Dual-Tree Complex Wavelet Transform and Twin Support Vector Machine for Pathological Brain Detection
(Aim) Classification of brain images as pathological or healthy case is a key pre-clinical step for potential patients. Manual classification is irreproducible and unreliable. In this study, we aim to develop an automatic classification system of brain images in magnetic resonance imaging (MRI). (Me...
Saved in:
Published in | Applied sciences Vol. 6; no. 6; p. 169 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
2016
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-3417 2076-3417 |
DOI | 10.3390/app6060169 |
Cover
Abstract | (Aim) Classification of brain images as pathological or healthy case is a key pre-clinical step for potential patients. Manual classification is irreproducible and unreliable. In this study, we aim to develop an automatic classification system of brain images in magnetic resonance imaging (MRI). (Method) Three datasets were downloaded from the Internet. Those images are of T2-weighted along axial plane with size of 256 × 256. We utilized an s-level decomposition on the basis of dual-tree complex wavelet transform (DTCWT), in order to obtain 12s “variance and entropy (VE)” features from each subband. Afterwards, we used support vector machine (SVM) and its two variants: the generalized eigenvalue proximal SVM (GEPSVM) and the twin SVM (TSVM), as the classifiers. In all, we proposed three novel approaches: DTCWT + VE + SVM, DTCWT + VE + GEPSVM, and DTCWT + VE + TSVM. (Results) The results showed that our “DTCWT + VE + TSVM” obtained an average accuracy of 99.57%, which was not only better than the two other proposed methods, but also superior to 12 state-of-the-art approaches. In addition, parameter estimation showed the classification accuracy achieved the largest when the decomposition level s was assigned with a value of 1. Further, we used 100 slices from real subjects, and we found our proposed method was superior to human reports from neuroradiologists. (Conclusions) This proposed system is effective and feasible. |
---|---|
AbstractList | (Aim) Classification of brain images as pathological or healthy case is a key pre-clinical step for potential patients. Manual classification is irreproducible and unreliable. In this study, we aim to develop an automatic classification system of brain images in magnetic resonance imaging (MRI). (Method) Three datasets were downloaded from the Internet. Those images are of T2-weighted along axial plane with size of 256 × 256. We utilized an s-level decomposition on the basis of dual-tree complex wavelet transform (DTCWT), in order to obtain 12s “variance and entropy (VE)” features from each subband. Afterwards, we used support vector machine (SVM) and its two variants: the generalized eigenvalue proximal SVM (GEPSVM) and the twin SVM (TSVM), as the classifiers. In all, we proposed three novel approaches: DTCWT + VE + SVM, DTCWT + VE + GEPSVM, and DTCWT + VE + TSVM. (Results) The results showed that our “DTCWT + VE + TSVM” obtained an average accuracy of 99.57%, which was not only better than the two other proposed methods, but also superior to 12 state-of-the-art approaches. In addition, parameter estimation showed the classification accuracy achieved the largest when the decomposition level s was assigned with a value of 1. Further, we used 100 slices from real subjects, and we found our proposed method was superior to human reports from neuroradiologists. (Conclusions) This proposed system is effective and feasible. (Aim) Classification of brain images as pathological or healthy case is a key pre-clinical step for potential patients. Manual classification is irreproducible and unreliable. In this study, we aim to develop an automatic classification system of brain images in magnetic resonance imaging (MRI). (Method) Three datasets were downloaded from the Internet. Those images are of T2-weighted along axial plane with size of 256 256. We utilized an s-level decomposition on the basis of dual-tree complex wavelet transform (DTCWT), in order to obtain 12s "variance and entropy (VE)" features from each subband. Afterwards, we used support vector machine (SVM) and its two variants: the generalized eigenvalue proximal SVM (GEPSVM) and the twin SVM (TSVM), as the classifiers. In all, we proposed three novel approaches: DTCWT + VE + SVM, DTCWT + VE + GEPSVM, and DTCWT + VE + TSVM. (Results) The results showed that our "DTCWT + VE + TSVM" obtained an average accuracy of 99.57%, which was not only better than the two other proposed methods, but also superior to 12 state-of-the-art approaches. In addition, parameter estimation showed the classification accuracy achieved the largest when the decomposition level s was assigned with a value of 1. Further, we used 100 slices from real subjects, and we found our proposed method was superior to human reports from neuroradiologists. (Conclusions) This proposed system is effective and feasible. |
Author | Dong, Zhengchao Yang, Jiquan Wang, Shuihua Zhang, Yudong Yang, Ming Lu, Siyuan |
Author_xml | – sequence: 1 givenname: Shuihua surname: Wang fullname: Wang, Shuihua – sequence: 2 givenname: Siyuan surname: Lu fullname: Lu, Siyuan – sequence: 3 givenname: Zhengchao surname: Dong fullname: Dong, Zhengchao – sequence: 4 givenname: Jiquan surname: Yang fullname: Yang, Jiquan – sequence: 5 givenname: Ming surname: Yang fullname: Yang, Ming – sequence: 6 givenname: Yudong orcidid: 0000-0002-4870-1493 surname: Zhang fullname: Zhang, Yudong |
BookMark | eNptkUuLFDEQxxtZwXXdi58g4EWE1rw63TnqrI-FFQVHPYbqdGW3h0zSJmkf396MoyiLdami-NW_XvebkxADNs1DRp8KoekzWBZFFWVK32lOOe1VKyTrT_6J7zXnOe9oNc3EwOhpM12s4NttQiSbuF88fief4St6LGSbIGQX055AmMj22xzIh3VZYirkE9oSE3kL9mYOSCpE3kO5iT5ezxY8eZGg0hdYKjfH8KC568BnPP_tz5qPr15uN2_aq3evLzfPr1ortCytVLpnFuUIg5KC9qNVTik7ddJK7Bx0FtWktRs75JZNQoxCu14hOCklWBRnzeVRd4qwM0ua95B-mAiz-ZWI6dpAKrP1aDSvDUAw141cCs71wMVAYVRsAsmAVq3HR60lxS8r5mL2c7boPQSMazZs4F3HWZ2zoo9uobu4plA3NazXSnSsVweKHimbYs4JnbFzgcN5Sr2WN4yawxfN3y_Wkie3Sv7s9B_4J2blnlI |
CitedBy_id | crossref_primary_10_1007_s13735_019_00174_x crossref_primary_10_1109_JBHI_2021_3109301 crossref_primary_10_1016_j_apacoust_2025_110563 crossref_primary_10_1002_mrm_27210 crossref_primary_10_36548__jscp_2022_3_005 crossref_primary_10_1111_exsy_12244 crossref_primary_10_1016_j_jfoodeng_2017_02_018 crossref_primary_10_3233_ICA_190605 crossref_primary_10_3390_su11010105 crossref_primary_10_1007_s11042_016_4242_0 crossref_primary_10_1109_ACCESS_2016_2620996 crossref_primary_10_1177_0037549716665156 crossref_primary_10_3390_a9040087 crossref_primary_10_1007_s11042_017_4830_7 crossref_primary_10_1007_s10479_024_06167_2 crossref_primary_10_3390_app9050895 crossref_primary_10_1007_s11042_017_4686_x crossref_primary_10_1016_j_bspc_2018_10_010 crossref_primary_10_1016_j_future_2018_08_008 crossref_primary_10_1016_j_bspc_2022_103826 crossref_primary_10_1007_s10916_017_0867_4 crossref_primary_10_1080_03772063_2020_1792360 crossref_primary_10_1016_j_neucom_2017_12_030 crossref_primary_10_4103_jmss_jmss_145_21 crossref_primary_10_1007_s11042_017_4554_8 crossref_primary_10_1016_j_future_2019_01_047 crossref_primary_10_1016_j_neucom_2017_05_036 crossref_primary_10_1016_j_bbe_2019_08_005 crossref_primary_10_1016_j_neucom_2016_11_024 crossref_primary_10_1007_s10479_022_04575_w crossref_primary_10_1016_j_future_2020_02_029 crossref_primary_10_1093_comjnl_bxaa175 crossref_primary_10_1142_S0219691318500480 crossref_primary_10_1007_s11042_020_09062_7 crossref_primary_10_3390_e20040254 crossref_primary_10_1007_s11042_022_13016_6 crossref_primary_10_3233_THC_161286 crossref_primary_10_3390_technologies5020016 crossref_primary_10_1155_2017_9060124 crossref_primary_10_1371_journal_pone_0177811 crossref_primary_10_1007_s11063_022_10870_1 crossref_primary_10_1016_j_compeleceng_2018_04_009 crossref_primary_10_1109_ACCESS_2019_2901055 crossref_primary_10_3390_math9192482 crossref_primary_10_3390_s18092840 crossref_primary_10_3233_JAD_160900 crossref_primary_10_1007_s10916_017_0836_y crossref_primary_10_1007_s12553_020_00428_3 crossref_primary_10_1007_s10916_019_1428_9 crossref_primary_10_1016_j_cmpb_2016_12_006 crossref_primary_10_1117_1_JEI_26_2_023007 crossref_primary_10_3390_healthcare10091801 crossref_primary_10_1016_j_neucom_2017_01_008 crossref_primary_10_1007_s11042_016_4087_6 crossref_primary_10_1007_s11042_016_4243_z crossref_primary_10_36548_jscp_2022_3_005 crossref_primary_10_1016_j_eswa_2017_06_038 crossref_primary_10_3389_fncom_2016_00106 crossref_primary_10_3390_sym10110589 crossref_primary_10_1007_s10278_023_00828_7 crossref_primary_10_1007_s11042_017_4670_5 crossref_primary_10_1016_j_asoc_2019_105824 crossref_primary_10_3390_sym9030037 crossref_primary_10_1142_S0219691318500546 crossref_primary_10_1007_s11042_017_5281_x crossref_primary_10_1007_s11042_016_4171_y crossref_primary_10_1007_s11042_017_4383_9 |
Cites_doi | 10.1016/j.eswa.2011.04.121 10.1007/s11517-014-1216-0 10.1016/j.neuroscience.2015.08.013 10.1109/TPAMI.2007.1068 10.1002/hyp.8439 10.12989/scs.2015.19.3.569 10.1002/tee.22224 10.1001/jamapsychiatry.2014.179 10.1109/LSP.2012.2216874 10.1186/1471-2105-13-59 10.1016/j.eswa.2016.01.044 10.3390/s120912489 10.1177/0037549716629227 10.1016/j.eswa.2011.02.012 10.1016/j.eswa.2014.01.021 10.7717/peerj.1251 10.1016/j.ijthermalsci.2014.01.024 10.1587/elex.8.1399 10.1038/nature16961 10.1002/ima.22144 10.1186/s40064-015-1523-4 10.3233/IFS-141396 10.1109/TPAMI.2006.17 10.3390/e17041795 10.1155/2013/727830 10.1007/s11042-015-2649-7 10.1007/s11219-010-9125-4 10.1016/j.image.2015.04.010 10.1080/02626667.2010.529448 10.1016/j.dsp.2009.07.002 10.1016/j.ecolmodel.2013.01.015 10.3233/BME-151426 10.1016/j.patrec.2008.10.006 10.1007/s11265-014-0903-2 10.1016/j.compbiomed.2015.05.002 10.1016/j.eswa.2008.09.066 10.1016/j.jconrel.2013.10.019 10.1016/j.bspc.2006.05.002 10.2528/PIER15040602 10.1016/j.patcog.2014.03.008 10.1186/1687-5281-2014-41 10.1186/s12938-015-0063-z 10.1147/JRD.2014.2337118 10.2991/meic-15.2015.155 10.1016/j.neucom.2014.12.032 10.1007/s00521-014-1611-3 10.1166/jmihi.2015.1542 10.3390/e18050194 10.2528/PIER13010105 10.1016/j.sigpro.2014.04.010 10.1117/1.JEI.24.2.023031 10.1002/ima.22132 10.3390/e18030077 10.1002/tee.22059 10.2528/PIER12061410 10.1007/978-3-642-29216-3_74 10.1049/iet-ipr.2013.0663 10.1007/978-81-322-2757-1_55 10.1038/srep21816 10.1007/s10844-011-0172-5 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2016 |
Copyright_xml | – notice: Copyright MDPI AG 2016 |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7SC 7SP 7TB 7U5 8FD FR3 JQ2 KR7 L7M L~C L~D DOA |
DOI | 10.3390/app6060169 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Publicly Available Content Database Civil Engineering Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
EndPage | 169 |
ExternalDocumentID | oai_doaj_org_article_92307a31f5b24322982380ab61da41a0 4088464231 10_3390_app6060169 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | .4S 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IPNFZ K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC RIG TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7SC 7SP 7TB 7U5 8FD FR3 JQ2 KR7 L7M L~C L~D PUEGO |
ID | FETCH-LOGICAL-c394t-46971ce4ba864307bc6f66cd54c4e5fa5ce6d99fb5e2c1d33b39f76eaf444ace3 |
IEDL.DBID | 8FG |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:31:03 EDT 2025 Thu Sep 04 20:48:49 EDT 2025 Sun Jun 29 16:18:24 EDT 2025 Tue Jul 01 02:57:57 EDT 2025 Thu Apr 24 22:59:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-46971ce4ba864307bc6f66cd54c4e5fa5ce6d99fb5e2c1d33b39f76eaf444ace3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4870-1493 |
OpenAccessLink | https://www.proquest.com/docview/1796351760?pq-origsite=%requestingapplication% |
PQID | 1796351760 |
PQPubID | 2032433 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_92307a31f5b24322982380ab61da41a0 proquest_miscellaneous_1825521430 proquest_journals_1796351760 crossref_citationtrail_10_3390_app6060169 crossref_primary_10_3390_app6060169 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-00-00 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2016 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Celik (ref_36) 2009; 30 Nasiri (ref_42) 2014; 104 ref_55 Satapathy (ref_57) 2016; Volume 435 Dong (ref_6) 2011; 38 Zhang (ref_28) 2016; 6 Dong (ref_53) 2015; 5 Shin (ref_29) 2015; 81 Gorji (ref_2) 2015; 305 Silver (ref_26) 2016; 529 Lau (ref_64) 2011; 24 Thorsen (ref_1) 2013; 172 Li (ref_62) 2015; 53 Ji (ref_61) 2015; 14 Wei (ref_23) 2016; 11 Wu (ref_7) 2012; 130 ref_25 ref_21 ref_20 Wu (ref_24) 2012; 12 Mohsen (ref_9) 2014; 41 Mount (ref_14) 2012; 26 Ng (ref_49) 2014; 80 Nazir (ref_12) 2015; 28 Smaldino (ref_19) 2013; 254 Das (ref_8) 2013; 137 Zhang (ref_45) 2015; 4 Krishna (ref_48) 2012; Volume 270 Shubati (ref_59) 2011; 19 Sun (ref_56) 2014; 58 Singh (ref_35) 2014; 39 Mangasarian (ref_38) 2006; 28 Shao (ref_44) 2014; 47 Si (ref_16) 2015; 19 Goh (ref_3) 2014; 71 Zhang (ref_46) 2015; 25 Hill (ref_33) 2015; 35 Hosny (ref_4) 2010; 20 Hamidi (ref_17) 2015; 9 Wang (ref_11) 2015; 25 Kadiri (ref_34) 2014; 2014 Khemchandani (ref_39) 2011; 38 Shamsinejadbabki (ref_52) 2012; 38 Ayatollahi (ref_32) 2015; 24 Zhang (ref_37) 2015; 152 Kumar (ref_50) 2009; 36 Wang (ref_58) 2016; 18 Zhuang (ref_51) 2012; 13 Lau (ref_63) 2011; 8 Yu (ref_30) 2015; 10 Beura (ref_31) 2015; 154 Jayadeva (ref_41) 2007; 29 ref_47 Xu (ref_43) 2014; 25 Dong (ref_10) 2015; 17 Carrasco (ref_22) 2016; 54 Yang (ref_54) 2015; 17 Abrahart (ref_15) 2010; 55 Ng (ref_27) 2013; 2013 Shao (ref_40) 2013; 20 Sun (ref_13) 2015; 26 Murugesan (ref_18) 2015; 63 Zhang (ref_60) 2016; 18 Patnaik (ref_5) 2006; 1 |
References_xml | – volume: 38 start-page: 13136 year: 2011 ident: ref_39 article-title: Generalized eigenvalue proximal support vector regressor publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.04.121 – volume: 53 start-page: 77 year: 2015 ident: ref_62 article-title: Assessing the complexity of short-term heartbeat interval series by distribution entropy publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-014-1216-0 – volume: 305 start-page: 361 year: 2015 ident: ref_2 article-title: A novel method for early diagnosis of Alzheimer's disease based on pseudo Zernike moment from structural MRI publication-title: Neuroscience doi: 10.1016/j.neuroscience.2015.08.013 – volume: 29 start-page: 905 year: 2007 ident: ref_41 article-title: Twin support vector machines for pattern classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1068 – volume: 26 start-page: 3982 year: 2012 ident: ref_14 article-title: The need for operational reasoning in data-driven rating curve prediction of suspended sediment publication-title: Hydrol. Process. doi: 10.1002/hyp.8439 – volume: 19 start-page: 569 year: 2015 ident: ref_16 article-title: State detection of explosive welding structure by dual-tree complex wavelet transform based permutation entropy publication-title: Steel Compos. Struct. doi: 10.12989/scs.2015.19.3.569 – volume: 17 start-page: 7877 year: 2015 ident: ref_54 article-title: Pathological Brain Detection by a Novel Image Feature—Fractional Fourier Entropy publication-title: Entropy – volume: 11 start-page: 348 year: 2016 ident: ref_23 article-title: Design of a qualitative classification model through fuzzy support vector machine with type-2 fuzzy expected regression classifier preset publication-title: IEEJ Trans. Electr. Electron. Eng. doi: 10.1002/tee.22224 – volume: 71 start-page: 665 year: 2014 ident: ref_3 article-title: Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: Evidence from brain imaging publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2014.179 – volume: 39 start-page: 345 year: 2014 ident: ref_35 article-title: Fractional M-band dual tree complex wavelet transform for digital watermarking publication-title: Sadhana-Acad. Proc. Eng. Sci. – volume: 20 start-page: 213 year: 2013 ident: ref_40 article-title: Improved Generalized Eigenvalue Proximal Support Vector Machine publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2012.2216874 – volume: 13 start-page: 14 year: 2012 ident: ref_51 article-title: A comparison of feature selection and classification methods in DNA methylation studies using the Illumina Infinium platform publication-title: BMC Bioinform. doi: 10.1186/1471-2105-13-59 – volume: 54 start-page: 95 year: 2016 ident: ref_22 article-title: A second-order cone programming formulation for nonparallel hyperplane support vector machine publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.01.044 – volume: 12 start-page: 12489 year: 2012 ident: ref_24 article-title: Classification of fruits using computer vision and a multiclass support vector machine publication-title: Sensors doi: 10.3390/s120912489 – ident: ref_55 doi: 10.1177/0037549716629227 – volume: 38 start-page: 10049 year: 2011 ident: ref_6 article-title: A hybrid method for MRI brain image classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.012 – volume: 41 start-page: 5526 year: 2014 ident: ref_9 article-title: Computer-Aided diagnosis of human brain tumor through MRI: A survey and a new algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.01.021 – ident: ref_47 doi: 10.7717/peerj.1251 – volume: 80 start-page: 41 year: 2014 ident: ref_49 article-title: Parametric sensitivity analysis of radiofrequency ablation with efficient experimental design publication-title: Int. J. Thermal Sci. doi: 10.1016/j.ijthermalsci.2014.01.024 – volume: 8 start-page: 1399 year: 2011 ident: ref_63 article-title: A new framework for managing video-on-demand servers: Quad-Tier hybrid architecture publication-title: IEICE Electron. Express doi: 10.1587/elex.8.1399 – volume: 529 start-page: 484 year: 2016 ident: ref_26 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – volume: 25 start-page: 317 year: 2015 ident: ref_46 article-title: Magnetic resonance brain image classification based on weighted-type fractional Fourier transform and nonparallel support vector machine publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22144 – volume: 4 start-page: 716 year: 2015 ident: ref_45 article-title: Pathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machine publication-title: SpringerPlus doi: 10.1186/s40064-015-1523-4 – volume: 28 start-page: 1127 year: 2015 ident: ref_12 article-title: A simple and intelligent approach for brain MRI classification publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/IFS-141396 – volume: 28 start-page: 69 year: 2006 ident: ref_38 article-title: Multisurface proximal support vector machine classification via generalized eigenvalues publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.17 – volume: 17 start-page: 1795 year: 2015 ident: ref_10 article-title: Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM) publication-title: Entropy doi: 10.3390/e17041795 – volume: 2013 start-page: 727830:1 year: 2013 ident: ref_27 article-title: Numerical Methods and Applications in Biomechanical Modeling publication-title: Comput. Math. Methods Med. doi: 10.1155/2013/727830 – volume: 24 start-page: 1 year: 2011 ident: ref_64 article-title: Cohort-Surrogate-Associate: A server-subscriber load sharing model for video-on-demand services publication-title: Malayas. J. Comput. Sci. – ident: ref_20 doi: 10.1007/s11042-015-2649-7 – volume: 19 start-page: 431 year: 2011 ident: ref_59 article-title: Artefact generation in second life with case-based reasoning publication-title: Softw. Qual. J. doi: 10.1007/s11219-010-9125-4 – volume: 35 start-page: 61 year: 2015 ident: ref_33 article-title: Undecimated Dual-Tree Complex Wavelet Transforms publication-title: Signal Process-Image Commun. doi: 10.1016/j.image.2015.04.010 – volume: 55 start-page: 1442 year: 2010 ident: ref_15 article-title: Discussion of “Evapotranspiration modelling using support vector machines” publication-title: Hydrol. Sci. J.-J. Sci. Hydrol. doi: 10.1080/02626667.2010.529448 – volume: 20 start-page: 433 year: 2010 ident: ref_4 article-title: Hybrid intelligent techniques for MRI brain images classification publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2009.07.002 – volume: 254 start-page: 50 year: 2013 ident: ref_19 article-title: Measures of individual uncertainty for ecological models: Variance and entropy publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2013.01.015 – volume: 26 start-page: 1283 year: 2015 ident: ref_13 article-title: Pathological brain detection based on wavelet entropy and Hu moment invariants publication-title: Bio-Med. Mater. Eng. doi: 10.3233/BME-151426 – volume: 30 start-page: 331 year: 2009 ident: ref_36 article-title: Multiscale texture classification using dual-tree complex wavelet transform publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2008.10.006 – volume: 81 start-page: 71 year: 2015 ident: ref_29 article-title: Super-Resolution image reconstruction using wavelet based patch and discrete wavelet transform publication-title: J. Signal. Process. Syst. Signal Image Video Technol. doi: 10.1007/s11265-014-0903-2 – volume: 63 start-page: 36 year: 2015 ident: ref_18 article-title: Application of dual tree complex wavelet transform in tandem mass spectrometry publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.05.002 – volume: 36 start-page: 7535 year: 2009 ident: ref_50 article-title: Least squares twin support vector machines for pattern classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.09.066 – volume: 172 start-page: 812 year: 2013 ident: ref_1 article-title: Multimodal imaging enables early detection and characterization of changes in tumor permeability of brain metastases publication-title: J. Controll. Release doi: 10.1016/j.jconrel.2013.10.019 – volume: 1 start-page: 86 year: 2006 ident: ref_5 article-title: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2006.05.002 – volume: 152 start-page: 41 year: 2015 ident: ref_37 article-title: Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization publication-title: Progress Electromagn. Res. doi: 10.2528/PIER15040602 – volume: 47 start-page: 3158 year: 2014 ident: ref_44 article-title: An efficient weighted Lagrangian twin support vector machine for imbalanced data classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.03.008 – volume: 2014 start-page: 1 year: 2014 ident: ref_34 article-title: Magnitude-Phase of the dual-tree quaternionic wavelet transform for multispectral satellite image denoising publication-title: EURASIP J. Image Video Process. doi: 10.1186/1687-5281-2014-41 – volume: 14 start-page: 13 year: 2015 ident: ref_61 article-title: Analysis of short-term heart rate and diastolic period variability using a refined fuzzy entropy method publication-title: Biomed. Eng. Online doi: 10.1186/s12938-015-0063-z – volume: 58 start-page: 9 year: 2014 ident: ref_56 article-title: iCARE: A framework for big data-based banking customer analytics publication-title: IBM J. Res. Dev. doi: 10.1147/JRD.2014.2337118 – ident: ref_21 doi: 10.2991/meic-15.2015.155 – volume: 154 start-page: 1 year: 2015 ident: ref_31 article-title: Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.12.032 – volume: 25 start-page: 1303 year: 2014 ident: ref_43 article-title: Learning with positive and unlabeled examples using biased twin support vector machine publication-title: Neural Comput. Appl. doi: 10.1007/s00521-014-1611-3 – ident: ref_25 – volume: 5 start-page: 1395 year: 2015 ident: ref_53 article-title: Magnetic resonance brain image classification via stationary wavelet transform and generalized eigenvalue proximal support vector machine publication-title: J. Med. Imaging Health Inform. doi: 10.1166/jmihi.2015.1542 – volume: 18 start-page: 194 year: 2016 ident: ref_58 article-title: Detection of Left-Sided and Right-Sided Hearing Loss via Fractional Fourier Transform publication-title: Entropy doi: 10.3390/e18050194 – volume: 137 start-page: 1 year: 2013 ident: ref_8 article-title: Brain MR image classification using multiscale geometric analysis of Ripplet publication-title: Progress Electromagn. Res.-Pier doi: 10.2528/PIER13010105 – volume: 104 start-page: 248 year: 2014 ident: ref_42 article-title: Energy-Based model of least squares twin Support Vector Machines for human action recognition publication-title: Signal Process. doi: 10.1016/j.sigpro.2014.04.010 – volume: 24 start-page: 13 year: 2015 ident: ref_32 article-title: Expression-Invariant face recognition using depth and intensity dual-tree complex wavelet transform features publication-title: J. Electron. Imaging doi: 10.1117/1.JEI.24.2.023031 – volume: 25 start-page: 153 year: 2015 ident: ref_11 article-title: Feed-Forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22132 – volume: 18 start-page: 77 year: 2016 ident: ref_60 article-title: Tea Category Identification Using a Novel Fractional Fourier Entropy and Jaya Algorithm publication-title: Entropy doi: 10.3390/e18030077 – volume: 10 start-page: 116 year: 2015 ident: ref_30 article-title: Exponential wavelet iterative shrinkage thresholding algorithm with random shift for compressed sensing magnetic resonance imaging publication-title: IEEJ Trans. Electr. Electron. Eng. doi: 10.1002/tee.22059 – volume: 130 start-page: 369 year: 2012 ident: ref_7 article-title: An MR brain images classifier via principal component analysis and kernel support vector machine publication-title: Prog. Electromagn. Res. doi: 10.2528/PIER12061410 – volume: Volume 270 start-page: 680 year: 2012 ident: ref_48 article-title: Evaluation of classifier models using stratified tenfold cross validation techniques publication-title: Global Trends in Information Systems and Software Applications doi: 10.1007/978-3-642-29216-3_74 – volume: 9 start-page: 716 year: 2015 ident: ref_17 article-title: Local selected features of dual-tree complex wavelet transform for single sample face recognition publication-title: IET Image Process. doi: 10.1049/iet-ipr.2013.0663 – volume: Volume 435 start-page: 563 year: 2016 ident: ref_57 article-title: Three phase security system for vehicles using face recognition on distributed systems publication-title: Information Systems Design and Intelligent Applications doi: 10.1007/978-81-322-2757-1_55 – volume: 6 start-page: 21816 year: 2016 ident: ref_28 article-title: Image processing methods to elucidate spatial characteristics of retinal microglia after optic nerve transection publication-title: Sci. Rep. doi: 10.1038/srep21816 – volume: 38 start-page: 669 year: 2012 ident: ref_52 article-title: A new unsupervised feature selection method for text clustering based on genetic algorithms publication-title: J. Intell. Inf. Syst. doi: 10.1007/s10844-011-0172-5 |
SSID | ssj0000913810 |
Score | 2.3532488 |
Snippet | (Aim) Classification of brain images as pathological or healthy case is a key pre-clinical step for potential patients. Manual classification is irreproducible... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 169 |
SubjectTerms | Accuracy Advanced manufacturing technologies Alzheimer's disease Brain Brain cancer Classification Decomposition dual-tree complex wavelet transform Entropy Image classification Infectious diseases Laboratories Magnetic resonance imaging Manufacturing Methods Neural networks Neuroimaging Parameter estimation support vector machine Support vector machines Tumors twin support vector machine variance Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA_iqR5KtYqv2pKih3pY3OzmY3OsVZGC4uFZvS2TZAKFxyq6D_vnd5Ld93zFQi-9JnMIk_n4TTL8hrFDB2AsSCgqhKqQTYDCCV8Wqq6iCMoQKE9PA5dX-uJGfr9TdyujvlJP2EAPPCju2KZOZahFVK6SZH22oSRTgtMigBSQq_XSlivFVI7BViTqqoGPtKa6Pv0H64F75I8MlIn6X8XhnFzO37G3IyrkX4fTbLI17LbYxgpX4BbbHL3wiX8ZqaKP3rNwOodZMX1E5MmxZ_iL30IaJdHz6QKRcugCnz7_7Hia4Elom__IL_X8MvdRIichfg39MgzykzQ2gp9in9u0um12c342_XZRjHMTCl9b2RdU8RrhUTpoCG-UxnkdtfZBSS9RRVAedbA2OoWVF6GuXW2j0QhRSgke6x223t13uMt4RK9MCI2MDeEmIQDQKhOFMg5s48yEHS102fqRVDzNtpi1VFwkvbcvep-wg6Xsw0Cl8Vepk3QlS4lEf50XyCja0SjafxnFhO0vLrQdffKppdBD6EoYTdufl9vkTemLBDq8n5MMFcwEaEhrH_7HOfbYGwJY45PNPlvvH-f4kUBM7z5le_0NrR_uSg priority: 102 providerName: Directory of Open Access Journals |
Title | Dual-Tree Complex Wavelet Transform and Twin Support Vector Machine for Pathological Brain Detection |
URI | https://www.proquest.com/docview/1796351760 https://www.proquest.com/docview/1825521430 https://doaj.org/article/92307a31f5b24322982380ab61da41a0 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagvcAB0QIitERGcKAHi_WuH7snRGhDhdSqQin0thq_KqRoU5KNys9n7DhbEIjr7siH8Ty-GY--IeSNAdANCGClh5KJ2gEz3BZMVmXgTmoE5bE1cHauTi_F5yt5lRtuqzxWuY2JKVC7hY098ndoOJgbuVbF-5sfLG6Niq-reYXGfbLLMdNEO6-nn4YeS-S8rHmxYSWtsLqPr8Jqw0DyRx5KdP1_ReOUYqaPyaOMDemHzWXukXu-2ycPf2MM3Cd72RdX9G0mjD56QtzxGuZstvSeRvee-5_0G8SFEj2dbXEphc7R2e33jsY9noi56dfUr6dnaZrSUxSiF9APwZBO4vIIeuz7NKzVPSWX05PZx1OWtycwWzWiZ1j3am69MFAj6ii0sSooZZ0UVngZQFqvXNMEI31puasqUzVBKw9BCAHWV8_ITrfo_HNCg7dSO1eLUCN64hzAN1IHLrWBpjZ6RI62umxtphaPGy7mLZYYUe_tnd5H5PUge7Mh1Pin1CReySARSbDTh8Xyus0-1TZxiB0qHqQpBQampkb8UYBR3IHgUIzI4fZC2-yZq_bOjkbk1fAbfSo-lEDnF2uUwbIZYQ1q7cX_jzggDxBA5ZbMIdnpl2v_EkFKb8bJEsdkd3JyfvFlnEr9Xw9g6fk |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcEC0gAgUWARI9WHjtXT8OCBHSKqVNVCEXejOzD1eVIqckjgp_it_IrF8Fgbj1ao_2MDuPbx47A_BSIcYpCvQCi4EnEoOe4tr3ZBgU3MiYQLlLDUxn0eREfDyVpxvws3sL49oqO5tYG2qz0C5H_oYEh3wjjyP_3cU3z22NctXVboVGIxaH9sclhWyrtwdjut9XQbC_l32YeO1WAU-Hqag8igdjrq1QmJA39mOloyKKtJFCCysLlNpGJk0LJW2guQlDFaZFHFkshBCobUjn3oBN4V60DmBztDc7_tRnddyUzYT7zRzUMEx9V4eOmpknf3i-ekHAX_a_dmr7d-FOi0bZ-0Z8tmDDlttw-7cZhduw1Wr_ir1uR1Tv3gMzXuPcy5bWMmdQ5vY7-4JuhUXFsg4JMywNyy7PS-Y2hxLKZ5_rCgGb1v2blhERO8aqN79s5NZVsLGt6vaw8j6cXAtnH8CgXJT2IbDCahkbk4giIbzGOaJNZVxwGStMExUPYbfjZa7bYeZup8Y8p6DG8T2_4vsQXvS0F80Ij39SjdyV9BRu7Hb9YbE8y1stzlPXNo8hL6QKBJnCNCHE46OKuEHB0R_CTneheWsLVvmV5A7hef-btNiVZrC0izXRUKBOQIq49uj_RzyDm5NsepQfHcwOH8Mtgm9tQmgHBtVybZ8QRKrU01YuGXy9blX4Bex6J6A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEC0gFgoYARI9RI1jO44PCFGWpaW06mELvYXxCyGtsmU3q8Jf49cxzqsgELdek1EO43l8M558Q8gzA6A0CEgyD1kiCgeJYTZNJM8Cc1IhKI-tgcOjfO9EvD-Vp2vkZ_8vTByr7GNiE6jd3MYe-Q4aDuZGpvJ0J3RjEcfjyauzb0ncIBVvWvt1Gq2JHPgf51i-LV_uj_Gsn2fZ5O30zV7SbRhILNeiTrA2VMx6YaDAzJwqY_OQ59ZJYYWXAaT1udM6GOkzyxznhuugcg9BCAHWc_zuFXJVcaVj4VdM3g39nci3WbC0ZUTlXKfxRjpv2U_-yIHNqoC_MkGT3ia3yM0Ol9LXrSFtkDVfbZIbv7EVbpKNLg4s6YuOrHr7NnHjFcyS6cJ7GkPLzH-nnyAus6jptMfEFCpHp-dfKxp3iCLepx-buwJ62ExyeopC9BjqIRDT3bi4go593QyKVXfIyaXo9S5Zr-aVv0do8FYq5woRCkRujAF4LVVgUhnQhVEjst3rsrQdrXncrjErsbyJei8v9D4iTwfZs5bM459Su_FIBolIwN08mC--lJ0_lzoO0ANnQZpMYFDUBWKfFEzOHAgG6Yhs9QdadlFhWV7Y8Ig8GV6jP8dLGqj8fIUyWLIjpEKt3f__Jx6Ta-gA5Yf9o4MH5DriuK4ztEXW68XKP0SsVJtHjVFS8vmyveAXUKIqcA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-Tree+Complex+Wavelet+Transform+and+Twin+Support+Vector+Machine+for+Pathological+Brain+Detection&rft.jtitle=Applied+sciences&rft.au=Wang%2C+Shuihua&rft.au=Lu%2C+Siyuan&rft.au=Dong%2C+Zhengchao&rft.au=Yang%2C+Jiquan&rft.date=2016&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=6&rft.issue=6&rft.spage=169&rft_id=info:doi/10.3390%2Fapp6060169&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4088464231 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |