Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16

Institut für Mikrobiologie der Westfälischen Wilhelms-Universität Münster, Corrensstrasse 3, D-48149 Münster, Germany 1 Institut für Mikrobiologie und Genetik der Georg-August-Universität Göttingen, Grisebachstrasse 8, D-37077 Göttingen, Germany 2 Author for correspondence: Alexander Steinbüchel. Te...

Full description

Saved in:
Bibliographic Details
Published inMicrobiology (Society for General Microbiology) Vol. 148; no. 8; pp. 2413 - 2426
Main Authors Potter, Markus, Madkour, Mohamed H, Mayer, Frank, Steinbuchel, Alexander
Format Journal Article
LanguageEnglish
Published Reading Soc General Microbiol 01.08.2002
Society for General Microbiology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Institut für Mikrobiologie der Westfälischen Wilhelms-Universität Münster, Corrensstrasse 3, D-48149 Münster, Germany 1 Institut für Mikrobiologie und Genetik der Georg-August-Universität Göttingen, Grisebachstrasse 8, D-37077 Göttingen, Germany 2 Author for correspondence: Alexander Steinbüchel. Tel: +49 251 8339821. Fax: +49 251 8338388. e-mail: steinbu{at}uni-muenster.de Regulation of expression of the phasin PhaP, which is the major protein at the surface of polyhydroxyalkanoate (PHA) granules in Ralstonia eutropha H16, was studied and analysed at the molecular level. The regulation of PhaP expression is achieved by an autoregulated repressor, which is encoded by phaR in R. eutropha. The occurrence of PhaR homologues and the organization of phaR genes was analysed in detail in 29 different bacteria. Three kinds of molecule to which PhaR binds were identified in cells of R. eutropha , as revealed by gel-mobility-shift assays, DNaseI footprinting, cell fractionation, immunoelectron microscopy studies employing anti-PhaR antibodies raised against purified N-terminal hexahistidine-tagged PhaR and in vitro binding studies employing artificial PHA granules. PhaR binds upstream of phaP at two sites comprising the transcriptional start site plus the -10 region and a region immediately upstream of the -35 region of the 70 promoter of phaP , where two imperfect 12 bp repeat sequences (GCAMMAAWTMMD) were identified on the sense and anti-sense strands. PhaR also binds 86 bp upstream of the phaR translational start codon, where the 54 -dependent promoter was identified. PhaR also binds to the surface of PHA granules. In the cytoplasm of a phaR Km mutant of R. eutropha H16, increased quantities of PhaP were detected and the cells formed by this strain were much smaller and had many more PHA granules present than the wild-type. These data support the following model for the regulation of phaP expression. Under cultivation conditions not permissive for PHA biosynthesis or in mutants defective in PHA biosynthesis, PhaR binds to the phaP promoter region and represses transcription of this gene. After the onset of PHA biosynthesis, under conditions that are permissive for the formation of nascent granules, PhaR binds to PHA granules and phaP is transcribed. At the later stages of PHA accumulation, PhaR no longer binds to the granules and the transcription of phaP is again repressed. In addition to this, phaR expression is subject to autoregulation. Excess PhaR that has not bound to the phaP upstream region or to PHA granules binds to the phaR upstream region, thereby repressing its own transcription. Keywords: phaR , phaP regulation, repressor, inclusion bodies, autoregulation of phaR Abbreviations: GARG, goat-anti-rabbit IgG–gold; His 6 , hexahistidine; MM, mineral salts medium; PHA, polyhydroxyalkanoate; PHB, polyhydroxybutyrate; poly(3HB), poly(3-hydroxybutyrate)
AbstractList Regulation of expression of the phasin PhaP, which is the major protein at the surface of polyhydroxyalkanoate (PHA) granules in Ralstonia eutropha H16, was studied and analysed at the molecular level. The regulation of PhaP expression is achieved by an autoregulated repressor, which is encoded by phaR in R. eutropha. The occurrence of PhaR homologues and the organization of phaR genes was analysed in detail in 29 different bacteria. Three kinds of molecule to which PhaR binds were identified in cells of R. eutropha, as revealed by gel-mobility-shift assays, DNaseI footprinting, cell fractionation, immunoelectron microscopy studies employing anti-PhaR antibodies raised against purified N-terminal hexahistidine-tagged PhaR and in vitro binding studies employing artificial PHA granules. PhaR binds upstream of phaP at two sites comprising the transcriptional start site plus the -10 region and a region immediately upstream of the -35 region of the sigma(70) promoter of phaP, where two imperfect 12 bp repeat sequences (GCAMMAAWTMMD) were identified on the sense and anti-sense strands. PhaR also binds 86 bp upstream of the phaR translational start codon, where the sigma(54)-dependent promoter was identified. PhaR also binds to the surface of PHA granules. In the cytoplasm of a phaROmegaKm mutant of R. eutropha H16, increased quantities of PhaP were detected and the cells formed by this strain were much smaller and had many more PHA granules present than the wild-type. These data support the following model for the regulation of phaP expression. Under cultivation conditions not permissive for PHA biosynthesis or in mutants defective in PHA biosynthesis, PhaR binds to the phaP promoter region and represses transcription of this gene. After the onset of PHA biosynthesis, under conditions that are permissive for the formation of nascent granules, PhaR binds to PHA granules and phaP is transcribed. At the later stages of PHA accumulation, PhaR no longer binds to the granules and the transcription of phaP is again repressed. In addition to this, phaR expression is subject to autoregulation. Excess PhaR that has not bound to the phaP upstream region or to PHA granules binds to the phaR upstream region, thereby repressing its own transcription.
Regulation of expression of the phasin PhaP, which is the major protein at the surface of polyhydroxyalkanoate (PHA) granules in Ralstonia eutropha H16, was studied and analysed at the molecular level. The regulation of PhaP expression is achieved by an autoregulated repressor, which is encoded by phaR in R. eutropha. The occurrence of PhaR homologues and the organization of phaR genes was analysed in detail in 29 different bacteria. Three kinds of molecule to which PhaR binds were identified in cells of R. eutropha, as revealed by gel-mobility-shift assays, DNaseI footprinting, cell fractionation, immunoelectron microscopy studies employing anti-PhaR antibodies raised against purified N-terminal hexahistidine-tagged PhaR and in vitro binding studies employing artificial PHA granules. PhaR binds upstream of phaP at two sites comprising the transcriptional start site plus the -10 region and a region immediately upstream of the -35 region of the sigma(70) promoter of phaP, where two imperfect 12 bp repeat sequences (GCAMMAAWTMMD) were identified on the sense and anti-sense strands. PhaR also binds 86 bp upstream of the phaR translational start codon, where the sigma(54)-dependent promoter was identified. PhaR also binds to the surface of PHA granules. In the cytoplasm of a phaROmegaKm mutant of R. eutropha H16, increased quantities of PhaP were detected and the cells formed by this strain were much smaller and had many more PHA granules present than the wild-type. These data support the following model for the regulation of phaP expression. Under cultivation conditions not permissive for PHA biosynthesis or in mutants defective in PHA biosynthesis, PhaR binds to the phaP promoter region and represses transcription of this gene. After the onset of PHA biosynthesis, under conditions that are permissive for the formation of nascent granules, PhaR binds to PHA granules and phaP is transcribed. At the later stages of PHA accumulation, PhaR no longer binds to the granules and the transcription of phaP is again repressed. In addition to this, phaR expression is subject to autoregulation. Excess PhaR that has not bound to the phaP upstream region or to PHA granules binds to the phaR upstream region, thereby repressing its own transcription.Regulation of expression of the phasin PhaP, which is the major protein at the surface of polyhydroxyalkanoate (PHA) granules in Ralstonia eutropha H16, was studied and analysed at the molecular level. The regulation of PhaP expression is achieved by an autoregulated repressor, which is encoded by phaR in R. eutropha. The occurrence of PhaR homologues and the organization of phaR genes was analysed in detail in 29 different bacteria. Three kinds of molecule to which PhaR binds were identified in cells of R. eutropha, as revealed by gel-mobility-shift assays, DNaseI footprinting, cell fractionation, immunoelectron microscopy studies employing anti-PhaR antibodies raised against purified N-terminal hexahistidine-tagged PhaR and in vitro binding studies employing artificial PHA granules. PhaR binds upstream of phaP at two sites comprising the transcriptional start site plus the -10 region and a region immediately upstream of the -35 region of the sigma(70) promoter of phaP, where two imperfect 12 bp repeat sequences (GCAMMAAWTMMD) were identified on the sense and anti-sense strands. PhaR also binds 86 bp upstream of the phaR translational start codon, where the sigma(54)-dependent promoter was identified. PhaR also binds to the surface of PHA granules. In the cytoplasm of a phaROmegaKm mutant of R. eutropha H16, increased quantities of PhaP were detected and the cells formed by this strain were much smaller and had many more PHA granules present than the wild-type. These data support the following model for the regulation of phaP expression. Under cultivation conditions not permissive for PHA biosynthesis or in mutants defective in PHA biosynthesis, PhaR binds to the phaP promoter region and represses transcription of this gene. After the onset of PHA biosynthesis, under conditions that are permissive for the formation of nascent granules, PhaR binds to PHA granules and phaP is transcribed. At the later stages of PHA accumulation, PhaR no longer binds to the granules and the transcription of phaP is again repressed. In addition to this, phaR expression is subject to autoregulation. Excess PhaR that has not bound to the phaP upstream region or to PHA granules binds to the phaR upstream region, thereby repressing its own transcription.
Regulation of expression of the phasin PhaP, which is the major protein at the surface of polyhydroxyalkanoate (PHA) granules in Ralstonia eutropha H16, was studied and analysed at the molecular level. The regulation of PhaP expression is achieved by an autoregulated repressor, which is encoded by phaR in R. eutropha. The occurrence of PhaR homologues and the organization of phaR genes was analysed in detail in 29 different bacteria. Three kinds of molecule to which PhaR binds were identified in cells of R. eutropha, as revealed by gel-mobility-shift assays, DNaseI footprinting, cell fractionation, immunoelectron microscopy studies employing anti-PhaR antibodies raised against purified N-terminal hexahistidine-tagged PhaR and in vitro binding studies employing artificial PHA granules. PhaR binds upstream of phaP at two sites comprising the transcriptional start site plus the -10 region and a region immediately upstream of the -35 region of the sigma super(70) promoter of phaP, where two imperfect 12 bp repeat sequences (GCAMMAAWTMMD) were identified on the sense and anti-sense strands. PhaR also binds 86 bp upstream of the phaR translational start codon, where the sigma super(54)-dependent promoter was identified. PhaR also binds to the surface of PHA granules. In the cytoplasm of a phaR Omega Km mutant of R. eutropha H16, increased quantities of PhaP were detected and the cells formed by this strain were much smaller and had many more PHA granules present than the wild-type. These data support the following model for the regulation of phaP expression. Under cultivation conditions not permissive for PHA biosynthesis or in mutants defective in PHA biosynthesis, PhaR binds to the phaP promoter region and represses transcription of this gene. After the onset of PHA biosynthesis, under conditions that are permissive for the formation of nascent granules, PhaR binds to PHA granules and phaP is transcribed. At the later stages of PHA accumulation, PhaR no longer binds to the granules and the transcription of phaP is again repressed. In addition to this, phaR expression is subject to autoregulation. Excess PhaR that has not bound to the phaP upstream region or to PHA granules binds to the phaR upstream region, thereby repressing its own transcription.
Institut für Mikrobiologie der Westfälischen Wilhelms-Universität Münster, Corrensstrasse 3, D-48149 Münster, Germany 1 Institut für Mikrobiologie und Genetik der Georg-August-Universität Göttingen, Grisebachstrasse 8, D-37077 Göttingen, Germany 2 Author for correspondence: Alexander Steinbüchel. Tel: +49 251 8339821. Fax: +49 251 8338388. e-mail: steinbu{at}uni-muenster.de Regulation of expression of the phasin PhaP, which is the major protein at the surface of polyhydroxyalkanoate (PHA) granules in Ralstonia eutropha H16, was studied and analysed at the molecular level. The regulation of PhaP expression is achieved by an autoregulated repressor, which is encoded by phaR in R. eutropha. The occurrence of PhaR homologues and the organization of phaR genes was analysed in detail in 29 different bacteria. Three kinds of molecule to which PhaR binds were identified in cells of R. eutropha , as revealed by gel-mobility-shift assays, DNaseI footprinting, cell fractionation, immunoelectron microscopy studies employing anti-PhaR antibodies raised against purified N-terminal hexahistidine-tagged PhaR and in vitro binding studies employing artificial PHA granules. PhaR binds upstream of phaP at two sites comprising the transcriptional start site plus the -10 region and a region immediately upstream of the -35 region of the 70 promoter of phaP , where two imperfect 12 bp repeat sequences (GCAMMAAWTMMD) were identified on the sense and anti-sense strands. PhaR also binds 86 bp upstream of the phaR translational start codon, where the 54 -dependent promoter was identified. PhaR also binds to the surface of PHA granules. In the cytoplasm of a phaR Km mutant of R. eutropha H16, increased quantities of PhaP were detected and the cells formed by this strain were much smaller and had many more PHA granules present than the wild-type. These data support the following model for the regulation of phaP expression. Under cultivation conditions not permissive for PHA biosynthesis or in mutants defective in PHA biosynthesis, PhaR binds to the phaP promoter region and represses transcription of this gene. After the onset of PHA biosynthesis, under conditions that are permissive for the formation of nascent granules, PhaR binds to PHA granules and phaP is transcribed. At the later stages of PHA accumulation, PhaR no longer binds to the granules and the transcription of phaP is again repressed. In addition to this, phaR expression is subject to autoregulation. Excess PhaR that has not bound to the phaP upstream region or to PHA granules binds to the phaR upstream region, thereby repressing its own transcription. Keywords: phaR , phaP regulation, repressor, inclusion bodies, autoregulation of phaR Abbreviations: GARG, goat-anti-rabbit IgG–gold; His 6 , hexahistidine; MM, mineral salts medium; PHA, polyhydroxyalkanoate; PHB, polyhydroxybutyrate; poly(3HB), poly(3-hydroxybutyrate)
Author Mayer, Frank
Madkour, Mohamed H
Potter, Markus
Steinbuchel, Alexander
Author_xml – sequence: 1
  fullname: Potter, Markus
– sequence: 2
  fullname: Madkour, Mohamed H
– sequence: 3
  fullname: Mayer, Frank
– sequence: 4
  fullname: Steinbuchel, Alexander
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14573535$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/12177335$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1vFCEUhompsR_6C0wMN5r2YhQGmIHLplHXpImm0WtyhoFd6gyMMJN2_71sd6vGC72CcJ7nTXjPKToKMViEXlLylhKl3hFS17SWbUW5rGRVc8qeoBPKG1HVRJKjcmeCVES29TE6zfmWkDIk9Bk6pjVtW8bECbq9setlgNnHgKPD0wayD9jeT8nmvHuE0OMpDtvNtk_xfgvDdwgRZovPv6wuL_A6QVgGi11M4z6l6Dcw5DkGD9guc4olFK9o8xw9dWVgXxzOM_Ttw_uvV6vq-vPHT1eX15Vhis8VZ05I1clems5Y1rdN5xrC2oapmivODAAnvWykY50hAAJMx2UN0FopRO_YGXqzz51S_LHYPOvRZ2OHAYKNS9YtVYoyqv4L0tKcFIoV8NUBXLrR9npKfoS01Y81FuD1AYBsYHClFOPzb46LtlA7Tu05k2LOyTpt_PxQ25zAD5oSvVutflxtMaWWerfa4rK_3F_x_7Qu9tbGrzd3Plm9tmH0JaPzsfzX_MH-BBb4tE4
CitedBy_id crossref_primary_10_1094_MPMI_06_21_0138_R
crossref_primary_10_1111_j_1365_2958_2011_07869_x
crossref_primary_10_1128_JB_187_11_3825_3832_2005
crossref_primary_10_1007_s00253_020_10568_1
crossref_primary_10_1016_j_enzmictec_2004_12_005
crossref_primary_10_1080_17518253_2015_1109715
crossref_primary_10_1016_j_progpolymsci_2013_06_008
crossref_primary_10_1111_1751_7915_13915
crossref_primary_10_1016_j_biomaterials_2010_08_001
crossref_primary_10_1016_j_progpolymsci_2012_06_003
crossref_primary_10_3390_ijms25042157
crossref_primary_10_1128_MRA_00167_21
crossref_primary_10_1016_j_femsle_2005_01_020
crossref_primary_10_1186_s12934_015_0380_8
crossref_primary_10_1002_adma_201907138
crossref_primary_10_1016_j_ymben_2024_10_011
crossref_primary_10_1007_s00253_014_6266_6
crossref_primary_10_1128_JB_00752_07
crossref_primary_10_1016_j_chemosphere_2022_135390
crossref_primary_10_1021_bm049441r
crossref_primary_10_1128_JB_187_11_3607_3619_2005
crossref_primary_10_1007_s00253_024_13100_x
crossref_primary_10_1016_j_ijbiomac_2021_08_236
crossref_primary_10_1007_s00709_011_0329_7
crossref_primary_10_1099_mic_0_27613_0
crossref_primary_10_1111_1751_7915_12718
crossref_primary_10_1016_j_ijbiomac_2021_07_041
crossref_primary_10_1007_s00253_006_0371_0
crossref_primary_10_1016_j_plipres_2020_101029
crossref_primary_10_1111_1462_2920_12356
crossref_primary_10_1186_s12934_024_02329_w
crossref_primary_10_1016_j_jclepro_2020_121500
crossref_primary_10_1371_journal_pone_0160981
crossref_primary_10_3389_fphar_2022_987695
crossref_primary_10_1007_s00253_011_3100_2
crossref_primary_10_1007_s10529_005_5521_4
crossref_primary_10_1021_bm049401n
crossref_primary_10_1099_mic_0_000837
crossref_primary_10_1021_bm060442o
crossref_primary_10_1021_bm101230n
crossref_primary_10_1016_S1369_703X_03_00036_6
crossref_primary_10_1021_bi901329b
crossref_primary_10_1094_MPMI_34_12
crossref_primary_10_1007_s00253_023_12797_6
crossref_primary_10_1021_acssynbio_6b00083
crossref_primary_10_1016_j_femsle_2005_05_027
crossref_primary_10_1128_JB_01723_08
crossref_primary_10_1021_acsbiomaterials_6b00355
crossref_primary_10_1128_AEM_00757_16
crossref_primary_10_1016_j_gene_2020_144397
crossref_primary_10_1128_AEM_01839_06
crossref_primary_10_1186_s13568_017_0335_z
crossref_primary_10_1016_j_biortech_2024_130556
crossref_primary_10_1128_AEM_00953_07
crossref_primary_10_3390_molecules26040860
crossref_primary_10_1007_s00253_014_5591_0
crossref_primary_10_1021_acs_langmuir_8b03036
crossref_primary_10_1016_j_cej_2024_151413
crossref_primary_10_1007_s00253_013_4980_0
crossref_primary_10_1128_JB_187_11_3814_3824_2005
crossref_primary_10_1099_mic_0_051508_0
crossref_primary_10_1007_s00253_019_09896_8
crossref_primary_10_1038_ismej_2015_155
crossref_primary_10_1093_femsre_fuaa058
crossref_primary_10_1016_j_femsle_2004_08_044
crossref_primary_10_1016_S0141_3910_03_00273_8
crossref_primary_10_1016_S0147_619X_03_00009_X
crossref_primary_10_1111_j_1758_2229_2011_00273_x
crossref_primary_10_1128_JB_01550_06
crossref_primary_10_1128_AEM_02935_13
crossref_primary_10_1128_JB_00493_10
crossref_primary_10_1186_2191_0855_3_6
crossref_primary_10_1111_j_1365_2672_2007_03335_x
crossref_primary_10_1128_AEM_02878_14
crossref_primary_10_1128_JB_186_8_2466_2475_2004
crossref_primary_10_1016_j_tibtech_2024_06_001
crossref_primary_10_1002_pmic_201000392
crossref_primary_10_1038_srep26612
crossref_primary_10_1128_AEM_02666_14
crossref_primary_10_1128_AEM_02586_18
crossref_primary_10_1186_1471_2180_11_230
crossref_primary_10_3390_polym13193302
crossref_primary_10_1128_spectrum_00036_23
crossref_primary_10_1242_jcs_104992
crossref_primary_10_1007_s10123_018_0004_3
crossref_primary_10_1021_bi2013596
crossref_primary_10_1002_elsc_201500022
crossref_primary_10_1016_j_chemosphere_2022_133723
crossref_primary_10_1039_D1RA02390J
crossref_primary_10_1016_j_mec_2021_e00191
crossref_primary_10_1186_s13568_019_0876_4
crossref_primary_10_1371_journal_pone_0096621
crossref_primary_10_1016_j_biortech_2011_09_098
crossref_primary_10_1099_mic_0_28969_0
crossref_primary_10_1099_mic_0_038380_0
crossref_primary_10_1128_aem_00507_22
crossref_primary_10_1016_j_procbio_2016_07_019
crossref_primary_10_1128_JB_00779_12
crossref_primary_10_3390_su16052200
crossref_primary_10_1128_AEM_00459_17
crossref_primary_10_1016_j_watres_2023_120892
crossref_primary_10_1128_AEM_00604_18
crossref_primary_10_1128_JB_06125_11
crossref_primary_10_1016_S1369_5274_03_00040_7
crossref_primary_10_3390_md19030159
crossref_primary_10_3389_fbioe_2020_00386
crossref_primary_10_1016_S0378_1097_03_00919_4
crossref_primary_10_3389_fmicb_2016_00739
crossref_primary_10_1016_S0378_1097_03_00610_4
crossref_primary_10_1016_j_jbiosc_2014_04_022
crossref_primary_10_1021_acs_biomac_9b00509
crossref_primary_10_1007_s11274_008_9669_7
crossref_primary_10_1016_j_jbiosc_2013_12_020
crossref_primary_10_1186_1471_2180_12_262
crossref_primary_10_1002_jctb_4685
crossref_primary_10_1146_annurev_biochem_74_082803_133013
crossref_primary_10_1016_j_jbiotec_2020_04_012
crossref_primary_10_1186_s12934_019_1201_2
crossref_primary_10_1007_s00253_011_3258_7
crossref_primary_10_3109_17435390_2011_579633
crossref_primary_10_1128_AEM_71_10_5735_5742_2005
crossref_primary_10_3390_polym13142294
crossref_primary_10_1128_AEM_00440_08
crossref_primary_10_1128_AEM_01161_16
crossref_primary_10_1099_mic_0_000755
crossref_primary_10_1021_bi501405b
crossref_primary_10_1128_AEM_01458_21
crossref_primary_10_1128_AEM_01543_10
crossref_primary_10_1128_AEM_03791_14
crossref_primary_10_1099_mic_0_26970_0
crossref_primary_10_1007_s11120_013_9923_1
crossref_primary_10_1186_2191_0855_2_26
crossref_primary_10_3389_fmicb_2023_1140484
crossref_primary_10_1016_j_biomaterials_2008_09_008
crossref_primary_10_1021_bc500404j
crossref_primary_10_1016_S1369_5274_03_00061_4
crossref_primary_10_1021_bm801394s
crossref_primary_10_1007_s00253_005_1969_3
crossref_primary_10_1128_AEM_00493_16
crossref_primary_10_1128_JB_186_10_3015_3021_2004
crossref_primary_10_3390_microorganisms9061290
crossref_primary_10_1016_j_jbc_2024_107523
crossref_primary_10_1007_s00253_015_6609_y
crossref_primary_10_1128_JB_01486_07
crossref_primary_10_1007_s10924_011_0324_2
crossref_primary_10_1021_acs_macromol_6b00384
crossref_primary_10_1021_acs_biomac_2c00624
crossref_primary_10_1128_AEM_01693_12
crossref_primary_10_1007_s00253_005_1995_1
crossref_primary_10_1128_AEM_70_11_6789_6799_2004
crossref_primary_10_1007_s00203_007_0265_2
crossref_primary_10_1080_09168451_2015_1023250
crossref_primary_10_1016_S0022_2836_03_00894_5
crossref_primary_10_1007_s11427_012_4321_z
crossref_primary_10_1021_bm060912e
Cites_doi 10.1111/j.1574-6968.2001.tb10685.x
10.1007/BF00410770
10.1128/JB.170.10.4431-4436.1988
10.1016/S0022-2836(83)80284-8
10.1007/BF01457653
10.1128/JB.170.12.5837-5847.1988
10.1128/JB.181.9.2914-2921.1999
10.1093/nar/7.6.1513
10.1128/AEM.56.11.3360-3367.1990
10.1128/MMBR.54.4.450-472.1990
10.1093/nar/11.8.2237
10.1111/j.1365-2958.1991.tb00725.x
10.1007/978-1-349-11167-1_3
10.1038/nbt1183-784
10.1073/pnas.76.9.4350
10.1016/S0960-0760(97)00078-2
10.1007/s002030000171
10.1146/annurev.ge.13.120179.001535
10.1099/13500872-141-10-2553
10.1128/JB.176.14.4328-4337.1994
10.1128/JB.177.9.2425-2435.1995
10.1139/m95-175
10.1016/S0022-2836(61)80047-8
10.1016/0014-5793(72)80680-X
10.1007/BF00422356
10.1007/978-94-009-0213-8_32
10.1128/JB.183.7.2394-2397.2001
10.1007/s002530051598
10.1016/S0141-8130(99)00010-0
10.1007/978-3-642-69338-0_11
10.1016/S0021-9258(19)84824-X
10.1016/S0021-9258(18)43211-5
10.1016/S0021-9258(19)84825-1
10.1128/JB.177.9.2513-2523.1995
10.1016/0378-1097(95)00125-O
10.1128/JB.183.14.4217-4226.2001
10.1099/00221287-147-1-11
10.1016/S0021-9258(18)94333-4
10.1073/pnas.82.7.1979
10.1021/bm015564p
10.1002/elps.1150060302
10.1002/ange.19931050404
10.1128/JB.180.8.1979-1987.1998
10.1007/BF01457649
10.1177/29.5.6166664
10.1007/978-94-011-1330-4_4
10.1038/227680a0
10.1016/S0022-5320(69)90033-1
10.1128/JB.184.1.59-66.2002
ContentType Journal Article
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TM
C1K
7X8
DOI 10.1099/00221287-148-8-2413
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1465-2080
EndPage 2426
ExternalDocumentID 12177335
14573535
10_1099_00221287_148_8_2413
mic148_8_2413
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
02
123
186
2WC
3O-
4.4
53G
5RE
AAPBV
ABEFU
ABFLS
ABPPZ
ABPTK
ABUFD
ACNCT
ADACO
AETEA
AFDAS
AFFNX
AFWKH
AGCAB
AGCDD
ALMA_UNASSIGNED_HOLDINGS
C1A
CS3
DIK
DZ
E3Z
EBS
EJD
F5P
FH7
G8K
GJ
GX1
H13
H~9
K-O
KM
L7B
MVM
MYA
P0W
P2P
RGM
RHF
S10
TAE
UQL
WH7
WOQ
X
XHC
Y6R
ZCG
ZGI
ZXP
ZY4
---
-DZ
-~X
.GJ
AAYXX
ABDPE
ACPEE
ADCDP
ADIYS
CITATION
RPM
W8F
YR2
~02
~KM
.55
AJKYU
HF~
IQODW
X7M
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TM
C1K
7X8
ID FETCH-LOGICAL-c394t-43f589b8d8cbce3d76bf603763924943caa40d868f3bc0aa5acb482aa7e855df3
ISSN 1350-0872
IngestDate Fri Jul 11 09:21:35 EDT 2025
Thu Jul 10 18:51:50 EDT 2025
Thu Apr 03 07:06:33 EDT 2025
Mon Jul 21 09:12:42 EDT 2025
Thu Apr 24 23:11:03 EDT 2025
Tue Jul 01 04:26:00 EDT 2025
Tue Jan 05 21:43:52 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Bacteria
Self regulation
Ralstonia eutropha
Regulation(control)
Repression
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c394t-43f589b8d8cbce3d76bf603763924943caa40d868f3bc0aa5acb482aa7e855df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 12177335
PQID 18728593
PQPubID 23462
PageCount 14
ParticipantIDs proquest_miscellaneous_71991319
proquest_miscellaneous_18728593
pubmed_primary_12177335
pascalfrancis_primary_14573535
crossref_citationtrail_10_1099_00221287_148_8_2413
crossref_primary_10_1099_00221287_148_8_2413
highwire_genmicrobio_mic148_8_2413
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2002-08-01
PublicationDateYYYYMMDD 2002-08-01
PublicationDate_xml – month: 08
  year: 2002
  text: 2002-08-01
  day: 01
PublicationDecade 2000
PublicationPlace Reading
PublicationPlace_xml – name: Reading
– name: England
PublicationTitle Microbiology (Society for General Microbiology)
PublicationTitleAlternate Microbiology
PublicationYear 2002
Publisher Soc General Microbiol
Society for General Microbiology
Publisher_xml – name: Soc General Microbiol
– name: Society for General Microbiology
References Pieper-Fürst (R28) 1995; 177
York (R55) 2001b; 183
Overhage (R24) 1999; 52
Ausubel (R2) 1987
Jendrossek (R13) 1993; 1
Steinbüchel (R44) 1991; 5
Steinbüchel (R47) 1996
Schlegel (R36) 1961; 38
Marmur (R21) 1961; 3
Rehm (R31) 1999; 25
Olmsted (R23) 1981; 256
Spurr (R42) 1969; 26
Lemoigne (R16) 1926; 8
Lütke-Eversloh (R17) 2001a; 147
Peoples (R25) 1989a; 264
Rosenberg (R33) 1979; 13
Doi (R6) 1990
Tombolini (R49) 1995; 141
York (R54) 2001a; 183
Slater (R41) 1998; 180
Brandl (R4) 1988; 66
Hanahan (R7) 1983; 166
Holmes (R12) 1981; 0052459
Hocking (R11) 1994
Anderson (R1) 1990; 54
Peoples (R26) 1989b; 264
Timm (R48) 1990; 56
Roth (R34) 1981; 29
Towbin (R50) 1979; 76
Simon (R38) 1983a
Slater (R40) 1988; 170
York (R56) 2002; 184
Steinbüchel (R45) 1995; 128
Heukeshofen (R9) 1985; 6
Wieczorek (R53) 1995; 177
Maehara (R20) 2001; 200
Maehara (R19) 1999; 181
Laemmli (R15) 1970; 227
Simon (R39) 1983b; 1
Povolo (R29) 2000; 174
Birnboim (R3) 1979; 277
Sambrook (R35) 1989
Preusting (R30) 1993; 1
Pieper-Fürst (R27) 1994; 176
Walther-Mauruschat (R51) 1977; 114
Steinbüchel (R46) 1995; 41
Lütke-Eversloh (R18) 2001b; 2
Kunioka (R14) 1988; 29
Müller (R22) 1993; 105
Weber (R52) 1969; 244
Steinbüchel (R43) 1991
Hawley (R8) 1983; 11
Reitzer (R32) 1985; 82
Schubert (R37) 1988; 170
Cabrera (R5) 1997; 63
Hjelm (R10) 1972; 28
References_xml – volume: 200
  start-page: 9
  year: 2001
  ident: R20
  article-title: PhaR, a protein of unknown function conserved among short-chain-length polyhydroxyalkanoic acids producing bacteria, is a DNA-binding protein and represses Paracoccus denitrificans phaP expression in vitro
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.2001.tb10685.x
– volume: 114
  start-page: 101
  year: 1977
  ident: R51
  article-title: Micromorphology of Gram-negative hydrogen bacteria. II. Cell envelope, membranes, and cytoplasmic inclusions
  publication-title: Arch Microbiol
  doi: 10.1007/BF00410770
– volume: 170
  start-page: 4431
  year: 1988
  ident: R40
  article-title: Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-β-hydroxybutyrate biosynthetic pathway
  publication-title: J Bacteriol
  doi: 10.1128/JB.170.10.4431-4436.1988
– volume: 166
  start-page: 557
  year: 1983
  ident: R7
  article-title: Studies on transformation of Escherichia coli with plasmids
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(83)80284-8
– volume: 1
  start-page: 53
  year: 1993
  ident: R13
  article-title: Degradation of poly(3-hydroxybutyrate), PHB, by bacteria and purification of a novel PHB depolymerase from Comamonas sp
  publication-title: J Environ Polym Degrad
  doi: 10.1007/BF01457653
– volume: 170
  start-page: 5837
  year: 1988
  ident: R37
  article-title: Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli
  publication-title: J Bacteriol
  doi: 10.1128/JB.170.12.5837-5847.1988
– volume: 8
  start-page: 770
  year: 1926
  ident: R16
  article-title: Produits de deshydration et de polymerisation de lácide β-oxybutyrique
  publication-title: Bull Soc Chim Biol
– volume: 181
  start-page: 2914
  year: 1999
  ident: R19
  article-title: Analyses of a polyhydroxyalkanoic acid granule-associated 16-kilodalton protein and its putative regulator in the pha locus of Paracoccus denitrificans
  publication-title: J Bacteriol
  doi: 10.1128/JB.181.9.2914-2921.1999
– volume: 277
  start-page: 1513
  year: 1979
  ident: R3
  article-title: A rapid alkaline extraction procedure for screening recombinant plasmid DNA
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/7.6.1513
– volume: 66
  start-page: 2117
  year: 1988
  ident: R4
  article-title: Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters
  publication-title: Appl Environ Microbiol
– start-page: 37
  volume-title: New Biosynthetic Biodegradable Polymers of Industrial Interest from Microorganisms
  year: 1990
  ident: R6
  article-title: Production of biodegradable copolyesters by Alcaligenes eutrophus
– volume: 56
  start-page: 3360
  year: 1990
  ident: R48
  article-title: Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.56.11.3360-3367.1990
– volume: 54
  start-page: 450
  year: 1990
  ident: R1
  article-title: Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates
  publication-title: Microbiol Rev
  doi: 10.1128/MMBR.54.4.450-472.1990
– volume: 11
  start-page: 2234
  year: 1983
  ident: R8
  article-title: Compilation and analysis of Escherichia coli promoter sequences
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/11.8.2237
– volume: 5
  start-page: 535
  year: 1991
  ident: R44
  article-title: Physiology and molecular genetics of poly(β-hydroxy-alkanoic acid) synthesis in Alcaligenes eutrophus
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.1991.tb00725.x
– start-page: 123
  volume-title: Biomaterials
  year: 1991
  ident: R43
  article-title: Polyhydroxyalkanoic acids
  doi: 10.1007/978-1-349-11167-1_3
– volume: 1
  start-page: 784
  year: 1983b
  ident: R39
  article-title: A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria
  publication-title: Bio/Technology
  doi: 10.1038/nbt1183-784
– volume: 76
  start-page: 4350
  year: 1979
  ident: R50
  article-title: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.76.9.4350
– volume-title: Molecular Cloning: a Laboratory Manual
  year: 1989
  ident: R35
– volume: 63
  start-page: 91
  year: 1997
  ident: R5
  article-title: A new Comamonas testosteroni steroid-inducible gene: cloning and sequence analysis
  publication-title: J Steroid Biochem Mol Biol
  doi: 10.1016/S0960-0760(97)00078-2
– volume: 174
  start-page: 42
  year: 2000
  ident: R29
  article-title: A critical role for aniA in energy–carbon flux and symbiotic nitrogen fixation in Sinorhizobium meliloti
  publication-title: Arch Microbiol
  doi: 10.1007/s002030000171
– volume: 13
  start-page: 319
  year: 1979
  ident: R33
  article-title: Regulatory sequences involved in the promotion and termination of RNA transcription
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.ge.13.120179.001535
– volume: 141
  start-page: 2553
  year: 1995
  ident: R49
  article-title: Poly-β-hydroxybutyrate (PHB) biosynthetic genes in Rhizobium meliloti 41
  publication-title: Microbiology
  doi: 10.1099/13500872-141-10-2553
– volume: 0052459
  year: 1981
  ident: R12
  article-title: Betahydroxybutyrate polymers
  publication-title: European Patent Application
– volume: 176
  start-page: 4328
  year: 1994
  ident: R27
  article-title: Purification and characterization of a 14-kilodalton protein that is bound to the surface of polyhydroxyalkanoic acid granules in Rhodococcus ruber
  publication-title: J Bacteriol
  doi: 10.1128/JB.176.14.4328-4337.1994
– volume-title: Current Protocols in Molecular Biology
  year: 1987
  ident: R2
– volume: 177
  start-page: 2425
  year: 1995
  ident: R53
  article-title: Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus
  publication-title: J Bacteriol
  doi: 10.1128/JB.177.9.2425-2435.1995
– volume: 41
  start-page: 94
  year: 1995
  ident: R46
  article-title: Consideration on the structural and biochemistry of bacterial polyhydroxyalkanoic acid inclusions
  publication-title: Can J Microbiol
  doi: 10.1139/m95-175
– volume: 3
  start-page: 208
  year: 1961
  ident: R21
  article-title: A procedure for the isolation of deoxyribonucleic acids from microorganisms
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(61)80047-8
– volume: 28
  start-page: 73
  year: 1972
  ident: R10
  article-title: Protein A from Staphylococcus aureus . Its isolation by affinity chromatography and its use as an immunosorbent for isolation of immunoglobulins
  publication-title: FEBS Lett
  doi: 10.1016/0014-5793(72)80680-X
– volume: 38
  start-page: 209
  year: 1961
  ident: R36
  article-title: Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien: Wachstumsphysiologische Untersuchungen
  publication-title: Arch Mikrobiol
  doi: 10.1007/BF00422356
– start-page: 237
  volume-title: Microbial Growth on Compounds
  year: 1996
  ident: R47
  article-title: PHA biosynthesis, its regulation and application of C1-utilizing microorganisms for polyester production
  doi: 10.1007/978-94-009-0213-8_32
– volume: 183
  start-page: 2394
  year: 2001b
  ident: R55
  article-title: New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate
  publication-title: J Bacteriol
  doi: 10.1128/JB.183.7.2394-2397.2001
– volume: 52
  start-page: 820
  year: 1999
  ident: R24
  article-title: Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase ( vdh ) gene
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s002530051598
– volume: 25
  start-page: 3
  year: 1999
  ident: R31
  article-title: Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis
  publication-title: Int J Biol Macromol
  doi: 10.1016/S0141-8130(99)00010-0
– start-page: 98
  volume-title: Molecular Genetics of the Bacteria–Plant Interaction
  year: 1983a
  ident: R38
  article-title: Vector plasmids for in vivo and in vitro manipulations of Gram negative bacteria
  doi: 10.1007/978-3-642-69338-0_11
– volume: 264
  start-page: 15293
  year: 1989a
  ident: R25
  article-title: Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16. Characterization of the genes encoding β-ketothiolase and acetoacetyl-CoA reductase
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)84824-X
– volume: 256
  start-page: 11955
  year: 1981
  ident: R23
  article-title: Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)43211-5
– volume: 264
  start-page: 15298
  year: 1989b
  ident: R26
  article-title: Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene ( phbC
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)84825-1
– volume: 177
  start-page: 2513
  year: 1995
  ident: R28
  article-title: Identification of the region of a 14-kilodalton protein of Rhodococcus ruber that is responsible for the binding of this phasin to polyhydroxyalkanoic acid granules
  publication-title: J Bacteriol
  doi: 10.1128/JB.177.9.2513-2523.1995
– volume: 128
  start-page: 219
  year: 1995
  ident: R45
  article-title: Diversity of microbial polyhydroxyalkanoic acids
  publication-title: FEMS Microbiol Lett
  doi: 10.1016/0378-1097(95)00125-O
– volume: 183
  start-page: 4217
  year: 2001a
  ident: R54
  article-title: Accumulation of the PhaP phasin of Ralstonia eutropha is dependent on production of polyhydroxybutyrate in cells
  publication-title: J Bacteriol
  doi: 10.1128/JB.183.14.4217-4226.2001
– volume: 147
  start-page: 11
  year: 2001a
  ident: R17
  article-title: Identification of a new class of biopolymer: bacterial synthesis of a sulfur-containing polymer with thioester linkages
  publication-title: Microbiology
  doi: 10.1099/00221287-147-1-11
– volume: 244
  start-page: 4406
  year: 1969
  ident: R52
  article-title: The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)94333-4
– volume: 82
  start-page: 1979
  year: 1985
  ident: R32
  article-title: Expression of glnA in Escherichia coli is regulated at tandem promotors
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.82.7.1979
– volume: 2
  start-page: 1061
  year: 2001b
  ident: R18
  article-title: Biosynthesis of poly(3-hydroxybutyrate- co -3-mercaptobutyrate) as a sulfur analogue to poly(3-hydroxybutyrate) (PHB
  publication-title: Biomacromolecules
  doi: 10.1021/bm015564p
– volume: 6
  start-page: 103
  year: 1985
  ident: R9
  article-title: A simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining
  publication-title: Electrophoresis
  doi: 10.1002/elps.1150060302
– volume: 29
  start-page: 174
  year: 1988
  ident: R14
  article-title: New bacterial copolyesters produced in Alcaligenes eutrophus from organic acids
  publication-title: Polym Commun
– volume: 105
  start-page: 483
  year: 1993
  ident: R22
  article-title: Poly(hydroxyfettsäureester), eine fünfte Klasse von physiologisch bedeutsamen organischen Biopolymeren?
  publication-title: Angew Chem
  doi: 10.1002/ange.19931050404
– volume: 180
  start-page: 1979
  year: 1998
  ident: R41
  article-title: Multiple β-ketothiolases mediate poly(β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha
  publication-title: J Bacteriol
  doi: 10.1128/JB.180.8.1979-1987.1998
– volume: 1
  start-page: 11
  year: 1993
  ident: R30
  article-title: Formation of polyester blends by a recombinant strain of Pseudomonas oleovorans : different poly (3-hydroxyalkanoates) are stored in separate granules
  publication-title: J Environ Polym Degrad
  doi: 10.1007/BF01457649
– volume: 29
  start-page: 663
  year: 1981
  ident: R34
  article-title: Enhancement of structural preservation and immunocytochemical straining in low temperature embedded pancreatic tissue
  publication-title: J Histochem Cytochem
  doi: 10.1177/29.5.6166664
– start-page: 48
  volume-title: Chemistry and Technology of Biodegradable Polymers
  year: 1994
  ident: R11
  article-title: Biopolyesters
  doi: 10.1007/978-94-011-1330-4_4
– volume: 227
  start-page: 680
  year: 1970
  ident: R15
  article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4
  publication-title: Nature
  doi: 10.1038/227680a0
– volume: 26
  start-page: 31
  year: 1969
  ident: R42
  article-title: A low-viscosity epoxy resin embedding medium for electron microscopy
  publication-title: J Ultrastruct Res
  doi: 10.1016/S0022-5320(69)90033-1
– volume: 184
  start-page: 59
  year: 2002
  ident: R56
  article-title: The Ralstonia eutropha PhaR protein couples synthesis of the PhaP phasin to the presence of polyhydroxybutyrate in cells and promotes polyhydroxybutyrate production
  publication-title: J Bacteriol
  doi: 10.1128/JB.184.1.59-66.2002
SSID ssj0014601
Score 2.1507573
Snippet Institut für Mikrobiologie der Westfälischen Wilhelms-Universität Münster, Corrensstrasse 3, D-48149 Münster, Germany 1 Institut für Mikrobiologie und Genetik...
Regulation of expression of the phasin PhaP, which is the major protein at the surface of polyhydroxyalkanoate (PHA) granules in Ralstonia eutropha H16, was...
SourceID proquest
pubmed
pascalfrancis
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2413
SubjectTerms Bacterial Proteins - biosynthesis
Bacteriology
Biological and medical sciences
Culture Media
Cupriavidus necator - genetics
Cupriavidus necator - metabolism
Cupriavidus necator - ultrastructure
DNA Footprinting
DNA-Binding Proteins - biosynthesis
Escherichia coli - genetics
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Bacterial
Genetics
Growth, nutrition, cell differenciation
Hydroxybutyrates - metabolism
Microbiology
Microscopy, Immunoelectron
Models, Biological
phaP gene
phaR gene
phasin
Phylogeny
Polyesters - metabolism
Ralstonia eutropha
Title Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16
URI http://mic.sgmjournals.org/cgi/content/abstract/148/8/2413
https://www.ncbi.nlm.nih.gov/pubmed/12177335
https://www.proquest.com/docview/18728593
https://www.proquest.com/docview/71991319
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEBIviG86YFiIB1BJaWI7cR7HBFRIRdO0SX2L7MRZy7qmWpOH8pfy53AX56uomxgvUZTYpzj3s-98vg9C3sGKz1wQHY4bqtjhfsodJcMY9zyJMTo0qozjnvzwx2f8-1RMe73fHa-lItfD-NfOuJL_4So8A75ilOwtONsQhQdwD_yFK3AYrv_E4xNbSL7S-VYztZ6XOfutb6t1M15li81sk6C3ilpcqGUGyiWqlcfjQ7QInIOsKhamDWJEA8gJfDnohHM1MEV-lQHhwdjGKtZ67GTeSeAE1LrOn1Um60G3TcfgcIxn85_9vKoIgsFCRaPYT1RyASMvX2QzBaJ6MB62Lze2T1lpvrENYb1OXRI9QrfWrbCdLaOG17jU1eswE-hmZ6v6DI19xtEhb2QLPzWLN5cdlMruUsxtkGsl1lEV2SkyQEUufSw9EOKw4KKBFVDWdO4m6P5LcDbujPYgP4xqIrCfkpGMkMgdcteDDQzW1vg2bZyPYCgjawqohlnnwwrDTzu-ZFtnqvNYoxuvWsNMTm0Jluv3SKWudPqQPKg2OfTQIvYR6ZnlY3LPlj3dPCE_W9zSLKUWt7TFLQXW0V24pe8BtR9ohVnaYJZC9waztMYsBcw-JWdfv5wejZ2q5ocTs5DnDmepkKGWiYx1bFgS-Dr1RygF0VDAWawUHyXSlynT8UgpoWLNpadUYKQQScqekb1ltjQvCBVYl8vVjPlpDP_b16CXacyQmLp4mJ_2iVf_1SiuEuJjXZZFdAM_--Rj02ll88Hc3Pxtza4IFovLauJFcNNtdLDFyJYwFwETTPTJm5qz0HONR3pqabJiHbmAHcxYeH2LAH0bQc72yXMLiZa65wYBY2L_dkN6Se63M_YV2cuvCvMaFPNcH5QY_wPSkNvV
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+phasin+expression+and+polyhydroxyalkanoate+%28PHA%29+granule+formation+in+Ralstonia+eutropha+H16&rft.jtitle=Microbiology+%28Society+for+General+Microbiology%29&rft.au=P%C3%B6tter%2C+Markus&rft.au=Madkour%2C+Mohamed+H.&rft.au=Mayer%2C+Frank&rft.au=Steinb%C3%BCchel%2C+Alexander&rft.date=2002-08-01&rft.issn=1350-0872&rft.eissn=1465-2080&rft.volume=148&rft.issue=8&rft.spage=2413&rft.epage=2426&rft_id=info:doi/10.1099%2F00221287-148-8-2413&rft.externalDBID=n%2Fa&rft.externalDocID=10_1099_00221287_148_8_2413
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-0872&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-0872&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-0872&client=summon