Crop Monitoring Using Sentinel-2 and UAV Multispectral Imagery: A Comparison Case Study in Northeastern Germany

Monitoring within-field crop variability at fine spatial and temporal resolution can assist farmers in making reliable decisions during their agricultural management; however, it traditionally involves a labor-intensive and time-consuming pointwise manual process. To the best of our knowledge, few s...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 14; no. 17; p. 4426
Main Authors Li, Minhui, Shamshiri, Redmond R., Weltzien, Cornelia, Schirrmann, Michael
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Monitoring within-field crop variability at fine spatial and temporal resolution can assist farmers in making reliable decisions during their agricultural management; however, it traditionally involves a labor-intensive and time-consuming pointwise manual process. To the best of our knowledge, few studies conducted a comparison of Sentinel-2 with UAV data for crop monitoring in the context of precision agriculture. Therefore, prospects of crop monitoring for characterizing biophysical plant parameters and leaf nitrogen of wheat and barley crops were evaluated from a more practical viewpoint closer to agricultural routines. Multispectral UAV and Sentinel-2 imagery was collected over three dates in the season and compared with reference data collected at 20 sample points for plant leaf nitrogen (N), maximum plant height, mean plant height, leaf area index (LAI), and fresh biomass. Higher correlations of UAV data to the agronomic parameters were found on average than with Sentinel-2 data with a percentage increase of 6.3% for wheat and 22.2% for barley. In this regard, VIs calculated from spectral bands in the visible part performed worse for Sentinel-2 than for the UAV data. In addition, large-scale patterns, formed by the influence of an old riverbed on plant growth, were recognizable even in the Sentinel-2 imagery despite its much lower spatial resolution. Interestingly, also smaller features, such as the tramlines from controlled traffic farming (CTF), had an influence on the Sentinel-2 data and showed a systematic pattern that affected even semivariogram calculation. In conclusion, Sentinel-2 imagery is able to capture the same large-scale pattern as can be derived from the higher detailed UAV imagery; however, it is at the same time influenced by management-driven features such as tramlines, which cannot be accurately georeferenced. In consequence, agronomic parameters were better correlated with UAV than with Sentinel-2 data. Crop growers as well as data providers from remote sensing services may take advantage of this knowledge and we recommend the use of UAV data as it gives additional information about management-driven features. For future perspective, we would advise fusing UAV with Sentinel-2 imagery taken early in the season as it can integrate the effect of agricultural management in the subsequent absence of high spatial resolution data to help improve crop monitoring for the farmer and to reduce costs.
AbstractList Monitoring within-field crop variability at fine spatial and temporal resolution can assist farmers in making reliable decisions during their agricultural management; however, it traditionally involves a labor-intensive and time-consuming pointwise manual process. To the best of our knowledge, few studies conducted a comparison of Sentinel-2 with UAV data for crop monitoring in the context of precision agriculture. Therefore, prospects of crop monitoring for characterizing biophysical plant parameters and leaf nitrogen of wheat and barley crops were evaluated from a more practical viewpoint closer to agricultural routines. Multispectral UAV and Sentinel-2 imagery was collected over three dates in the season and compared with reference data collected at 20 sample points for plant leaf nitrogen (N), maximum plant height, mean plant height, leaf area index (LAI), and fresh biomass. Higher correlations of UAV data to the agronomic parameters were found on average than with Sentinel-2 data with a percentage increase of 6.3% for wheat and 22.2% for barley. In this regard, VIs calculated from spectral bands in the visible part performed worse for Sentinel-2 than for the UAV data. In addition, large-scale patterns, formed by the influence of an old riverbed on plant growth, were recognizable even in the Sentinel-2 imagery despite its much lower spatial resolution. Interestingly, also smaller features, such as the tramlines from controlled traffic farming (CTF), had an influence on the Sentinel-2 data and showed a systematic pattern that affected even semivariogram calculation. In conclusion, Sentinel-2 imagery is able to capture the same large-scale pattern as can be derived from the higher detailed UAV imagery; however, it is at the same time influenced by management-driven features such as tramlines, which cannot be accurately georeferenced. In consequence, agronomic parameters were better correlated with UAV than with Sentinel-2 data. Crop growers as well as data providers from remote sensing services may take advantage of this knowledge and we recommend the use of UAV data as it gives additional information about management-driven features. For future perspective, we would advise fusing UAV with Sentinel-2 imagery taken early in the season as it can integrate the effect of agricultural management in the subsequent absence of high spatial resolution data to help improve crop monitoring for the farmer and to reduce costs.
Author Li, Minhui
Shamshiri, Redmond R.
Schirrmann, Michael
Weltzien, Cornelia
Author_xml – sequence: 1
  givenname: Minhui
  orcidid: 0000-0001-6763-2713
  surname: Li
  fullname: Li, Minhui
– sequence: 2
  givenname: Redmond R.
  orcidid: 0000-0002-5775-9654
  surname: Shamshiri
  fullname: Shamshiri, Redmond R.
– sequence: 3
  givenname: Cornelia
  orcidid: 0000-0002-2951-3614
  surname: Weltzien
  fullname: Weltzien, Cornelia
– sequence: 4
  givenname: Michael
  orcidid: 0000-0002-3945-3539
  surname: Schirrmann
  fullname: Schirrmann, Michael
BookMark eNptkU2P0zAQhi20K7F098IvsMQFIQX8FTvmVkWwVNqPw1KulptMiqvEDrZz6L_HpSDQijl4RvbzvvLMvEIXPnhA6DUl7znX5ENMVFAlBJMv0BUjilWCaXbxT_0S3aR0ICU4p5qIKxTaGGZ8H7zLITq_x9t0Op_AZ-dhrBi2vsfb9Td8v4zZpRm6HO2IN5PdQzx-xGvchmm20aXgcWsT4Ke89EfsPH4IMX8HmzJEj28hTtYfr9HlYMcEN7_zCm0_f_rafqnuHm837fqu6rgWuRJU7Cxryh8500IpVXflAeodY6BpA9T2ardTvZRiqPmgO6lqqwfb8EbqQvAV2px9-2APZo5usvFognXm10WIe2Njdt0IRlKutDq5NlIQRrQcGqGgEwBSMdEXr7dnrzmGHwukbCaXOhhH6yEsyTDFOCU1kaKgb56hh7BEXzotFKVCC1Zmv0LkTHUxpBRhMJ3LNrvgy2zdaCgxp4WavwstknfPJH96-g_8Ey_Fn6k
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3330886
crossref_primary_10_1016_j_compag_2025_109905
crossref_primary_10_1016_j_scitotenv_2024_178007
crossref_primary_10_1016_j_eja_2024_127478
crossref_primary_10_3390_agriculture13020282
crossref_primary_10_1080_14498596_2024_2353158
crossref_primary_10_3389_fpls_2023_1220137
crossref_primary_10_3390_agronomy13071942
crossref_primary_10_1080_01431161_2024_2313997
crossref_primary_10_1007_s40003_024_00809_4
crossref_primary_10_1117_1_JRS_18_024506
crossref_primary_10_3390_agronomy13071686
crossref_primary_10_3390_land13030299
crossref_primary_10_1080_01431161_2024_2421945
crossref_primary_10_3390_agriengineering6010031
crossref_primary_10_3390_rs16020389
crossref_primary_10_1016_j_compag_2024_109238
crossref_primary_10_3390_data8050088
crossref_primary_10_1016_j_rsase_2024_101168
crossref_primary_10_3390_agriengineering6010035
crossref_primary_10_1002_ldr_5373
Cites_doi 10.1080/014311697217558
10.1016/S0034-4257(02)00096-2
10.3390/rs10050763
10.3390/rs10122007
10.5194/isprs-archives-XLII-3-1381-2018
10.1016/j.plantsci.2018.10.022
10.3390/rs11131569
10.5194/jsss-2-51-2013
10.1016/j.agsy.2016.05.014
10.4236/ars.2018.72006
10.3390/rs11060605
10.1126/science.1183899
10.3390/rs11212573
10.1080/10106040108542184
10.3390/rs13193841
10.3390/rs12091406
10.1108/SR-10-2016-0215
10.1016/j.compag.2018.10.017
10.1016/j.rse.2011.11.026
10.3390/rs12203424
10.3390/rs12071052
10.1016/j.rse.2018.06.037
10.3390/rs14030585
10.1007/s13593-012-0111-z
10.3390/rs11172050
10.1007/978-3-642-00296-0_5
10.3390/rs12010017
10.3390/s16122136
10.20870/oeno-one.2020.54.1.2557
10.1078/0176-1617-01176
10.1016/j.rse.2020.111758
10.1007/s11119-019-09699-x
10.2134/1997.stateofsitespecific.c10
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs14174426
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
ProQuest SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Agriculture
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_613797918e86402096f847ec4ee6724d
10_3390_rs14174426
GeographicLocations United States--US
Germany
GeographicLocations_xml – name: United States--US
– name: Germany
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-414ba2819032947775cc39e5b22e918e1ad7bb7d664f53f9c675a9fa83869e913
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 00:44:18 EDT 2025
Fri Jul 11 06:20:44 EDT 2025
Fri Jul 25 09:34:33 EDT 2025
Thu Apr 24 22:52:29 EDT 2025
Tue Jul 01 01:59:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-414ba2819032947775cc39e5b22e918e1ad7bb7d664f53f9c675a9fa83869e913
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6763-2713
0000-0002-5775-9654
0000-0002-3945-3539
0000-0002-2951-3614
OpenAccessLink https://doaj.org/article/613797918e86402096f847ec4ee6724d
PQID 2711494200
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_613797918e86402096f847ec4ee6724d
proquest_miscellaneous_2723105064
proquest_journals_2711494200
crossref_citationtrail_10_3390_rs14174426
crossref_primary_10_3390_rs14174426
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Walsh (ref_19) 2018; 7
Delloye (ref_24) 2018; 216
Gebbers (ref_2) 2010; 327
Rouse (ref_40) 1974; Volume 351
Chamen (ref_26) 2015; 18
ref_36
Huete (ref_41) 2002; 83
ref_35
ref_12
Hassan (ref_18) 2019; 282
ref_34
ref_33
Gitelson (ref_42) 2004; 161
ref_10
ref_32
ref_31
Bogue (ref_14) 2017; 37
Drusch (ref_23) 2012; 120
Gitelson (ref_38) 1997; 18
Berger (ref_11) 2020; 242
ref_17
ref_15
Comba (ref_8) 2020; 21
Bendig (ref_39) 2015; 39
Sozzi (ref_30) 2020; 54
Nonni (ref_45) 2018; 1
Piragnolo (ref_21) 2018; 42
ref_25
Shendryk (ref_16) 2020; 92
ref_44
ref_43
ref_20
ref_1
Su (ref_27) 2018; 155
Louhaichi (ref_37) 2001; 16
Jones (ref_3) 2017; 155
Diacono (ref_4) 2013; 33
Zecha (ref_13) 2013; 2
ref_29
ref_28
ref_9
ref_5
ref_7
ref_6
Gascon (ref_22) 2014; Volume 9218
References_xml – volume: 18
  start-page: 2691
  year: 1997
  ident: ref_38
  article-title: Remote Estimation of Chlorophyll Content in Higher Plant Leaves
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311697217558
– volume: 83
  start-page: 195
  year: 2002
  ident: ref_41
  article-title: Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00096-2
– ident: ref_10
  doi: 10.3390/rs10050763
– ident: ref_5
– ident: ref_32
– volume: Volume 9218
  start-page: 455
  year: 2014
  ident: ref_22
  article-title: Copernicus Sentinel-2 Mission: Products, Algorithms and Cal/Val
  publication-title: Proceedings of the Earth Observing Systems XIX
– ident: ref_7
  doi: 10.3390/rs10122007
– volume: 42
  start-page: 1381
  year: 2018
  ident: ref_21
  article-title: Comparison of Vegetation Indices from RPAS and Sentinel-2 Imagery for Detecting Permanent Pastures
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLII-3-1381-2018
– volume: 282
  start-page: 95
  year: 2019
  ident: ref_18
  article-title: A Rapid Monitoring of NDVI across the Wheat Growth Cycle for Grain Yield Prediction Using a Multi-Spectral UAV Platform
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2018.10.022
– volume: 18
  start-page: 64
  year: 2015
  ident: ref_26
  article-title: Controlled Traffic Farming—From Worldwide Research to Adoption in Europe and Its Future Prospects
  publication-title: Acta Technol. Agric.
– volume: 39
  start-page: 79
  year: 2015
  ident: ref_39
  article-title: Combining UAV-Based Plant Height from Crop Surface Models, Visible, and near Infrared Vegetation Indices for Biomass Monitoring in Barley
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_44
  doi: 10.3390/rs11131569
– volume: 2
  start-page: 51
  year: 2013
  ident: ref_13
  article-title: Mobile Sensor Platforms: Categorisation and Research Applications in Precision Farming
  publication-title: J. Sens. Sens. Syst.
  doi: 10.5194/jsss-2-51-2013
– volume: 155
  start-page: 240
  year: 2017
  ident: ref_3
  article-title: Brief History of Agricultural Systems Modeling
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2016.05.014
– volume: 7
  start-page: 71
  year: 2018
  ident: ref_19
  article-title: Assessment of UAV Based Vegetation Indices for Nitrogen Concentration Estimation in Spring Wheat
  publication-title: Adv. Remote Sens.
  doi: 10.4236/ars.2018.72006
– ident: ref_35
– ident: ref_15
  doi: 10.3390/rs11060605
– volume: 327
  start-page: 828
  year: 2010
  ident: ref_2
  article-title: Precision Agriculture and Food Security
  publication-title: Science
  doi: 10.1126/science.1183899
– ident: ref_29
  doi: 10.3390/rs11212573
– volume: 16
  start-page: 65
  year: 2001
  ident: ref_37
  article-title: Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat
  publication-title: Geocarto Int.
  doi: 10.1080/10106040108542184
– ident: ref_6
– ident: ref_17
  doi: 10.3390/rs13193841
– ident: ref_28
  doi: 10.3390/rs12091406
– ident: ref_33
– volume: 37
  start-page: 1
  year: 2017
  ident: ref_14
  article-title: Sensors Key to Advances in Precision Agriculture
  publication-title: Sens. Rev.
  doi: 10.1108/SR-10-2016-0215
– volume: 155
  start-page: 157
  year: 2018
  ident: ref_27
  article-title: Wheat Yellow Rust Monitoring by Learning from Multispectral UAV Aerial Imagery
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.10.017
– volume: 120
  start-page: 25
  year: 2012
  ident: ref_23
  article-title: Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.026
– ident: ref_31
  doi: 10.3390/rs12203424
– ident: ref_12
  doi: 10.3390/rs12071052
– volume: 216
  start-page: 245
  year: 2018
  ident: ref_24
  article-title: Retrieval of the Canopy Chlorophyll Content from Sentinel-2 Spectral Bands to Estimate Nitrogen Uptake in Intensive Winter Wheat Cropping Systems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.06.037
– volume: Volume 351
  start-page: 309
  year: 1974
  ident: ref_40
  article-title: Monitoring Vegetation Systems in the Great Plains with Erts
  publication-title: NASA Special Publication
– volume: 92
  start-page: 102177
  year: 2020
  ident: ref_16
  article-title: Fine-Scale Prediction of Biomass and Leaf Nitrogen Content in Sugarcane Using UAV LiDAR and Multispectral Imaging
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_34
  doi: 10.3390/rs14030585
– volume: 33
  start-page: 219
  year: 2013
  ident: ref_4
  article-title: Precision Nitrogen Management of Wheat. A Review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-012-0111-z
– ident: ref_25
  doi: 10.3390/rs11172050
– ident: ref_43
  doi: 10.1007/978-3-642-00296-0_5
– ident: ref_9
  doi: 10.3390/rs12010017
– ident: ref_20
  doi: 10.3390/s16122136
– ident: ref_36
– volume: 54
  start-page: 189
  year: 2020
  ident: ref_30
  article-title: Comparing Vineyard Imagery Acquired from Sentinel-2 and Unmanned Aerial Vehicle (UAV) Platform
  publication-title: Oeno One
  doi: 10.20870/oeno-one.2020.54.1.2557
– volume: 161
  start-page: 165
  year: 2004
  ident: ref_42
  article-title: Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation
  publication-title: J. Plant Physiol.
  doi: 10.1078/0176-1617-01176
– volume: 242
  start-page: 111758
  year: 2020
  ident: ref_11
  article-title: Crop Nitrogen Monitoring: Recent Progress and Principal Developments in the Context of Imaging Spectroscopy Missions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111758
– volume: 21
  start-page: 881
  year: 2020
  ident: ref_8
  article-title: Leaf Area Index Evaluation in Vineyards Using 3D Point Clouds from UAV Imagery
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-019-09699-x
– ident: ref_1
  doi: 10.2134/1997.stateofsitespecific.c10
– volume: 1
  start-page: 105
  year: 2018
  ident: ref_45
  article-title: Sentinel-2 Data Analysis and Comparison with UAV Multispectral Images for Precision Viticulture
  publication-title: GI Forum
SSID ssj0000331904
Score 2.4756305
Snippet Monitoring within-field crop variability at fine spatial and temporal resolution can assist farmers in making reliable decisions during their agricultural...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4426
SubjectTerms Agricultural management
Agriculture
Agronomy
Barley
Biomass
case studies
Cereal crops
controlled traffic farming (CTF)
controlled traffic systems
Crop diseases
Crops
Farmers
georeferencing
Germany
Imagery
Information management
Leaf area
Leaf area index
Leaves
Mathematical analysis
Monitoring
multispectral imagery
Nitrogen
Parameters
Plant growth
plant height
Plants
Plants (botany)
Precision agriculture
Remote sensing
River beds
semivariogram
Spatial data
Spatial discrimination
Spatial resolution
Spectral bands
stream channels
Temporal resolution
Unmanned aerial vehicles
Wheat
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPQAHVAqoWwoygguHqBs_Yy5ou2opHCoELOotih27rVScbXZ72H_PjNebVgJxi5KRpXg87_E3hLwPnJWtVKYwjZSFCBCnGCVcETQaJyUd8wnt80ydzsTXc3meE26L3Fa50YlJUbedwxz5IdPguRsBTP00vylwahRWV_MIjYdkG1RwBcHX9tHx2bfvQ5ZlzOGIjcUal5RDfH_YL0oBXrhANIV7ligB9v-lj5OROdkhT7N3SCdrdj4jD3zcJU8mF31GyPC75FEeW365ek66ad_N6VosMT9HUwMA_YEdQNFfF4w2saWzyS-a7tmmW5U9rP_lNyJXrD7SCZ0OcwjpFAwaxb7CFb2KNBV0cLCP7yP9jPo7rl6Q2cnxz-lpkScoFI4bsSxEKWyDpbIxZ0ZoraWDD15axrwpK182rbZWt0qJIHkwDsKHxoSm4pUyQMFfkq3YRb9HqPW2LYHd1lRWWCMqFlTlODwrGRofRuTDZjdrl-HFccrFdQ1hBu58fbfzI_JuoJ2vQTX-SXWETBkoEAg7vej6izrLVQ3eiDYa_6VSGAobFcDeeie8V5qJdkQONiyts3Qu6ruzNCJvh88gV1gsaaLvbpEGPV-E89v__xKvyGOGVyJS39kB2Vr2t_41OCpL-yafxj80GOeS
  priority: 102
  providerName: ProQuest
Title Crop Monitoring Using Sentinel-2 and UAV Multispectral Imagery: A Comparison Case Study in Northeastern Germany
URI https://www.proquest.com/docview/2711494200
https://www.proquest.com/docview/2723105064
https://doaj.org/article/613797918e86402096f847ec4ee6724d
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4VeoBL1QdVt6UrV_TSQwTxM-5t2bLQiqKqsIhbFCe2qES9KCyH_fedccJ2JZC4cEoUjyxrPJ5HZvwNwOcgeN4obTNbKZXJgHGK1bLOgiHjpFXNfUL7PNFHU_njQl2stPqimrAOHrhj3C6aG2ONzQtfaIp1rA6oUH0tvdeGy4a0L067EkwlHSxQtPZkh0cqMK7fbW9yid63JBSFFQuUgPrv6eFkXCYv4UXvFbJRt5pX8MzH17DRNyi_XLyB2bidXbPuANKfOJZS_eyUan2iv8o4q2LDpqNzlm7UpvuTLc74_S9hVCy-shEbLzsOsjGaLkYVhAv2J7KUuqEWPr6N7JA0dVxswXRycDY-yvpeCVktrJxnMpeuoqTYnuBWGmNUjQNeOc49MS-vGuOcabSWQYlgawwUKhuqQhTaIoV4C-txFv07YM67JseNdbZw0llZ8KCLWuC7VqHyYQBf7vhX1j2QOPWzuCoxoCBel_95PYCdJe11B5_xINU-bcOSgiCv0wcUhLIXhPIxQRjA9t0mlv05vCm5wXjPSlQFA_i0HMYTRGmRKvrZLdGQj0vAfe-fYh0fYJPTFYlUh7YN6_P21n9Ex2XuhrBWTA6H8Hz07efxKT73D05-_R4myf0HVnTsqg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6N8TB4QDBAdAwwAh54iNbYjh0jIVQKXcvGXljR3rI4cQbSlpS0E8qf4jdy5yYZEoi3vVXxyVJ957uzffd9AC8LwcM8UiYwaRQFssBzilEyCwpNwUlFGXce7fNITefy00l0sgG_ul4YKqvsfKJ31HmV0R35HteYuRuJSn23-BEQaxS9rnYUGmuzOHDNTzyyLd_OPqB-X3E--Xg8ngYtq0CQCSNXgQylTen5aCi4kVrrKMMBF1nOnQljF6a5tlbnSskiEoXJMKVOTZHGIlYGJQTOewNuSiEM7ah4st_f6QwFGvRQrlFQcXy4Vy9DiTm_JOyGP-Kepwf4y_v7kDa5C3faXJSN1sZzDzZcuQ23R2d1i8fhtmGrJUn_1tyHalxXC7Z2AnQbyHy5AftC9UalOw84S8uczUdfme_q9T2cNc4_uyCcjOYNG7Fxz3rIxhg-GVUxNux7yfzzEdEIubpk-xQtyuYBzK9lZR_CZlmV7hEw62weonFZE1tpjYx5oeJM4G8VFakrBvC6W80ka8HMiVPjPMFDDa18crXyA3jRyy7WEB7_lHpPSuklCHbbf6jqs6TdxQnmPtpo-i-xooO3UQVGd5dJ55TmMh_AbqfSpPUFy-TKcgfwvB_GXUxPM2npqkuSoTybwAN3_j_FM9iaHn8-TA5nRweP4RanZgxf8bYLm6v60j3BFGlln3q7ZHB63RvhN98oIbk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4ancTlAcEAURhgBDzwEDWxHTtGQqjrVlaGqgko2lvIxR5IIylpJ5S_xq_jnFw6JBBve4uSI0uxz9U-_j6A507wIA-V8UwShp50WKcYJTPPaQpOKsy4bdA-5-pwId-dhCdb8Ku_C0Ntlb1PbBx1Xma0Rz7iGjN3I3FRR65rizjen75Z_vCIQYpOWns6jVZFjmz9E8u31evZPq71C86nB58mh17HMOBlwsi1JwOZJnSU5AtupNY6zPCDDVPOrQkiGyS5TlOdKyVdKJzJML1OjEsiESmDEgLHvQLbGqsifwDbewfz4w-bHR5foHr7ssVEFcL4o2oVSKwAJCE5_BEFG7KAv2JBE-Cmt-Bml5mycatKt2HLFjtwY3xadegcdgeudZTpX-s7UE6qcslal0B7g6xpPmAfqfuosGceZ0mRs8X4M2vu-DY3Oiscf_adUDPqV2zMJhsORDbBYMqop7Fm3wrWHCYRqZCtCvaWYkdR34XFpcztPRgUZWHvA0ttmgeoaqmJUpkaGXGnokzgswpdYt0QXvazGWcdtDkxbJzFWOLQzMcXMz-EZxvZZQvo8U-pPVqUjQSBcDcvyuo07mw6xkxIG03_Eikqw41yGOttJq1Vmst8CLv9ksadZ1jFF3o8hKebz2jTdFCTFLY8JxnKuglK8MH_h3gCV9EI4vez-dFDuM7pZkbT_rYLg3V1bh9hvrROH3eKyeDLZdvCbylnJ0s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+Monitoring+Using+Sentinel-2+and+UAV+Multispectral+Imagery%3A+A+Comparison+Case+Study+in+Northeastern+Germany&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Minhui+Li&rft.au=Redmond+R.+Shamshiri&rft.au=Cornelia+Weltzien&rft.au=Michael+Schirrmann&rft.date=2022-09-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=17&rft.spage=4426&rft_id=info:doi/10.3390%2Frs14174426&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_613797918e86402096f847ec4ee6724d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon