Crop Monitoring Using Sentinel-2 and UAV Multispectral Imagery: A Comparison Case Study in Northeastern Germany
Monitoring within-field crop variability at fine spatial and temporal resolution can assist farmers in making reliable decisions during their agricultural management; however, it traditionally involves a labor-intensive and time-consuming pointwise manual process. To the best of our knowledge, few s...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 17; p. 4426 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Monitoring within-field crop variability at fine spatial and temporal resolution can assist farmers in making reliable decisions during their agricultural management; however, it traditionally involves a labor-intensive and time-consuming pointwise manual process. To the best of our knowledge, few studies conducted a comparison of Sentinel-2 with UAV data for crop monitoring in the context of precision agriculture. Therefore, prospects of crop monitoring for characterizing biophysical plant parameters and leaf nitrogen of wheat and barley crops were evaluated from a more practical viewpoint closer to agricultural routines. Multispectral UAV and Sentinel-2 imagery was collected over three dates in the season and compared with reference data collected at 20 sample points for plant leaf nitrogen (N), maximum plant height, mean plant height, leaf area index (LAI), and fresh biomass. Higher correlations of UAV data to the agronomic parameters were found on average than with Sentinel-2 data with a percentage increase of 6.3% for wheat and 22.2% for barley. In this regard, VIs calculated from spectral bands in the visible part performed worse for Sentinel-2 than for the UAV data. In addition, large-scale patterns, formed by the influence of an old riverbed on plant growth, were recognizable even in the Sentinel-2 imagery despite its much lower spatial resolution. Interestingly, also smaller features, such as the tramlines from controlled traffic farming (CTF), had an influence on the Sentinel-2 data and showed a systematic pattern that affected even semivariogram calculation. In conclusion, Sentinel-2 imagery is able to capture the same large-scale pattern as can be derived from the higher detailed UAV imagery; however, it is at the same time influenced by management-driven features such as tramlines, which cannot be accurately georeferenced. In consequence, agronomic parameters were better correlated with UAV than with Sentinel-2 data. Crop growers as well as data providers from remote sensing services may take advantage of this knowledge and we recommend the use of UAV data as it gives additional information about management-driven features. For future perspective, we would advise fusing UAV with Sentinel-2 imagery taken early in the season as it can integrate the effect of agricultural management in the subsequent absence of high spatial resolution data to help improve crop monitoring for the farmer and to reduce costs. |
---|---|
AbstractList | Monitoring within-field crop variability at fine spatial and temporal resolution can assist farmers in making reliable decisions during their agricultural management; however, it traditionally involves a labor-intensive and time-consuming pointwise manual process. To the best of our knowledge, few studies conducted a comparison of Sentinel-2 with UAV data for crop monitoring in the context of precision agriculture. Therefore, prospects of crop monitoring for characterizing biophysical plant parameters and leaf nitrogen of wheat and barley crops were evaluated from a more practical viewpoint closer to agricultural routines. Multispectral UAV and Sentinel-2 imagery was collected over three dates in the season and compared with reference data collected at 20 sample points for plant leaf nitrogen (N), maximum plant height, mean plant height, leaf area index (LAI), and fresh biomass. Higher correlations of UAV data to the agronomic parameters were found on average than with Sentinel-2 data with a percentage increase of 6.3% for wheat and 22.2% for barley. In this regard, VIs calculated from spectral bands in the visible part performed worse for Sentinel-2 than for the UAV data. In addition, large-scale patterns, formed by the influence of an old riverbed on plant growth, were recognizable even in the Sentinel-2 imagery despite its much lower spatial resolution. Interestingly, also smaller features, such as the tramlines from controlled traffic farming (CTF), had an influence on the Sentinel-2 data and showed a systematic pattern that affected even semivariogram calculation. In conclusion, Sentinel-2 imagery is able to capture the same large-scale pattern as can be derived from the higher detailed UAV imagery; however, it is at the same time influenced by management-driven features such as tramlines, which cannot be accurately georeferenced. In consequence, agronomic parameters were better correlated with UAV than with Sentinel-2 data. Crop growers as well as data providers from remote sensing services may take advantage of this knowledge and we recommend the use of UAV data as it gives additional information about management-driven features. For future perspective, we would advise fusing UAV with Sentinel-2 imagery taken early in the season as it can integrate the effect of agricultural management in the subsequent absence of high spatial resolution data to help improve crop monitoring for the farmer and to reduce costs. |
Author | Li, Minhui Shamshiri, Redmond R. Schirrmann, Michael Weltzien, Cornelia |
Author_xml | – sequence: 1 givenname: Minhui orcidid: 0000-0001-6763-2713 surname: Li fullname: Li, Minhui – sequence: 2 givenname: Redmond R. orcidid: 0000-0002-5775-9654 surname: Shamshiri fullname: Shamshiri, Redmond R. – sequence: 3 givenname: Cornelia orcidid: 0000-0002-2951-3614 surname: Weltzien fullname: Weltzien, Cornelia – sequence: 4 givenname: Michael orcidid: 0000-0002-3945-3539 surname: Schirrmann fullname: Schirrmann, Michael |
BookMark | eNptkU2P0zAQhi20K7F098IvsMQFIQX8FTvmVkWwVNqPw1KulptMiqvEDrZz6L_HpSDQijl4RvbzvvLMvEIXPnhA6DUl7znX5ENMVFAlBJMv0BUjilWCaXbxT_0S3aR0ICU4p5qIKxTaGGZ8H7zLITq_x9t0Op_AZ-dhrBi2vsfb9Td8v4zZpRm6HO2IN5PdQzx-xGvchmm20aXgcWsT4Ke89EfsPH4IMX8HmzJEj28hTtYfr9HlYMcEN7_zCm0_f_rafqnuHm837fqu6rgWuRJU7Cxryh8500IpVXflAeodY6BpA9T2ardTvZRiqPmgO6lqqwfb8EbqQvAV2px9-2APZo5usvFognXm10WIe2Njdt0IRlKutDq5NlIQRrQcGqGgEwBSMdEXr7dnrzmGHwukbCaXOhhH6yEsyTDFOCU1kaKgb56hh7BEXzotFKVCC1Zmv0LkTHUxpBRhMJ3LNrvgy2zdaCgxp4WavwstknfPJH96-g_8Ey_Fn6k |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3330886 crossref_primary_10_1016_j_compag_2025_109905 crossref_primary_10_1016_j_scitotenv_2024_178007 crossref_primary_10_1016_j_eja_2024_127478 crossref_primary_10_3390_agriculture13020282 crossref_primary_10_1080_14498596_2024_2353158 crossref_primary_10_3389_fpls_2023_1220137 crossref_primary_10_3390_agronomy13071942 crossref_primary_10_1080_01431161_2024_2313997 crossref_primary_10_1007_s40003_024_00809_4 crossref_primary_10_1117_1_JRS_18_024506 crossref_primary_10_3390_agronomy13071686 crossref_primary_10_3390_land13030299 crossref_primary_10_1080_01431161_2024_2421945 crossref_primary_10_3390_agriengineering6010031 crossref_primary_10_3390_rs16020389 crossref_primary_10_1016_j_compag_2024_109238 crossref_primary_10_3390_data8050088 crossref_primary_10_1016_j_rsase_2024_101168 crossref_primary_10_3390_agriengineering6010035 crossref_primary_10_1002_ldr_5373 |
Cites_doi | 10.1080/014311697217558 10.1016/S0034-4257(02)00096-2 10.3390/rs10050763 10.3390/rs10122007 10.5194/isprs-archives-XLII-3-1381-2018 10.1016/j.plantsci.2018.10.022 10.3390/rs11131569 10.5194/jsss-2-51-2013 10.1016/j.agsy.2016.05.014 10.4236/ars.2018.72006 10.3390/rs11060605 10.1126/science.1183899 10.3390/rs11212573 10.1080/10106040108542184 10.3390/rs13193841 10.3390/rs12091406 10.1108/SR-10-2016-0215 10.1016/j.compag.2018.10.017 10.1016/j.rse.2011.11.026 10.3390/rs12203424 10.3390/rs12071052 10.1016/j.rse.2018.06.037 10.3390/rs14030585 10.1007/s13593-012-0111-z 10.3390/rs11172050 10.1007/978-3-642-00296-0_5 10.3390/rs12010017 10.3390/s16122136 10.20870/oeno-one.2020.54.1.2557 10.1078/0176-1617-01176 10.1016/j.rse.2020.111758 10.1007/s11119-019-09699-x 10.2134/1997.stateofsitespecific.c10 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs14174426 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library ProQuest SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Agriculture |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_613797918e86402096f847ec4ee6724d 10_3390_rs14174426 |
GeographicLocations | United States--US Germany |
GeographicLocations_xml | – name: United States--US – name: Germany |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c394t-414ba2819032947775cc39e5b22e918e1ad7bb7d664f53f9c675a9fa83869e913 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 00:44:18 EDT 2025 Fri Jul 11 06:20:44 EDT 2025 Fri Jul 25 09:34:33 EDT 2025 Thu Apr 24 22:52:29 EDT 2025 Tue Jul 01 01:59:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-414ba2819032947775cc39e5b22e918e1ad7bb7d664f53f9c675a9fa83869e913 |
Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6763-2713 0000-0002-5775-9654 0000-0002-3945-3539 0000-0002-2951-3614 |
OpenAccessLink | https://doaj.org/article/613797918e86402096f847ec4ee6724d |
PQID | 2711494200 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_613797918e86402096f847ec4ee6724d proquest_miscellaneous_2723105064 proquest_journals_2711494200 crossref_citationtrail_10_3390_rs14174426 crossref_primary_10_3390_rs14174426 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Walsh (ref_19) 2018; 7 Delloye (ref_24) 2018; 216 Gebbers (ref_2) 2010; 327 Rouse (ref_40) 1974; Volume 351 Chamen (ref_26) 2015; 18 ref_36 Huete (ref_41) 2002; 83 ref_35 ref_12 Hassan (ref_18) 2019; 282 ref_34 ref_33 Gitelson (ref_42) 2004; 161 ref_10 ref_32 ref_31 Bogue (ref_14) 2017; 37 Drusch (ref_23) 2012; 120 Gitelson (ref_38) 1997; 18 Berger (ref_11) 2020; 242 ref_17 ref_15 Comba (ref_8) 2020; 21 Bendig (ref_39) 2015; 39 Sozzi (ref_30) 2020; 54 Nonni (ref_45) 2018; 1 Piragnolo (ref_21) 2018; 42 ref_25 Shendryk (ref_16) 2020; 92 ref_44 ref_43 ref_20 ref_1 Su (ref_27) 2018; 155 Louhaichi (ref_37) 2001; 16 Jones (ref_3) 2017; 155 Diacono (ref_4) 2013; 33 Zecha (ref_13) 2013; 2 ref_29 ref_28 ref_9 ref_5 ref_7 ref_6 Gascon (ref_22) 2014; Volume 9218 |
References_xml | – volume: 18 start-page: 2691 year: 1997 ident: ref_38 article-title: Remote Estimation of Chlorophyll Content in Higher Plant Leaves publication-title: Int. J. Remote Sens. doi: 10.1080/014311697217558 – volume: 83 start-page: 195 year: 2002 ident: ref_41 article-title: Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00096-2 – ident: ref_10 doi: 10.3390/rs10050763 – ident: ref_5 – ident: ref_32 – volume: Volume 9218 start-page: 455 year: 2014 ident: ref_22 article-title: Copernicus Sentinel-2 Mission: Products, Algorithms and Cal/Val publication-title: Proceedings of the Earth Observing Systems XIX – ident: ref_7 doi: 10.3390/rs10122007 – volume: 42 start-page: 1381 year: 2018 ident: ref_21 article-title: Comparison of Vegetation Indices from RPAS and Sentinel-2 Imagery for Detecting Permanent Pastures publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLII-3-1381-2018 – volume: 282 start-page: 95 year: 2019 ident: ref_18 article-title: A Rapid Monitoring of NDVI across the Wheat Growth Cycle for Grain Yield Prediction Using a Multi-Spectral UAV Platform publication-title: Plant Sci. doi: 10.1016/j.plantsci.2018.10.022 – volume: 18 start-page: 64 year: 2015 ident: ref_26 article-title: Controlled Traffic Farming—From Worldwide Research to Adoption in Europe and Its Future Prospects publication-title: Acta Technol. Agric. – volume: 39 start-page: 79 year: 2015 ident: ref_39 article-title: Combining UAV-Based Plant Height from Crop Surface Models, Visible, and near Infrared Vegetation Indices for Biomass Monitoring in Barley publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_44 doi: 10.3390/rs11131569 – volume: 2 start-page: 51 year: 2013 ident: ref_13 article-title: Mobile Sensor Platforms: Categorisation and Research Applications in Precision Farming publication-title: J. Sens. Sens. Syst. doi: 10.5194/jsss-2-51-2013 – volume: 155 start-page: 240 year: 2017 ident: ref_3 article-title: Brief History of Agricultural Systems Modeling publication-title: Agric. Syst. doi: 10.1016/j.agsy.2016.05.014 – volume: 7 start-page: 71 year: 2018 ident: ref_19 article-title: Assessment of UAV Based Vegetation Indices for Nitrogen Concentration Estimation in Spring Wheat publication-title: Adv. Remote Sens. doi: 10.4236/ars.2018.72006 – ident: ref_35 – ident: ref_15 doi: 10.3390/rs11060605 – volume: 327 start-page: 828 year: 2010 ident: ref_2 article-title: Precision Agriculture and Food Security publication-title: Science doi: 10.1126/science.1183899 – ident: ref_29 doi: 10.3390/rs11212573 – volume: 16 start-page: 65 year: 2001 ident: ref_37 article-title: Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat publication-title: Geocarto Int. doi: 10.1080/10106040108542184 – ident: ref_6 – ident: ref_17 doi: 10.3390/rs13193841 – ident: ref_28 doi: 10.3390/rs12091406 – ident: ref_33 – volume: 37 start-page: 1 year: 2017 ident: ref_14 article-title: Sensors Key to Advances in Precision Agriculture publication-title: Sens. Rev. doi: 10.1108/SR-10-2016-0215 – volume: 155 start-page: 157 year: 2018 ident: ref_27 article-title: Wheat Yellow Rust Monitoring by Learning from Multispectral UAV Aerial Imagery publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.10.017 – volume: 120 start-page: 25 year: 2012 ident: ref_23 article-title: Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.11.026 – ident: ref_31 doi: 10.3390/rs12203424 – ident: ref_12 doi: 10.3390/rs12071052 – volume: 216 start-page: 245 year: 2018 ident: ref_24 article-title: Retrieval of the Canopy Chlorophyll Content from Sentinel-2 Spectral Bands to Estimate Nitrogen Uptake in Intensive Winter Wheat Cropping Systems publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.06.037 – volume: Volume 351 start-page: 309 year: 1974 ident: ref_40 article-title: Monitoring Vegetation Systems in the Great Plains with Erts publication-title: NASA Special Publication – volume: 92 start-page: 102177 year: 2020 ident: ref_16 article-title: Fine-Scale Prediction of Biomass and Leaf Nitrogen Content in Sugarcane Using UAV LiDAR and Multispectral Imaging publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_34 doi: 10.3390/rs14030585 – volume: 33 start-page: 219 year: 2013 ident: ref_4 article-title: Precision Nitrogen Management of Wheat. A Review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-012-0111-z – ident: ref_25 doi: 10.3390/rs11172050 – ident: ref_43 doi: 10.1007/978-3-642-00296-0_5 – ident: ref_9 doi: 10.3390/rs12010017 – ident: ref_20 doi: 10.3390/s16122136 – ident: ref_36 – volume: 54 start-page: 189 year: 2020 ident: ref_30 article-title: Comparing Vineyard Imagery Acquired from Sentinel-2 and Unmanned Aerial Vehicle (UAV) Platform publication-title: Oeno One doi: 10.20870/oeno-one.2020.54.1.2557 – volume: 161 start-page: 165 year: 2004 ident: ref_42 article-title: Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation publication-title: J. Plant Physiol. doi: 10.1078/0176-1617-01176 – volume: 242 start-page: 111758 year: 2020 ident: ref_11 article-title: Crop Nitrogen Monitoring: Recent Progress and Principal Developments in the Context of Imaging Spectroscopy Missions publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111758 – volume: 21 start-page: 881 year: 2020 ident: ref_8 article-title: Leaf Area Index Evaluation in Vineyards Using 3D Point Clouds from UAV Imagery publication-title: Precis. Agric. doi: 10.1007/s11119-019-09699-x – ident: ref_1 doi: 10.2134/1997.stateofsitespecific.c10 – volume: 1 start-page: 105 year: 2018 ident: ref_45 article-title: Sentinel-2 Data Analysis and Comparison with UAV Multispectral Images for Precision Viticulture publication-title: GI Forum |
SSID | ssj0000331904 |
Score | 2.4756305 |
Snippet | Monitoring within-field crop variability at fine spatial and temporal resolution can assist farmers in making reliable decisions during their agricultural... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 4426 |
SubjectTerms | Agricultural management Agriculture Agronomy Barley Biomass case studies Cereal crops controlled traffic farming (CTF) controlled traffic systems Crop diseases Crops Farmers georeferencing Germany Imagery Information management Leaf area Leaf area index Leaves Mathematical analysis Monitoring multispectral imagery Nitrogen Parameters Plant growth plant height Plants Plants (botany) Precision agriculture Remote sensing River beds semivariogram Spatial data Spatial discrimination Spatial resolution Spectral bands stream channels Temporal resolution Unmanned aerial vehicles Wheat |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPQAHVAqoWwoygguHqBs_Yy5ou2opHCoELOotih27rVScbXZ72H_PjNebVgJxi5KRpXg87_E3hLwPnJWtVKYwjZSFCBCnGCVcETQaJyUd8wnt80ydzsTXc3meE26L3Fa50YlJUbedwxz5IdPguRsBTP00vylwahRWV_MIjYdkG1RwBcHX9tHx2bfvQ5ZlzOGIjcUal5RDfH_YL0oBXrhANIV7ligB9v-lj5OROdkhT7N3SCdrdj4jD3zcJU8mF31GyPC75FEeW365ek66ad_N6VosMT9HUwMA_YEdQNFfF4w2saWzyS-a7tmmW5U9rP_lNyJXrD7SCZ0OcwjpFAwaxb7CFb2KNBV0cLCP7yP9jPo7rl6Q2cnxz-lpkScoFI4bsSxEKWyDpbIxZ0ZoraWDD15axrwpK182rbZWt0qJIHkwDsKHxoSm4pUyQMFfkq3YRb9HqPW2LYHd1lRWWCMqFlTlODwrGRofRuTDZjdrl-HFccrFdQ1hBu58fbfzI_JuoJ2vQTX-SXWETBkoEAg7vej6izrLVQ3eiDYa_6VSGAobFcDeeie8V5qJdkQONiyts3Qu6ruzNCJvh88gV1gsaaLvbpEGPV-E89v__xKvyGOGVyJS39kB2Vr2t_41OCpL-yafxj80GOeS priority: 102 providerName: ProQuest |
Title | Crop Monitoring Using Sentinel-2 and UAV Multispectral Imagery: A Comparison Case Study in Northeastern Germany |
URI | https://www.proquest.com/docview/2711494200 https://www.proquest.com/docview/2723105064 https://doaj.org/article/613797918e86402096f847ec4ee6724d |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4VeoBL1QdVt6UrV_TSQwTxM-5t2bLQiqKqsIhbFCe2qES9KCyH_fedccJ2JZC4cEoUjyxrPJ5HZvwNwOcgeN4obTNbKZXJgHGK1bLOgiHjpFXNfUL7PNFHU_njQl2stPqimrAOHrhj3C6aG2ONzQtfaIp1rA6oUH0tvdeGy4a0L067EkwlHSxQtPZkh0cqMK7fbW9yid63JBSFFQuUgPrv6eFkXCYv4UXvFbJRt5pX8MzH17DRNyi_XLyB2bidXbPuANKfOJZS_eyUan2iv8o4q2LDpqNzlm7UpvuTLc74_S9hVCy-shEbLzsOsjGaLkYVhAv2J7KUuqEWPr6N7JA0dVxswXRycDY-yvpeCVktrJxnMpeuoqTYnuBWGmNUjQNeOc49MS-vGuOcabSWQYlgawwUKhuqQhTaIoV4C-txFv07YM67JseNdbZw0llZ8KCLWuC7VqHyYQBf7vhX1j2QOPWzuCoxoCBel_95PYCdJe11B5_xINU-bcOSgiCv0wcUhLIXhPIxQRjA9t0mlv05vCm5wXjPSlQFA_i0HMYTRGmRKvrZLdGQj0vAfe-fYh0fYJPTFYlUh7YN6_P21n9Ex2XuhrBWTA6H8Hz07efxKT73D05-_R4myf0HVnTsqg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6N8TB4QDBAdAwwAh54iNbYjh0jIVQKXcvGXljR3rI4cQbSlpS0E8qf4jdy5yYZEoi3vVXxyVJ957uzffd9AC8LwcM8UiYwaRQFssBzilEyCwpNwUlFGXce7fNITefy00l0sgG_ul4YKqvsfKJ31HmV0R35HteYuRuJSn23-BEQaxS9rnYUGmuzOHDNTzyyLd_OPqB-X3E--Xg8ngYtq0CQCSNXgQylTen5aCi4kVrrKMMBF1nOnQljF6a5tlbnSskiEoXJMKVOTZHGIlYGJQTOewNuSiEM7ah4st_f6QwFGvRQrlFQcXy4Vy9DiTm_JOyGP-Kepwf4y_v7kDa5C3faXJSN1sZzDzZcuQ23R2d1i8fhtmGrJUn_1tyHalxXC7Z2AnQbyHy5AftC9UalOw84S8uczUdfme_q9T2cNc4_uyCcjOYNG7Fxz3rIxhg-GVUxNux7yfzzEdEIubpk-xQtyuYBzK9lZR_CZlmV7hEw62weonFZE1tpjYx5oeJM4G8VFakrBvC6W80ka8HMiVPjPMFDDa18crXyA3jRyy7WEB7_lHpPSuklCHbbf6jqs6TdxQnmPtpo-i-xooO3UQVGd5dJ55TmMh_AbqfSpPUFy-TKcgfwvB_GXUxPM2npqkuSoTybwAN3_j_FM9iaHn8-TA5nRweP4RanZgxf8bYLm6v60j3BFGlln3q7ZHB63RvhN98oIbk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4ancTlAcEAURhgBDzwEDWxHTtGQqjrVlaGqgko2lvIxR5IIylpJ5S_xq_jnFw6JBBve4uSI0uxz9U-_j6A507wIA-V8UwShp50WKcYJTPPaQpOKsy4bdA-5-pwId-dhCdb8Ku_C0Ntlb1PbBx1Xma0Rz7iGjN3I3FRR65rizjen75Z_vCIQYpOWns6jVZFjmz9E8u31evZPq71C86nB58mh17HMOBlwsi1JwOZJnSU5AtupNY6zPCDDVPOrQkiGyS5TlOdKyVdKJzJML1OjEsiESmDEgLHvQLbGqsifwDbewfz4w-bHR5foHr7ssVEFcL4o2oVSKwAJCE5_BEFG7KAv2JBE-Cmt-Bml5mycatKt2HLFjtwY3xadegcdgeudZTpX-s7UE6qcslal0B7g6xpPmAfqfuosGceZ0mRs8X4M2vu-DY3Oiscf_adUDPqV2zMJhsORDbBYMqop7Fm3wrWHCYRqZCtCvaWYkdR34XFpcztPRgUZWHvA0ttmgeoaqmJUpkaGXGnokzgswpdYt0QXvazGWcdtDkxbJzFWOLQzMcXMz-EZxvZZQvo8U-pPVqUjQSBcDcvyuo07mw6xkxIG03_Eikqw41yGOttJq1Vmst8CLv9ksadZ1jFF3o8hKebz2jTdFCTFLY8JxnKuglK8MH_h3gCV9EI4vez-dFDuM7pZkbT_rYLg3V1bh9hvrROH3eKyeDLZdvCbylnJ0s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+Monitoring+Using+Sentinel-2+and+UAV+Multispectral+Imagery%3A+A+Comparison+Case+Study+in+Northeastern+Germany&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Minhui+Li&rft.au=Redmond+R.+Shamshiri&rft.au=Cornelia+Weltzien&rft.au=Michael+Schirrmann&rft.date=2022-09-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=17&rft.spage=4426&rft_id=info:doi/10.3390%2Frs14174426&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_613797918e86402096f847ec4ee6724d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |