DeepShip: An underwater acoustic benchmark dataset and a separable convolution based autoencoder for classification
•Proposed dataset consists of real underwater recordings of 47 h 4 min of 265 ships.•Recordings are from throughout the year with different sea states and noise levels.•Study of 6 T-F features by 8 machine learning and deep learning methods on dataset.•Proposed a separable convolutional autoencoder...
Saved in:
Published in | Expert systems with applications Vol. 183; p. 115270 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
30.11.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0957-4174 1873-6793 |
DOI | 10.1016/j.eswa.2021.115270 |
Cover
Loading…
Abstract | •Proposed dataset consists of real underwater recordings of 47 h 4 min of 265 ships.•Recordings are from throughout the year with different sea states and noise levels.•Study of 6 T-F features by 8 machine learning and deep learning methods on dataset.•Proposed a separable convolutional autoencoder for better classification accuracy.
Underwater acoustic classification is a challenging problem because of presence of high background noise and complex sound propagation patterns in the sea environment. Various algorithms proposed in last few years used own privately collected datasets for design and validation. Such data is not publicly available. To conduct research in this field, there is a dire need of publicly available dataset. To bridge this gap, we construct and present an underwater acoustic dataset, named DeepShip, which consists of 47 h and 4 min of real world underwater recordings of 265 different ships belong to four classes. The proposed dataset includes recording from throughout the year with different sea states and noise levels. The presented dataset will not only help to evaluate the performance of existing algorithms but it shall also benefit the research community in future. Using the proposed dataset, we also conducted a comprehensive study of various machine learning and deep learning algorithms on six time–frequency based extracted features. In addition, we propose a novel separable convolution based autoencoder network for better classification accuracy. Experiments results, which are compared based on classification accuracy, precision, recall, f1-score, and analyzed by using paired sampled statistical t-test, show that the proposed network achieves classification accuracy of 77.53% using CQT feature, which is better than as achieved by other methods. |
---|---|
AbstractList | Underwater acoustic classification is a challenging problem because of presence of high background noise and complex sound propagation patterns in the sea environment. Various algorithms proposed in last few years used own privately collected datasets for design and validation. Such data is not publicly available. To conduct research in this field, there is a dire need of publicly available dataset. To bridge this gap, we construct and present an underwater acoustic dataset, named DeepShip, which consists of 47 h and 4 min of real world underwater recordings of 265 different ships belong to four classes. The proposed dataset includes recording from throughout the year with different sea states and noise levels. The presented dataset will not only help to evaluate the performance of existing algorithms but it shall also benefit the research community in future. Using the proposed dataset, we also conducted a comprehensive study of various machine learning and deep learning algorithms on six time–frequency based extracted features. In addition, we propose a novel separable convolution based autoencoder network for better classification accuracy. Experiments results, which are compared based on classification accuracy, precision, recall, f1-score, and analyzed by using paired sampled statistical t-test, show that the proposed network achieves classification accuracy of 77.53% using CQT feature, which is better than as achieved by other methods. •Proposed dataset consists of real underwater recordings of 47 h 4 min of 265 ships.•Recordings are from throughout the year with different sea states and noise levels.•Study of 6 T-F features by 8 machine learning and deep learning methods on dataset.•Proposed a separable convolutional autoencoder for better classification accuracy. Underwater acoustic classification is a challenging problem because of presence of high background noise and complex sound propagation patterns in the sea environment. Various algorithms proposed in last few years used own privately collected datasets for design and validation. Such data is not publicly available. To conduct research in this field, there is a dire need of publicly available dataset. To bridge this gap, we construct and present an underwater acoustic dataset, named DeepShip, which consists of 47 h and 4 min of real world underwater recordings of 265 different ships belong to four classes. The proposed dataset includes recording from throughout the year with different sea states and noise levels. The presented dataset will not only help to evaluate the performance of existing algorithms but it shall also benefit the research community in future. Using the proposed dataset, we also conducted a comprehensive study of various machine learning and deep learning algorithms on six time–frequency based extracted features. In addition, we propose a novel separable convolution based autoencoder network for better classification accuracy. Experiments results, which are compared based on classification accuracy, precision, recall, f1-score, and analyzed by using paired sampled statistical t-test, show that the proposed network achieves classification accuracy of 77.53% using CQT feature, which is better than as achieved by other methods. |
ArticleNumber | 115270 |
Author | Iqbal, Muhammad Hamid, Umar Ali, Shahid Masood, Zafar Irfan, Muhammad Jiangbin, Zheng |
Author_xml | – sequence: 1 givenname: Muhammad surname: Irfan fullname: Irfan, Muhammad email: mirfan@mail.nwpu.edu.cn organization: School of Software, Northwestern Polytechnical University, Xian, China – sequence: 2 givenname: Zheng surname: Jiangbin fullname: Jiangbin, Zheng email: zhengjb@nwpu.edu.cn organization: School of Software, Northwestern Polytechnical University, Xian, China – sequence: 3 givenname: Shahid surname: Ali fullname: Ali, Shahid organization: CESAT, Islamabad, Pakistan – sequence: 4 givenname: Muhammad surname: Iqbal fullname: Iqbal, Muhammad email: miqbal1@hct.ac.ae organization: Faculty of Computer and Information Science, Higher Colleges of Technology, Fujairah, United Arab Emirates – sequence: 5 givenname: Zafar surname: Masood fullname: Masood, Zafar email: masoodzafar@mail.nwpu.edu.cn organization: School of Software, Northwestern Polytechnical University, Xian, China – sequence: 6 givenname: Umar surname: Hamid fullname: Hamid, Umar organization: Comsats University, Islamabad, Pakistan |
BookMark | eNp9kLtOxDAQRS0EEsvjB6gsUWexHWedIBrEW0KiAGpr4ky0XoIdbIcVf4-XpaKgmmLumdE9B2TXeYeEnHA254wvzlZzjGuYCyb4nPNKKLZDZrxWZbFQTblLZqypVCG5kvvkIMYVY1wxpmYkXiOOz0s7ntNLRyfXYVhDwkDB-Ckma2iLzizfIbzRDhJETBRcR4FGHCFAOyA13n36YUrWO9rmRN5OyWfM52u094GaAWK0vTWwCR2RvR6GiMe_85C83t68XN0Xj093D1eXj4UpG5mKEqQUpgYUWIEU7QJFVYJSXJVy0cuaqbbndSNQCSVZ35oKqqbuS26atkOD5SE53d4dg_-YMCa98lNw-aUWlWokl0zynBLblAk-xoC9HoPNfb80Z3ojV6_0Rq7eyNVbuRmq_0DGpp9yKYAd_kcvtijm6p8Wg47GZlnY2YAm6c7b__BvlCWZBA |
CitedBy_id | crossref_primary_10_1109_LGRS_2022_3201396 crossref_primary_10_1109_ACCESS_2022_3220265 crossref_primary_10_3390_jmse12111952 crossref_primary_10_1016_j_oceaneng_2023_114537 crossref_primary_10_1109_TGRS_2023_3329653 crossref_primary_10_3390_electronics12051206 crossref_primary_10_1016_j_oceaneng_2024_119271 crossref_primary_10_1109_ACCESS_2024_3480788 crossref_primary_10_3390_jmse12020264 crossref_primary_10_1109_JSTARS_2023_3325921 crossref_primary_10_1121_10_0015053 crossref_primary_10_1016_j_oceaneng_2022_112626 crossref_primary_10_1121_10_0019937 crossref_primary_10_1016_j_apacoust_2023_109814 crossref_primary_10_1109_JOE_2024_3369663 crossref_primary_10_1016_j_oceaneng_2023_114926 crossref_primary_10_1016_j_eswa_2024_124498 crossref_primary_10_1016_j_chaos_2023_114436 crossref_primary_10_1121_10_0026598 crossref_primary_10_1007_s00530_024_01614_3 crossref_primary_10_1177_14750902231215410 crossref_primary_10_3390_jmse11020432 crossref_primary_10_1109_ACCESS_2022_3140807 crossref_primary_10_1109_LSENS_2025_3541593 crossref_primary_10_1121_10_0035577 crossref_primary_10_3390_fractalfract8010009 crossref_primary_10_1109_ACCESS_2022_3224752 crossref_primary_10_1121_10_0026481 crossref_primary_10_3390_jmse11081626 crossref_primary_10_1109_TAES_2024_3417435 crossref_primary_10_1016_j_dsp_2024_104504 crossref_primary_10_1016_j_procs_2024_04_106 crossref_primary_10_1109_JSEN_2024_3424500 crossref_primary_10_1016_j_ecoinf_2024_102878 crossref_primary_10_3390_jmse12112063 crossref_primary_10_3390_s24237441 crossref_primary_10_1038_s41598_023_44641_2 crossref_primary_10_1016_j_oceaneng_2024_119137 crossref_primary_10_1016_j_eswa_2022_118929 crossref_primary_10_1109_ACCESS_2024_3409829 crossref_primary_10_1109_TGRS_2024_3520860 crossref_primary_10_1186_s13634_024_01181_9 crossref_primary_10_1016_j_apacoust_2023_109468 crossref_primary_10_1016_j_apacoust_2024_109928 crossref_primary_10_1016_j_engappai_2024_107983 crossref_primary_10_1051_jnwpu_20244261039 crossref_primary_10_1109_TGRS_2024_3515171 crossref_primary_10_1016_j_oceaneng_2024_117252 crossref_primary_10_1109_TGRS_2024_3365711 crossref_primary_10_3390_jmse13010073 crossref_primary_10_3390_jmse13020278 crossref_primary_10_3390_s22062181 crossref_primary_10_1109_LSENS_2023_3326458 crossref_primary_10_1016_j_oceaneng_2023_115784 crossref_primary_10_1109_TGRS_2025_3539476 crossref_primary_10_1016_j_apacoust_2025_110564 crossref_primary_10_1109_ACCESS_2024_3424240 crossref_primary_10_3390_jmse13030599 crossref_primary_10_3390_rs15082068 crossref_primary_10_1016_j_oceaneng_2022_112394 crossref_primary_10_1186_s13634_022_00895_y crossref_primary_10_1109_TASLP_2024_3358719 crossref_primary_10_1038_s41598_023_47320_4 crossref_primary_10_1049_rsn2_12305 crossref_primary_10_1016_j_eswa_2022_118905 crossref_primary_10_3390_rs16173333 crossref_primary_10_3390_e24111657 crossref_primary_10_1109_JSEN_2024_3464754 crossref_primary_10_1016_j_engappai_2023_106333 crossref_primary_10_3390_electronics12071708 crossref_primary_10_3390_jmse12060885 crossref_primary_10_1121_10_0026438 crossref_primary_10_1007_s00530_023_01218_3 crossref_primary_10_3390_s24051633 crossref_primary_10_3390_jmse12010024 crossref_primary_10_1016_j_dsp_2025_105193 crossref_primary_10_3390_jmse11040782 crossref_primary_10_1109_JSEN_2024_3419434 crossref_primary_10_1016_j_apacoust_2023_109725 crossref_primary_10_1049_rsn2_12418 crossref_primary_10_1016_j_eswa_2024_123431 crossref_primary_10_1016_j_knosys_2022_110119 crossref_primary_10_1016_j_oceaneng_2023_114677 crossref_primary_10_1016_j_oceaneng_2025_120878 crossref_primary_10_1007_s44295_023_00005_0 crossref_primary_10_3390_app14041341 crossref_primary_10_1016_j_oceaneng_2024_120049 crossref_primary_10_1016_j_sigpro_2025_109891 crossref_primary_10_3390_jmse11020384 crossref_primary_10_3390_rs15225386 crossref_primary_10_3389_fmars_2024_1334057 crossref_primary_10_3390_jmse11010069 crossref_primary_10_3390_jmse11050963 crossref_primary_10_1016_j_eswa_2021_115798 crossref_primary_10_1109_TASLP_2024_3402049 crossref_primary_10_3389_fmars_2023_1306229 crossref_primary_10_1016_j_dsp_2024_104652 crossref_primary_10_3390_jmse12040589 crossref_primary_10_1109_ACCESS_2023_3318015 crossref_primary_10_1109_TGRS_2023_3333971 crossref_primary_10_31818_JKNST_2023_09_6_3_221 |
Cites_doi | 10.1016/j.apacoust.2016.06.008 10.14569/IJACSA.2019.0101201 10.1016/j.eswa.2019.01.085 10.1016/j.apacoust.2018.03.026 10.3390/s19051104 10.1121/1.5036628 10.1016/j.oceaneng.2020.107481 10.3390/s20010253 10.1155/2016/7864213 10.1109/JOE.2007.907926 10.5220/0009123808140821 10.3389/fmars.2019.00606 10.1016/j.measurement.2020.108227 10.1007/s00500-021-05738-w 10.1109/ICASSP.2018.8462193 10.1121/1.4790356 10.1109/TNN.2002.1031942 10.1121/1.3436543 10.1121/1.3664100 10.1049/iet-rsn.2011.0142 10.3390/s19163492 10.1016/j.eswa.2019.113067 10.1049/iet-rsn.2010.0157 10.1016/j.apacoust.2013.11.003 10.3390/s20185399 10.1109/JSEN.2018.2886368 10.3390/s18040952 10.1016/j.apacoust.2019.107005 10.1016/j.ins.2020.11.048 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Nov 30, 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Nov 30, 2021 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2021.115270 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2021_115270 S0957417421007016 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH WUQ XPP ZMT 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c394t-3a442c8ae2e5a42b6e253a7717346f4807bf1892e72740fbc5a598f31c9bdece3 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Mon Jul 14 07:21:39 EDT 2025 Tue Jul 01 04:05:53 EDT 2025 Thu Apr 24 22:54:17 EDT 2025 Fri Feb 23 02:41:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Underwater dataset Ship classification Deep convolutional network Underwater acoustics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-3a442c8ae2e5a42b6e253a7717346f4807bf1892e72740fbc5a598f31c9bdece3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2579414041 |
PQPubID | 2045477 |
ParticipantIDs | proquest_journals_2579414041 crossref_primary_10_1016_j_eswa_2021_115270 crossref_citationtrail_10_1016_j_eswa_2021_115270 elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115270 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-30 |
PublicationDateYYYYMMDD | 2021-11-30 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Expert systems with applications |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Wu, Li, Wang (b0175) 2018; 138 Ocean Networks Canada Society. (2017b). Fraser river delta lower slope hydrophone deployed 2017–06-24. Ocean Networks Canada Society. Retrieved from https:// data.oceannetworks.ca/DatasetLandingPage?doidataset=10.34943/ b521061b-43e8-49d7-8831-e34d4612521d doi: 10.34943/B521061B-43E8-49D7-8831-E34D4612521D. Yin, Sun, Liu, Wang, Tang (b0200) 2020 Xie, Zhu (b0180) 2019; 126 Wang, S., & Zeng, X. (2014). Robust underwater noise targets classification using auditory inspired time–frequency analysis. Applied Acoustics, 78, 68–76. Retrieved from http://www.sciencedirect.com/science/article/pii/S0003682X13002624 doi: https://doi.org/ 10.1016/j.apacoust.2013.11.003. Shen, Yang, Yao, Li, Xu, Sheng (b0145) 2020; 20 Zhang, T., Liang, J., & Ding, B. (2020). Acoustic scene classification using deep cnn with fine-resolution feature. Expert Systems with Applications, 143, 113067. Retrieved from http://www.sciencedirect.com/science/article/pii/S0957417419307845 doi: https://doi.org/ 10.1016/j.eswa.2019.113067. Cao, X., Togneri, R., Zhang, X., & Yu, Y. (2019, 4 15). Convolutional neural network with second-order pooling for underwater target classification. IEEE Sensors Journal, 19(8), 3058–3066. doi: 10.1109/JSEN.2018.2886368. Khishe, Mosavi (b0090) 2020; 157 Choi, J., Choo, Y., & Lee, K. (2019, Aug). Acoustic classification of surface and underwater vessels in the ocean using supervised machine learning. Sensors, 19(16), 3492. Retrieved from https://doi.org/ 10.3390/s19163492 doi: 10.3390/s19163492. Karakos, D., Silovský, J., Schwartz, R., Hartmann, W., & Makhoul, J. (2018, 04). Individual ship detection using underwater acoustics. In (p. 2121-2125). doi: 10.1109/ICASSP.2018.8462193. Erbe, C., Marley, S.A., Schoeman, R.P., Smith, J.N., Trigg, L.E., & Embling, C.B. (2019). The effects of ship noise on marine mammals–a review. Frontiers in Marine Science, 6, 606. Retrieved from https://www.frontiersin.org/article/10.3389/fmars.2019.00606 doi: 10.3389/fmars.2019.00606. Xu, Lin, Sun, Jin (b0185) 2012 Strain., N.,& Olszewska., J. (2020). Naive bayesian network for automated, fashion personal stylist. In Proceedings of the 12th international conference on agents and artificial intelligence - volume 2: Icaart, (p. 814–821). SciTePress. doi: 10.5220/0009123808140821. Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In 3rd international conference on learning representations, ICLR 2015, san diego, ca, usa, may 7–9, 2015, conference track proceedings. Retrieved from http:// arxiv.org/abs/1409.1556. Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Rabinovich (b0160) 2015 Pezeshki, A., Azimi-Sadjadi, M.R.,& Scharf, L.L. (2007). Undersea target classification using canonical correlation analysis. IEEE Journal of Oceanic Engineering, 32(4), 948-955. Roth, Schmidt, Hildebrand, Wiggins (b0135) 2013; 133 He, Zhang, Ren, Sun (b0055) 2016 Schörkhuber, C. (2010). Constant-q transform toolbox for music processing. Azimi-Sadjadi, Yao, Jamshidi, Dobeck (b0005) 2002; 13 Chollet (b0030) 2017 Jiang, J., Shi, T., Huang, M., & Xiao, Z. (2020). Multi-scale spectral feature extraction for underwater acoustic target recognition. Measurement, 166, 108227. Retrieved from http://www.sciencedirect.com/science/article/pii/S0263224120307661 doi: https://doi.org/ 10.1016/j.measurement.2020.108227. Bao, Li, Wang, Wang, Du (b0010) 2010; 128 Ocean Networks Canada Society. (2017c). Fraser river delta lower slope hydrophone deployed 2017–11-04. Ocean Networks Canada Society. Retrieved from https:// data.oceannetworks.ca/DatasetLandingPage?doidataset=10.21383/ 650d90fa-ce87-473c-b932-278519062ab5 doi: 10.21383/650D90FA-CE87-473C-B932-278519062AB5. McKenna, Ross, Wiggins, Hildebrand (b0105) 2012; 131 Yue, Zhang, Wang, Wang, Lu (b0205) 2017 Irfan, M., Jiangbin, Z., Iqbal, M., & Arif, M.H. (2021b). A novel lifelong learning model based on cross domain knowledge extraction and transfer to classify underwater images. Information Sciences, 552, 80–101. Retrieved from http://www.sciencedirect.com/science/ article/pii/S0020025520311464 doi: 10.1016/j.ins.2020.11.048. Das, Kumar, Bahl (b0035) 2013; 7 Luo, Feng (b0095) 2020; 20 Ocean Networks Canada Society. (2017a). Fraser river delta lower slope hydrophone deployed 2016–05-02. Ocean Networks Canada Society. Retrieved from https:// data.oceannetworks.ca/DatasetLandingPage?doidataset=10.34943/ 5418bf93-45be-43d4-ab40-f76fef4d9a15 doi: 10.34943/5418BF93-45BE-43D4-AB40-F76FEF4D9A15. Honghui Yang, X.Y.M.S.C.W., Sheng Shen. (2018, Mar). Competitive deep-belief networks for underwater acoustic target recognition. Sensors, 18(4), 952. Retrieved from https://doi.org/ 10.3390/s18040952 doi: 10.3390/s18040952. van der Maaten, Hinton (b0165) 2008; 9 Domínguez, Guijarro, López, Giménez (b0040) 2016; 113 Irfan, M., Jiangbin, Z., Iqbal, M., & Arif, M.H. (2021a, 03). Enhancing learning classifier systems through convolutional autoencoder to classify underwater images. Soft Computing. Retrieved from https://doi.org/10.1007/s00500-021-05738-w doi: 10.1007/ s00500-021-05738-w. Carbonera, J.L., & Olszewska, J.I. (2019). Local-set based-on instance selection approach for autonomous object modelling. International Journal of Advanced Computer Science and Applications, 10(12). Retrieved from https://doi.org/10.14569/IJACSA.2019.0101201 doi: 10.14569/IJACSA.2019.0101201. Miglianti, L., Cipollini, F., Oneto, L., Tani, G., Gaggero, S., Coraddu, A., & Viviani, M. (2020). Predicting the cavitating marine propeller noise at design stage: A deep learning based approach. Ocean Engineering, 209, 107481. Retrieved from http://www.sciencedirect.com/science/article/pii/S0029801820304960 doi: https://doi.org/ 10.1016/j.oceaneng.2020.107481. Filho, Seixas, Moura (b0050) 2011; 5 Yang, H., Junhao, L., Sheng, S., & Xu, G. (2019, 03). A deep convolutional neural network inspired by auditory perception for underwater acoustic target recognition. Sensors, 19, 1104. doi: 10.3390/s19051104. Irfan, Zheng, Iqbal, Arif (b0075) 2020 Zhang, L., Wu, D., Han, X., & Zhu, Z. (2016). Feature extraction of underwater target signal using mel frequency cepstrum coefficients based on acoustic vector sensor. Journal of Sensors, 2016, 1–11. Retrieved from https://doi.org/10.1155%2F2016%2F7864213 doi: 10.1155/2016/7864213. Hovem (b0060) 2010 Zheng, Gong, Zhang (b0220) 2021; 1756 Malfante, M., Mars, J.I., Dalla Mura, M.,& Gervaise, C. (2018). Automatic fish sounds classification. The Journal of the Acoustical Society of America, 143(5), 2834-2846. Retrieved from https://doi.org/ 10.1121/1.5036628 doi: 10.1121/1.5036628. Hovem (10.1016/j.eswa.2021.115270_b0060) 2010 Xu (10.1016/j.eswa.2021.115270_b0185) 2012 Wu (10.1016/j.eswa.2021.115270_b0175) 2018; 138 Azimi-Sadjadi (10.1016/j.eswa.2021.115270_b0005) 2002; 13 10.1016/j.eswa.2021.115270_b0170 Domínguez (10.1016/j.eswa.2021.115270_b0040) 2016; 113 10.1016/j.eswa.2021.115270_b0070 10.1016/j.eswa.2021.115270_b0190 10.1016/j.eswa.2021.115270_b0130 Yue (10.1016/j.eswa.2021.115270_b0205) 2017 Bao (10.1016/j.eswa.2021.115270_b0010) 2010; 128 10.1016/j.eswa.2021.115270_b0195 10.1016/j.eswa.2021.115270_b0150 Luo (10.1016/j.eswa.2021.115270_b0095) 2020; 20 Szegedy (10.1016/j.eswa.2021.115270_b0160) 2015 Khishe (10.1016/j.eswa.2021.115270_b0090) 2020; 157 Xie (10.1016/j.eswa.2021.115270_b0180) 2019; 126 Yin (10.1016/j.eswa.2021.115270_b0200) 2020 10.1016/j.eswa.2021.115270_b0155 10.1016/j.eswa.2021.115270_b0210 Irfan (10.1016/j.eswa.2021.115270_b0075) 2020 10.1016/j.eswa.2021.115270_b0110 10.1016/j.eswa.2021.115270_b0215 Das (10.1016/j.eswa.2021.115270_b0035) 2013; 7 10.1016/j.eswa.2021.115270_b0115 10.1016/j.eswa.2021.115270_b0015 van der Maaten (10.1016/j.eswa.2021.115270_b0165) 2008; 9 Zheng (10.1016/j.eswa.2021.115270_b0220) 2021; 1756 McKenna (10.1016/j.eswa.2021.115270_b0105) 2012; 131 Filho (10.1016/j.eswa.2021.115270_b0050) 2011; 5 10.1016/j.eswa.2021.115270_b0080 10.1016/j.eswa.2021.115270_b0065 10.1016/j.eswa.2021.115270_b0120 10.1016/j.eswa.2021.115270_b0020 10.1016/j.eswa.2021.115270_b0085 10.1016/j.eswa.2021.115270_b0140 Shen (10.1016/j.eswa.2021.115270_b0145) 2020; 20 10.1016/j.eswa.2021.115270_b0025 10.1016/j.eswa.2021.115270_b0045 10.1016/j.eswa.2021.115270_b0100 He (10.1016/j.eswa.2021.115270_b0055) 2016 Chollet (10.1016/j.eswa.2021.115270_b0030) 2017 10.1016/j.eswa.2021.115270_b0125 Roth (10.1016/j.eswa.2021.115270_b0135) 2013; 133 |
References_xml | – reference: Cao, X., Togneri, R., Zhang, X., & Yu, Y. (2019, 4 15). Convolutional neural network with second-order pooling for underwater target classification. IEEE Sensors Journal, 19(8), 3058–3066. doi: 10.1109/JSEN.2018.2886368. – reference: Strain., N.,& Olszewska., J. (2020). Naive bayesian network for automated, fashion personal stylist. In Proceedings of the 12th international conference on agents and artificial intelligence - volume 2: Icaart, (p. 814–821). SciTePress. doi: 10.5220/0009123808140821. – reference: Choi, J., Choo, Y., & Lee, K. (2019, Aug). Acoustic classification of surface and underwater vessels in the ocean using supervised machine learning. Sensors, 19(16), 3492. Retrieved from https://doi.org/ 10.3390/s19163492 doi: 10.3390/s19163492. – year: 2010 ident: b0060 article-title: Marine acoustics: the physics of sound in underwater environments – volume: 131 start-page: 92 year: 2012 end-page: 103 ident: b0105 article-title: Underwater radiated noise from modern commercial ships publication-title: The Journal of the Acoustical Society of America – reference: Malfante, M., Mars, J.I., Dalla Mura, M.,& Gervaise, C. (2018). Automatic fish sounds classification. The Journal of the Acoustical Society of America, 143(5), 2834-2846. Retrieved from https://doi.org/ 10.1121/1.5036628 doi: 10.1121/1.5036628. – volume: 20 start-page: 253 year: 2020 ident: b0145 article-title: Ship type classification by convolutional neural networks with auditory-like mechanisms publication-title: Sensors – reference: Irfan, M., Jiangbin, Z., Iqbal, M., & Arif, M.H. (2021a, 03). Enhancing learning classifier systems through convolutional autoencoder to classify underwater images. Soft Computing. Retrieved from https://doi.org/10.1007/s00500-021-05738-w doi: 10.1007/ s00500-021-05738-w. – volume: 128 start-page: 206 year: 2010 end-page: 214 ident: b0010 article-title: Ship classification using nonlinear features of radiated sound: An approach based on empirical mode decomposition publication-title: The Journal of the Acoustical Society of America – volume: 1756 year: 2021 ident: b0220 article-title: Time-frequency featurebased underwater target detection with deep neural network in shallow sea publication-title: Journal of Physics: Conference Series – reference: Karakos, D., Silovský, J., Schwartz, R., Hartmann, W., & Makhoul, J. (2018, 04). Individual ship detection using underwater acoustics. In (p. 2121-2125). doi: 10.1109/ICASSP.2018.8462193. – start-page: 59 year: 2020 end-page: 63 ident: b0200 article-title: Underwater acoustic target classification based on lofar spectrum and convolutional neural network publication-title: Proceedings of the 2nd international conference on artificial intelligence and advanced manufacture – reference: Ocean Networks Canada Society. (2017a). Fraser river delta lower slope hydrophone deployed 2016–05-02. Ocean Networks Canada Society. Retrieved from https:// data.oceannetworks.ca/DatasetLandingPage?doidataset=10.34943/ 5418bf93-45be-43d4-ab40-f76fef4d9a15 doi: 10.34943/5418BF93-45BE-43D4-AB40-F76FEF4D9A15. – reference: Schörkhuber, C. (2010). Constant-q transform toolbox for music processing. – start-page: 229 year: 2012 end-page: 232 ident: b0185 article-title: A new algorithm for auditory feature extraction publication-title: 2012 international conference on communication systems and network technologies – start-page: 526 year: 2017 end-page: 529 ident: b0205 article-title: The classification of underwater acoustic targets based on deep learning methods publication-title: Proceedings of the 2nd international conference on control, automation and artificial intelligence (caai 2017) – volume: 157 year: 2020 ident: b0090 article-title: Classification of underwater acoustical dataset using neural network trained by chimp optimization algorithm publication-title: Applied Acoustics – volume: 133 start-page: 1971 year: 2013 end-page: 1980 ident: b0135 article-title: Underwater radiated noise levels of a research icebreaker in the central arctic ocean publication-title: The Journal of the Acoustical Society of America – reference: Irfan, M., Jiangbin, Z., Iqbal, M., & Arif, M.H. (2021b). A novel lifelong learning model based on cross domain knowledge extraction and transfer to classify underwater images. Information Sciences, 552, 80–101. Retrieved from http://www.sciencedirect.com/science/ article/pii/S0020025520311464 doi: 10.1016/j.ins.2020.11.048. – reference: Jiang, J., Shi, T., Huang, M., & Xiao, Z. (2020). Multi-scale spectral feature extraction for underwater acoustic target recognition. Measurement, 166, 108227. Retrieved from http://www.sciencedirect.com/science/article/pii/S0263224120307661 doi: https://doi.org/ 10.1016/j.measurement.2020.108227. – reference: Ocean Networks Canada Society. (2017b). Fraser river delta lower slope hydrophone deployed 2017–06-24. Ocean Networks Canada Society. Retrieved from https:// data.oceannetworks.ca/DatasetLandingPage?doidataset=10.34943/ b521061b-43e8-49d7-8831-e34d4612521d doi: 10.34943/B521061B-43E8-49D7-8831-E34D4612521D. – reference: Miglianti, L., Cipollini, F., Oneto, L., Tani, G., Gaggero, S., Coraddu, A., & Viviani, M. (2020). Predicting the cavitating marine propeller noise at design stage: A deep learning based approach. Ocean Engineering, 209, 107481. Retrieved from http://www.sciencedirect.com/science/article/pii/S0029801820304960 doi: https://doi.org/ 10.1016/j.oceaneng.2020.107481. – volume: 5 start-page: 605 year: 2011 end-page: 612 ident: b0050 article-title: Preprocessing passive sonar signals for neural classification publication-title: IET Radar, Sonar Navigation – start-page: 78 year: 2020 end-page: 91 ident: b0075 article-title: A novel feature extraction model to enhance underwater image classification publication-title: Intelligent computing systems – volume: 20 year: 2020 ident: b0095 article-title: An underwater acoustic target recognition method based on restricted boltzmann machine publication-title: Sensors – volume: 13 start-page: 1099 year: 2002 end-page: 1111 ident: b0005 article-title: Underwater target classification in changing environments using an adaptive feature mapping publication-title: IEEE Transactions on Neural Networks and Learning Systems – reference: Pezeshki, A., Azimi-Sadjadi, M.R.,& Scharf, L.L. (2007). Undersea target classification using canonical correlation analysis. IEEE Journal of Oceanic Engineering, 32(4), 948-955. – volume: 138 start-page: 52 year: 2018 end-page: 59 ident: b0175 article-title: Extraction and classification of acoustic scattering from underwater target based on wigner-ville distribution publication-title: Applied Acoustics – reference: Ocean Networks Canada Society. (2017c). Fraser river delta lower slope hydrophone deployed 2017–11-04. Ocean Networks Canada Society. Retrieved from https:// data.oceannetworks.ca/DatasetLandingPage?doidataset=10.21383/ 650d90fa-ce87-473c-b932-278519062ab5 doi: 10.21383/650D90FA-CE87-473C-B932-278519062AB5. – reference: Honghui Yang, X.Y.M.S.C.W., Sheng Shen. (2018, Mar). Competitive deep-belief networks for underwater acoustic target recognition. Sensors, 18(4), 952. Retrieved from https://doi.org/ 10.3390/s18040952 doi: 10.3390/s18040952. – reference: Zhang, L., Wu, D., Han, X., & Zhu, Z. (2016). Feature extraction of underwater target signal using mel frequency cepstrum coefficients based on acoustic vector sensor. Journal of Sensors, 2016, 1–11. Retrieved from https://doi.org/10.1155%2F2016%2F7864213 doi: 10.1155/2016/7864213. – reference: Zhang, T., Liang, J., & Ding, B. (2020). Acoustic scene classification using deep cnn with fine-resolution feature. Expert Systems with Applications, 143, 113067. Retrieved from http://www.sciencedirect.com/science/article/pii/S0957417419307845 doi: https://doi.org/ 10.1016/j.eswa.2019.113067. – volume: 113 start-page: 64 year: 2016 end-page: 69 ident: b0040 article-title: Shipsear: An underwater vessel noise database publication-title: Applied Acoustics – reference: Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In 3rd international conference on learning representations, ICLR 2015, san diego, ca, usa, may 7–9, 2015, conference track proceedings. Retrieved from http:// arxiv.org/abs/1409.1556. – reference: Yang, H., Junhao, L., Sheng, S., & Xu, G. (2019, 03). A deep convolutional neural network inspired by auditory perception for underwater acoustic target recognition. Sensors, 19, 1104. doi: 10.3390/s19051104. – start-page: 770 year: 2016 end-page: 778 ident: b0055 article-title: Deep residual learning for image recognition publication-title: 2016 ieee conference on computer vision and pattern recognition (cvpr) – reference: Wang, S., & Zeng, X. (2014). Robust underwater noise targets classification using auditory inspired time–frequency analysis. Applied Acoustics, 78, 68–76. Retrieved from http://www.sciencedirect.com/science/article/pii/S0003682X13002624 doi: https://doi.org/ 10.1016/j.apacoust.2013.11.003. – reference: Erbe, C., Marley, S.A., Schoeman, R.P., Smith, J.N., Trigg, L.E., & Embling, C.B. (2019). The effects of ship noise on marine mammals–a review. Frontiers in Marine Science, 6, 606. Retrieved from https://www.frontiersin.org/article/10.3389/fmars.2019.00606 doi: 10.3389/fmars.2019.00606. – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: b0165 article-title: Visualizing high-dimensional data using t-sne publication-title: Journal of Machine Learning Research – volume: 126 start-page: 20 year: 2019 end-page: 29 ident: b0180 article-title: Investigation of acoustic and visual features for acoustic scene classification publication-title: Expert Systems With Applications – start-page: 1 year: 2015 end-page: 9 ident: b0160 article-title: Going deeper with convolutions publication-title: 2015 ieee conference on computer vision and pattern recognition (cvpr) – volume: 7 start-page: 87 year: 2013 end-page: 93 ident: b0035 article-title: Marine vessel classification based on passive sonar data: the cepstrum-based approach publication-title: IET Radar, Sonar Navigation – reference: Carbonera, J.L., & Olszewska, J.I. (2019). Local-set based-on instance selection approach for autonomous object modelling. International Journal of Advanced Computer Science and Applications, 10(12). Retrieved from https://doi.org/10.14569/IJACSA.2019.0101201 doi: 10.14569/IJACSA.2019.0101201. – start-page: 1800 year: 2017 end-page: 1807 ident: b0030 article-title: Xception: Deep learning with depthwise separable convolutions publication-title: 2017 ieee conference on computer vision and pattern recognition (cvpr) – volume: 113 start-page: 64 year: 2016 ident: 10.1016/j.eswa.2021.115270_b0040 article-title: Shipsear: An underwater vessel noise database publication-title: Applied Acoustics doi: 10.1016/j.apacoust.2016.06.008 – ident: 10.1016/j.eswa.2021.115270_b0020 doi: 10.14569/IJACSA.2019.0101201 – volume: 126 start-page: 20 year: 2019 ident: 10.1016/j.eswa.2021.115270_b0180 article-title: Investigation of acoustic and visual features for acoustic scene classification publication-title: Expert Systems With Applications doi: 10.1016/j.eswa.2019.01.085 – start-page: 229 year: 2012 ident: 10.1016/j.eswa.2021.115270_b0185 article-title: A new algorithm for auditory feature extraction – volume: 138 start-page: 52 year: 2018 ident: 10.1016/j.eswa.2021.115270_b0175 article-title: Extraction and classification of acoustic scattering from underwater target based on wigner-ville distribution publication-title: Applied Acoustics doi: 10.1016/j.apacoust.2018.03.026 – ident: 10.1016/j.eswa.2021.115270_b0195 doi: 10.3390/s19051104 – ident: 10.1016/j.eswa.2021.115270_b0100 doi: 10.1121/1.5036628 – ident: 10.1016/j.eswa.2021.115270_b0110 doi: 10.1016/j.oceaneng.2020.107481 – ident: 10.1016/j.eswa.2021.115270_b0125 – volume: 20 start-page: 253 issue: 1 year: 2020 ident: 10.1016/j.eswa.2021.115270_b0145 article-title: Ship type classification by convolutional neural networks with auditory-like mechanisms publication-title: Sensors doi: 10.3390/s20010253 – ident: 10.1016/j.eswa.2021.115270_b0150 – start-page: 78 year: 2020 ident: 10.1016/j.eswa.2021.115270_b0075 article-title: A novel feature extraction model to enhance underwater image classification – ident: 10.1016/j.eswa.2021.115270_b0210 doi: 10.1155/2016/7864213 – ident: 10.1016/j.eswa.2021.115270_b0130 doi: 10.1109/JOE.2007.907926 – ident: 10.1016/j.eswa.2021.115270_b0155 doi: 10.5220/0009123808140821 – ident: 10.1016/j.eswa.2021.115270_b0140 – ident: 10.1016/j.eswa.2021.115270_b0045 doi: 10.3389/fmars.2019.00606 – ident: 10.1016/j.eswa.2021.115270_b0080 doi: 10.1016/j.measurement.2020.108227 – ident: 10.1016/j.eswa.2021.115270_b0070 doi: 10.1007/s00500-021-05738-w – ident: 10.1016/j.eswa.2021.115270_b0085 doi: 10.1109/ICASSP.2018.8462193 – volume: 133 start-page: 1971 issue: 4 year: 2013 ident: 10.1016/j.eswa.2021.115270_b0135 article-title: Underwater radiated noise levels of a research icebreaker in the central arctic ocean publication-title: The Journal of the Acoustical Society of America doi: 10.1121/1.4790356 – volume: 13 start-page: 1099 issue: 5 year: 2002 ident: 10.1016/j.eswa.2021.115270_b0005 article-title: Underwater target classification in changing environments using an adaptive feature mapping publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNN.2002.1031942 – start-page: 59 year: 2020 ident: 10.1016/j.eswa.2021.115270_b0200 article-title: Underwater acoustic target classification based on lofar spectrum and convolutional neural network – volume: 128 start-page: 206 issue: 1 year: 2010 ident: 10.1016/j.eswa.2021.115270_b0010 article-title: Ship classification using nonlinear features of radiated sound: An approach based on empirical mode decomposition publication-title: The Journal of the Acoustical Society of America doi: 10.1121/1.3436543 – volume: 131 start-page: 92 year: 2012 ident: 10.1016/j.eswa.2021.115270_b0105 article-title: Underwater radiated noise from modern commercial ships publication-title: The Journal of the Acoustical Society of America doi: 10.1121/1.3664100 – volume: 7 start-page: 87 issue: 1 year: 2013 ident: 10.1016/j.eswa.2021.115270_b0035 article-title: Marine vessel classification based on passive sonar data: the cepstrum-based approach publication-title: IET Radar, Sonar Navigation doi: 10.1049/iet-rsn.2011.0142 – ident: 10.1016/j.eswa.2021.115270_b0025 doi: 10.3390/s19163492 – ident: 10.1016/j.eswa.2021.115270_b0115 – year: 2010 ident: 10.1016/j.eswa.2021.115270_b0060 – start-page: 1800 year: 2017 ident: 10.1016/j.eswa.2021.115270_b0030 article-title: Xception: Deep learning with depthwise separable convolutions – ident: 10.1016/j.eswa.2021.115270_b0215 doi: 10.1016/j.eswa.2019.113067 – volume: 5 start-page: 605 issue: 6 year: 2011 ident: 10.1016/j.eswa.2021.115270_b0050 article-title: Preprocessing passive sonar signals for neural classification publication-title: IET Radar, Sonar Navigation doi: 10.1049/iet-rsn.2010.0157 – ident: 10.1016/j.eswa.2021.115270_b0170 doi: 10.1016/j.apacoust.2013.11.003 – volume: 20 issue: 18 year: 2020 ident: 10.1016/j.eswa.2021.115270_b0095 article-title: An underwater acoustic target recognition method based on restricted boltzmann machine publication-title: Sensors doi: 10.3390/s20185399 – start-page: 526 year: 2017 ident: 10.1016/j.eswa.2021.115270_b0205 article-title: The classification of underwater acoustic targets based on deep learning methods – ident: 10.1016/j.eswa.2021.115270_b0015 doi: 10.1109/JSEN.2018.2886368 – ident: 10.1016/j.eswa.2021.115270_b0190 doi: 10.3390/s18040952 – volume: 1756 issue: 1 year: 2021 ident: 10.1016/j.eswa.2021.115270_b0220 article-title: Time-frequency featurebased underwater target detection with deep neural network in shallow sea publication-title: Journal of Physics: Conference Series – volume: 157 year: 2020 ident: 10.1016/j.eswa.2021.115270_b0090 article-title: Classification of underwater acoustical dataset using neural network trained by chimp optimization algorithm publication-title: Applied Acoustics doi: 10.1016/j.apacoust.2019.107005 – ident: 10.1016/j.eswa.2021.115270_b0065 doi: 10.1016/j.ins.2020.11.048 – start-page: 770 year: 2016 ident: 10.1016/j.eswa.2021.115270_b0055 article-title: Deep residual learning for image recognition – ident: 10.1016/j.eswa.2021.115270_b0120 – start-page: 1 year: 2015 ident: 10.1016/j.eswa.2021.115270_b0160 article-title: Going deeper with convolutions – volume: 9 start-page: 2579 year: 2008 ident: 10.1016/j.eswa.2021.115270_b0165 article-title: Visualizing high-dimensional data using t-sne publication-title: Journal of Machine Learning Research |
SSID | ssj0017007 |
Score | 2.6594803 |
Snippet | •Proposed dataset consists of real underwater recordings of 47 h 4 min of 265 ships.•Recordings are from throughout the year with different sea states and... Underwater acoustic classification is a challenging problem because of presence of high background noise and complex sound propagation patterns in the sea... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115270 |
SubjectTerms | Accuracy Acoustics Algorithms Background noise Classification Convolution Datasets Deep convolutional network Deep learning Feature extraction Machine learning Noise levels Noise propagation Sea states Ship classification Sound propagation Underwater acoustics Underwater construction Underwater dataset |
Title | DeepShip: An underwater acoustic benchmark dataset and a separable convolution based autoencoder for classification |
URI | https://dx.doi.org/10.1016/j.eswa.2021.115270 https://www.proquest.com/docview/2579414041 |
Volume | 183 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWVh4Ix6l8sCGQknsvNiqAiogWACJzbLdiyiUEDVB3fjt3CUOEgh1YExiW5E_--6zfPcdY0fIaBFZyDytTeTJzCSeFj4eXFPrRxYdXpZQvvPtXTR6lNdP4dMSG7a5MBRW6Wx_Y9Nra-3e9N1s9ovJpH-P5ADdIR7t6KIfmQtlsMuYwvpOPr_DPEh-Lm709mKPWrvEmSbGC8o5aQ8FPlqOMKCCxX87p19muvY9l-ts1ZFGPmj-a4MtQb7J1tqCDNztzy1WngMU98-T4owPck7pYbO5phZo9uqqXdxgw-c3PXvlFBpaQsV1Puaal0Aa4GYKnMLQ3XLk5OLw60f1TnKXOBpHisstEW6KMKpB3WaPlxcPw5Hnqip4VqSy8oSWMrCJhgBCLQMTQRAKHdNtPCJDGeYm85M0AGQ28jQzNtRhmmTCt6kZgwWxwzr5ew67jCNVCLWvT8dRJqQ1cSKE1MhvgERogjTbY347nco6yXGqfDFVbWzZiyIIFEGgGgj22PF3n6IR3FjYOmxRUj-WjUKPsLBft4VUuU1bKrReqSS5IX__n8MesBV6aqQhu6xTzT7gEElLZXr1quyx5cHVzejuC5t07Ag |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOcCFHbHjAzcUtYmdNOFWsahsvQASN8t2J6IsoWqC-H1mGgcJhDhwjRdFfvbMszzzBuCQGC0hi3lgjE0Clds0MDKki2vmwsSRw8tTzne-GST9e3X5ED_MwEmTC8Nhld721zZ9aq39l7ZfzfZ4NGrfEjkgd0hXO37oJ-YyC3OsTqVaMNe7uOoPvh4Tup06a5r6BzzA587UYV5YfrD8UBSS8Ygjrln8u3_6Yamn7ud8GRY9bxS9-tdWYAaLVVhqajIIf0TXoDxFHN8-jsbHolcIzhCbfBjuQZZvWrhLWOr4-Gomz4KjQ0ushCmGwogSWQbcvqDgSHS_IwV7OWp9r95Y8ZJmE8RyhWPOzUFGU1zX4f787O6kH_jCCoGTmaoCaZSKXGowwtioyCYYxdJ0-UGewOEkc5uHaRYhkRvVya2LTZyluQxdZofoUG5Aq3grcBMEsYXYhKYzTHKpnO2mUipDFAdZhybK8i0Im-XUzquOc_GLF92Elz1phkAzBLqGYAuOvsaMa82NP3vHDUr6287R5BT-HLfbQKr9uS01GbBMseJQuP3PaQ9gvn93c62vLwZXO7DALbVS5C60qsk77hGHqey-36OftdTuuQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepShip%3A+An+underwater+acoustic+benchmark+dataset+and+a+separable+convolution+based+autoencoder+for+classification&rft.jtitle=Expert+systems+with+applications&rft.au=Irfan%2C+Muhammad&rft.au=Jiangbin%2C+Zheng&rft.au=Ali%2C+Shahid&rft.au=Iqbal%2C+Muhammad&rft.date=2021-11-30&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=183&rft_id=info:doi/10.1016%2Fj.eswa.2021.115270&rft.externalDocID=S0957417421007016 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |