Dual-Tree Complex Wavelet Transform and Twin Support Vector Machine for Pathological Brain Detection

(Aim) Classification of brain images as pathological or healthy case is a key pre-clinical step for potential patients. Manual classification is irreproducible and unreliable. In this study, we aim to develop an automatic classification system of brain images in magnetic resonance imaging (MRI). (Me...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 6; no. 6; p. 169
Main Authors Wang, Shuihua, Lu, Siyuan, Dong, Zhengchao, Yang, Jiquan, Yang, Ming, Zhang, Yudong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 2016
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app6060169

Cover

Abstract (Aim) Classification of brain images as pathological or healthy case is a key pre-clinical step for potential patients. Manual classification is irreproducible and unreliable. In this study, we aim to develop an automatic classification system of brain images in magnetic resonance imaging (MRI). (Method) Three datasets were downloaded from the Internet. Those images are of T2-weighted along axial plane with size of 256 × 256. We utilized an s-level decomposition on the basis of dual-tree complex wavelet transform (DTCWT), in order to obtain 12s “variance and entropy (VE)” features from each subband. Afterwards, we used support vector machine (SVM) and its two variants: the generalized eigenvalue proximal SVM (GEPSVM) and the twin SVM (TSVM), as the classifiers. In all, we proposed three novel approaches: DTCWT + VE + SVM, DTCWT + VE + GEPSVM, and DTCWT + VE + TSVM. (Results) The results showed that our “DTCWT + VE + TSVM” obtained an average accuracy of 99.57%, which was not only better than the two other proposed methods, but also superior to 12 state-of-the-art approaches. In addition, parameter estimation showed the classification accuracy achieved the largest when the decomposition level s was assigned with a value of 1. Further, we used 100 slices from real subjects, and we found our proposed method was superior to human reports from neuroradiologists. (Conclusions) This proposed system is effective and feasible.
AbstractList (Aim) Classification of brain images as pathological or healthy case is a key pre-clinical step for potential patients. Manual classification is irreproducible and unreliable. In this study, we aim to develop an automatic classification system of brain images in magnetic resonance imaging (MRI). (Method) Three datasets were downloaded from the Internet. Those images are of T2-weighted along axial plane with size of 256 × 256. We utilized an s-level decomposition on the basis of dual-tree complex wavelet transform (DTCWT), in order to obtain 12s “variance and entropy (VE)” features from each subband. Afterwards, we used support vector machine (SVM) and its two variants: the generalized eigenvalue proximal SVM (GEPSVM) and the twin SVM (TSVM), as the classifiers. In all, we proposed three novel approaches: DTCWT + VE + SVM, DTCWT + VE + GEPSVM, and DTCWT + VE + TSVM. (Results) The results showed that our “DTCWT + VE + TSVM” obtained an average accuracy of 99.57%, which was not only better than the two other proposed methods, but also superior to 12 state-of-the-art approaches. In addition, parameter estimation showed the classification accuracy achieved the largest when the decomposition level s was assigned with a value of 1. Further, we used 100 slices from real subjects, and we found our proposed method was superior to human reports from neuroradiologists. (Conclusions) This proposed system is effective and feasible.
(Aim) Classification of brain images as pathological or healthy case is a key pre-clinical step for potential patients. Manual classification is irreproducible and unreliable. In this study, we aim to develop an automatic classification system of brain images in magnetic resonance imaging (MRI). (Method) Three datasets were downloaded from the Internet. Those images are of T2-weighted along axial plane with size of 256 256. We utilized an s-level decomposition on the basis of dual-tree complex wavelet transform (DTCWT), in order to obtain 12s "variance and entropy (VE)" features from each subband. Afterwards, we used support vector machine (SVM) and its two variants: the generalized eigenvalue proximal SVM (GEPSVM) and the twin SVM (TSVM), as the classifiers. In all, we proposed three novel approaches: DTCWT + VE + SVM, DTCWT + VE + GEPSVM, and DTCWT + VE + TSVM. (Results) The results showed that our "DTCWT + VE + TSVM" obtained an average accuracy of 99.57%, which was not only better than the two other proposed methods, but also superior to 12 state-of-the-art approaches. In addition, parameter estimation showed the classification accuracy achieved the largest when the decomposition level s was assigned with a value of 1. Further, we used 100 slices from real subjects, and we found our proposed method was superior to human reports from neuroradiologists. (Conclusions) This proposed system is effective and feasible.
Author Dong, Zhengchao
Yang, Jiquan
Wang, Shuihua
Zhang, Yudong
Yang, Ming
Lu, Siyuan
Author_xml – sequence: 1
  givenname: Shuihua
  surname: Wang
  fullname: Wang, Shuihua
– sequence: 2
  givenname: Siyuan
  surname: Lu
  fullname: Lu, Siyuan
– sequence: 3
  givenname: Zhengchao
  surname: Dong
  fullname: Dong, Zhengchao
– sequence: 4
  givenname: Jiquan
  surname: Yang
  fullname: Yang, Jiquan
– sequence: 5
  givenname: Ming
  surname: Yang
  fullname: Yang, Ming
– sequence: 6
  givenname: Yudong
  orcidid: 0000-0002-4870-1493
  surname: Zhang
  fullname: Zhang, Yudong
BookMark eNptkUuLFDEQxxtZwXXdi58g4EWE1rw63TnqrI-FFQVHPYbqdGW3h0zSJmkf396MoyiLdami-NW_XvebkxADNs1DRp8KoekzWBZFFWVK32lOOe1VKyTrT_6J7zXnOe9oNc3EwOhpM12s4NttQiSbuF88fief4St6LGSbIGQX055AmMj22xzIh3VZYirkE9oSE3kL9mYOSCpE3kO5iT5ezxY8eZGg0hdYKjfH8KC568BnPP_tz5qPr15uN2_aq3evLzfPr1ortCytVLpnFuUIg5KC9qNVTik7ddJK7Bx0FtWktRs75JZNQoxCu14hOCklWBRnzeVRd4qwM0ua95B-mAiz-ZWI6dpAKrP1aDSvDUAw141cCs71wMVAYVRsAsmAVq3HR60lxS8r5mL2c7boPQSMazZs4F3HWZ2zoo9uobu4plA3NazXSnSsVweKHimbYs4JnbFzgcN5Sr2WN4yawxfN3y_Wkie3Sv7s9B_4J2blnlI
CitedBy_id crossref_primary_10_1007_s13735_019_00174_x
crossref_primary_10_1109_JBHI_2021_3109301
crossref_primary_10_1016_j_apacoust_2025_110563
crossref_primary_10_1002_mrm_27210
crossref_primary_10_36548__jscp_2022_3_005
crossref_primary_10_1111_exsy_12244
crossref_primary_10_1016_j_jfoodeng_2017_02_018
crossref_primary_10_3233_ICA_190605
crossref_primary_10_3390_su11010105
crossref_primary_10_1007_s11042_016_4242_0
crossref_primary_10_1109_ACCESS_2016_2620996
crossref_primary_10_1177_0037549716665156
crossref_primary_10_3390_a9040087
crossref_primary_10_1007_s11042_017_4830_7
crossref_primary_10_1007_s10479_024_06167_2
crossref_primary_10_3390_app9050895
crossref_primary_10_1007_s11042_017_4686_x
crossref_primary_10_1016_j_bspc_2018_10_010
crossref_primary_10_1016_j_future_2018_08_008
crossref_primary_10_1016_j_bspc_2022_103826
crossref_primary_10_1007_s10916_017_0867_4
crossref_primary_10_1080_03772063_2020_1792360
crossref_primary_10_1016_j_neucom_2017_12_030
crossref_primary_10_4103_jmss_jmss_145_21
crossref_primary_10_1007_s11042_017_4554_8
crossref_primary_10_1016_j_future_2019_01_047
crossref_primary_10_1016_j_neucom_2017_05_036
crossref_primary_10_1016_j_bbe_2019_08_005
crossref_primary_10_1016_j_neucom_2016_11_024
crossref_primary_10_1007_s10479_022_04575_w
crossref_primary_10_1016_j_future_2020_02_029
crossref_primary_10_1093_comjnl_bxaa175
crossref_primary_10_1142_S0219691318500480
crossref_primary_10_1007_s11042_020_09062_7
crossref_primary_10_3390_e20040254
crossref_primary_10_1007_s11042_022_13016_6
crossref_primary_10_3233_THC_161286
crossref_primary_10_3390_technologies5020016
crossref_primary_10_1155_2017_9060124
crossref_primary_10_1371_journal_pone_0177811
crossref_primary_10_1007_s11063_022_10870_1
crossref_primary_10_1016_j_compeleceng_2018_04_009
crossref_primary_10_1109_ACCESS_2019_2901055
crossref_primary_10_3390_math9192482
crossref_primary_10_3390_s18092840
crossref_primary_10_3233_JAD_160900
crossref_primary_10_1007_s10916_017_0836_y
crossref_primary_10_1007_s12553_020_00428_3
crossref_primary_10_1007_s10916_019_1428_9
crossref_primary_10_1016_j_cmpb_2016_12_006
crossref_primary_10_1117_1_JEI_26_2_023007
crossref_primary_10_3390_healthcare10091801
crossref_primary_10_1016_j_neucom_2017_01_008
crossref_primary_10_1007_s11042_016_4087_6
crossref_primary_10_1007_s11042_016_4243_z
crossref_primary_10_36548_jscp_2022_3_005
crossref_primary_10_1016_j_eswa_2017_06_038
crossref_primary_10_3389_fncom_2016_00106
crossref_primary_10_3390_sym10110589
crossref_primary_10_1007_s10278_023_00828_7
crossref_primary_10_1007_s11042_017_4670_5
crossref_primary_10_1016_j_asoc_2019_105824
crossref_primary_10_3390_sym9030037
crossref_primary_10_1142_S0219691318500546
crossref_primary_10_1007_s11042_017_5281_x
crossref_primary_10_1007_s11042_016_4171_y
crossref_primary_10_1007_s11042_017_4383_9
Cites_doi 10.1016/j.eswa.2011.04.121
10.1007/s11517-014-1216-0
10.1016/j.neuroscience.2015.08.013
10.1109/TPAMI.2007.1068
10.1002/hyp.8439
10.12989/scs.2015.19.3.569
10.1002/tee.22224
10.1001/jamapsychiatry.2014.179
10.1109/LSP.2012.2216874
10.1186/1471-2105-13-59
10.1016/j.eswa.2016.01.044
10.3390/s120912489
10.1177/0037549716629227
10.1016/j.eswa.2011.02.012
10.1016/j.eswa.2014.01.021
10.7717/peerj.1251
10.1016/j.ijthermalsci.2014.01.024
10.1587/elex.8.1399
10.1038/nature16961
10.1002/ima.22144
10.1186/s40064-015-1523-4
10.3233/IFS-141396
10.1109/TPAMI.2006.17
10.3390/e17041795
10.1155/2013/727830
10.1007/s11042-015-2649-7
10.1007/s11219-010-9125-4
10.1016/j.image.2015.04.010
10.1080/02626667.2010.529448
10.1016/j.dsp.2009.07.002
10.1016/j.ecolmodel.2013.01.015
10.3233/BME-151426
10.1016/j.patrec.2008.10.006
10.1007/s11265-014-0903-2
10.1016/j.compbiomed.2015.05.002
10.1016/j.eswa.2008.09.066
10.1016/j.jconrel.2013.10.019
10.1016/j.bspc.2006.05.002
10.2528/PIER15040602
10.1016/j.patcog.2014.03.008
10.1186/1687-5281-2014-41
10.1186/s12938-015-0063-z
10.1147/JRD.2014.2337118
10.2991/meic-15.2015.155
10.1016/j.neucom.2014.12.032
10.1007/s00521-014-1611-3
10.1166/jmihi.2015.1542
10.3390/e18050194
10.2528/PIER13010105
10.1016/j.sigpro.2014.04.010
10.1117/1.JEI.24.2.023031
10.1002/ima.22132
10.3390/e18030077
10.1002/tee.22059
10.2528/PIER12061410
10.1007/978-3-642-29216-3_74
10.1049/iet-ipr.2013.0663
10.1007/978-81-322-2757-1_55
10.1038/srep21816
10.1007/s10844-011-0172-5
ContentType Journal Article
Copyright Copyright MDPI AG 2016
Copyright_xml – notice: Copyright MDPI AG 2016
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7SC
7SP
7TB
7U5
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOA
DOI 10.3390/app6060169
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Publicly Available Content Database
Civil Engineering Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
EndPage 169
ExternalDocumentID oai_doaj_org_article_92307a31f5b24322982380ab61da41a0
4088464231
10_3390_app6060169
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID .4S
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IPNFZ
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
RIG
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7SC
7SP
7TB
7U5
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
PUEGO
ID FETCH-LOGICAL-c394t-46971ce4ba864307bc6f66cd54c4e5fa5ce6d99fb5e2c1d33b39f76eaf444ace3
IEDL.DBID 8FG
ISSN 2076-3417
IngestDate Wed Aug 27 01:31:03 EDT 2025
Thu Sep 04 20:48:49 EDT 2025
Sun Jun 29 16:18:24 EDT 2025
Tue Jul 01 02:57:57 EDT 2025
Thu Apr 24 22:59:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-46971ce4ba864307bc6f66cd54c4e5fa5ce6d99fb5e2c1d33b39f76eaf444ace3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4870-1493
OpenAccessLink https://www.proquest.com/docview/1796351760?pq-origsite=%requestingapplication%
PQID 1796351760
PQPubID 2032433
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_92307a31f5b24322982380ab61da41a0
proquest_miscellaneous_1825521430
proquest_journals_1796351760
crossref_citationtrail_10_3390_app6060169
crossref_primary_10_3390_app6060169
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-00-00
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016-00-00
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2016
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Celik (ref_36) 2009; 30
Nasiri (ref_42) 2014; 104
ref_55
Satapathy (ref_57) 2016; Volume 435
Dong (ref_6) 2011; 38
Zhang (ref_28) 2016; 6
Dong (ref_53) 2015; 5
Shin (ref_29) 2015; 81
Gorji (ref_2) 2015; 305
Silver (ref_26) 2016; 529
Lau (ref_64) 2011; 24
Thorsen (ref_1) 2013; 172
Li (ref_62) 2015; 53
Ji (ref_61) 2015; 14
Wei (ref_23) 2016; 11
Wu (ref_7) 2012; 130
ref_25
ref_21
ref_20
Wu (ref_24) 2012; 12
Mohsen (ref_9) 2014; 41
Mount (ref_14) 2012; 26
Ng (ref_49) 2014; 80
Nazir (ref_12) 2015; 28
Smaldino (ref_19) 2013; 254
Das (ref_8) 2013; 137
Zhang (ref_45) 2015; 4
Krishna (ref_48) 2012; Volume 270
Shubati (ref_59) 2011; 19
Sun (ref_56) 2014; 58
Singh (ref_35) 2014; 39
Mangasarian (ref_38) 2006; 28
Shao (ref_44) 2014; 47
Si (ref_16) 2015; 19
Goh (ref_3) 2014; 71
Zhang (ref_46) 2015; 25
Hill (ref_33) 2015; 35
Hosny (ref_4) 2010; 20
Hamidi (ref_17) 2015; 9
Wang (ref_11) 2015; 25
Kadiri (ref_34) 2014; 2014
Khemchandani (ref_39) 2011; 38
Shamsinejadbabki (ref_52) 2012; 38
Ayatollahi (ref_32) 2015; 24
Zhang (ref_37) 2015; 152
Kumar (ref_50) 2009; 36
Wang (ref_58) 2016; 18
Zhuang (ref_51) 2012; 13
Lau (ref_63) 2011; 8
Yu (ref_30) 2015; 10
Beura (ref_31) 2015; 154
Jayadeva (ref_41) 2007; 29
ref_47
Xu (ref_43) 2014; 25
Dong (ref_10) 2015; 17
Carrasco (ref_22) 2016; 54
Yang (ref_54) 2015; 17
Abrahart (ref_15) 2010; 55
Ng (ref_27) 2013; 2013
Shao (ref_40) 2013; 20
Sun (ref_13) 2015; 26
Murugesan (ref_18) 2015; 63
Zhang (ref_60) 2016; 18
Patnaik (ref_5) 2006; 1
References_xml – volume: 38
  start-page: 13136
  year: 2011
  ident: ref_39
  article-title: Generalized eigenvalue proximal support vector regressor
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.04.121
– volume: 53
  start-page: 77
  year: 2015
  ident: ref_62
  article-title: Assessing the complexity of short-term heartbeat interval series by distribution entropy
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-014-1216-0
– volume: 305
  start-page: 361
  year: 2015
  ident: ref_2
  article-title: A novel method for early diagnosis of Alzheimer's disease based on pseudo Zernike moment from structural MRI
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2015.08.013
– volume: 29
  start-page: 905
  year: 2007
  ident: ref_41
  article-title: Twin support vector machines for pattern classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1068
– volume: 26
  start-page: 3982
  year: 2012
  ident: ref_14
  article-title: The need for operational reasoning in data-driven rating curve prediction of suspended sediment
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.8439
– volume: 19
  start-page: 569
  year: 2015
  ident: ref_16
  article-title: State detection of explosive welding structure by dual-tree complex wavelet transform based permutation entropy
  publication-title: Steel Compos. Struct.
  doi: 10.12989/scs.2015.19.3.569
– volume: 17
  start-page: 7877
  year: 2015
  ident: ref_54
  article-title: Pathological Brain Detection by a Novel Image Feature—Fractional Fourier Entropy
  publication-title: Entropy
– volume: 11
  start-page: 348
  year: 2016
  ident: ref_23
  article-title: Design of a qualitative classification model through fuzzy support vector machine with type-2 fuzzy expected regression classifier preset
  publication-title: IEEJ Trans. Electr. Electron. Eng.
  doi: 10.1002/tee.22224
– volume: 71
  start-page: 665
  year: 2014
  ident: ref_3
  article-title: Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: Evidence from brain imaging
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2014.179
– volume: 39
  start-page: 345
  year: 2014
  ident: ref_35
  article-title: Fractional M-band dual tree complex wavelet transform for digital watermarking
  publication-title: Sadhana-Acad. Proc. Eng. Sci.
– volume: 20
  start-page: 213
  year: 2013
  ident: ref_40
  article-title: Improved Generalized Eigenvalue Proximal Support Vector Machine
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2012.2216874
– volume: 13
  start-page: 14
  year: 2012
  ident: ref_51
  article-title: A comparison of feature selection and classification methods in DNA methylation studies using the Illumina Infinium platform
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-13-59
– volume: 54
  start-page: 95
  year: 2016
  ident: ref_22
  article-title: A second-order cone programming formulation for nonparallel hyperplane support vector machine
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.01.044
– volume: 12
  start-page: 12489
  year: 2012
  ident: ref_24
  article-title: Classification of fruits using computer vision and a multiclass support vector machine
  publication-title: Sensors
  doi: 10.3390/s120912489
– ident: ref_55
  doi: 10.1177/0037549716629227
– volume: 38
  start-page: 10049
  year: 2011
  ident: ref_6
  article-title: A hybrid method for MRI brain image classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.012
– volume: 41
  start-page: 5526
  year: 2014
  ident: ref_9
  article-title: Computer-Aided diagnosis of human brain tumor through MRI: A survey and a new algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.01.021
– ident: ref_47
  doi: 10.7717/peerj.1251
– volume: 80
  start-page: 41
  year: 2014
  ident: ref_49
  article-title: Parametric sensitivity analysis of radiofrequency ablation with efficient experimental design
  publication-title: Int. J. Thermal Sci.
  doi: 10.1016/j.ijthermalsci.2014.01.024
– volume: 8
  start-page: 1399
  year: 2011
  ident: ref_63
  article-title: A new framework for managing video-on-demand servers: Quad-Tier hybrid architecture
  publication-title: IEICE Electron. Express
  doi: 10.1587/elex.8.1399
– volume: 529
  start-page: 484
  year: 2016
  ident: ref_26
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– volume: 25
  start-page: 317
  year: 2015
  ident: ref_46
  article-title: Magnetic resonance brain image classification based on weighted-type fractional Fourier transform and nonparallel support vector machine
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22144
– volume: 4
  start-page: 716
  year: 2015
  ident: ref_45
  article-title: Pathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machine
  publication-title: SpringerPlus
  doi: 10.1186/s40064-015-1523-4
– volume: 28
  start-page: 1127
  year: 2015
  ident: ref_12
  article-title: A simple and intelligent approach for brain MRI classification
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/IFS-141396
– volume: 28
  start-page: 69
  year: 2006
  ident: ref_38
  article-title: Multisurface proximal support vector machine classification via generalized eigenvalues
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.17
– volume: 17
  start-page: 1795
  year: 2015
  ident: ref_10
  article-title: Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM)
  publication-title: Entropy
  doi: 10.3390/e17041795
– volume: 2013
  start-page: 727830:1
  year: 2013
  ident: ref_27
  article-title: Numerical Methods and Applications in Biomechanical Modeling
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2013/727830
– volume: 24
  start-page: 1
  year: 2011
  ident: ref_64
  article-title: Cohort-Surrogate-Associate: A server-subscriber load sharing model for video-on-demand services
  publication-title: Malayas. J. Comput. Sci.
– ident: ref_20
  doi: 10.1007/s11042-015-2649-7
– volume: 19
  start-page: 431
  year: 2011
  ident: ref_59
  article-title: Artefact generation in second life with case-based reasoning
  publication-title: Softw. Qual. J.
  doi: 10.1007/s11219-010-9125-4
– volume: 35
  start-page: 61
  year: 2015
  ident: ref_33
  article-title: Undecimated Dual-Tree Complex Wavelet Transforms
  publication-title: Signal Process-Image Commun.
  doi: 10.1016/j.image.2015.04.010
– volume: 55
  start-page: 1442
  year: 2010
  ident: ref_15
  article-title: Discussion of “Evapotranspiration modelling using support vector machines”
  publication-title: Hydrol. Sci. J.-J. Sci. Hydrol.
  doi: 10.1080/02626667.2010.529448
– volume: 20
  start-page: 433
  year: 2010
  ident: ref_4
  article-title: Hybrid intelligent techniques for MRI brain images classification
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2009.07.002
– volume: 254
  start-page: 50
  year: 2013
  ident: ref_19
  article-title: Measures of individual uncertainty for ecological models: Variance and entropy
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2013.01.015
– volume: 26
  start-page: 1283
  year: 2015
  ident: ref_13
  article-title: Pathological brain detection based on wavelet entropy and Hu moment invariants
  publication-title: Bio-Med. Mater. Eng.
  doi: 10.3233/BME-151426
– volume: 30
  start-page: 331
  year: 2009
  ident: ref_36
  article-title: Multiscale texture classification using dual-tree complex wavelet transform
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2008.10.006
– volume: 81
  start-page: 71
  year: 2015
  ident: ref_29
  article-title: Super-Resolution image reconstruction using wavelet based patch and discrete wavelet transform
  publication-title: J. Signal. Process. Syst. Signal Image Video Technol.
  doi: 10.1007/s11265-014-0903-2
– volume: 63
  start-page: 36
  year: 2015
  ident: ref_18
  article-title: Application of dual tree complex wavelet transform in tandem mass spectrometry
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.05.002
– volume: 36
  start-page: 7535
  year: 2009
  ident: ref_50
  article-title: Least squares twin support vector machines for pattern classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.09.066
– volume: 172
  start-page: 812
  year: 2013
  ident: ref_1
  article-title: Multimodal imaging enables early detection and characterization of changes in tumor permeability of brain metastases
  publication-title: J. Controll. Release
  doi: 10.1016/j.jconrel.2013.10.019
– volume: 1
  start-page: 86
  year: 2006
  ident: ref_5
  article-title: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2006.05.002
– volume: 152
  start-page: 41
  year: 2015
  ident: ref_37
  article-title: Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization
  publication-title: Progress Electromagn. Res.
  doi: 10.2528/PIER15040602
– volume: 47
  start-page: 3158
  year: 2014
  ident: ref_44
  article-title: An efficient weighted Lagrangian twin support vector machine for imbalanced data classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.03.008
– volume: 2014
  start-page: 1
  year: 2014
  ident: ref_34
  article-title: Magnitude-Phase of the dual-tree quaternionic wavelet transform for multispectral satellite image denoising
  publication-title: EURASIP J. Image Video Process.
  doi: 10.1186/1687-5281-2014-41
– volume: 14
  start-page: 13
  year: 2015
  ident: ref_61
  article-title: Analysis of short-term heart rate and diastolic period variability using a refined fuzzy entropy method
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-015-0063-z
– volume: 58
  start-page: 9
  year: 2014
  ident: ref_56
  article-title: iCARE: A framework for big data-based banking customer analytics
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/JRD.2014.2337118
– ident: ref_21
  doi: 10.2991/meic-15.2015.155
– volume: 154
  start-page: 1
  year: 2015
  ident: ref_31
  article-title: Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.12.032
– volume: 25
  start-page: 1303
  year: 2014
  ident: ref_43
  article-title: Learning with positive and unlabeled examples using biased twin support vector machine
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-014-1611-3
– ident: ref_25
– volume: 5
  start-page: 1395
  year: 2015
  ident: ref_53
  article-title: Magnetic resonance brain image classification via stationary wavelet transform and generalized eigenvalue proximal support vector machine
  publication-title: J. Med. Imaging Health Inform.
  doi: 10.1166/jmihi.2015.1542
– volume: 18
  start-page: 194
  year: 2016
  ident: ref_58
  article-title: Detection of Left-Sided and Right-Sided Hearing Loss via Fractional Fourier Transform
  publication-title: Entropy
  doi: 10.3390/e18050194
– volume: 137
  start-page: 1
  year: 2013
  ident: ref_8
  article-title: Brain MR image classification using multiscale geometric analysis of Ripplet
  publication-title: Progress Electromagn. Res.-Pier
  doi: 10.2528/PIER13010105
– volume: 104
  start-page: 248
  year: 2014
  ident: ref_42
  article-title: Energy-Based model of least squares twin Support Vector Machines for human action recognition
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2014.04.010
– volume: 24
  start-page: 13
  year: 2015
  ident: ref_32
  article-title: Expression-Invariant face recognition using depth and intensity dual-tree complex wavelet transform features
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.24.2.023031
– volume: 25
  start-page: 153
  year: 2015
  ident: ref_11
  article-title: Feed-Forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22132
– volume: 18
  start-page: 77
  year: 2016
  ident: ref_60
  article-title: Tea Category Identification Using a Novel Fractional Fourier Entropy and Jaya Algorithm
  publication-title: Entropy
  doi: 10.3390/e18030077
– volume: 10
  start-page: 116
  year: 2015
  ident: ref_30
  article-title: Exponential wavelet iterative shrinkage thresholding algorithm with random shift for compressed sensing magnetic resonance imaging
  publication-title: IEEJ Trans. Electr. Electron. Eng.
  doi: 10.1002/tee.22059
– volume: 130
  start-page: 369
  year: 2012
  ident: ref_7
  article-title: An MR brain images classifier via principal component analysis and kernel support vector machine
  publication-title: Prog. Electromagn. Res.
  doi: 10.2528/PIER12061410
– volume: Volume 270
  start-page: 680
  year: 2012
  ident: ref_48
  article-title: Evaluation of classifier models using stratified tenfold cross validation techniques
  publication-title: Global Trends in Information Systems and Software Applications
  doi: 10.1007/978-3-642-29216-3_74
– volume: 9
  start-page: 716
  year: 2015
  ident: ref_17
  article-title: Local selected features of dual-tree complex wavelet transform for single sample face recognition
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2013.0663
– volume: Volume 435
  start-page: 563
  year: 2016
  ident: ref_57
  article-title: Three phase security system for vehicles using face recognition on distributed systems
  publication-title: Information Systems Design and Intelligent Applications
  doi: 10.1007/978-81-322-2757-1_55
– volume: 6
  start-page: 21816
  year: 2016
  ident: ref_28
  article-title: Image processing methods to elucidate spatial characteristics of retinal microglia after optic nerve transection
  publication-title: Sci. Rep.
  doi: 10.1038/srep21816
– volume: 38
  start-page: 669
  year: 2012
  ident: ref_52
  article-title: A new unsupervised feature selection method for text clustering based on genetic algorithms
  publication-title: J. Intell. Inf. Syst.
  doi: 10.1007/s10844-011-0172-5
SSID ssj0000913810
Score 2.3532488
Snippet (Aim) Classification of brain images as pathological or healthy case is a key pre-clinical step for potential patients. Manual classification is irreproducible...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 169
SubjectTerms Accuracy
Advanced manufacturing technologies
Alzheimer's disease
Brain
Brain cancer
Classification
Decomposition
dual-tree complex wavelet transform
Entropy
Image classification
Infectious diseases
Laboratories
Magnetic resonance imaging
Manufacturing
Methods
Neural networks
Neuroimaging
Parameter estimation
support vector machine
Support vector machines
Tumors
twin support vector machine
variance
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA_iqR5KtYqv2pKih3pY3OzmY3OsVZGC4uFZvS2TZAKFxyq6D_vnd5Ld93zFQi-9JnMIk_n4TTL8hrFDB2AsSCgqhKqQTYDCCV8Wqq6iCMoQKE9PA5dX-uJGfr9TdyujvlJP2EAPPCju2KZOZahFVK6SZH22oSRTgtMigBSQq_XSlivFVI7BViTqqoGPtKa6Pv0H64F75I8MlIn6X8XhnFzO37G3IyrkX4fTbLI17LbYxgpX4BbbHL3wiX8ZqaKP3rNwOodZMX1E5MmxZ_iL30IaJdHz6QKRcugCnz7_7Hia4Elom__IL_X8MvdRIichfg39MgzykzQ2gp9in9u0um12c342_XZRjHMTCl9b2RdU8RrhUTpoCG-UxnkdtfZBSS9RRVAedbA2OoWVF6GuXW2j0QhRSgke6x223t13uMt4RK9MCI2MDeEmIQDQKhOFMg5s48yEHS102fqRVDzNtpi1VFwkvbcvep-wg6Xsw0Cl8Vepk3QlS4lEf50XyCja0SjafxnFhO0vLrQdffKppdBD6EoYTdufl9vkTemLBDq8n5MMFcwEaEhrH_7HOfbYGwJY45PNPlvvH-f4kUBM7z5le_0NrR_uSg
  priority: 102
  providerName: Directory of Open Access Journals
Title Dual-Tree Complex Wavelet Transform and Twin Support Vector Machine for Pathological Brain Detection
URI https://www.proquest.com/docview/1796351760
https://www.proquest.com/docview/1825521430
https://doaj.org/article/92307a31f5b24322982380ab61da41a0
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagvcAB0QIitERGcKAHi_WuH7snRGhDhdSqQin0thq_KqRoU5KNys9n7DhbEIjr7siH8Ty-GY--IeSNAdANCGClh5KJ2gEz3BZMVmXgTmoE5bE1cHauTi_F5yt5lRtuqzxWuY2JKVC7hY098ndoOJgbuVbF-5sfLG6Niq-reYXGfbLLMdNEO6-nn4YeS-S8rHmxYSWtsLqPr8Jqw0DyRx5KdP1_ReOUYqaPyaOMDemHzWXukXu-2ycPf2MM3Cd72RdX9G0mjD56QtzxGuZstvSeRvee-5_0G8SFEj2dbXEphc7R2e33jsY9noi56dfUr6dnaZrSUxSiF9APwZBO4vIIeuz7NKzVPSWX05PZx1OWtycwWzWiZ1j3am69MFAj6ii0sSooZZ0UVngZQFqvXNMEI31puasqUzVBKw9BCAHWV8_ITrfo_HNCg7dSO1eLUCN64hzAN1IHLrWBpjZ6RI62umxtphaPGy7mLZYYUe_tnd5H5PUge7Mh1Pin1CReySARSbDTh8Xyus0-1TZxiB0qHqQpBQampkb8UYBR3IHgUIzI4fZC2-yZq_bOjkbk1fAbfSo-lEDnF2uUwbIZYQ1q7cX_jzggDxBA5ZbMIdnpl2v_EkFKb8bJEsdkd3JyfvFlnEr9Xw9g6fk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcEC0gAgUWARI9WHjtXT8OCBHSKqVNVCEXejOzD1eVIqckjgp_it_IrF8Fgbj1ao_2MDuPbx47A_BSIcYpCvQCi4EnEoOe4tr3ZBgU3MiYQLlLDUxn0eREfDyVpxvws3sL49oqO5tYG2qz0C5H_oYEh3wjjyP_3cU3z22NctXVboVGIxaH9sclhWyrtwdjut9XQbC_l32YeO1WAU-Hqag8igdjrq1QmJA39mOloyKKtJFCCysLlNpGJk0LJW2guQlDFaZFHFkshBCobUjn3oBN4V60DmBztDc7_tRnddyUzYT7zRzUMEx9V4eOmpknf3i-ekHAX_a_dmr7d-FOi0bZ-0Z8tmDDlttw-7cZhduw1Wr_ir1uR1Tv3gMzXuPcy5bWMmdQ5vY7-4JuhUXFsg4JMywNyy7PS-Y2hxLKZ5_rCgGb1v2blhERO8aqN79s5NZVsLGt6vaw8j6cXAtnH8CgXJT2IbDCahkbk4giIbzGOaJNZVxwGStMExUPYbfjZa7bYeZup8Y8p6DG8T2_4vsQXvS0F80Ij39SjdyV9BRu7Hb9YbE8y1stzlPXNo8hL6QKBJnCNCHE46OKuEHB0R_CTneheWsLVvmV5A7hef-btNiVZrC0izXRUKBOQIq49uj_RzyDm5NsepQfHcwOH8Mtgm9tQmgHBtVybZ8QRKrU01YuGXy9blX4Bex6J6A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEC0gFgoYARI9RI1jO44PCFGWpaW06mELvYXxCyGtsmU3q8Jf49cxzqsgELdek1EO43l8M558Q8gzA6A0CEgyD1kiCgeJYTZNJM8Cc1IhKI-tgcOjfO9EvD-Vp2vkZ_8vTByr7GNiE6jd3MYe-Q4aDuZGpvJ0J3RjEcfjyauzb0ncIBVvWvt1Gq2JHPgf51i-LV_uj_Gsn2fZ5O30zV7SbRhILNeiTrA2VMx6YaDAzJwqY_OQ59ZJYYWXAaT1udM6GOkzyxznhuugcg9BCAHWc_zuFXJVcaVj4VdM3g39nci3WbC0ZUTlXKfxRjpv2U_-yIHNqoC_MkGT3ia3yM0Ol9LXrSFtkDVfbZIbv7EVbpKNLg4s6YuOrHr7NnHjFcyS6cJ7GkPLzH-nnyAus6jptMfEFCpHp-dfKxp3iCLepx-buwJ62ExyeopC9BjqIRDT3bi4go593QyKVXfIyaXo9S5Zr-aVv0do8FYq5woRCkRujAF4LVVgUhnQhVEjst3rsrQdrXncrjErsbyJei8v9D4iTwfZs5bM459Su_FIBolIwN08mC--lJ0_lzoO0ANnQZpMYFDUBWKfFEzOHAgG6Yhs9QdadlFhWV7Y8Ig8GV6jP8dLGqj8fIUyWLIjpEKt3f__Jx6Ta-gA5Yf9o4MH5DriuK4ztEXW68XKP0SsVJtHjVFS8vmyveAXUKIqcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-Tree+Complex+Wavelet+Transform+and+Twin+Support+Vector+Machine+for+Pathological+Brain+Detection&rft.jtitle=Applied+sciences&rft.au=Wang%2C+Shuihua&rft.au=Lu%2C+Siyuan&rft.au=Dong%2C+Zhengchao&rft.au=Yang%2C+Jiquan&rft.date=2016&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=6&rft.issue=6&rft.spage=169&rft_id=info:doi/10.3390%2Fapp6060169&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4088464231
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon