microwave tomography radar imaging publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.04.040 – ident: ref_53 doi: 10.3390/w11050910 – volume: 152 start-page: 104 year: 2016 ident: ref_46 article-title: Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2016.04.018 – volume: 516 start-page: 258 year: 2014 ident: ref_3 article-title: Soil moisture at watershed scale: Remote sensing techniques publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.12.008 – ident: ref_61 doi: 10.3390/s17091966 – volume: 12 start-page: 1323 year: 2008 ident: ref_71 article-title: From near-surface to root-zone soil moisture using an exponential filter: An assessment of the method based on in-situ observations and model simulations publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-12-1323-2008 – volume: 543 start-page: 242 year: 2016 ident: ref_2 article-title: Validation and reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.10.005 – volume: 99 start-page: 125 year: 2010 ident: ref_4 article-title: Investigating soil moisture–climate interactions in a changing climate: A review publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2010.02.004 – volume: 61 start-page: 61 year: 2017 ident: ref_39 article-title: Topographic Wetness Index and Terrain Ruggedness Index in geomorphic characterisation of landslide terrains, on examples from the Sudetes, SW Poland publication-title: Z. für Geomorphol. Suppl. Issues doi: 10.1127/zfg_suppl/2016/0328 – volume: 285 start-page: 76 year: 2017 ident: ref_69 article-title: Monitoring and modelling soil water dynamics using electromagnetic conductivity imaging and the ensemble Kalman filter publication-title: Geoderma doi: 10.1016/j.geoderma.2016.09.027 – volume: 516 start-page: 76 year: 2014 ident: ref_7 article-title: On the spatio-temporal dynamics of soil moisture at the field scale publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.11.061 – volume: 54 start-page: 3513 year: 2016 ident: ref_20 article-title: Analyzing the vegetation parameterization in the TU-Wien ASCAT soil moisture retrieval publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2519842 – volume: 57 start-page: 241 year: 2003 ident: ref_32 article-title: The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/S0924-2716(02)00124-7 – volume: 85 start-page: 172 year: 2018 ident: ref_40 article-title: Topographic wetness index explains soil moisture better than bioindication with Ellenberg’s indicator values publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2017.10.011 – volume: 24 start-page: 1051 year: 2001 ident: ref_36 article-title: Spatio-temporal evolution and time-stable characteristics of soil moisture within remote sensing footprints with varying soil, slope, and vegetation publication-title: Adv. Water Resour. doi: 10.1016/S0309-1708(01)00034-3 – volume: 233 start-page: 111380 year: 2019 ident: ref_29 article-title: The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111380 – volume: 35 start-page: 213 year: 1991 ident: ref_14 article-title: Applications of microwave remote sensing of soil moisture for water resources and agriculture publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(91)90013-V – ident: ref_38 – volume: 16 start-page: 1607 year: 2012 ident: ref_54 article-title: Estimation of soil parameters over bare agriculture areas from C-band polarimetric SAR data using neural networks publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-16-1607-2012 – volume: 44 start-page: 6145 year: 2017 ident: ref_26 article-title: Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL073904 – volume: 82 start-page: 186 year: 2018 ident: ref_52 article-title: Soil property and class maps of the conterminous United States at 100-meter spatial resolution publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2017.04.0122 – volume: 76 start-page: 1101 year: 2003 ident: ref_44 article-title: Application of decision tree technology for image classification using remote sensing data publication-title: Agric. Syst. doi: 10.1016/S0308-521X(02)00051-3 – volume: 16 start-page: 932 year: 2015 ident: ref_18 article-title: A preliminary study toward consistent soil moisture from AMSR2 publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-13-0200.1 – ident: ref_37 doi: 10.1109/TGRS.2019.2961008 – volume: 3 start-page: 237 year: 2009 ident: ref_24 article-title: Satellite remote sensing applications for surface soil moisture monitoring: A review publication-title: Front. Earth Sci. China doi: 10.1007/s11707-009-0023-7 – volume: 112 start-page: 403 year: 2008 ident: ref_22 article-title: Appropriate scale of soil moisture retrieval from high resolution radar imagery for bare and minimally vegetated soils publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.06.021 – volume: 48 start-page: 1 year: 2016 ident: ref_1 article-title: Satellite soil moisture for advancing our understanding of earth system processes and climate change publication-title: Inter. J. Appl. Earth Obs. Geoinf. – ident: ref_21 doi: 10.1109/IGARSS.2019.8900189 – volume: 21 start-page: 241 year: 2020 ident: ref_72 article-title: Global Estimates of Land Surface Water Fluxes from SMOS and SMAP Satellite Soil Moisture Data publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-19-0150.1 – volume: 57 start-page: 520 year: 2018 ident: ref_19 article-title: Toward global soil moisture monitoring with Sentinel-1: Harnessing assets and overcoming obstacles publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 200 start-page: 378 year: 2017 ident: ref_47 article-title: A spatial data mining algorithm for downscaling TMPA 3B43 V7 data over the Qinghai–Tibet Plateau with the effects of systematic anomalies removed publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.08.023 – volume: 7 start-page: 315 year: 2012 ident: ref_13 article-title: Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture publication-title: ISPRS Ann. – volume: 70 start-page: 191 year: 1999 ident: ref_70 article-title: A method for estimating soil moisture from ERS scatterometer and soil data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(99)00036-X – volume: 55 start-page: 4785 year: 2019 ident: ref_11 article-title: Mesoscale Soil Moisture Patterns Revealed Using a Sparse In Situ Network and Regression Kriging publication-title: Water Resour. Res. doi: 10.1029/2018WR024535 – ident: ref_50 – volume: 70 start-page: 565 year: 2019 ident: ref_42 article-title: Effects of carbon on moisture storage in soils of the Wisconsin Central Sands, USA publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12776 – volume: 15 start-page: 1675 year: 2011 ident: ref_9 article-title: The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-15-1675-2011 – volume: 65 start-page: 114 year: 2018 ident: ref_27 article-title: On the synergy of SMAP, AMSR2 AND SENTINEL-1 for retrieving soil moisture publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 9 start-page: 529 year: 2017 ident: ref_67 article-title: A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves publication-title: Earth Syst. Sci. doi: 10.5194/essd-9-529-2017 – volume: 50 start-page: 1572 year: 2012 ident: ref_10 article-title: Evaluation of SMOS soil moisture products over continental US using the SCAN/SNOTEL network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2186581 – ident: ref_62 doi: 10.1109/IGARSS.2017.8128248 – volume: 48 start-page: 61 year: 2016 ident: ref_23 article-title: Application of artificial neural networks for the soil moisture retrieval from active and passive microwave spaceborne sensors publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 148 start-page: 1827 year: 2008 ident: ref_48 article-title: Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2008.06.015 – volume: 83 start-page: 36 year: 2015 ident: ref_15 article-title: Surface soil moisture retrievals from remote sensing: Current status, products & future trends publication-title: Phys. Chem. Earth Parts A/B/C doi: 10.1016/j.pce.2015.02.009 – ident: ref_28 doi: 10.3390/rs10071030 – volume: 134 start-page: 234 year: 2013 ident: ref_31 article-title: Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.02.027 – ident: ref_43 – volume: 55 start-page: 2916 year: 2019 ident: ref_41 article-title: POLARIS soil properties: 30-m probabilistic maps of soil properties over the contiguous United States publication-title: Water Resour. Res. doi: 10.1029/2018WR022797 – ident: ref_56 doi: 10.3390/s17061455 – volume: 21 start-page: 983 year: 2007 ident: ref_57 article-title: An evaluation of void-filling interpolation methods for SRTM data publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658810601169899 – volume: 16 start-page: 689 year: 2002 ident: ref_73 article-title: An improved IEM model for bistatic scattering from rough surfaces publication-title: J. Electromagn. Waves Appl. doi: 10.1163/156939302X01119 – volume: 103 start-page: 7 year: 2015 ident: ref_58 article-title: Global land cover mapping at 30 m resolution: A POK-based operational approach publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2014.09.002 |
SSID | ssj0000331904 |
Score | 2.3441882 |
Snippet | Progress in sensor technologies has allowed real-time monitoring of soil water. It is a challenge to model soil water content based on remote sensing data.... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1242 |
SubjectTerms | Algorithms artificial intelligence Backscattering climate crops data collection data fusion Datasets ecological monitoring empirical models Environmental monitoring Hydrology Land cover landscapes Learning algorithms Machine learning Mathematical models model validation Moisture content monitoring Parameters Pasture pastures Precipitation regression analysis Remote sensing Retrieval Satellites sensor synergy Sensors shrublands shrubs Soil moisture soil moisture network Soil properties Soil surfaces Soil water soil water conservation soil water content Soils spatial data Spatial discrimination Spatial resolution Stations Terrain Topography United States Vegetation Water content |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fj9MwDI9g9wAviL9icCAjeOGhd22SpukTuh07nZCY0I1J91alaQKTRju67uE-Ct8WO8t2QiDeqsRNpdqOf3Ycm7F3MmtUZgqXpEaJRJpMJbqUWaJ9LRzPvOWG7g5_nqnLhfx0nV_HgNsmplXu98SwUTedpRj5KReolugMZOLD-mdCXaPodDW20LjLjnAL1nrEjibT2ZerQ5QlFShiqdzVJRXo35_2m4ynZNX4H5YoFOz_az8ORubiIXsQ0SGc7dj5iN1x7WN2LzYq_37zhP2aIprbB47AtDD9sV6GKh9AXc1WgBgU5tveG-tg3i1pGBm57R1chd5ZKFhgBkDYB4uT-Qmcr5aIWWk2XvyD2S4xHEIyAcwpm6h1qySDCV3Ht6EeJ365gbPWUsui_gY-msE8ZYuL6dfzyyR2V0isKOWAfNGIJawQShfG5bqWypUul_jcFFJx06DdKjQaUUR9qavR78lrn2vC5CotrHjGRm3XuucMRINvp9ynSCQtYgwtnMmVUY4LXNGP2fv9n65sLD1OHTBWFbogxJXqlitj9vZAu94V3Pgn1YQYdqCgItlhoOu_VVHnKqu91K5UxgkrhXd1oz0ivMZ4xFk6z8fseM_uKmruprqVszF7c5hGnaODFNO6bos0pUa_E42_fvH_JV6y-5z885Dpc8xGQ791rxDEDPXrKKm_AYYG8jI priority: 102 providerName: ProQuest |
Title | Establishing an Empirical Model for Surface Soil Moisture Retrieval at the U.S. Climate Reference Network Using Sentinel-1 Backscatter and Ancillary Data |
URI | https://www.proquest.com/docview/2391140113 https://www.proquest.com/docview/2986193038 https://doaj.org/article/c8f48e96ae3c43febd8f256daf066855 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF1BOcAF8SkCJRoEFw5u7d31en1M2oQK0QjVROrNWq9n1UjBqVzn0J_Cv2V27YQikLhwsmWPP-QZ73tjz75h7INMapWYDKPYKBFJk6hI5zKJtKsE8sRZbvzc4fOFOlvKz5fp5Z1WX74mrJcH7h_csdVOasyVQWGlcFjV2hFM18YRWOo0qJcS5t1JpsIYLCi0YtnrkQrK64_bm4THHs34bwgUhPr_GIcDuMyfsMcDK4RJfzdP2T1snrGHQ4Pyq9vn7MeMWNzugxGYBmbfr1dB3QN8N7M1EPeEYts6YxGKzcpvJgduW4SL0DOLAgpMB0T3YHlUHMHJekVc1e8dJvzBoi8Ih1BEAIWvImpwHSUw9dPwbdDhpCvXMGmsb1XU3sKp6cwLtpzPvp2cRUNXhciKXHbkD00cwgqhdGYw1ZVUmGMqab3OpOKmJrzKNIEnsb0YK8p30sql2nNxFWdWvGQHzabBVwxETUfH3MVkJC1xCy3QpMoo5ILO6Ebs4-5Jl3aQHPedL9YlpR7eK-Uvr4zY-73tdS-08VerqXfY3sKLY4cNFDLlEDLlv0JmxA537i6HN_am5IKGfUo2EzFi7_a76V3zP1BMg5st2eSa8k0Cff36f9zHG_aI--w91AEdsoOu3eJbojhdNWb39fzTmD2YnJ5_KWg5nS2-XoxDjP8Esfv-iA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELaW5bBcEL-isIARcOCQ3cR2HOeA0P60dNndHuhW2lvWcWyoVJKStkJ9FF6CZ2TGSbpCIG57i-KpU2XGM5-dmfkIeSOiQkY6sUGoJQ-EjmSgUhEFyuXcssgZprF2-HwkhxPx6TK-3CK_uloYTKvsfKJ31EVl8Ix8n3FYlrAZiPiH-fcAWaPw62pHodGYxald_4At2-L9yTHo9y1jg_7F0TBoWQUCw1OxhP-jIIYazqVKtI1VLqRNbSzgukiEZLoAf50oCB6AdkKbA96PcxcrxKIyTAyHeW-R24JDJMfK9MHHzZlOyMGgQ9F0QYXxcL9eRCzEGMr-iHueHuAv7-9D2uAeudtiUXrQGM99smXLB2SnpUX_un5IfvYBO3bHVFSXtP9tPvU9RShyqM0oIF46XtVOG0vH1RRvg9msaks_e6YuMGOqlxRAJp3sjffo0WwKCBlH2zJDOmrS0KlPXaBjzF0q7SyI6CEW_xvf_ROeXNCD0iBBUr2mx3qpH5HJjbz1x2S7rEr7hFBewK9D5kIQEgYQjeJWx1JLyzjM6HrkXfemM9M2Oke-jVkGGx7USnatlR55vZGdN-09_il1iArbSGBLbn-jqr9k7QrPjHJC2VRqy43gzuaFcoAnC-0A1ak47pHdTt1Z6ycW2bVV98irzTCscPxso0tbrUAmVbDLBaihnv5_ipdkZ3hxfpadnYxOn5E7DE8GfI7RLtle1iv7HODTMn_hbZaSq5teJL8BNBAsMw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJwEviL-iY4AR8MBD1sR2HOcBoXVttTGoppVKe8scx4ZKXVLSVqgfha_Cp-MufzohEG97i5KLE-XufL9zzvcj5I0IMhnoyHq-ltwTOpCeikXgKZdyywJnmMa9w5_H8ngqPl6EFzvkV7sXBssq2zmxmqizwuAaeY9xcEtIBgLec01ZxNlg9GHx3UMGKfzT2tJp1CZyajc_IH1bvj8ZgK7fMjYafjk69hqGAc_wWKzg3RTEU8O5VJG2oUqFtLENBRxnkZBMZzB3RwoCCSAf36aA_cPUhQpxqfQjw2HcW2Q3wqyoQ3b7w_HZ-XaFx-dg3r6oe6JyHvu9chkwHyMq-yMKVmQBf8WCKsCN7pN7DTKlh7UpPSA7Nn9I7jQk6d82j8jPISDJdtGK6pwOrxazqsMIRUa1OQX8Syfr0mlj6aSY4WkwonVp6XnF2wVGTfWKAuSk04PJAT2azwAv49Vm0yEd10XptCpkoBOsZMrt3AtoH1sBmKoXKDw5o4e5QbqkckMHeqUfk-mNfPcnpJMXuX1KKM_gbp85H4SEAXyjuNWh1NIyDiO6LnnXfunENG3PkX1jnkD6g1pJrrXSJa-3sou62cc_pfqosK0ENuiuThTl16Tx98QoJ5SNpbbcCO5smikH6DLTDjCeCsMu2W_VnTSzxjK5tvEuebW9DP6OP3F0bos1yMQKcl4AHmrv_0O8JLfBQZJPJ-PTZ-Quw2WCquBon3RW5do-Byy1Sl80RkvJ5U37yW8jEzHF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Establishing+an+Empirical+Model+for+Surface+Soil+Moisture+Retrieval+at+the+U.S.+Climate+Reference+Network+Using+Sentinel-1+Backscatter+and+Ancillary+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Chatterjee%2C+Sumanta&rft.au=Huang%2C+Jingyi&rft.au=Hartemink%2C+Alfred+E.&rft.date=2020-04-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=12&rft.issue=8&rft.spage=1242&rft_id=info:doi/10.3390%2Frs12081242&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs12081242 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |