Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16
Institut für Mikrobiologie der Westfälischen Wilhelms-Universität Münster, Corrensstrasse 3, D-48149 Münster, Germany 1 Institut für Mikrobiologie und Genetik der Georg-August-Universität Göttingen, Grisebachstrasse 8, D-37077 Göttingen, Germany 2 Author for correspondence: Alexander Steinbüchel. Te...
Saved in:
Published in | Microbiology (Society for General Microbiology) Vol. 148; no. 8; pp. 2413 - 2426 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Reading
Soc General Microbiol
01.08.2002
Society for General Microbiology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Institut für Mikrobiologie der Westfälischen Wilhelms-Universität Münster, Corrensstrasse 3, D-48149 Münster, Germany 1
Institut für Mikrobiologie und Genetik der Georg-August-Universität Göttingen, Grisebachstrasse 8, D-37077 Göttingen, Germany 2
Author for correspondence: Alexander Steinbüchel. Tel: +49 251 8339821. Fax: +49 251 8338388. e-mail: steinbu{at}uni-muenster.de
Regulation of expression of the phasin PhaP, which is the major protein at the surface of polyhydroxyalkanoate (PHA) granules in Ralstonia eutropha H16, was studied and analysed at the molecular level. The regulation of PhaP expression is achieved by an autoregulated repressor, which is encoded by phaR in R. eutropha. The occurrence of PhaR homologues and the organization of phaR genes was analysed in detail in 29 different bacteria. Three kinds of molecule to which PhaR binds were identified in cells of R. eutropha , as revealed by gel-mobility-shift assays, DNaseI footprinting, cell fractionation, immunoelectron microscopy studies employing anti-PhaR antibodies raised against purified N-terminal hexahistidine-tagged PhaR and in vitro binding studies employing artificial PHA granules. PhaR binds upstream of phaP at two sites comprising the transcriptional start site plus the -10 region and a region immediately upstream of the -35 region of the 70 promoter of phaP , where two imperfect 12 bp repeat sequences (GCAMMAAWTMMD) were identified on the sense and anti-sense strands. PhaR also binds 86 bp upstream of the phaR translational start codon, where the 54 -dependent promoter was identified. PhaR also binds to the surface of PHA granules. In the cytoplasm of a phaR Km mutant of R. eutropha H16, increased quantities of PhaP were detected and the cells formed by this strain were much smaller and had many more PHA granules present than the wild-type. These data support the following model for the regulation of phaP expression. Under cultivation conditions not permissive for PHA biosynthesis or in mutants defective in PHA biosynthesis, PhaR binds to the phaP promoter region and represses transcription of this gene. After the onset of PHA biosynthesis, under conditions that are permissive for the formation of nascent granules, PhaR binds to PHA granules and phaP is transcribed. At the later stages of PHA accumulation, PhaR no longer binds to the granules and the transcription of phaP is again repressed. In addition to this, phaR expression is subject to autoregulation. Excess PhaR that has not bound to the phaP upstream region or to PHA granules binds to the phaR upstream region, thereby repressing its own transcription.
Keywords: phaR , phaP regulation, repressor, inclusion bodies, autoregulation of phaR Abbreviations: GARG, goat-anti-rabbit IgGgold; His 6 , hexahistidine; MM, mineral salts medium; PHA, polyhydroxyalkanoate; PHB, polyhydroxybutyrate; poly(3HB), poly(3-hydroxybutyrate) |
---|---|
AbstractList | Regulation of expression of the phasin PhaP, which is the major protein at the surface of polyhydroxyalkanoate (PHA) granules in Ralstonia eutropha H16, was studied and analysed at the molecular level. The regulation of PhaP expression is achieved by an autoregulated repressor, which is encoded by phaR in R. eutropha. The occurrence of PhaR homologues and the organization of phaR genes was analysed in detail in 29 different bacteria. Three kinds of molecule to which PhaR binds were identified in cells of R. eutropha, as revealed by gel-mobility-shift assays, DNaseI footprinting, cell fractionation, immunoelectron microscopy studies employing anti-PhaR antibodies raised against purified N-terminal hexahistidine-tagged PhaR and in vitro binding studies employing artificial PHA granules. PhaR binds upstream of phaP at two sites comprising the transcriptional start site plus the -10 region and a region immediately upstream of the -35 region of the sigma(70) promoter of phaP, where two imperfect 12 bp repeat sequences (GCAMMAAWTMMD) were identified on the sense and anti-sense strands. PhaR also binds 86 bp upstream of the phaR translational start codon, where the sigma(54)-dependent promoter was identified. PhaR also binds to the surface of PHA granules. In the cytoplasm of a phaROmegaKm mutant of R. eutropha H16, increased quantities of PhaP were detected and the cells formed by this strain were much smaller and had many more PHA granules present than the wild-type. These data support the following model for the regulation of phaP expression. Under cultivation conditions not permissive for PHA biosynthesis or in mutants defective in PHA biosynthesis, PhaR binds to the phaP promoter region and represses transcription of this gene. After the onset of PHA biosynthesis, under conditions that are permissive for the formation of nascent granules, PhaR binds to PHA granules and phaP is transcribed. At the later stages of PHA accumulation, PhaR no longer binds to the granules and the transcription of phaP is again repressed. In addition to this, phaR expression is subject to autoregulation. Excess PhaR that has not bound to the phaP upstream region or to PHA granules binds to the phaR upstream region, thereby repressing its own transcription. Regulation of expression of the phasin PhaP, which is the major protein at the surface of polyhydroxyalkanoate (PHA) granules in Ralstonia eutropha H16, was studied and analysed at the molecular level. The regulation of PhaP expression is achieved by an autoregulated repressor, which is encoded by phaR in R. eutropha. The occurrence of PhaR homologues and the organization of phaR genes was analysed in detail in 29 different bacteria. Three kinds of molecule to which PhaR binds were identified in cells of R. eutropha, as revealed by gel-mobility-shift assays, DNaseI footprinting, cell fractionation, immunoelectron microscopy studies employing anti-PhaR antibodies raised against purified N-terminal hexahistidine-tagged PhaR and in vitro binding studies employing artificial PHA granules. PhaR binds upstream of phaP at two sites comprising the transcriptional start site plus the -10 region and a region immediately upstream of the -35 region of the sigma(70) promoter of phaP, where two imperfect 12 bp repeat sequences (GCAMMAAWTMMD) were identified on the sense and anti-sense strands. PhaR also binds 86 bp upstream of the phaR translational start codon, where the sigma(54)-dependent promoter was identified. PhaR also binds to the surface of PHA granules. In the cytoplasm of a phaROmegaKm mutant of R. eutropha H16, increased quantities of PhaP were detected and the cells formed by this strain were much smaller and had many more PHA granules present than the wild-type. These data support the following model for the regulation of phaP expression. Under cultivation conditions not permissive for PHA biosynthesis or in mutants defective in PHA biosynthesis, PhaR binds to the phaP promoter region and represses transcription of this gene. After the onset of PHA biosynthesis, under conditions that are permissive for the formation of nascent granules, PhaR binds to PHA granules and phaP is transcribed. At the later stages of PHA accumulation, PhaR no longer binds to the granules and the transcription of phaP is again repressed. In addition to this, phaR expression is subject to autoregulation. Excess PhaR that has not bound to the phaP upstream region or to PHA granules binds to the phaR upstream region, thereby repressing its own transcription.Regulation of expression of the phasin PhaP, which is the major protein at the surface of polyhydroxyalkanoate (PHA) granules in Ralstonia eutropha H16, was studied and analysed at the molecular level. The regulation of PhaP expression is achieved by an autoregulated repressor, which is encoded by phaR in R. eutropha. The occurrence of PhaR homologues and the organization of phaR genes was analysed in detail in 29 different bacteria. Three kinds of molecule to which PhaR binds were identified in cells of R. eutropha, as revealed by gel-mobility-shift assays, DNaseI footprinting, cell fractionation, immunoelectron microscopy studies employing anti-PhaR antibodies raised against purified N-terminal hexahistidine-tagged PhaR and in vitro binding studies employing artificial PHA granules. PhaR binds upstream of phaP at two sites comprising the transcriptional start site plus the -10 region and a region immediately upstream of the -35 region of the sigma(70) promoter of phaP, where two imperfect 12 bp repeat sequences (GCAMMAAWTMMD) were identified on the sense and anti-sense strands. PhaR also binds 86 bp upstream of the phaR translational start codon, where the sigma(54)-dependent promoter was identified. PhaR also binds to the surface of PHA granules. In the cytoplasm of a phaROmegaKm mutant of R. eutropha H16, increased quantities of PhaP were detected and the cells formed by this strain were much smaller and had many more PHA granules present than the wild-type. These data support the following model for the regulation of phaP expression. Under cultivation conditions not permissive for PHA biosynthesis or in mutants defective in PHA biosynthesis, PhaR binds to the phaP promoter region and represses transcription of this gene. After the onset of PHA biosynthesis, under conditions that are permissive for the formation of nascent granules, PhaR binds to PHA granules and phaP is transcribed. At the later stages of PHA accumulation, PhaR no longer binds to the granules and the transcription of phaP is again repressed. In addition to this, phaR expression is subject to autoregulation. Excess PhaR that has not bound to the phaP upstream region or to PHA granules binds to the phaR upstream region, thereby repressing its own transcription. Regulation of expression of the phasin PhaP, which is the major protein at the surface of polyhydroxyalkanoate (PHA) granules in Ralstonia eutropha H16, was studied and analysed at the molecular level. The regulation of PhaP expression is achieved by an autoregulated repressor, which is encoded by phaR in R. eutropha. The occurrence of PhaR homologues and the organization of phaR genes was analysed in detail in 29 different bacteria. Three kinds of molecule to which PhaR binds were identified in cells of R. eutropha, as revealed by gel-mobility-shift assays, DNaseI footprinting, cell fractionation, immunoelectron microscopy studies employing anti-PhaR antibodies raised against purified N-terminal hexahistidine-tagged PhaR and in vitro binding studies employing artificial PHA granules. PhaR binds upstream of phaP at two sites comprising the transcriptional start site plus the -10 region and a region immediately upstream of the -35 region of the sigma super(70) promoter of phaP, where two imperfect 12 bp repeat sequences (GCAMMAAWTMMD) were identified on the sense and anti-sense strands. PhaR also binds 86 bp upstream of the phaR translational start codon, where the sigma super(54)-dependent promoter was identified. PhaR also binds to the surface of PHA granules. In the cytoplasm of a phaR Omega Km mutant of R. eutropha H16, increased quantities of PhaP were detected and the cells formed by this strain were much smaller and had many more PHA granules present than the wild-type. These data support the following model for the regulation of phaP expression. Under cultivation conditions not permissive for PHA biosynthesis or in mutants defective in PHA biosynthesis, PhaR binds to the phaP promoter region and represses transcription of this gene. After the onset of PHA biosynthesis, under conditions that are permissive for the formation of nascent granules, PhaR binds to PHA granules and phaP is transcribed. At the later stages of PHA accumulation, PhaR no longer binds to the granules and the transcription of phaP is again repressed. In addition to this, phaR expression is subject to autoregulation. Excess PhaR that has not bound to the phaP upstream region or to PHA granules binds to the phaR upstream region, thereby repressing its own transcription. Institut für Mikrobiologie der Westfälischen Wilhelms-Universität Münster, Corrensstrasse 3, D-48149 Münster, Germany 1 Institut für Mikrobiologie und Genetik der Georg-August-Universität Göttingen, Grisebachstrasse 8, D-37077 Göttingen, Germany 2 Author for correspondence: Alexander Steinbüchel. Tel: +49 251 8339821. Fax: +49 251 8338388. e-mail: steinbu{at}uni-muenster.de Regulation of expression of the phasin PhaP, which is the major protein at the surface of polyhydroxyalkanoate (PHA) granules in Ralstonia eutropha H16, was studied and analysed at the molecular level. The regulation of PhaP expression is achieved by an autoregulated repressor, which is encoded by phaR in R. eutropha. The occurrence of PhaR homologues and the organization of phaR genes was analysed in detail in 29 different bacteria. Three kinds of molecule to which PhaR binds were identified in cells of R. eutropha , as revealed by gel-mobility-shift assays, DNaseI footprinting, cell fractionation, immunoelectron microscopy studies employing anti-PhaR antibodies raised against purified N-terminal hexahistidine-tagged PhaR and in vitro binding studies employing artificial PHA granules. PhaR binds upstream of phaP at two sites comprising the transcriptional start site plus the -10 region and a region immediately upstream of the -35 region of the 70 promoter of phaP , where two imperfect 12 bp repeat sequences (GCAMMAAWTMMD) were identified on the sense and anti-sense strands. PhaR also binds 86 bp upstream of the phaR translational start codon, where the 54 -dependent promoter was identified. PhaR also binds to the surface of PHA granules. In the cytoplasm of a phaR Km mutant of R. eutropha H16, increased quantities of PhaP were detected and the cells formed by this strain were much smaller and had many more PHA granules present than the wild-type. These data support the following model for the regulation of phaP expression. Under cultivation conditions not permissive for PHA biosynthesis or in mutants defective in PHA biosynthesis, PhaR binds to the phaP promoter region and represses transcription of this gene. After the onset of PHA biosynthesis, under conditions that are permissive for the formation of nascent granules, PhaR binds to PHA granules and phaP is transcribed. At the later stages of PHA accumulation, PhaR no longer binds to the granules and the transcription of phaP is again repressed. In addition to this, phaR expression is subject to autoregulation. Excess PhaR that has not bound to the phaP upstream region or to PHA granules binds to the phaR upstream region, thereby repressing its own transcription. Keywords: phaR , phaP regulation, repressor, inclusion bodies, autoregulation of phaR Abbreviations: GARG, goat-anti-rabbit IgGgold; His 6 , hexahistidine; MM, mineral salts medium; PHA, polyhydroxyalkanoate; PHB, polyhydroxybutyrate; poly(3HB), poly(3-hydroxybutyrate) |
Author | Mayer, Frank Madkour, Mohamed H Potter, Markus Steinbuchel, Alexander |
Author_xml | – sequence: 1 fullname: Potter, Markus – sequence: 2 fullname: Madkour, Mohamed H – sequence: 3 fullname: Mayer, Frank – sequence: 4 fullname: Steinbuchel, Alexander |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14573535$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/12177335$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1vFCEUhompsR_6C0wMN5r2YhQGmIHLplHXpImm0WtyhoFd6gyMMJN2_71sd6vGC72CcJ7nTXjPKToKMViEXlLylhKl3hFS17SWbUW5rGRVc8qeoBPKG1HVRJKjcmeCVES29TE6zfmWkDIk9Bk6pjVtW8bECbq9setlgNnHgKPD0wayD9jeT8nmvHuE0OMpDtvNtk_xfgvDdwgRZovPv6wuL_A6QVgGi11M4z6l6Dcw5DkGD9guc4olFK9o8xw9dWVgXxzOM_Ttw_uvV6vq-vPHT1eX15Vhis8VZ05I1clems5Y1rdN5xrC2oapmivODAAnvWykY50hAAJMx2UN0FopRO_YGXqzz51S_LHYPOvRZ2OHAYKNS9YtVYoyqv4L0tKcFIoV8NUBXLrR9npKfoS01Y81FuD1AYBsYHClFOPzb46LtlA7Tu05k2LOyTpt_PxQ25zAD5oSvVutflxtMaWWerfa4rK_3F_x_7Qu9tbGrzd3Plm9tmH0JaPzsfzX_MH-BBb4tE4 |
CitedBy_id | crossref_primary_10_1094_MPMI_06_21_0138_R crossref_primary_10_1111_j_1365_2958_2011_07869_x crossref_primary_10_1128_JB_187_11_3825_3832_2005 crossref_primary_10_1007_s00253_020_10568_1 crossref_primary_10_1016_j_enzmictec_2004_12_005 crossref_primary_10_1080_17518253_2015_1109715 crossref_primary_10_1016_j_progpolymsci_2013_06_008 crossref_primary_10_1111_1751_7915_13915 crossref_primary_10_1016_j_biomaterials_2010_08_001 crossref_primary_10_1016_j_progpolymsci_2012_06_003 crossref_primary_10_3390_ijms25042157 crossref_primary_10_1128_MRA_00167_21 crossref_primary_10_1016_j_femsle_2005_01_020 crossref_primary_10_1186_s12934_015_0380_8 crossref_primary_10_1002_adma_201907138 crossref_primary_10_1016_j_ymben_2024_10_011 crossref_primary_10_1007_s00253_014_6266_6 crossref_primary_10_1128_JB_00752_07 crossref_primary_10_1016_j_chemosphere_2022_135390 crossref_primary_10_1021_bm049441r crossref_primary_10_1128_JB_187_11_3607_3619_2005 crossref_primary_10_1007_s00253_024_13100_x crossref_primary_10_1016_j_ijbiomac_2021_08_236 crossref_primary_10_1007_s00709_011_0329_7 crossref_primary_10_1099_mic_0_27613_0 crossref_primary_10_1111_1751_7915_12718 crossref_primary_10_1016_j_ijbiomac_2021_07_041 crossref_primary_10_1007_s00253_006_0371_0 crossref_primary_10_1016_j_plipres_2020_101029 crossref_primary_10_1111_1462_2920_12356 crossref_primary_10_1186_s12934_024_02329_w crossref_primary_10_1016_j_jclepro_2020_121500 crossref_primary_10_1371_journal_pone_0160981 crossref_primary_10_3389_fphar_2022_987695 crossref_primary_10_1007_s00253_011_3100_2 crossref_primary_10_1007_s10529_005_5521_4 crossref_primary_10_1021_bm049401n crossref_primary_10_1099_mic_0_000837 crossref_primary_10_1021_bm060442o crossref_primary_10_1021_bm101230n crossref_primary_10_1016_S1369_703X_03_00036_6 crossref_primary_10_1021_bi901329b crossref_primary_10_1094_MPMI_34_12 crossref_primary_10_1007_s00253_023_12797_6 crossref_primary_10_1021_acssynbio_6b00083 crossref_primary_10_1016_j_femsle_2005_05_027 crossref_primary_10_1128_JB_01723_08 crossref_primary_10_1021_acsbiomaterials_6b00355 crossref_primary_10_1128_AEM_00757_16 crossref_primary_10_1016_j_gene_2020_144397 crossref_primary_10_1128_AEM_01839_06 crossref_primary_10_1186_s13568_017_0335_z crossref_primary_10_1016_j_biortech_2024_130556 crossref_primary_10_1128_AEM_00953_07 crossref_primary_10_3390_molecules26040860 crossref_primary_10_1007_s00253_014_5591_0 crossref_primary_10_1021_acs_langmuir_8b03036 crossref_primary_10_1016_j_cej_2024_151413 crossref_primary_10_1007_s00253_013_4980_0 crossref_primary_10_1128_JB_187_11_3814_3824_2005 crossref_primary_10_1099_mic_0_051508_0 crossref_primary_10_1007_s00253_019_09896_8 crossref_primary_10_1038_ismej_2015_155 crossref_primary_10_1093_femsre_fuaa058 crossref_primary_10_1016_j_femsle_2004_08_044 crossref_primary_10_1016_S0141_3910_03_00273_8 crossref_primary_10_1016_S0147_619X_03_00009_X crossref_primary_10_1111_j_1758_2229_2011_00273_x crossref_primary_10_1128_JB_01550_06 crossref_primary_10_1128_AEM_02935_13 crossref_primary_10_1128_JB_00493_10 crossref_primary_10_1186_2191_0855_3_6 crossref_primary_10_1111_j_1365_2672_2007_03335_x crossref_primary_10_1128_AEM_02878_14 crossref_primary_10_1128_JB_186_8_2466_2475_2004 crossref_primary_10_1016_j_tibtech_2024_06_001 crossref_primary_10_1002_pmic_201000392 crossref_primary_10_1038_srep26612 crossref_primary_10_1128_AEM_02666_14 crossref_primary_10_1128_AEM_02586_18 crossref_primary_10_1186_1471_2180_11_230 crossref_primary_10_3390_polym13193302 crossref_primary_10_1128_spectrum_00036_23 crossref_primary_10_1242_jcs_104992 crossref_primary_10_1007_s10123_018_0004_3 crossref_primary_10_1021_bi2013596 crossref_primary_10_1002_elsc_201500022 crossref_primary_10_1016_j_chemosphere_2022_133723 crossref_primary_10_1039_D1RA02390J crossref_primary_10_1016_j_mec_2021_e00191 crossref_primary_10_1186_s13568_019_0876_4 crossref_primary_10_1371_journal_pone_0096621 crossref_primary_10_1016_j_biortech_2011_09_098 crossref_primary_10_1099_mic_0_28969_0 crossref_primary_10_1099_mic_0_038380_0 crossref_primary_10_1128_aem_00507_22 crossref_primary_10_1016_j_procbio_2016_07_019 crossref_primary_10_1128_JB_00779_12 crossref_primary_10_3390_su16052200 crossref_primary_10_1128_AEM_00459_17 crossref_primary_10_1016_j_watres_2023_120892 crossref_primary_10_1128_AEM_00604_18 crossref_primary_10_1128_JB_06125_11 crossref_primary_10_1016_S1369_5274_03_00040_7 crossref_primary_10_3390_md19030159 crossref_primary_10_3389_fbioe_2020_00386 crossref_primary_10_1016_S0378_1097_03_00919_4 crossref_primary_10_3389_fmicb_2016_00739 crossref_primary_10_1016_S0378_1097_03_00610_4 crossref_primary_10_1016_j_jbiosc_2014_04_022 crossref_primary_10_1021_acs_biomac_9b00509 crossref_primary_10_1007_s11274_008_9669_7 crossref_primary_10_1016_j_jbiosc_2013_12_020 crossref_primary_10_1186_1471_2180_12_262 crossref_primary_10_1002_jctb_4685 crossref_primary_10_1146_annurev_biochem_74_082803_133013 crossref_primary_10_1016_j_jbiotec_2020_04_012 crossref_primary_10_1186_s12934_019_1201_2 crossref_primary_10_1007_s00253_011_3258_7 crossref_primary_10_3109_17435390_2011_579633 crossref_primary_10_1128_AEM_71_10_5735_5742_2005 crossref_primary_10_3390_polym13142294 crossref_primary_10_1128_AEM_00440_08 crossref_primary_10_1128_AEM_01161_16 crossref_primary_10_1099_mic_0_000755 crossref_primary_10_1021_bi501405b crossref_primary_10_1128_AEM_01458_21 crossref_primary_10_1128_AEM_01543_10 crossref_primary_10_1128_AEM_03791_14 crossref_primary_10_1099_mic_0_26970_0 crossref_primary_10_1007_s11120_013_9923_1 crossref_primary_10_1186_2191_0855_2_26 crossref_primary_10_3389_fmicb_2023_1140484 crossref_primary_10_1016_j_biomaterials_2008_09_008 crossref_primary_10_1021_bc500404j crossref_primary_10_1016_S1369_5274_03_00061_4 crossref_primary_10_1021_bm801394s crossref_primary_10_1007_s00253_005_1969_3 crossref_primary_10_1128_AEM_00493_16 crossref_primary_10_1128_JB_186_10_3015_3021_2004 crossref_primary_10_3390_microorganisms9061290 crossref_primary_10_1016_j_jbc_2024_107523 crossref_primary_10_1007_s00253_015_6609_y crossref_primary_10_1128_JB_01486_07 crossref_primary_10_1007_s10924_011_0324_2 crossref_primary_10_1021_acs_macromol_6b00384 crossref_primary_10_1021_acs_biomac_2c00624 crossref_primary_10_1128_AEM_01693_12 crossref_primary_10_1007_s00253_005_1995_1 crossref_primary_10_1128_AEM_70_11_6789_6799_2004 crossref_primary_10_1007_s00203_007_0265_2 crossref_primary_10_1080_09168451_2015_1023250 crossref_primary_10_1016_S0022_2836_03_00894_5 crossref_primary_10_1007_s11427_012_4321_z crossref_primary_10_1021_bm060912e |
Cites_doi | 10.1111/j.1574-6968.2001.tb10685.x 10.1007/BF00410770 10.1128/JB.170.10.4431-4436.1988 10.1016/S0022-2836(83)80284-8 10.1007/BF01457653 10.1128/JB.170.12.5837-5847.1988 10.1128/JB.181.9.2914-2921.1999 10.1093/nar/7.6.1513 10.1128/AEM.56.11.3360-3367.1990 10.1128/MMBR.54.4.450-472.1990 10.1093/nar/11.8.2237 10.1111/j.1365-2958.1991.tb00725.x 10.1007/978-1-349-11167-1_3 10.1038/nbt1183-784 10.1073/pnas.76.9.4350 10.1016/S0960-0760(97)00078-2 10.1007/s002030000171 10.1146/annurev.ge.13.120179.001535 10.1099/13500872-141-10-2553 10.1128/JB.176.14.4328-4337.1994 10.1128/JB.177.9.2425-2435.1995 10.1139/m95-175 10.1016/S0022-2836(61)80047-8 10.1016/0014-5793(72)80680-X 10.1007/BF00422356 10.1007/978-94-009-0213-8_32 10.1128/JB.183.7.2394-2397.2001 10.1007/s002530051598 10.1016/S0141-8130(99)00010-0 10.1007/978-3-642-69338-0_11 10.1016/S0021-9258(19)84824-X 10.1016/S0021-9258(18)43211-5 10.1016/S0021-9258(19)84825-1 10.1128/JB.177.9.2513-2523.1995 10.1016/0378-1097(95)00125-O 10.1128/JB.183.14.4217-4226.2001 10.1099/00221287-147-1-11 10.1016/S0021-9258(18)94333-4 10.1073/pnas.82.7.1979 10.1021/bm015564p 10.1002/elps.1150060302 10.1002/ange.19931050404 10.1128/JB.180.8.1979-1987.1998 10.1007/BF01457649 10.1177/29.5.6166664 10.1007/978-94-011-1330-4_4 10.1038/227680a0 10.1016/S0022-5320(69)90033-1 10.1128/JB.184.1.59-66.2002 |
ContentType | Journal Article |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QL 7TM C1K 7X8 |
DOI | 10.1099/00221287-148-8-2413 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Bacteriology Abstracts (Microbiology B) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1465-2080 |
EndPage | 2426 |
ExternalDocumentID | 12177335 14573535 10_1099_00221287_148_8_2413 mic148_8_2413 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 02 123 186 2WC 3O- 4.4 53G 5RE AAPBV ABEFU ABFLS ABPPZ ABPTK ABUFD ACNCT ADACO AETEA AFDAS AFFNX AFWKH AGCAB AGCDD ALMA_UNASSIGNED_HOLDINGS C1A CS3 DIK DZ E3Z EBS EJD F5P FH7 G8K GJ GX1 H13 H~9 K-O KM L7B MVM MYA P0W P2P RGM RHF S10 TAE UQL WH7 WOQ X XHC Y6R ZCG ZGI ZXP ZY4 --- -DZ -~X .GJ AAYXX ABDPE ACPEE ADCDP ADIYS CITATION RPM W8F YR2 ~02 ~KM .55 AJKYU HF~ IQODW X7M ABTAH CGR CUY CVF ECM EIF NPM 7QL 7TM C1K 7X8 |
ID | FETCH-LOGICAL-c394t-43f589b8d8cbce3d76bf603763924943caa40d868f3bc0aa5acb482aa7e855df3 |
ISSN | 1350-0872 |
IngestDate | Fri Jul 11 09:21:35 EDT 2025 Thu Jul 10 18:51:50 EDT 2025 Thu Apr 03 07:06:33 EDT 2025 Mon Jul 21 09:12:42 EDT 2025 Thu Apr 24 23:11:03 EDT 2025 Tue Jul 01 04:26:00 EDT 2025 Tue Jan 05 21:43:52 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Bacteria Self regulation Ralstonia eutropha Regulation(control) Repression |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c394t-43f589b8d8cbce3d76bf603763924943caa40d868f3bc0aa5acb482aa7e855df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 12177335 |
PQID | 18728593 |
PQPubID | 23462 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_71991319 proquest_miscellaneous_18728593 pubmed_primary_12177335 pascalfrancis_primary_14573535 crossref_citationtrail_10_1099_00221287_148_8_2413 crossref_primary_10_1099_00221287_148_8_2413 highwire_genmicrobio_mic148_8_2413 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2002-08-01 |
PublicationDateYYYYMMDD | 2002-08-01 |
PublicationDate_xml | – month: 08 year: 2002 text: 2002-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Reading |
PublicationPlace_xml | – name: Reading – name: England |
PublicationTitle | Microbiology (Society for General Microbiology) |
PublicationTitleAlternate | Microbiology |
PublicationYear | 2002 |
Publisher | Soc General Microbiol Society for General Microbiology |
Publisher_xml | – name: Soc General Microbiol – name: Society for General Microbiology |
References | Pieper-Fürst (R28) 1995; 177 York (R55) 2001b; 183 Overhage (R24) 1999; 52 Ausubel (R2) 1987 Jendrossek (R13) 1993; 1 Steinbüchel (R44) 1991; 5 Steinbüchel (R47) 1996 Schlegel (R36) 1961; 38 Marmur (R21) 1961; 3 Rehm (R31) 1999; 25 Olmsted (R23) 1981; 256 Spurr (R42) 1969; 26 Lemoigne (R16) 1926; 8 Lütke-Eversloh (R17) 2001a; 147 Peoples (R25) 1989a; 264 Rosenberg (R33) 1979; 13 Doi (R6) 1990 Tombolini (R49) 1995; 141 York (R54) 2001a; 183 Slater (R41) 1998; 180 Brandl (R4) 1988; 66 Hanahan (R7) 1983; 166 Holmes (R12) 1981; 0052459 Hocking (R11) 1994 Anderson (R1) 1990; 54 Peoples (R26) 1989b; 264 Timm (R48) 1990; 56 Roth (R34) 1981; 29 Towbin (R50) 1979; 76 Simon (R38) 1983a Slater (R40) 1988; 170 York (R56) 2002; 184 Steinbüchel (R45) 1995; 128 Heukeshofen (R9) 1985; 6 Wieczorek (R53) 1995; 177 Maehara (R20) 2001; 200 Maehara (R19) 1999; 181 Laemmli (R15) 1970; 227 Simon (R39) 1983b; 1 Povolo (R29) 2000; 174 Birnboim (R3) 1979; 277 Sambrook (R35) 1989 Preusting (R30) 1993; 1 Pieper-Fürst (R27) 1994; 176 Walther-Mauruschat (R51) 1977; 114 Steinbüchel (R46) 1995; 41 Lütke-Eversloh (R18) 2001b; 2 Kunioka (R14) 1988; 29 Müller (R22) 1993; 105 Weber (R52) 1969; 244 Steinbüchel (R43) 1991 Hawley (R8) 1983; 11 Reitzer (R32) 1985; 82 Schubert (R37) 1988; 170 Cabrera (R5) 1997; 63 Hjelm (R10) 1972; 28 |
References_xml | – volume: 200 start-page: 9 year: 2001 ident: R20 article-title: PhaR, a protein of unknown function conserved among short-chain-length polyhydroxyalkanoic acids producing bacteria, is a DNA-binding protein and represses Paracoccus denitrificans phaP expression in vitro publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.2001.tb10685.x – volume: 114 start-page: 101 year: 1977 ident: R51 article-title: Micromorphology of Gram-negative hydrogen bacteria. II. Cell envelope, membranes, and cytoplasmic inclusions publication-title: Arch Microbiol doi: 10.1007/BF00410770 – volume: 170 start-page: 4431 year: 1988 ident: R40 article-title: Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-β-hydroxybutyrate biosynthetic pathway publication-title: J Bacteriol doi: 10.1128/JB.170.10.4431-4436.1988 – volume: 166 start-page: 557 year: 1983 ident: R7 article-title: Studies on transformation of Escherichia coli with plasmids publication-title: J Mol Biol doi: 10.1016/S0022-2836(83)80284-8 – volume: 1 start-page: 53 year: 1993 ident: R13 article-title: Degradation of poly(3-hydroxybutyrate), PHB, by bacteria and purification of a novel PHB depolymerase from Comamonas sp publication-title: J Environ Polym Degrad doi: 10.1007/BF01457653 – volume: 170 start-page: 5837 year: 1988 ident: R37 article-title: Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli publication-title: J Bacteriol doi: 10.1128/JB.170.12.5837-5847.1988 – volume: 8 start-page: 770 year: 1926 ident: R16 article-title: Produits de deshydration et de polymerisation de lácide β-oxybutyrique publication-title: Bull Soc Chim Biol – volume: 181 start-page: 2914 year: 1999 ident: R19 article-title: Analyses of a polyhydroxyalkanoic acid granule-associated 16-kilodalton protein and its putative regulator in the pha locus of Paracoccus denitrificans publication-title: J Bacteriol doi: 10.1128/JB.181.9.2914-2921.1999 – volume: 277 start-page: 1513 year: 1979 ident: R3 article-title: A rapid alkaline extraction procedure for screening recombinant plasmid DNA publication-title: Nucleic Acids Res doi: 10.1093/nar/7.6.1513 – volume: 66 start-page: 2117 year: 1988 ident: R4 article-title: Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters publication-title: Appl Environ Microbiol – start-page: 37 volume-title: New Biosynthetic Biodegradable Polymers of Industrial Interest from Microorganisms year: 1990 ident: R6 article-title: Production of biodegradable copolyesters by Alcaligenes eutrophus – volume: 56 start-page: 3360 year: 1990 ident: R48 article-title: Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads publication-title: Appl Environ Microbiol doi: 10.1128/AEM.56.11.3360-3367.1990 – volume: 54 start-page: 450 year: 1990 ident: R1 article-title: Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates publication-title: Microbiol Rev doi: 10.1128/MMBR.54.4.450-472.1990 – volume: 11 start-page: 2234 year: 1983 ident: R8 article-title: Compilation and analysis of Escherichia coli promoter sequences publication-title: Nucleic Acids Res doi: 10.1093/nar/11.8.2237 – volume: 5 start-page: 535 year: 1991 ident: R44 article-title: Physiology and molecular genetics of poly(β-hydroxy-alkanoic acid) synthesis in Alcaligenes eutrophus publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.1991.tb00725.x – start-page: 123 volume-title: Biomaterials year: 1991 ident: R43 article-title: Polyhydroxyalkanoic acids doi: 10.1007/978-1-349-11167-1_3 – volume: 1 start-page: 784 year: 1983b ident: R39 article-title: A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria publication-title: Bio/Technology doi: 10.1038/nbt1183-784 – volume: 76 start-page: 4350 year: 1979 ident: R50 article-title: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.76.9.4350 – volume-title: Molecular Cloning: a Laboratory Manual year: 1989 ident: R35 – volume: 63 start-page: 91 year: 1997 ident: R5 article-title: A new Comamonas testosteroni steroid-inducible gene: cloning and sequence analysis publication-title: J Steroid Biochem Mol Biol doi: 10.1016/S0960-0760(97)00078-2 – volume: 174 start-page: 42 year: 2000 ident: R29 article-title: A critical role for aniA in energy–carbon flux and symbiotic nitrogen fixation in Sinorhizobium meliloti publication-title: Arch Microbiol doi: 10.1007/s002030000171 – volume: 13 start-page: 319 year: 1979 ident: R33 article-title: Regulatory sequences involved in the promotion and termination of RNA transcription publication-title: Annu Rev Genet doi: 10.1146/annurev.ge.13.120179.001535 – volume: 141 start-page: 2553 year: 1995 ident: R49 article-title: Poly-β-hydroxybutyrate (PHB) biosynthetic genes in Rhizobium meliloti 41 publication-title: Microbiology doi: 10.1099/13500872-141-10-2553 – volume: 0052459 year: 1981 ident: R12 article-title: Betahydroxybutyrate polymers publication-title: European Patent Application – volume: 176 start-page: 4328 year: 1994 ident: R27 article-title: Purification and characterization of a 14-kilodalton protein that is bound to the surface of polyhydroxyalkanoic acid granules in Rhodococcus ruber publication-title: J Bacteriol doi: 10.1128/JB.176.14.4328-4337.1994 – volume-title: Current Protocols in Molecular Biology year: 1987 ident: R2 – volume: 177 start-page: 2425 year: 1995 ident: R53 article-title: Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus publication-title: J Bacteriol doi: 10.1128/JB.177.9.2425-2435.1995 – volume: 41 start-page: 94 year: 1995 ident: R46 article-title: Consideration on the structural and biochemistry of bacterial polyhydroxyalkanoic acid inclusions publication-title: Can J Microbiol doi: 10.1139/m95-175 – volume: 3 start-page: 208 year: 1961 ident: R21 article-title: A procedure for the isolation of deoxyribonucleic acids from microorganisms publication-title: J Mol Biol doi: 10.1016/S0022-2836(61)80047-8 – volume: 28 start-page: 73 year: 1972 ident: R10 article-title: Protein A from Staphylococcus aureus . Its isolation by affinity chromatography and its use as an immunosorbent for isolation of immunoglobulins publication-title: FEBS Lett doi: 10.1016/0014-5793(72)80680-X – volume: 38 start-page: 209 year: 1961 ident: R36 article-title: Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien: Wachstumsphysiologische Untersuchungen publication-title: Arch Mikrobiol doi: 10.1007/BF00422356 – start-page: 237 volume-title: Microbial Growth on Compounds year: 1996 ident: R47 article-title: PHA biosynthesis, its regulation and application of C1-utilizing microorganisms for polyester production doi: 10.1007/978-94-009-0213-8_32 – volume: 183 start-page: 2394 year: 2001b ident: R55 article-title: New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate publication-title: J Bacteriol doi: 10.1128/JB.183.7.2394-2397.2001 – volume: 52 start-page: 820 year: 1999 ident: R24 article-title: Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase ( vdh ) gene publication-title: Appl Microbiol Biotechnol doi: 10.1007/s002530051598 – volume: 25 start-page: 3 year: 1999 ident: R31 article-title: Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis publication-title: Int J Biol Macromol doi: 10.1016/S0141-8130(99)00010-0 – start-page: 98 volume-title: Molecular Genetics of the Bacteria–Plant Interaction year: 1983a ident: R38 article-title: Vector plasmids for in vivo and in vitro manipulations of Gram negative bacteria doi: 10.1007/978-3-642-69338-0_11 – volume: 264 start-page: 15293 year: 1989a ident: R25 article-title: Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16. Characterization of the genes encoding β-ketothiolase and acetoacetyl-CoA reductase publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)84824-X – volume: 256 start-page: 11955 year: 1981 ident: R23 article-title: Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)43211-5 – volume: 264 start-page: 15298 year: 1989b ident: R26 article-title: Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene ( phbC publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)84825-1 – volume: 177 start-page: 2513 year: 1995 ident: R28 article-title: Identification of the region of a 14-kilodalton protein of Rhodococcus ruber that is responsible for the binding of this phasin to polyhydroxyalkanoic acid granules publication-title: J Bacteriol doi: 10.1128/JB.177.9.2513-2523.1995 – volume: 128 start-page: 219 year: 1995 ident: R45 article-title: Diversity of microbial polyhydroxyalkanoic acids publication-title: FEMS Microbiol Lett doi: 10.1016/0378-1097(95)00125-O – volume: 183 start-page: 4217 year: 2001a ident: R54 article-title: Accumulation of the PhaP phasin of Ralstonia eutropha is dependent on production of polyhydroxybutyrate in cells publication-title: J Bacteriol doi: 10.1128/JB.183.14.4217-4226.2001 – volume: 147 start-page: 11 year: 2001a ident: R17 article-title: Identification of a new class of biopolymer: bacterial synthesis of a sulfur-containing polymer with thioester linkages publication-title: Microbiology doi: 10.1099/00221287-147-1-11 – volume: 244 start-page: 4406 year: 1969 ident: R52 article-title: The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)94333-4 – volume: 82 start-page: 1979 year: 1985 ident: R32 article-title: Expression of glnA in Escherichia coli is regulated at tandem promotors publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.82.7.1979 – volume: 2 start-page: 1061 year: 2001b ident: R18 article-title: Biosynthesis of poly(3-hydroxybutyrate- co -3-mercaptobutyrate) as a sulfur analogue to poly(3-hydroxybutyrate) (PHB publication-title: Biomacromolecules doi: 10.1021/bm015564p – volume: 6 start-page: 103 year: 1985 ident: R9 article-title: A simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining publication-title: Electrophoresis doi: 10.1002/elps.1150060302 – volume: 29 start-page: 174 year: 1988 ident: R14 article-title: New bacterial copolyesters produced in Alcaligenes eutrophus from organic acids publication-title: Polym Commun – volume: 105 start-page: 483 year: 1993 ident: R22 article-title: Poly(hydroxyfettsäureester), eine fünfte Klasse von physiologisch bedeutsamen organischen Biopolymeren? publication-title: Angew Chem doi: 10.1002/ange.19931050404 – volume: 180 start-page: 1979 year: 1998 ident: R41 article-title: Multiple β-ketothiolases mediate poly(β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha publication-title: J Bacteriol doi: 10.1128/JB.180.8.1979-1987.1998 – volume: 1 start-page: 11 year: 1993 ident: R30 article-title: Formation of polyester blends by a recombinant strain of Pseudomonas oleovorans : different poly (3-hydroxyalkanoates) are stored in separate granules publication-title: J Environ Polym Degrad doi: 10.1007/BF01457649 – volume: 29 start-page: 663 year: 1981 ident: R34 article-title: Enhancement of structural preservation and immunocytochemical straining in low temperature embedded pancreatic tissue publication-title: J Histochem Cytochem doi: 10.1177/29.5.6166664 – start-page: 48 volume-title: Chemistry and Technology of Biodegradable Polymers year: 1994 ident: R11 article-title: Biopolyesters doi: 10.1007/978-94-011-1330-4_4 – volume: 227 start-page: 680 year: 1970 ident: R15 article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4 publication-title: Nature doi: 10.1038/227680a0 – volume: 26 start-page: 31 year: 1969 ident: R42 article-title: A low-viscosity epoxy resin embedding medium for electron microscopy publication-title: J Ultrastruct Res doi: 10.1016/S0022-5320(69)90033-1 – volume: 184 start-page: 59 year: 2002 ident: R56 article-title: The Ralstonia eutropha PhaR protein couples synthesis of the PhaP phasin to the presence of polyhydroxybutyrate in cells and promotes polyhydroxybutyrate production publication-title: J Bacteriol doi: 10.1128/JB.184.1.59-66.2002 |
SSID | ssj0014601 |
Score | 2.1507573 |
Snippet | Institut für Mikrobiologie der Westfälischen Wilhelms-Universität Münster, Corrensstrasse 3, D-48149 Münster, Germany 1
Institut für Mikrobiologie und Genetik... Regulation of expression of the phasin PhaP, which is the major protein at the surface of polyhydroxyalkanoate (PHA) granules in Ralstonia eutropha H16, was... |
SourceID | proquest pubmed pascalfrancis crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2413 |
SubjectTerms | Bacterial Proteins - biosynthesis Bacteriology Biological and medical sciences Culture Media Cupriavidus necator - genetics Cupriavidus necator - metabolism Cupriavidus necator - ultrastructure DNA Footprinting DNA-Binding Proteins - biosynthesis Escherichia coli - genetics Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Bacterial Genetics Growth, nutrition, cell differenciation Hydroxybutyrates - metabolism Microbiology Microscopy, Immunoelectron Models, Biological phaP gene phaR gene phasin Phylogeny Polyesters - metabolism Ralstonia eutropha |
Title | Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16 |
URI | http://mic.sgmjournals.org/cgi/content/abstract/148/8/2413 https://www.ncbi.nlm.nih.gov/pubmed/12177335 https://www.proquest.com/docview/18728593 https://www.proquest.com/docview/71991319 |
Volume | 148 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEBIviG86YFiIB1BJaWI7cR7HBFRIRdO0SX2L7MRZy7qmWpOH8pfy53AX56uomxgvUZTYpzj3s-98vg9C3sGKz1wQHY4bqtjhfsodJcMY9zyJMTo0qozjnvzwx2f8-1RMe73fHa-lItfD-NfOuJL_4So8A75ilOwtONsQhQdwD_yFK3AYrv_E4xNbSL7S-VYztZ6XOfutb6t1M15li81sk6C3ilpcqGUGyiWqlcfjQ7QInIOsKhamDWJEA8gJfDnohHM1MEV-lQHhwdjGKtZ67GTeSeAE1LrOn1Um60G3TcfgcIxn85_9vKoIgsFCRaPYT1RyASMvX2QzBaJ6MB62Lze2T1lpvrENYb1OXRI9QrfWrbCdLaOG17jU1eswE-hmZ6v6DI19xtEhb2QLPzWLN5cdlMruUsxtkGsl1lEV2SkyQEUufSw9EOKw4KKBFVDWdO4m6P5LcDbujPYgP4xqIrCfkpGMkMgdcteDDQzW1vg2bZyPYCgjawqohlnnwwrDTzu-ZFtnqvNYoxuvWsNMTm0Jluv3SKWudPqQPKg2OfTQIvYR6ZnlY3LPlj3dPCE_W9zSLKUWt7TFLQXW0V24pe8BtR9ohVnaYJZC9waztMYsBcw-JWdfv5wejZ2q5ocTs5DnDmepkKGWiYx1bFgS-Dr1RygF0VDAWawUHyXSlynT8UgpoWLNpadUYKQQScqekb1ltjQvCBVYl8vVjPlpDP_b16CXacyQmLp4mJ_2iVf_1SiuEuJjXZZFdAM_--Rj02ll88Hc3Pxtza4IFovLauJFcNNtdLDFyJYwFwETTPTJm5qz0HONR3pqabJiHbmAHcxYeH2LAH0bQc72yXMLiZa65wYBY2L_dkN6Se63M_YV2cuvCvMaFPNcH5QY_wPSkNvV |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+phasin+expression+and+polyhydroxyalkanoate+%28PHA%29+granule+formation+in+Ralstonia+eutropha+H16&rft.jtitle=Microbiology+%28Society+for+General+Microbiology%29&rft.au=P%C3%B6tter%2C+Markus&rft.au=Madkour%2C+Mohamed+H.&rft.au=Mayer%2C+Frank&rft.au=Steinb%C3%BCchel%2C+Alexander&rft.date=2002-08-01&rft.issn=1350-0872&rft.eissn=1465-2080&rft.volume=148&rft.issue=8&rft.spage=2413&rft.epage=2426&rft_id=info:doi/10.1099%2F00221287-148-8-2413&rft.externalDBID=n%2Fa&rft.externalDocID=10_1099_00221287_148_8_2413 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-0872&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-0872&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-0872&client=summon |