Establishing an Empirical Model for Surface Soil Moisture Retrieval at the U.S. Climate Reference Network Using Sentinel-1 Backscatter and Ancillary Data

Progress in sensor technologies has allowed real-time monitoring of soil water. It is a challenge to model soil water content based on remote sensing data. Here, we retrieved and modeled surface soil moisture (SSM) at the U.S. Climate Reference Network (USCRN) stations using Sentinel-1 backscatter d...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 12; no. 8; p. 1242
Main Authors Chatterjee, Sumanta, Huang, Jingyi, Hartemink, Alfred E.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Progress in sensor technologies has allowed real-time monitoring of soil water. It is a challenge to model soil water content based on remote sensing data. Here, we retrieved and modeled surface soil moisture (SSM) at the U.S. Climate Reference Network (USCRN) stations using Sentinel-1 backscatter data from 2016 to 2018 and ancillary data. Empirical machine learning models were established between soil water content measured at the USCRN stations with Sentinel-1 data from 2016 to 2017, the National Land Cover Dataset, terrain parameters, and Polaris soil data, and were evaluated in 2018 at the same USCRN stations. The Cubist model performed better than the multiple linear regression (MLR) and Random Forest (RF) model (R2 = 0.68 and RMSE = 0.06 m3 m-3 for validation). The Cubist model performed best in Shrub/Scrub, followed by Herbaceous and Cultivated Crops but poorly in Hay/Pasture. The success of SSM retrieval was mostly attributed to soil properties, followed by Sentinel-1 backscatter data, terrain parameters, and land cover. The approach shows the potential for retrieving SSM using Sentinel-1 data in a combination of high-resolution ancillary data across the conterminous United States (CONUS). Future work is required to improve the model performance by including more SSM network measurements, assimilating Sentinel-1 data with other microwave, optical and thermal remote sensing products. There is also a need to improve the spatial resolution and accuracy of land surface parameter products (e.g., soil properties and terrain parameters) at the regional and global scales.
AbstractList Progress in sensor technologies has allowed real-time monitoring of soil water. It is a challenge to model soil water content based on remote sensing data. Here, we retrieved and modeled surface soil moisture (SSM) at the U.S. Climate Reference Network (USCRN) stations using Sentinel-1 backscatter data from 2016 to 2018 and ancillary data. Empirical machine learning models were established between soil water content measured at the USCRN stations with Sentinel-1 data from 2016 to 2017, the National Land Cover Dataset, terrain parameters, and Polaris soil data, and were evaluated in 2018 at the same USCRN stations. The Cubist model performed better than the multiple linear regression (MLR) and Random Forest (RF) model (R² = 0.68 and RMSE = 0.06 m³ m⁻³ for validation). The Cubist model performed best in Shrub/Scrub, followed by Herbaceous and Cultivated Crops but poorly in Hay/Pasture. The success of SSM retrieval was mostly attributed to soil properties, followed by Sentinel-1 backscatter data, terrain parameters, and land cover. The approach shows the potential for retrieving SSM using Sentinel-1 data in a combination of high-resolution ancillary data across the conterminous United States (CONUS). Future work is required to improve the model performance by including more SSM network measurements, assimilating Sentinel-1 data with other microwave, optical and thermal remote sensing products. There is also a need to improve the spatial resolution and accuracy of land surface parameter products (e.g., soil properties and terrain parameters) at the regional and global scales.
Progress in sensor technologies has allowed real-time monitoring of soil water. It is a challenge to model soil water content based on remote sensing data. Here, we retrieved and modeled surface soil moisture (SSM) at the U.S. Climate Reference Network (USCRN) stations using Sentinel-1 backscatter data from 2016 to 2018 and ancillary data. Empirical machine learning models were established between soil water content measured at the USCRN stations with Sentinel-1 data from 2016 to 2017, the National Land Cover Dataset, terrain parameters, and Polaris soil data, and were evaluated in 2018 at the same USCRN stations. The Cubist model performed better than the multiple linear regression (MLR) and Random Forest (RF) model (R2 = 0.68 and RMSE = 0.06 m3 m-3 for validation). The Cubist model performed best in Shrub/Scrub, followed by Herbaceous and Cultivated Crops but poorly in Hay/Pasture. The success of SSM retrieval was mostly attributed to soil properties, followed by Sentinel-1 backscatter data, terrain parameters, and land cover. The approach shows the potential for retrieving SSM using Sentinel-1 data in a combination of high-resolution ancillary data across the conterminous United States (CONUS). Future work is required to improve the model performance by including more SSM network measurements, assimilating Sentinel-1 data with other microwave, optical and thermal remote sensing products. There is also a need to improve the spatial resolution and accuracy of land surface parameter products (e.g., soil properties and terrain parameters) at the regional and global scales.
Author Hartemink, Alfred E.
Chatterjee, Sumanta
Huang, Jingyi
Author_xml – sequence: 1
  givenname: Sumanta
  orcidid: 0000-0003-4805-5732
  surname: Chatterjee
  fullname: Chatterjee, Sumanta
– sequence: 2
  givenname: Jingyi
  orcidid: 0000-0002-1209-9699
  surname: Huang
  fullname: Huang, Jingyi
– sequence: 3
  givenname: Alfred E.
  surname: Hartemink
  fullname: Hartemink, Alfred E.
BookMark eNptkd1u1DAQhSNUJErpDU9giRuElMW_iXNZtgtUKiCx7LU1cSatt1l7sR1QH4W3xcuCQBW-8Wj8nTM-mqfViQ8eq-o5owshOvo6JsapZlzyR9Uppy2vJe_4yT_1k-o8pS0tRwjWUXla_VilDP3k0q3zNwQ8We32LjoLE_kQBpzIGCJZz3EEi2Qd3KHtUp4jks-Yo8NvhYRM8i2SzWK9IMvJ7SAfXkeM6IvqI-bvId6RTTqMWKPPzuNUM_IG7F2ykDPGMnkgF966aYJ4Ty4hw7Pq8QhTwvPf91m1ebv6snxfX396d7W8uK6t6GSuJWimlBWi0S2g0r1ssEMlSz20suEwyJa12iJSqSj2DVWqH5WmWvOGtlacVVdH3yHA1uxj-X68NwGc-dUI8cZAzM5OaKwepcauARRWihH7QY9cNQOMtGm0UsXr5dFrH8PXGVM2O5csllAew5wM73TDOkGFLuiLB-g2zNGXpIaLjjFJGROFokfKxpBSxNFYlyG74HMENxlGzWH15u_qi-TVA8mfTP-BfwInfq-9
CitedBy_id crossref_primary_10_1080_01431161_2024_2329529
crossref_primary_10_48084_etasr_6986
crossref_primary_10_3390_agronomy14030421
crossref_primary_10_3390_w12082160
crossref_primary_10_1080_22797254_2023_2300985
crossref_primary_10_1016_j_jhydrol_2022_129020
crossref_primary_10_1016_j_gsd_2024_101177
crossref_primary_10_3390_rs12172815
crossref_primary_10_3390_rs13112088
crossref_primary_10_3390_rs13112099
crossref_primary_10_1016_j_srs_2024_100135
crossref_primary_10_1109_JSTARS_2024_3422071
crossref_primary_10_1016_j_catena_2021_105190
crossref_primary_10_1016_j_catena_2022_106485
crossref_primary_10_3390_rs14164042
crossref_primary_10_3390_w13152003
crossref_primary_10_1142_S0219467823500481
crossref_primary_10_1007_s40003_023_00691_6
crossref_primary_10_1007_s00704_021_03710_0
crossref_primary_10_3390_rs14030792
Cites_doi 10.1175/BAMS-D-13-00263.1
10.1109/JSTARS.2013.2257698
10.1016/j.jhydrol.2019.05.075
10.1016/j.advwatres.2006.05.006
10.1080/01431160305001
10.1016/j.asr.2011.03.029
10.5589/m11-015
10.1016/j.geoderma.2004.06.007
10.1016/j.isprsjprs.2018.09.006
10.1371/journal.pone.0169748
10.3390/rs8120986
10.1016/j.jhydrol.2012.06.001
10.1139/cjss-2019-0006
10.1016/j.agwat.2016.05.030
10.1175/JHM-D-12-0146.1
10.1109/TGRS.2012.2187666
10.2136/vzj2005.0033
10.1007/978-0-387-84858-7
10.1016/j.rse.2011.01.017
10.1109/JPROC.2010.2043918
10.1016/j.rse.2018.04.040
10.3390/w11050910
10.1016/j.biosystemseng.2016.04.018
10.1016/j.jhydrol.2013.12.008
10.3390/s17091966
10.5194/hess-12-1323-2008
10.1016/j.jhydrol.2016.10.005
10.1016/j.earscirev.2010.02.004
10.1127/zfg_suppl/2016/0328
10.1016/j.geoderma.2016.09.027
10.1016/j.jhydrol.2013.11.061
10.1109/TGRS.2016.2519842
10.1016/S0924-2716(02)00124-7
10.1016/j.ecolind.2017.10.011
10.1016/S0309-1708(01)00034-3
10.1016/j.rse.2019.111380
10.1016/0034-4257(91)90013-V
10.5194/hess-16-1607-2012
10.1002/2017GL073904
10.2136/sssaj2017.04.0122
10.1016/S0308-521X(02)00051-3
10.1175/JHM-D-13-0200.1
10.1109/TGRS.2019.2961008
10.1007/s11707-009-0023-7
10.1016/j.rse.2007.06.021
10.1109/IGARSS.2019.8900189
10.1175/JHM-D-19-0150.1
10.1016/j.rse.2017.08.023
10.1016/S0034-4257(99)00036-X
10.1029/2018WR024535
10.1111/ejss.12776
10.5194/hess-15-1675-2011
10.5194/essd-9-529-2017
10.1109/TGRS.2012.2186581
10.1109/IGARSS.2017.8128248
10.1016/j.agrformet.2008.06.015
10.1016/j.pce.2015.02.009
10.3390/rs10071030
10.1016/j.rse.2013.02.027
10.1029/2018WR022797
10.3390/s17061455
10.1080/13658810601169899
10.1163/156939302X01119
10.1016/j.isprsjprs.2014.09.002
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs12081242
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
AGRICOLA
AGRICOLA - Academic
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_c8f48e96ae3c43febd8f256daf066855
10_3390_rs12081242
GeographicLocations United States--US
United States
GeographicLocations_xml – name: United States--US
– name: United States
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-4a8155c33687ae58b46e9e54ae5d7462ad47178cee0450eb6055bf580882607c3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:08:35 EDT 2025
Fri Jul 11 15:52:20 EDT 2025
Fri Jul 25 12:05:35 EDT 2025
Thu Apr 24 23:11:10 EDT 2025
Tue Jul 01 04:15:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-4a8155c33687ae58b46e9e54ae5d7462ad47178cee0450eb6055bf580882607c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1209-9699
0000-0003-4805-5732
OpenAccessLink https://doaj.org/article/c8f48e96ae3c43febd8f256daf066855
PQID 2391140113
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_c8f48e96ae3c43febd8f256daf066855
proquest_miscellaneous_2986193038
proquest_journals_2391140113
crossref_citationtrail_10_3390_rs12081242
crossref_primary_10_3390_rs12081242
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Engman (ref_14) 1991; 35
ref_50
Huang (ref_65) 2019; 575
Sadeghi (ref_72) 2020; 21
ref_56
ref_53
ref_51
Das (ref_68) 2006; 5
Freeman (ref_19) 2018; 57
Wang (ref_24) 2009; 3
Yang (ref_34) 2018; 146
ref_59
Seneviratne (ref_4) 2010; 99
Quiring (ref_8) 2016; 97
Lievens (ref_26) 2017; 44
Montzka (ref_67) 2017; 9
Vereecken (ref_7) 2014; 516
Wagner (ref_13) 2012; 7
Morellos (ref_46) 2016; 152
Ludeno (ref_74) 2018; 212
Ahmed (ref_60) 2011; 2
ref_61
Li (ref_12) 2019; 99
Ochsner (ref_11) 2019; 55
Rabus (ref_32) 2003; 57
Jawson (ref_33) 2007; 30
Cui (ref_2) 2016; 543
Baghdadi (ref_54) 2012; 16
Pierdicca (ref_55) 2014; 7
Fung (ref_73) 2002; 16
Petropoulos (ref_15) 2015; 83
Chuvieco (ref_25) 2011; 115
ref_21
Albergel (ref_71) 2008; 12
Henderson (ref_49) 2005; 124
ref_62
ref_28
Chen (ref_58) 2015; 103
Dorigo (ref_1) 2016; 48
Parinussa (ref_18) 2015; 16
Dorigo (ref_9) 2011; 15
Yang (ref_44) 2003; 76
Michniewicz (ref_39) 2017; 61
Ramcharan (ref_52) 2018; 82
Thoma (ref_22) 2008; 112
Szymura (ref_40) 2018; 85
Huang (ref_45) 2003; 24
ref_35
Santi (ref_23) 2016; 48
Xiao (ref_48) 2008; 148
Entekhabi (ref_16) 2010; 98
Wagner (ref_70) 1999; 70
ref_38
ref_37
Ma (ref_47) 2017; 200
Liang (ref_66) 2016; 176
Huang (ref_69) 2017; 285
Bell (ref_30) 2013; 14
Das (ref_29) 2019; 233
Hosseini (ref_64) 2011; 37
ref_43
Vreugdenhil (ref_20) 2016; 54
Yost (ref_42) 2019; 70
Saradjian (ref_63) 2011; 48
Chaney (ref_41) 2019; 55
Reuter (ref_57) 2007; 21
Mohanty (ref_36) 2001; 24
Leroux (ref_10) 2012; 50
Santi (ref_27) 2018; 65
Paloscia (ref_31) 2013; 134
ref_5
Fang (ref_3) 2014; 516
Calamita (ref_6) 2012; 454
Mecklenburg (ref_17) 2012; 50
References_xml – volume: 97
  start-page: 1441
  year: 2016
  ident: ref_8
  article-title: The North American soil moisture database: Development and applications
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-13-00263.1
– volume: 2
  start-page: 028001
  year: 2011
  ident: ref_60
  article-title: 2011. Review and evaluation of remote sensing methods for soil-moisture estimation
  publication-title: SPIE Rev.
– ident: ref_5
– volume: 7
  start-page: 153
  year: 2014
  ident: ref_55
  article-title: A prototype software package to retrieve soil moisture from Sentinel-1 data by using a bayesian multitemporal algorithm
  publication-title: IEEE J. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2013.2257698
– volume: 575
  start-page: 780
  year: 2019
  ident: ref_65
  article-title: Unraveling Location-specific and Time-dependent Interactions between Soil Water Content and Environmental Factors in Cropped Sandy Soils Using Sentinel-1 and Moisture Probes
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.05.075
– volume: 30
  start-page: 366
  year: 2007
  ident: ref_33
  article-title: Spatial patterns from EOF analysis of soil moisture at a large scale and their dependence on soil, land-use, and topographic properties
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2006.05.006
– volume: 24
  start-page: 75
  year: 2003
  ident: ref_45
  article-title: A stepwise regression tree for nonlinear approximation: Applications to estimating subpixel land cover
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160305001
– volume: 48
  start-page: 278
  year: 2011
  ident: ref_63
  article-title: Soil moisture estimation by using multipolarization SAR image
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2011.03.029
– volume: 37
  start-page: 112
  year: 2011
  ident: ref_64
  article-title: Soil moisture estimation based on integration of optical and SAR images
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m11-015
– volume: 124
  start-page: 383
  year: 2005
  ident: ref_49
  article-title: Australia-wide predictions of soil properties using decision trees
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.06.007
– volume: 146
  start-page: 108
  year: 2018
  ident: ref_34
  article-title: A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.09.006
– ident: ref_59
  doi: 10.1371/journal.pone.0169748
– ident: ref_35
  doi: 10.3390/rs8120986
– volume: 454
  start-page: 101
  year: 2012
  ident: ref_6
  article-title: Electrical resistivity and TDR methods for soil moisture estimation in central Italy test-sites
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.06.001
– volume: 99
  start-page: 277
  year: 2019
  ident: ref_12
  article-title: Regional spatial variability of root-zone soil moisture in arid regions and the driving factors—A case study of Xinjiang, China
  publication-title: Can. J. Soil Sci.
  doi: 10.1139/cjss-2019-0006
– volume: 176
  start-page: 170
  year: 2016
  ident: ref_66
  article-title: Scheduling irrigation using an approach based on the van Genuchten model. Agric
  publication-title: Water Manag.
  doi: 10.1016/j.agwat.2016.05.030
– volume: 14
  start-page: 977
  year: 2013
  ident: ref_30
  article-title: US Climate Reference Network soil moisture and temperature observations
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-12-0146.1
– volume: 50
  start-page: 1354
  year: 2012
  ident: ref_17
  article-title: ESA’s soil moisture and ocean salinity mission: Mission performance and operations
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2187666
– volume: 5
  start-page: 296
  year: 2006
  ident: ref_68
  article-title: Root zone soil moisture assessment using remote sensing and vadose zone modeling
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2005.0033
– ident: ref_51
  doi: 10.1007/978-0-387-84858-7
– volume: 115
  start-page: 1369
  year: 2011
  ident: ref_25
  article-title: Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.01.017
– volume: 98
  start-page: 704
  year: 2010
  ident: ref_16
  article-title: The soil moisture active passive (SMAP) mission
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2010.2043918
– volume: 212
  start-page: 90
  year: 2018
  ident: ref_74
  article-title: Assessment of a micro-UAV system for microwave tomography radar imaging
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.040
– ident: ref_53
  doi: 10.3390/w11050910
– volume: 152
  start-page: 104
  year: 2016
  ident: ref_46
  article-title: Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2016.04.018
– volume: 516
  start-page: 258
  year: 2014
  ident: ref_3
  article-title: Soil moisture at watershed scale: Remote sensing techniques
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.12.008
– ident: ref_61
  doi: 10.3390/s17091966
– volume: 12
  start-page: 1323
  year: 2008
  ident: ref_71
  article-title: From near-surface to root-zone soil moisture using an exponential filter: An assessment of the method based on in-situ observations and model simulations
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-12-1323-2008
– volume: 543
  start-page: 242
  year: 2016
  ident: ref_2
  article-title: Validation and reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.10.005
– volume: 99
  start-page: 125
  year: 2010
  ident: ref_4
  article-title: Investigating soil moisture–climate interactions in a changing climate: A review
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2010.02.004
– volume: 61
  start-page: 61
  year: 2017
  ident: ref_39
  article-title: Topographic Wetness Index and Terrain Ruggedness Index in geomorphic characterisation of landslide terrains, on examples from the Sudetes, SW Poland
  publication-title: Z. für Geomorphol. Suppl. Issues
  doi: 10.1127/zfg_suppl/2016/0328
– volume: 285
  start-page: 76
  year: 2017
  ident: ref_69
  article-title: Monitoring and modelling soil water dynamics using electromagnetic conductivity imaging and the ensemble Kalman filter
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.09.027
– volume: 516
  start-page: 76
  year: 2014
  ident: ref_7
  article-title: On the spatio-temporal dynamics of soil moisture at the field scale
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.11.061
– volume: 54
  start-page: 3513
  year: 2016
  ident: ref_20
  article-title: Analyzing the vegetation parameterization in the TU-Wien ASCAT soil moisture retrieval
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2519842
– volume: 57
  start-page: 241
  year: 2003
  ident: ref_32
  article-title: The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/S0924-2716(02)00124-7
– volume: 85
  start-page: 172
  year: 2018
  ident: ref_40
  article-title: Topographic wetness index explains soil moisture better than bioindication with Ellenberg’s indicator values
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2017.10.011
– volume: 24
  start-page: 1051
  year: 2001
  ident: ref_36
  article-title: Spatio-temporal evolution and time-stable characteristics of soil moisture within remote sensing footprints with varying soil, slope, and vegetation
  publication-title: Adv. Water Resour.
  doi: 10.1016/S0309-1708(01)00034-3
– volume: 233
  start-page: 111380
  year: 2019
  ident: ref_29
  article-title: The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111380
– volume: 35
  start-page: 213
  year: 1991
  ident: ref_14
  article-title: Applications of microwave remote sensing of soil moisture for water resources and agriculture
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(91)90013-V
– ident: ref_38
– volume: 16
  start-page: 1607
  year: 2012
  ident: ref_54
  article-title: Estimation of soil parameters over bare agriculture areas from C-band polarimetric SAR data using neural networks
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-16-1607-2012
– volume: 44
  start-page: 6145
  year: 2017
  ident: ref_26
  article-title: Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL073904
– volume: 82
  start-page: 186
  year: 2018
  ident: ref_52
  article-title: Soil property and class maps of the conterminous United States at 100-meter spatial resolution
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2017.04.0122
– volume: 76
  start-page: 1101
  year: 2003
  ident: ref_44
  article-title: Application of decision tree technology for image classification using remote sensing data
  publication-title: Agric. Syst.
  doi: 10.1016/S0308-521X(02)00051-3
– volume: 16
  start-page: 932
  year: 2015
  ident: ref_18
  article-title: A preliminary study toward consistent soil moisture from AMSR2
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-13-0200.1
– ident: ref_37
  doi: 10.1109/TGRS.2019.2961008
– volume: 3
  start-page: 237
  year: 2009
  ident: ref_24
  article-title: Satellite remote sensing applications for surface soil moisture monitoring: A review
  publication-title: Front. Earth Sci. China
  doi: 10.1007/s11707-009-0023-7
– volume: 112
  start-page: 403
  year: 2008
  ident: ref_22
  article-title: Appropriate scale of soil moisture retrieval from high resolution radar imagery for bare and minimally vegetated soils
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.06.021
– volume: 48
  start-page: 1
  year: 2016
  ident: ref_1
  article-title: Satellite soil moisture for advancing our understanding of earth system processes and climate change
  publication-title: Inter. J. Appl. Earth Obs. Geoinf.
– ident: ref_21
  doi: 10.1109/IGARSS.2019.8900189
– volume: 21
  start-page: 241
  year: 2020
  ident: ref_72
  article-title: Global Estimates of Land Surface Water Fluxes from SMOS and SMAP Satellite Soil Moisture Data
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-19-0150.1
– volume: 57
  start-page: 520
  year: 2018
  ident: ref_19
  article-title: Toward global soil moisture monitoring with Sentinel-1: Harnessing assets and overcoming obstacles
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 200
  start-page: 378
  year: 2017
  ident: ref_47
  article-title: A spatial data mining algorithm for downscaling TMPA 3B43 V7 data over the Qinghai–Tibet Plateau with the effects of systematic anomalies removed
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.08.023
– volume: 7
  start-page: 315
  year: 2012
  ident: ref_13
  article-title: Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture
  publication-title: ISPRS Ann.
– volume: 70
  start-page: 191
  year: 1999
  ident: ref_70
  article-title: A method for estimating soil moisture from ERS scatterometer and soil data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(99)00036-X
– volume: 55
  start-page: 4785
  year: 2019
  ident: ref_11
  article-title: Mesoscale Soil Moisture Patterns Revealed Using a Sparse In Situ Network and Regression Kriging
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR024535
– ident: ref_50
– volume: 70
  start-page: 565
  year: 2019
  ident: ref_42
  article-title: Effects of carbon on moisture storage in soils of the Wisconsin Central Sands, USA
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12776
– volume: 15
  start-page: 1675
  year: 2011
  ident: ref_9
  article-title: The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-15-1675-2011
– volume: 65
  start-page: 114
  year: 2018
  ident: ref_27
  article-title: On the synergy of SMAP, AMSR2 AND SENTINEL-1 for retrieving soil moisture
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 9
  start-page: 529
  year: 2017
  ident: ref_67
  article-title: A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves
  publication-title: Earth Syst. Sci.
  doi: 10.5194/essd-9-529-2017
– volume: 50
  start-page: 1572
  year: 2012
  ident: ref_10
  article-title: Evaluation of SMOS soil moisture products over continental US using the SCAN/SNOTEL network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2186581
– ident: ref_62
  doi: 10.1109/IGARSS.2017.8128248
– volume: 48
  start-page: 61
  year: 2016
  ident: ref_23
  article-title: Application of artificial neural networks for the soil moisture retrieval from active and passive microwave spaceborne sensors
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 148
  start-page: 1827
  year: 2008
  ident: ref_48
  article-title: Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2008.06.015
– volume: 83
  start-page: 36
  year: 2015
  ident: ref_15
  article-title: Surface soil moisture retrievals from remote sensing: Current status, products & future trends
  publication-title: Phys. Chem. Earth Parts A/B/C
  doi: 10.1016/j.pce.2015.02.009
– ident: ref_28
  doi: 10.3390/rs10071030
– volume: 134
  start-page: 234
  year: 2013
  ident: ref_31
  article-title: Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.02.027
– ident: ref_43
– volume: 55
  start-page: 2916
  year: 2019
  ident: ref_41
  article-title: POLARIS soil properties: 30-m probabilistic maps of soil properties over the contiguous United States
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR022797
– ident: ref_56
  doi: 10.3390/s17061455
– volume: 21
  start-page: 983
  year: 2007
  ident: ref_57
  article-title: An evaluation of void-filling interpolation methods for SRTM data
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658810601169899
– volume: 16
  start-page: 689
  year: 2002
  ident: ref_73
  article-title: An improved IEM model for bistatic scattering from rough surfaces
  publication-title: J. Electromagn. Waves Appl.
  doi: 10.1163/156939302X01119
– volume: 103
  start-page: 7
  year: 2015
  ident: ref_58
  article-title: Global land cover mapping at 30 m resolution: A POK-based operational approach
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.09.002
SSID ssj0000331904
Score 2.3441882
Snippet Progress in sensor technologies has allowed real-time monitoring of soil water. It is a challenge to model soil water content based on remote sensing data....
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1242
SubjectTerms Algorithms
artificial intelligence
Backscattering
climate
crops
data collection
data fusion
Datasets
ecological monitoring
empirical models
Environmental monitoring
Hydrology
Land cover
landscapes
Learning algorithms
Machine learning
Mathematical models
model validation
Moisture content
monitoring
Parameters
Pasture
pastures
Precipitation
regression analysis
Remote sensing
Retrieval
Satellites
sensor synergy
Sensors
shrublands
shrubs
Soil moisture
soil moisture network
Soil properties
Soil surfaces
Soil water
soil water conservation
soil water content
Soils
spatial data
Spatial discrimination
Spatial resolution
Stations
Terrain
Topography
United States
Vegetation
Water content
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fj9MwDI9g9wAviL9icCAjeOGhd22SpukTuh07nZCY0I1J91alaQKTRju67uE-Ct8WO8t2QiDeqsRNpdqOf3Ycm7F3MmtUZgqXpEaJRJpMJbqUWaJ9LRzPvOWG7g5_nqnLhfx0nV_HgNsmplXu98SwUTedpRj5KReolugMZOLD-mdCXaPodDW20LjLjnAL1nrEjibT2ZerQ5QlFShiqdzVJRXo35_2m4ynZNX4H5YoFOz_az8ORubiIXsQ0SGc7dj5iN1x7WN2LzYq_37zhP2aIprbB47AtDD9sV6GKh9AXc1WgBgU5tveG-tg3i1pGBm57R1chd5ZKFhgBkDYB4uT-Qmcr5aIWWk2XvyD2S4xHEIyAcwpm6h1qySDCV3Ht6EeJ365gbPWUsui_gY-msE8ZYuL6dfzyyR2V0isKOWAfNGIJawQShfG5bqWypUul_jcFFJx06DdKjQaUUR9qavR78lrn2vC5CotrHjGRm3XuucMRINvp9ynSCQtYgwtnMmVUY4LXNGP2fv9n65sLD1OHTBWFbogxJXqlitj9vZAu94V3Pgn1YQYdqCgItlhoOu_VVHnKqu91K5UxgkrhXd1oz0ivMZ4xFk6z8fseM_uKmruprqVszF7c5hGnaODFNO6bos0pUa_E42_fvH_JV6y-5z885Dpc8xGQ791rxDEDPXrKKm_AYYG8jI
  priority: 102
  providerName: ProQuest
Title Establishing an Empirical Model for Surface Soil Moisture Retrieval at the U.S. Climate Reference Network Using Sentinel-1 Backscatter and Ancillary Data
URI https://www.proquest.com/docview/2391140113
https://www.proquest.com/docview/2986193038
https://doaj.org/article/c8f48e96ae3c43febd8f256daf066855
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF1BOcAF8SkCJRoEFw5u7d31en1M2oQK0QjVROrNWq9n1UjBqVzn0J_Cv2V27YQikLhwsmWPP-QZ73tjz75h7INMapWYDKPYKBFJk6hI5zKJtKsE8sRZbvzc4fOFOlvKz5fp5Z1WX74mrJcH7h_csdVOasyVQWGlcFjV2hFM18YRWOo0qJcS5t1JpsIYLCi0YtnrkQrK64_bm4THHs34bwgUhPr_GIcDuMyfsMcDK4RJfzdP2T1snrGHQ4Pyq9vn7MeMWNzugxGYBmbfr1dB3QN8N7M1EPeEYts6YxGKzcpvJgduW4SL0DOLAgpMB0T3YHlUHMHJekVc1e8dJvzBoi8Ih1BEAIWvImpwHSUw9dPwbdDhpCvXMGmsb1XU3sKp6cwLtpzPvp2cRUNXhciKXHbkD00cwgqhdGYw1ZVUmGMqab3OpOKmJrzKNIEnsb0YK8p30sql2nNxFWdWvGQHzabBVwxETUfH3MVkJC1xCy3QpMoo5ILO6Ebs4-5Jl3aQHPedL9YlpR7eK-Uvr4zY-73tdS-08VerqXfY3sKLY4cNFDLlEDLlv0JmxA537i6HN_am5IKGfUo2EzFi7_a76V3zP1BMg5st2eSa8k0Cff36f9zHG_aI--w91AEdsoOu3eJbojhdNWb39fzTmD2YnJ5_KWg5nS2-XoxDjP8Esfv-iA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELaW5bBcEL-isIARcOCQ3cR2HOeA0P60dNndHuhW2lvWcWyoVJKStkJ9FF6CZ2TGSbpCIG57i-KpU2XGM5-dmfkIeSOiQkY6sUGoJQ-EjmSgUhEFyuXcssgZprF2-HwkhxPx6TK-3CK_uloYTKvsfKJ31EVl8Ix8n3FYlrAZiPiH-fcAWaPw62pHodGYxald_4At2-L9yTHo9y1jg_7F0TBoWQUCw1OxhP-jIIYazqVKtI1VLqRNbSzgukiEZLoAf50oCB6AdkKbA96PcxcrxKIyTAyHeW-R24JDJMfK9MHHzZlOyMGgQ9F0QYXxcL9eRCzEGMr-iHueHuAv7-9D2uAeudtiUXrQGM99smXLB2SnpUX_un5IfvYBO3bHVFSXtP9tPvU9RShyqM0oIF46XtVOG0vH1RRvg9msaks_e6YuMGOqlxRAJp3sjffo0WwKCBlH2zJDOmrS0KlPXaBjzF0q7SyI6CEW_xvf_ROeXNCD0iBBUr2mx3qpH5HJjbz1x2S7rEr7hFBewK9D5kIQEgYQjeJWx1JLyzjM6HrkXfemM9M2Oke-jVkGGx7USnatlR55vZGdN-09_il1iArbSGBLbn-jqr9k7QrPjHJC2VRqy43gzuaFcoAnC-0A1ak47pHdTt1Z6ycW2bVV98irzTCscPxso0tbrUAmVbDLBaihnv5_ipdkZ3hxfpadnYxOn5E7DE8GfI7RLtle1iv7HODTMn_hbZaSq5teJL8BNBAsMw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJwEviL-iY4AR8MBD1sR2HOcBoXVttTGoppVKe8scx4ZKXVLSVqgfha_Cp-MufzohEG97i5KLE-XufL9zzvcj5I0IMhnoyHq-ltwTOpCeikXgKZdyywJnmMa9w5_H8ngqPl6EFzvkV7sXBssq2zmxmqizwuAaeY9xcEtIBgLec01ZxNlg9GHx3UMGKfzT2tJp1CZyajc_IH1bvj8ZgK7fMjYafjk69hqGAc_wWKzg3RTEU8O5VJG2oUqFtLENBRxnkZBMZzB3RwoCCSAf36aA_cPUhQpxqfQjw2HcW2Q3wqyoQ3b7w_HZ-XaFx-dg3r6oe6JyHvu9chkwHyMq-yMKVmQBf8WCKsCN7pN7DTKlh7UpPSA7Nn9I7jQk6d82j8jPISDJdtGK6pwOrxazqsMIRUa1OQX8Syfr0mlj6aSY4WkwonVp6XnF2wVGTfWKAuSk04PJAT2azwAv49Vm0yEd10XptCpkoBOsZMrt3AtoH1sBmKoXKDw5o4e5QbqkckMHeqUfk-mNfPcnpJMXuX1KKM_gbp85H4SEAXyjuNWh1NIyDiO6LnnXfunENG3PkX1jnkD6g1pJrrXSJa-3sou62cc_pfqosK0ENuiuThTl16Tx98QoJ5SNpbbcCO5smikH6DLTDjCeCsMu2W_VnTSzxjK5tvEuebW9DP6OP3F0bos1yMQKcl4AHmrv_0O8JLfBQZJPJ-PTZ-Quw2WCquBon3RW5do-Byy1Sl80RkvJ5U37yW8jEzHF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Establishing+an+Empirical+Model+for+Surface+Soil+Moisture+Retrieval+at+the+U.S.+Climate+Reference+Network+Using+Sentinel-1+Backscatter+and+Ancillary+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Chatterjee%2C+Sumanta&rft.au=Huang%2C+Jingyi&rft.au=Hartemink%2C+Alfred+E.&rft.date=2020-04-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=12&rft.issue=8&rft.spage=1242&rft_id=info:doi/10.3390%2Frs12081242&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs12081242
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon