DeepShip: An underwater acoustic benchmark dataset and a separable convolution based autoencoder for classification

•Proposed dataset consists of real underwater recordings of 47 h 4 min of 265 ships.•Recordings are from throughout the year with different sea states and noise levels.•Study of 6 T-F features by 8 machine learning and deep learning methods on dataset.•Proposed a separable convolutional autoencoder...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 183; p. 115270
Main Authors Irfan, Muhammad, Jiangbin, Zheng, Ali, Shahid, Iqbal, Muhammad, Masood, Zafar, Hamid, Umar
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 30.11.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2021.115270

Cover

Loading…
Abstract •Proposed dataset consists of real underwater recordings of 47 h 4 min of 265 ships.•Recordings are from throughout the year with different sea states and noise levels.•Study of 6 T-F features by 8 machine learning and deep learning methods on dataset.•Proposed a separable convolutional autoencoder for better classification accuracy. Underwater acoustic classification is a challenging problem because of presence of high background noise and complex sound propagation patterns in the sea environment. Various algorithms proposed in last few years used own privately collected datasets for design and validation. Such data is not publicly available. To conduct research in this field, there is a dire need of publicly available dataset. To bridge this gap, we construct and present an underwater acoustic dataset, named DeepShip, which consists of 47 h and 4 min of real world underwater recordings of 265 different ships belong to four classes. The proposed dataset includes recording from throughout the year with different sea states and noise levels. The presented dataset will not only help to evaluate the performance of existing algorithms but it shall also benefit the research community in future. Using the proposed dataset, we also conducted a comprehensive study of various machine learning and deep learning algorithms on six time–frequency based extracted features. In addition, we propose a novel separable convolution based autoencoder network for better classification accuracy. Experiments results, which are compared based on classification accuracy, precision, recall, f1-score, and analyzed by using paired sampled statistical t-test, show that the proposed network achieves classification accuracy of 77.53% using CQT feature, which is better than as achieved by other methods.
AbstractList Underwater acoustic classification is a challenging problem because of presence of high background noise and complex sound propagation patterns in the sea environment. Various algorithms proposed in last few years used own privately collected datasets for design and validation. Such data is not publicly available. To conduct research in this field, there is a dire need of publicly available dataset. To bridge this gap, we construct and present an underwater acoustic dataset, named DeepShip, which consists of 47 h and 4 min of real world underwater recordings of 265 different ships belong to four classes. The proposed dataset includes recording from throughout the year with different sea states and noise levels. The presented dataset will not only help to evaluate the performance of existing algorithms but it shall also benefit the research community in future. Using the proposed dataset, we also conducted a comprehensive study of various machine learning and deep learning algorithms on six time–frequency based extracted features. In addition, we propose a novel separable convolution based autoencoder network for better classification accuracy. Experiments results, which are compared based on classification accuracy, precision, recall, f1-score, and analyzed by using paired sampled statistical t-test, show that the proposed network achieves classification accuracy of 77.53% using CQT feature, which is better than as achieved by other methods.
•Proposed dataset consists of real underwater recordings of 47 h 4 min of 265 ships.•Recordings are from throughout the year with different sea states and noise levels.•Study of 6 T-F features by 8 machine learning and deep learning methods on dataset.•Proposed a separable convolutional autoencoder for better classification accuracy. Underwater acoustic classification is a challenging problem because of presence of high background noise and complex sound propagation patterns in the sea environment. Various algorithms proposed in last few years used own privately collected datasets for design and validation. Such data is not publicly available. To conduct research in this field, there is a dire need of publicly available dataset. To bridge this gap, we construct and present an underwater acoustic dataset, named DeepShip, which consists of 47 h and 4 min of real world underwater recordings of 265 different ships belong to four classes. The proposed dataset includes recording from throughout the year with different sea states and noise levels. The presented dataset will not only help to evaluate the performance of existing algorithms but it shall also benefit the research community in future. Using the proposed dataset, we also conducted a comprehensive study of various machine learning and deep learning algorithms on six time–frequency based extracted features. In addition, we propose a novel separable convolution based autoencoder network for better classification accuracy. Experiments results, which are compared based on classification accuracy, precision, recall, f1-score, and analyzed by using paired sampled statistical t-test, show that the proposed network achieves classification accuracy of 77.53% using CQT feature, which is better than as achieved by other methods.
ArticleNumber 115270
Author Iqbal, Muhammad
Hamid, Umar
Ali, Shahid
Masood, Zafar
Irfan, Muhammad
Jiangbin, Zheng
Author_xml – sequence: 1
  givenname: Muhammad
  surname: Irfan
  fullname: Irfan, Muhammad
  email: mirfan@mail.nwpu.edu.cn
  organization: School of Software, Northwestern Polytechnical University, Xian, China
– sequence: 2
  givenname: Zheng
  surname: Jiangbin
  fullname: Jiangbin, Zheng
  email: zhengjb@nwpu.edu.cn
  organization: School of Software, Northwestern Polytechnical University, Xian, China
– sequence: 3
  givenname: Shahid
  surname: Ali
  fullname: Ali, Shahid
  organization: CESAT, Islamabad, Pakistan
– sequence: 4
  givenname: Muhammad
  surname: Iqbal
  fullname: Iqbal, Muhammad
  email: miqbal1@hct.ac.ae
  organization: Faculty of Computer and Information Science, Higher Colleges of Technology, Fujairah, United Arab Emirates
– sequence: 5
  givenname: Zafar
  surname: Masood
  fullname: Masood, Zafar
  email: masoodzafar@mail.nwpu.edu.cn
  organization: School of Software, Northwestern Polytechnical University, Xian, China
– sequence: 6
  givenname: Umar
  surname: Hamid
  fullname: Hamid, Umar
  organization: Comsats University, Islamabad, Pakistan
BookMark eNp9kLtOxDAQRS0EEsvjB6gsUWexHWedIBrEW0KiAGpr4ky0XoIdbIcVf4-XpaKgmmLumdE9B2TXeYeEnHA254wvzlZzjGuYCyb4nPNKKLZDZrxWZbFQTblLZqypVCG5kvvkIMYVY1wxpmYkXiOOz0s7ntNLRyfXYVhDwkDB-Ckma2iLzizfIbzRDhJETBRcR4FGHCFAOyA13n36YUrWO9rmRN5OyWfM52u094GaAWK0vTWwCR2RvR6GiMe_85C83t68XN0Xj093D1eXj4UpG5mKEqQUpgYUWIEU7QJFVYJSXJVy0cuaqbbndSNQCSVZ35oKqqbuS26atkOD5SE53d4dg_-YMCa98lNw-aUWlWokl0zynBLblAk-xoC9HoPNfb80Z3ojV6_0Rq7eyNVbuRmq_0DGpp9yKYAd_kcvtijm6p8Wg47GZlnY2YAm6c7b__BvlCWZBA
CitedBy_id crossref_primary_10_1109_LGRS_2022_3201396
crossref_primary_10_1109_ACCESS_2022_3220265
crossref_primary_10_3390_jmse12111952
crossref_primary_10_1016_j_oceaneng_2023_114537
crossref_primary_10_1109_TGRS_2023_3329653
crossref_primary_10_3390_electronics12051206
crossref_primary_10_1016_j_oceaneng_2024_119271
crossref_primary_10_1109_ACCESS_2024_3480788
crossref_primary_10_3390_jmse12020264
crossref_primary_10_1109_JSTARS_2023_3325921
crossref_primary_10_1121_10_0015053
crossref_primary_10_1016_j_oceaneng_2022_112626
crossref_primary_10_1121_10_0019937
crossref_primary_10_1016_j_apacoust_2023_109814
crossref_primary_10_1109_JOE_2024_3369663
crossref_primary_10_1016_j_oceaneng_2023_114926
crossref_primary_10_1016_j_eswa_2024_124498
crossref_primary_10_1016_j_chaos_2023_114436
crossref_primary_10_1121_10_0026598
crossref_primary_10_1007_s00530_024_01614_3
crossref_primary_10_1177_14750902231215410
crossref_primary_10_3390_jmse11020432
crossref_primary_10_1109_ACCESS_2022_3140807
crossref_primary_10_1109_LSENS_2025_3541593
crossref_primary_10_1121_10_0035577
crossref_primary_10_3390_fractalfract8010009
crossref_primary_10_1109_ACCESS_2022_3224752
crossref_primary_10_1121_10_0026481
crossref_primary_10_3390_jmse11081626
crossref_primary_10_1109_TAES_2024_3417435
crossref_primary_10_1016_j_dsp_2024_104504
crossref_primary_10_1016_j_procs_2024_04_106
crossref_primary_10_1109_JSEN_2024_3424500
crossref_primary_10_1016_j_ecoinf_2024_102878
crossref_primary_10_3390_jmse12112063
crossref_primary_10_3390_s24237441
crossref_primary_10_1038_s41598_023_44641_2
crossref_primary_10_1016_j_oceaneng_2024_119137
crossref_primary_10_1016_j_eswa_2022_118929
crossref_primary_10_1109_ACCESS_2024_3409829
crossref_primary_10_1109_TGRS_2024_3520860
crossref_primary_10_1186_s13634_024_01181_9
crossref_primary_10_1016_j_apacoust_2023_109468
crossref_primary_10_1016_j_apacoust_2024_109928
crossref_primary_10_1016_j_engappai_2024_107983
crossref_primary_10_1051_jnwpu_20244261039
crossref_primary_10_1109_TGRS_2024_3515171
crossref_primary_10_1016_j_oceaneng_2024_117252
crossref_primary_10_1109_TGRS_2024_3365711
crossref_primary_10_3390_jmse13010073
crossref_primary_10_3390_jmse13020278
crossref_primary_10_3390_s22062181
crossref_primary_10_1109_LSENS_2023_3326458
crossref_primary_10_1016_j_oceaneng_2023_115784
crossref_primary_10_1109_TGRS_2025_3539476
crossref_primary_10_1016_j_apacoust_2025_110564
crossref_primary_10_1109_ACCESS_2024_3424240
crossref_primary_10_3390_jmse13030599
crossref_primary_10_3390_rs15082068
crossref_primary_10_1016_j_oceaneng_2022_112394
crossref_primary_10_1186_s13634_022_00895_y
crossref_primary_10_1109_TASLP_2024_3358719
crossref_primary_10_1038_s41598_023_47320_4
crossref_primary_10_1049_rsn2_12305
crossref_primary_10_1016_j_eswa_2022_118905
crossref_primary_10_3390_rs16173333
crossref_primary_10_3390_e24111657
crossref_primary_10_1109_JSEN_2024_3464754
crossref_primary_10_1016_j_engappai_2023_106333
crossref_primary_10_3390_electronics12071708
crossref_primary_10_3390_jmse12060885
crossref_primary_10_1121_10_0026438
crossref_primary_10_1007_s00530_023_01218_3
crossref_primary_10_3390_s24051633
crossref_primary_10_3390_jmse12010024
crossref_primary_10_1016_j_dsp_2025_105193
crossref_primary_10_3390_jmse11040782
crossref_primary_10_1109_JSEN_2024_3419434
crossref_primary_10_1016_j_apacoust_2023_109725
crossref_primary_10_1049_rsn2_12418
crossref_primary_10_1016_j_eswa_2024_123431
crossref_primary_10_1016_j_knosys_2022_110119
crossref_primary_10_1016_j_oceaneng_2023_114677
crossref_primary_10_1016_j_oceaneng_2025_120878
crossref_primary_10_1007_s44295_023_00005_0
crossref_primary_10_3390_app14041341
crossref_primary_10_1016_j_oceaneng_2024_120049
crossref_primary_10_1016_j_sigpro_2025_109891
crossref_primary_10_3390_jmse11020384
crossref_primary_10_3390_rs15225386
crossref_primary_10_3389_fmars_2024_1334057
crossref_primary_10_3390_jmse11010069
crossref_primary_10_3390_jmse11050963
crossref_primary_10_1016_j_eswa_2021_115798
crossref_primary_10_1109_TASLP_2024_3402049
crossref_primary_10_3389_fmars_2023_1306229
crossref_primary_10_1016_j_dsp_2024_104652
crossref_primary_10_3390_jmse12040589
crossref_primary_10_1109_ACCESS_2023_3318015
crossref_primary_10_1109_TGRS_2023_3333971
crossref_primary_10_31818_JKNST_2023_09_6_3_221
Cites_doi 10.1016/j.apacoust.2016.06.008
10.14569/IJACSA.2019.0101201
10.1016/j.eswa.2019.01.085
10.1016/j.apacoust.2018.03.026
10.3390/s19051104
10.1121/1.5036628
10.1016/j.oceaneng.2020.107481
10.3390/s20010253
10.1155/2016/7864213
10.1109/JOE.2007.907926
10.5220/0009123808140821
10.3389/fmars.2019.00606
10.1016/j.measurement.2020.108227
10.1007/s00500-021-05738-w
10.1109/ICASSP.2018.8462193
10.1121/1.4790356
10.1109/TNN.2002.1031942
10.1121/1.3436543
10.1121/1.3664100
10.1049/iet-rsn.2011.0142
10.3390/s19163492
10.1016/j.eswa.2019.113067
10.1049/iet-rsn.2010.0157
10.1016/j.apacoust.2013.11.003
10.3390/s20185399
10.1109/JSEN.2018.2886368
10.3390/s18040952
10.1016/j.apacoust.2019.107005
10.1016/j.ins.2020.11.048
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Nov 30, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 30, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.115270
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_115270
S0957417421007016
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c394t-3a442c8ae2e5a42b6e253a7717346f4807bf1892e72740fbc5a598f31c9bdece3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Mon Jul 14 07:21:39 EDT 2025
Tue Jul 01 04:05:53 EDT 2025
Thu Apr 24 22:54:17 EDT 2025
Fri Feb 23 02:41:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Underwater dataset
Ship classification
Deep convolutional network
Underwater acoustics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-3a442c8ae2e5a42b6e253a7717346f4807bf1892e72740fbc5a598f31c9bdece3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2579414041
PQPubID 2045477
ParticipantIDs proquest_journals_2579414041
crossref_primary_10_1016_j_eswa_2021_115270
crossref_citationtrail_10_1016_j_eswa_2021_115270
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115270
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-30
PublicationDateYYYYMMDD 2021-11-30
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-30
  day: 30
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Wu, Li, Wang (b0175) 2018; 138
Ocean Networks Canada Society. (2017b). Fraser river delta lower slope hydrophone deployed 2017–06-24. Ocean Networks Canada Society. Retrieved from https:// data.oceannetworks.ca/DatasetLandingPage?doidataset=10.34943/ b521061b-43e8-49d7-8831-e34d4612521d doi: 10.34943/B521061B-43E8-49D7-8831-E34D4612521D.
Yin, Sun, Liu, Wang, Tang (b0200) 2020
Xie, Zhu (b0180) 2019; 126
Wang, S., & Zeng, X. (2014). Robust underwater noise targets classification using auditory inspired time–frequency analysis. Applied Acoustics, 78, 68–76. Retrieved from http://www.sciencedirect.com/science/article/pii/S0003682X13002624 doi: https://doi.org/ 10.1016/j.apacoust.2013.11.003.
Shen, Yang, Yao, Li, Xu, Sheng (b0145) 2020; 20
Zhang, T., Liang, J., & Ding, B. (2020). Acoustic scene classification using deep cnn with fine-resolution feature. Expert Systems with Applications, 143, 113067. Retrieved from http://www.sciencedirect.com/science/article/pii/S0957417419307845 doi: https://doi.org/ 10.1016/j.eswa.2019.113067.
Cao, X., Togneri, R., Zhang, X., & Yu, Y. (2019, 4 15). Convolutional neural network with second-order pooling for underwater target classification. IEEE Sensors Journal, 19(8), 3058–3066. doi: 10.1109/JSEN.2018.2886368.
Khishe, Mosavi (b0090) 2020; 157
Choi, J., Choo, Y., & Lee, K. (2019, Aug). Acoustic classification of surface and underwater vessels in the ocean using supervised machine learning. Sensors, 19(16), 3492. Retrieved from https://doi.org/ 10.3390/s19163492 doi: 10.3390/s19163492.
Karakos, D., Silovský, J., Schwartz, R., Hartmann, W., & Makhoul, J. (2018, 04). Individual ship detection using underwater acoustics. In (p. 2121-2125). doi: 10.1109/ICASSP.2018.8462193.
Erbe, C., Marley, S.A., Schoeman, R.P., Smith, J.N., Trigg, L.E., & Embling, C.B. (2019). The effects of ship noise on marine mammals–a review. Frontiers in Marine Science, 6, 606. Retrieved from https://www.frontiersin.org/article/10.3389/fmars.2019.00606 doi: 10.3389/fmars.2019.00606.
Xu, Lin, Sun, Jin (b0185) 2012
Strain., N.,& Olszewska., J. (2020). Naive bayesian network for automated, fashion personal stylist. In Proceedings of the 12th international conference on agents and artificial intelligence - volume 2: Icaart, (p. 814–821). SciTePress. doi: 10.5220/0009123808140821.
Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In 3rd international conference on learning representations, ICLR 2015, san diego, ca, usa, may 7–9, 2015, conference track proceedings. Retrieved from http:// arxiv.org/abs/1409.1556.
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Rabinovich (b0160) 2015
Pezeshki, A., Azimi-Sadjadi, M.R.,& Scharf, L.L. (2007). Undersea target classification using canonical correlation analysis. IEEE Journal of Oceanic Engineering, 32(4), 948-955.
Roth, Schmidt, Hildebrand, Wiggins (b0135) 2013; 133
He, Zhang, Ren, Sun (b0055) 2016
Schörkhuber, C. (2010). Constant-q transform toolbox for music processing.
Azimi-Sadjadi, Yao, Jamshidi, Dobeck (b0005) 2002; 13
Chollet (b0030) 2017
Jiang, J., Shi, T., Huang, M., & Xiao, Z. (2020). Multi-scale spectral feature extraction for underwater acoustic target recognition. Measurement, 166, 108227. Retrieved from http://www.sciencedirect.com/science/article/pii/S0263224120307661 doi: https://doi.org/ 10.1016/j.measurement.2020.108227.
Bao, Li, Wang, Wang, Du (b0010) 2010; 128
Ocean Networks Canada Society. (2017c). Fraser river delta lower slope hydrophone deployed 2017–11-04. Ocean Networks Canada Society. Retrieved from https:// data.oceannetworks.ca/DatasetLandingPage?doidataset=10.21383/ 650d90fa-ce87-473c-b932-278519062ab5 doi: 10.21383/650D90FA-CE87-473C-B932-278519062AB5.
McKenna, Ross, Wiggins, Hildebrand (b0105) 2012; 131
Yue, Zhang, Wang, Wang, Lu (b0205) 2017
Irfan, M., Jiangbin, Z., Iqbal, M., & Arif, M.H. (2021b). A novel lifelong learning model based on cross domain knowledge extraction and transfer to classify underwater images. Information Sciences, 552, 80–101. Retrieved from http://www.sciencedirect.com/science/ article/pii/S0020025520311464 doi: 10.1016/j.ins.2020.11.048.
Das, Kumar, Bahl (b0035) 2013; 7
Luo, Feng (b0095) 2020; 20
Ocean Networks Canada Society. (2017a). Fraser river delta lower slope hydrophone deployed 2016–05-02. Ocean Networks Canada Society. Retrieved from https:// data.oceannetworks.ca/DatasetLandingPage?doidataset=10.34943/ 5418bf93-45be-43d4-ab40-f76fef4d9a15 doi: 10.34943/5418BF93-45BE-43D4-AB40-F76FEF4D9A15.
Honghui Yang, X.Y.M.S.C.W., Sheng Shen. (2018, Mar). Competitive deep-belief networks for underwater acoustic target recognition. Sensors, 18(4), 952. Retrieved from https://doi.org/ 10.3390/s18040952 doi: 10.3390/s18040952.
van der Maaten, Hinton (b0165) 2008; 9
Domínguez, Guijarro, López, Giménez (b0040) 2016; 113
Irfan, M., Jiangbin, Z., Iqbal, M., & Arif, M.H. (2021a, 03). Enhancing learning classifier systems through convolutional autoencoder to classify underwater images. Soft Computing. Retrieved from https://doi.org/10.1007/s00500-021-05738-w doi: 10.1007/ s00500-021-05738-w.
Carbonera, J.L., & Olszewska, J.I. (2019). Local-set based-on instance selection approach for autonomous object modelling. International Journal of Advanced Computer Science and Applications, 10(12). Retrieved from https://doi.org/10.14569/IJACSA.2019.0101201 doi: 10.14569/IJACSA.2019.0101201.
Miglianti, L., Cipollini, F., Oneto, L., Tani, G., Gaggero, S., Coraddu, A., & Viviani, M. (2020). Predicting the cavitating marine propeller noise at design stage: A deep learning based approach. Ocean Engineering, 209, 107481. Retrieved from http://www.sciencedirect.com/science/article/pii/S0029801820304960 doi: https://doi.org/ 10.1016/j.oceaneng.2020.107481.
Filho, Seixas, Moura (b0050) 2011; 5
Yang, H., Junhao, L., Sheng, S., & Xu, G. (2019, 03). A deep convolutional neural network inspired by auditory perception for underwater acoustic target recognition. Sensors, 19, 1104. doi: 10.3390/s19051104.
Irfan, Zheng, Iqbal, Arif (b0075) 2020
Zhang, L., Wu, D., Han, X., & Zhu, Z. (2016). Feature extraction of underwater target signal using mel frequency cepstrum coefficients based on acoustic vector sensor. Journal of Sensors, 2016, 1–11. Retrieved from https://doi.org/10.1155%2F2016%2F7864213 doi: 10.1155/2016/7864213.
Hovem (b0060) 2010
Zheng, Gong, Zhang (b0220) 2021; 1756
Malfante, M., Mars, J.I., Dalla Mura, M.,& Gervaise, C. (2018). Automatic fish sounds classification. The Journal of the Acoustical Society of America, 143(5), 2834-2846. Retrieved from https://doi.org/ 10.1121/1.5036628 doi: 10.1121/1.5036628.
Hovem (10.1016/j.eswa.2021.115270_b0060) 2010
Xu (10.1016/j.eswa.2021.115270_b0185) 2012
Wu (10.1016/j.eswa.2021.115270_b0175) 2018; 138
Azimi-Sadjadi (10.1016/j.eswa.2021.115270_b0005) 2002; 13
10.1016/j.eswa.2021.115270_b0170
Domínguez (10.1016/j.eswa.2021.115270_b0040) 2016; 113
10.1016/j.eswa.2021.115270_b0070
10.1016/j.eswa.2021.115270_b0190
10.1016/j.eswa.2021.115270_b0130
Yue (10.1016/j.eswa.2021.115270_b0205) 2017
Bao (10.1016/j.eswa.2021.115270_b0010) 2010; 128
10.1016/j.eswa.2021.115270_b0195
10.1016/j.eswa.2021.115270_b0150
Luo (10.1016/j.eswa.2021.115270_b0095) 2020; 20
Szegedy (10.1016/j.eswa.2021.115270_b0160) 2015
Khishe (10.1016/j.eswa.2021.115270_b0090) 2020; 157
Xie (10.1016/j.eswa.2021.115270_b0180) 2019; 126
Yin (10.1016/j.eswa.2021.115270_b0200) 2020
10.1016/j.eswa.2021.115270_b0155
10.1016/j.eswa.2021.115270_b0210
Irfan (10.1016/j.eswa.2021.115270_b0075) 2020
10.1016/j.eswa.2021.115270_b0110
10.1016/j.eswa.2021.115270_b0215
Das (10.1016/j.eswa.2021.115270_b0035) 2013; 7
10.1016/j.eswa.2021.115270_b0115
10.1016/j.eswa.2021.115270_b0015
van der Maaten (10.1016/j.eswa.2021.115270_b0165) 2008; 9
Zheng (10.1016/j.eswa.2021.115270_b0220) 2021; 1756
McKenna (10.1016/j.eswa.2021.115270_b0105) 2012; 131
Filho (10.1016/j.eswa.2021.115270_b0050) 2011; 5
10.1016/j.eswa.2021.115270_b0080
10.1016/j.eswa.2021.115270_b0065
10.1016/j.eswa.2021.115270_b0120
10.1016/j.eswa.2021.115270_b0020
10.1016/j.eswa.2021.115270_b0085
10.1016/j.eswa.2021.115270_b0140
Shen (10.1016/j.eswa.2021.115270_b0145) 2020; 20
10.1016/j.eswa.2021.115270_b0025
10.1016/j.eswa.2021.115270_b0045
10.1016/j.eswa.2021.115270_b0100
He (10.1016/j.eswa.2021.115270_b0055) 2016
Chollet (10.1016/j.eswa.2021.115270_b0030) 2017
10.1016/j.eswa.2021.115270_b0125
Roth (10.1016/j.eswa.2021.115270_b0135) 2013; 133
References_xml – reference: Cao, X., Togneri, R., Zhang, X., & Yu, Y. (2019, 4 15). Convolutional neural network with second-order pooling for underwater target classification. IEEE Sensors Journal, 19(8), 3058–3066. doi: 10.1109/JSEN.2018.2886368.
– reference: Strain., N.,& Olszewska., J. (2020). Naive bayesian network for automated, fashion personal stylist. In Proceedings of the 12th international conference on agents and artificial intelligence - volume 2: Icaart, (p. 814–821). SciTePress. doi: 10.5220/0009123808140821.
– reference: Choi, J., Choo, Y., & Lee, K. (2019, Aug). Acoustic classification of surface and underwater vessels in the ocean using supervised machine learning. Sensors, 19(16), 3492. Retrieved from https://doi.org/ 10.3390/s19163492 doi: 10.3390/s19163492.
– year: 2010
  ident: b0060
  article-title: Marine acoustics: the physics of sound in underwater environments
– volume: 131
  start-page: 92
  year: 2012
  end-page: 103
  ident: b0105
  article-title: Underwater radiated noise from modern commercial ships
  publication-title: The Journal of the Acoustical Society of America
– reference: Malfante, M., Mars, J.I., Dalla Mura, M.,& Gervaise, C. (2018). Automatic fish sounds classification. The Journal of the Acoustical Society of America, 143(5), 2834-2846. Retrieved from https://doi.org/ 10.1121/1.5036628 doi: 10.1121/1.5036628.
– volume: 20
  start-page: 253
  year: 2020
  ident: b0145
  article-title: Ship type classification by convolutional neural networks with auditory-like mechanisms
  publication-title: Sensors
– reference: Irfan, M., Jiangbin, Z., Iqbal, M., & Arif, M.H. (2021a, 03). Enhancing learning classifier systems through convolutional autoencoder to classify underwater images. Soft Computing. Retrieved from https://doi.org/10.1007/s00500-021-05738-w doi: 10.1007/ s00500-021-05738-w.
– volume: 128
  start-page: 206
  year: 2010
  end-page: 214
  ident: b0010
  article-title: Ship classification using nonlinear features of radiated sound: An approach based on empirical mode decomposition
  publication-title: The Journal of the Acoustical Society of America
– volume: 1756
  year: 2021
  ident: b0220
  article-title: Time-frequency featurebased underwater target detection with deep neural network in shallow sea
  publication-title: Journal of Physics: Conference Series
– reference: Karakos, D., Silovský, J., Schwartz, R., Hartmann, W., & Makhoul, J. (2018, 04). Individual ship detection using underwater acoustics. In (p. 2121-2125). doi: 10.1109/ICASSP.2018.8462193.
– start-page: 59
  year: 2020
  end-page: 63
  ident: b0200
  article-title: Underwater acoustic target classification based on lofar spectrum and convolutional neural network
  publication-title: Proceedings of the 2nd international conference on artificial intelligence and advanced manufacture
– reference: Ocean Networks Canada Society. (2017a). Fraser river delta lower slope hydrophone deployed 2016–05-02. Ocean Networks Canada Society. Retrieved from https:// data.oceannetworks.ca/DatasetLandingPage?doidataset=10.34943/ 5418bf93-45be-43d4-ab40-f76fef4d9a15 doi: 10.34943/5418BF93-45BE-43D4-AB40-F76FEF4D9A15.
– reference: Schörkhuber, C. (2010). Constant-q transform toolbox for music processing.
– start-page: 229
  year: 2012
  end-page: 232
  ident: b0185
  article-title: A new algorithm for auditory feature extraction
  publication-title: 2012 international conference on communication systems and network technologies
– start-page: 526
  year: 2017
  end-page: 529
  ident: b0205
  article-title: The classification of underwater acoustic targets based on deep learning methods
  publication-title: Proceedings of the 2nd international conference on control, automation and artificial intelligence (caai 2017)
– volume: 157
  year: 2020
  ident: b0090
  article-title: Classification of underwater acoustical dataset using neural network trained by chimp optimization algorithm
  publication-title: Applied Acoustics
– volume: 133
  start-page: 1971
  year: 2013
  end-page: 1980
  ident: b0135
  article-title: Underwater radiated noise levels of a research icebreaker in the central arctic ocean
  publication-title: The Journal of the Acoustical Society of America
– reference: Irfan, M., Jiangbin, Z., Iqbal, M., & Arif, M.H. (2021b). A novel lifelong learning model based on cross domain knowledge extraction and transfer to classify underwater images. Information Sciences, 552, 80–101. Retrieved from http://www.sciencedirect.com/science/ article/pii/S0020025520311464 doi: 10.1016/j.ins.2020.11.048.
– reference: Jiang, J., Shi, T., Huang, M., & Xiao, Z. (2020). Multi-scale spectral feature extraction for underwater acoustic target recognition. Measurement, 166, 108227. Retrieved from http://www.sciencedirect.com/science/article/pii/S0263224120307661 doi: https://doi.org/ 10.1016/j.measurement.2020.108227.
– reference: Ocean Networks Canada Society. (2017b). Fraser river delta lower slope hydrophone deployed 2017–06-24. Ocean Networks Canada Society. Retrieved from https:// data.oceannetworks.ca/DatasetLandingPage?doidataset=10.34943/ b521061b-43e8-49d7-8831-e34d4612521d doi: 10.34943/B521061B-43E8-49D7-8831-E34D4612521D.
– reference: Miglianti, L., Cipollini, F., Oneto, L., Tani, G., Gaggero, S., Coraddu, A., & Viviani, M. (2020). Predicting the cavitating marine propeller noise at design stage: A deep learning based approach. Ocean Engineering, 209, 107481. Retrieved from http://www.sciencedirect.com/science/article/pii/S0029801820304960 doi: https://doi.org/ 10.1016/j.oceaneng.2020.107481.
– volume: 5
  start-page: 605
  year: 2011
  end-page: 612
  ident: b0050
  article-title: Preprocessing passive sonar signals for neural classification
  publication-title: IET Radar, Sonar Navigation
– start-page: 78
  year: 2020
  end-page: 91
  ident: b0075
  article-title: A novel feature extraction model to enhance underwater image classification
  publication-title: Intelligent computing systems
– volume: 20
  year: 2020
  ident: b0095
  article-title: An underwater acoustic target recognition method based on restricted boltzmann machine
  publication-title: Sensors
– volume: 13
  start-page: 1099
  year: 2002
  end-page: 1111
  ident: b0005
  article-title: Underwater target classification in changing environments using an adaptive feature mapping
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– reference: Pezeshki, A., Azimi-Sadjadi, M.R.,& Scharf, L.L. (2007). Undersea target classification using canonical correlation analysis. IEEE Journal of Oceanic Engineering, 32(4), 948-955.
– volume: 138
  start-page: 52
  year: 2018
  end-page: 59
  ident: b0175
  article-title: Extraction and classification of acoustic scattering from underwater target based on wigner-ville distribution
  publication-title: Applied Acoustics
– reference: Ocean Networks Canada Society. (2017c). Fraser river delta lower slope hydrophone deployed 2017–11-04. Ocean Networks Canada Society. Retrieved from https:// data.oceannetworks.ca/DatasetLandingPage?doidataset=10.21383/ 650d90fa-ce87-473c-b932-278519062ab5 doi: 10.21383/650D90FA-CE87-473C-B932-278519062AB5.
– reference: Honghui Yang, X.Y.M.S.C.W., Sheng Shen. (2018, Mar). Competitive deep-belief networks for underwater acoustic target recognition. Sensors, 18(4), 952. Retrieved from https://doi.org/ 10.3390/s18040952 doi: 10.3390/s18040952.
– reference: Zhang, L., Wu, D., Han, X., & Zhu, Z. (2016). Feature extraction of underwater target signal using mel frequency cepstrum coefficients based on acoustic vector sensor. Journal of Sensors, 2016, 1–11. Retrieved from https://doi.org/10.1155%2F2016%2F7864213 doi: 10.1155/2016/7864213.
– reference: Zhang, T., Liang, J., & Ding, B. (2020). Acoustic scene classification using deep cnn with fine-resolution feature. Expert Systems with Applications, 143, 113067. Retrieved from http://www.sciencedirect.com/science/article/pii/S0957417419307845 doi: https://doi.org/ 10.1016/j.eswa.2019.113067.
– volume: 113
  start-page: 64
  year: 2016
  end-page: 69
  ident: b0040
  article-title: Shipsear: An underwater vessel noise database
  publication-title: Applied Acoustics
– reference: Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In 3rd international conference on learning representations, ICLR 2015, san diego, ca, usa, may 7–9, 2015, conference track proceedings. Retrieved from http:// arxiv.org/abs/1409.1556.
– reference: Yang, H., Junhao, L., Sheng, S., & Xu, G. (2019, 03). A deep convolutional neural network inspired by auditory perception for underwater acoustic target recognition. Sensors, 19, 1104. doi: 10.3390/s19051104.
– start-page: 770
  year: 2016
  end-page: 778
  ident: b0055
  article-title: Deep residual learning for image recognition
  publication-title: 2016 ieee conference on computer vision and pattern recognition (cvpr)
– reference: Wang, S., & Zeng, X. (2014). Robust underwater noise targets classification using auditory inspired time–frequency analysis. Applied Acoustics, 78, 68–76. Retrieved from http://www.sciencedirect.com/science/article/pii/S0003682X13002624 doi: https://doi.org/ 10.1016/j.apacoust.2013.11.003.
– reference: Erbe, C., Marley, S.A., Schoeman, R.P., Smith, J.N., Trigg, L.E., & Embling, C.B. (2019). The effects of ship noise on marine mammals–a review. Frontiers in Marine Science, 6, 606. Retrieved from https://www.frontiersin.org/article/10.3389/fmars.2019.00606 doi: 10.3389/fmars.2019.00606.
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b0165
  article-title: Visualizing high-dimensional data using t-sne
  publication-title: Journal of Machine Learning Research
– volume: 126
  start-page: 20
  year: 2019
  end-page: 29
  ident: b0180
  article-title: Investigation of acoustic and visual features for acoustic scene classification
  publication-title: Expert Systems With Applications
– start-page: 1
  year: 2015
  end-page: 9
  ident: b0160
  article-title: Going deeper with convolutions
  publication-title: 2015 ieee conference on computer vision and pattern recognition (cvpr)
– volume: 7
  start-page: 87
  year: 2013
  end-page: 93
  ident: b0035
  article-title: Marine vessel classification based on passive sonar data: the cepstrum-based approach
  publication-title: IET Radar, Sonar Navigation
– reference: Carbonera, J.L., & Olszewska, J.I. (2019). Local-set based-on instance selection approach for autonomous object modelling. International Journal of Advanced Computer Science and Applications, 10(12). Retrieved from https://doi.org/10.14569/IJACSA.2019.0101201 doi: 10.14569/IJACSA.2019.0101201.
– start-page: 1800
  year: 2017
  end-page: 1807
  ident: b0030
  article-title: Xception: Deep learning with depthwise separable convolutions
  publication-title: 2017 ieee conference on computer vision and pattern recognition (cvpr)
– volume: 113
  start-page: 64
  year: 2016
  ident: 10.1016/j.eswa.2021.115270_b0040
  article-title: Shipsear: An underwater vessel noise database
  publication-title: Applied Acoustics
  doi: 10.1016/j.apacoust.2016.06.008
– ident: 10.1016/j.eswa.2021.115270_b0020
  doi: 10.14569/IJACSA.2019.0101201
– volume: 126
  start-page: 20
  year: 2019
  ident: 10.1016/j.eswa.2021.115270_b0180
  article-title: Investigation of acoustic and visual features for acoustic scene classification
  publication-title: Expert Systems With Applications
  doi: 10.1016/j.eswa.2019.01.085
– start-page: 229
  year: 2012
  ident: 10.1016/j.eswa.2021.115270_b0185
  article-title: A new algorithm for auditory feature extraction
– volume: 138
  start-page: 52
  year: 2018
  ident: 10.1016/j.eswa.2021.115270_b0175
  article-title: Extraction and classification of acoustic scattering from underwater target based on wigner-ville distribution
  publication-title: Applied Acoustics
  doi: 10.1016/j.apacoust.2018.03.026
– ident: 10.1016/j.eswa.2021.115270_b0195
  doi: 10.3390/s19051104
– ident: 10.1016/j.eswa.2021.115270_b0100
  doi: 10.1121/1.5036628
– ident: 10.1016/j.eswa.2021.115270_b0110
  doi: 10.1016/j.oceaneng.2020.107481
– ident: 10.1016/j.eswa.2021.115270_b0125
– volume: 20
  start-page: 253
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2021.115270_b0145
  article-title: Ship type classification by convolutional neural networks with auditory-like mechanisms
  publication-title: Sensors
  doi: 10.3390/s20010253
– ident: 10.1016/j.eswa.2021.115270_b0150
– start-page: 78
  year: 2020
  ident: 10.1016/j.eswa.2021.115270_b0075
  article-title: A novel feature extraction model to enhance underwater image classification
– ident: 10.1016/j.eswa.2021.115270_b0210
  doi: 10.1155/2016/7864213
– ident: 10.1016/j.eswa.2021.115270_b0130
  doi: 10.1109/JOE.2007.907926
– ident: 10.1016/j.eswa.2021.115270_b0155
  doi: 10.5220/0009123808140821
– ident: 10.1016/j.eswa.2021.115270_b0140
– ident: 10.1016/j.eswa.2021.115270_b0045
  doi: 10.3389/fmars.2019.00606
– ident: 10.1016/j.eswa.2021.115270_b0080
  doi: 10.1016/j.measurement.2020.108227
– ident: 10.1016/j.eswa.2021.115270_b0070
  doi: 10.1007/s00500-021-05738-w
– ident: 10.1016/j.eswa.2021.115270_b0085
  doi: 10.1109/ICASSP.2018.8462193
– volume: 133
  start-page: 1971
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2021.115270_b0135
  article-title: Underwater radiated noise levels of a research icebreaker in the central arctic ocean
  publication-title: The Journal of the Acoustical Society of America
  doi: 10.1121/1.4790356
– volume: 13
  start-page: 1099
  issue: 5
  year: 2002
  ident: 10.1016/j.eswa.2021.115270_b0005
  article-title: Underwater target classification in changing environments using an adaptive feature mapping
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNN.2002.1031942
– start-page: 59
  year: 2020
  ident: 10.1016/j.eswa.2021.115270_b0200
  article-title: Underwater acoustic target classification based on lofar spectrum and convolutional neural network
– volume: 128
  start-page: 206
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2021.115270_b0010
  article-title: Ship classification using nonlinear features of radiated sound: An approach based on empirical mode decomposition
  publication-title: The Journal of the Acoustical Society of America
  doi: 10.1121/1.3436543
– volume: 131
  start-page: 92
  year: 2012
  ident: 10.1016/j.eswa.2021.115270_b0105
  article-title: Underwater radiated noise from modern commercial ships
  publication-title: The Journal of the Acoustical Society of America
  doi: 10.1121/1.3664100
– volume: 7
  start-page: 87
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2021.115270_b0035
  article-title: Marine vessel classification based on passive sonar data: the cepstrum-based approach
  publication-title: IET Radar, Sonar Navigation
  doi: 10.1049/iet-rsn.2011.0142
– ident: 10.1016/j.eswa.2021.115270_b0025
  doi: 10.3390/s19163492
– ident: 10.1016/j.eswa.2021.115270_b0115
– year: 2010
  ident: 10.1016/j.eswa.2021.115270_b0060
– start-page: 1800
  year: 2017
  ident: 10.1016/j.eswa.2021.115270_b0030
  article-title: Xception: Deep learning with depthwise separable convolutions
– ident: 10.1016/j.eswa.2021.115270_b0215
  doi: 10.1016/j.eswa.2019.113067
– volume: 5
  start-page: 605
  issue: 6
  year: 2011
  ident: 10.1016/j.eswa.2021.115270_b0050
  article-title: Preprocessing passive sonar signals for neural classification
  publication-title: IET Radar, Sonar Navigation
  doi: 10.1049/iet-rsn.2010.0157
– ident: 10.1016/j.eswa.2021.115270_b0170
  doi: 10.1016/j.apacoust.2013.11.003
– volume: 20
  issue: 18
  year: 2020
  ident: 10.1016/j.eswa.2021.115270_b0095
  article-title: An underwater acoustic target recognition method based on restricted boltzmann machine
  publication-title: Sensors
  doi: 10.3390/s20185399
– start-page: 526
  year: 2017
  ident: 10.1016/j.eswa.2021.115270_b0205
  article-title: The classification of underwater acoustic targets based on deep learning methods
– ident: 10.1016/j.eswa.2021.115270_b0015
  doi: 10.1109/JSEN.2018.2886368
– ident: 10.1016/j.eswa.2021.115270_b0190
  doi: 10.3390/s18040952
– volume: 1756
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2021.115270_b0220
  article-title: Time-frequency featurebased underwater target detection with deep neural network in shallow sea
  publication-title: Journal of Physics: Conference Series
– volume: 157
  year: 2020
  ident: 10.1016/j.eswa.2021.115270_b0090
  article-title: Classification of underwater acoustical dataset using neural network trained by chimp optimization algorithm
  publication-title: Applied Acoustics
  doi: 10.1016/j.apacoust.2019.107005
– ident: 10.1016/j.eswa.2021.115270_b0065
  doi: 10.1016/j.ins.2020.11.048
– start-page: 770
  year: 2016
  ident: 10.1016/j.eswa.2021.115270_b0055
  article-title: Deep residual learning for image recognition
– ident: 10.1016/j.eswa.2021.115270_b0120
– start-page: 1
  year: 2015
  ident: 10.1016/j.eswa.2021.115270_b0160
  article-title: Going deeper with convolutions
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.eswa.2021.115270_b0165
  article-title: Visualizing high-dimensional data using t-sne
  publication-title: Journal of Machine Learning Research
SSID ssj0017007
Score 2.6594803
Snippet •Proposed dataset consists of real underwater recordings of 47 h 4 min of 265 ships.•Recordings are from throughout the year with different sea states and...
Underwater acoustic classification is a challenging problem because of presence of high background noise and complex sound propagation patterns in the sea...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115270
SubjectTerms Accuracy
Acoustics
Algorithms
Background noise
Classification
Convolution
Datasets
Deep convolutional network
Deep learning
Feature extraction
Machine learning
Noise levels
Noise propagation
Sea states
Ship classification
Sound propagation
Underwater acoustics
Underwater construction
Underwater dataset
Title DeepShip: An underwater acoustic benchmark dataset and a separable convolution based autoencoder for classification
URI https://dx.doi.org/10.1016/j.eswa.2021.115270
https://www.proquest.com/docview/2579414041
Volume 183
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWVh4Ix6l8sCGQknsvNiqAiogWACJzbLdiyiUEDVB3fjt3CUOEgh1YExiW5E_--6zfPcdY0fIaBFZyDytTeTJzCSeFj4eXFPrRxYdXpZQvvPtXTR6lNdP4dMSG7a5MBRW6Wx_Y9Nra-3e9N1s9ovJpH-P5ADdIR7t6KIfmQtlsMuYwvpOPr_DPEh-Lm709mKPWrvEmSbGC8o5aQ8FPlqOMKCCxX87p19muvY9l-ts1ZFGPmj-a4MtQb7J1tqCDNztzy1WngMU98-T4owPck7pYbO5phZo9uqqXdxgw-c3PXvlFBpaQsV1Puaal0Aa4GYKnMLQ3XLk5OLw60f1TnKXOBpHisstEW6KMKpB3WaPlxcPw5Hnqip4VqSy8oSWMrCJhgBCLQMTQRAKHdNtPCJDGeYm85M0AGQ28jQzNtRhmmTCt6kZgwWxwzr5ew67jCNVCLWvT8dRJqQ1cSKE1MhvgERogjTbY347nco6yXGqfDFVbWzZiyIIFEGgGgj22PF3n6IR3FjYOmxRUj-WjUKPsLBft4VUuU1bKrReqSS5IX__n8MesBV6aqQhu6xTzT7gEElLZXr1quyx5cHVzejuC5t07Ag
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOcCFHbHjAzcUtYmdNOFWsahsvQASN8t2J6IsoWqC-H1mGgcJhDhwjRdFfvbMszzzBuCQGC0hi3lgjE0Clds0MDKki2vmwsSRw8tTzne-GST9e3X5ED_MwEmTC8Nhld721zZ9aq39l7ZfzfZ4NGrfEjkgd0hXO37oJ-YyC3OsTqVaMNe7uOoPvh4Tup06a5r6BzzA587UYV5YfrD8UBSS8Ygjrln8u3_6Yamn7ud8GRY9bxS9-tdWYAaLVVhqajIIf0TXoDxFHN8-jsbHolcIzhCbfBjuQZZvWrhLWOr4-Gomz4KjQ0ushCmGwogSWQbcvqDgSHS_IwV7OWp9r95Y8ZJmE8RyhWPOzUFGU1zX4f787O6kH_jCCoGTmaoCaZSKXGowwtioyCYYxdJ0-UGewOEkc5uHaRYhkRvVya2LTZyluQxdZofoUG5Aq3grcBMEsYXYhKYzTHKpnO2mUipDFAdZhybK8i0Im-XUzquOc_GLF92Elz1phkAzBLqGYAuOvsaMa82NP3vHDUr6287R5BT-HLfbQKr9uS01GbBMseJQuP3PaQ9gvn93c62vLwZXO7DALbVS5C60qsk77hGHqey-36OftdTuuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepShip%3A+An+underwater+acoustic+benchmark+dataset+and+a+separable+convolution+based+autoencoder+for+classification&rft.jtitle=Expert+systems+with+applications&rft.au=Irfan%2C+Muhammad&rft.au=Jiangbin%2C+Zheng&rft.au=Ali%2C+Shahid&rft.au=Iqbal%2C+Muhammad&rft.date=2021-11-30&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=183&rft_id=info:doi/10.1016%2Fj.eswa.2021.115270&rft.externalDocID=S0957417421007016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon