Retrieving the Infected Area of Pine Wilt Disease-Disturbed Pine Forests from Medium-Resolution Satellite Images Using the Stochastic Radiative Transfer Theory
Pine wilt disease (PWD) is a global destructive threat to forests which has been widely spread and has caused severe tree mortality all over the world. It is important to establish an effective method for forest managers to detect the infected area in a large region. Remote sensing is a feasible too...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 14; no. 6; p. 1526 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pine wilt disease (PWD) is a global destructive threat to forests which has been widely spread and has caused severe tree mortality all over the world. It is important to establish an effective method for forest managers to detect the infected area in a large region. Remote sensing is a feasible tool to detect PWD, but the traditional empirical methods lack the ability to explain the signals and can hardly be extended to large scales. The studies using physically-based models either ignore the within-canopy heterogeneity or rely too much on prior knowledge. In this study, we propose an approach to retrieve PWD infected areas from medium-resolution satellite images of two phases based on the simulations of an extended stochastic radiative transfer model for forests infected by pests (SRTP). A small amount of prior knowledge was used, and a change of background soil was considered in this approach. The performance was evaluated in different study sites. The inversion method performs best in the three-dimensional model LESS simulation sample plots (R2 = 0.88, RMSE = 0.059), and the inversion accuracy decreases in the real forest sample plots. For Jiangxi masson pine stand with large coverage and serious damage, R2 = 0.57, RMSE = 0.074; and for Shandong black pine stand with sparse and a small number of single plant damage, R2 = 0.48, RMSE = 0.063. This study indicates that the SRTP model is more feasible for pest damage inversion over different regions compared with empirical methods. The stochastic radiative transfer theory provides a potential approach for future monitoring of terrestrial vegetation parameters. |
---|---|
AbstractList | Pine wilt disease (PWD) is a global destructive threat to forests which has been widely spread and has caused severe tree mortality all over the world. It is important to establish an effective method for forest managers to detect the infected area in a large region. Remote sensing is a feasible tool to detect PWD, but the traditional empirical methods lack the ability to explain the signals and can hardly be extended to large scales. The studies using physically-based models either ignore the within-canopy heterogeneity or rely too much on prior knowledge. In this study, we propose an approach to retrieve PWD infected areas from medium-resolution satellite images of two phases based on the simulations of an extended stochastic radiative transfer model for forests infected by pests (SRTP). A small amount of prior knowledge was used, and a change of background soil was considered in this approach. The performance was evaluated in different study sites. The inversion method performs best in the three-dimensional model LESS simulation sample plots (R2 = 0.88, RMSE = 0.059), and the inversion accuracy decreases in the real forest sample plots. For Jiangxi masson pine stand with large coverage and serious damage, R2 = 0.57, RMSE = 0.074; and for Shandong black pine stand with sparse and a small number of single plant damage, R2 = 0.48, RMSE = 0.063. This study indicates that the SRTP model is more feasible for pest damage inversion over different regions compared with empirical methods. The stochastic radiative transfer theory provides a potential approach for future monitoring of terrestrial vegetation parameters. Pine wilt disease (PWD) is a global destructive threat to forests which has been widely spread and has caused severe tree mortality all over the world. It is important to establish an effective method for forest managers to detect the infected area in a large region. Remote sensing is a feasible tool to detect PWD, but the traditional empirical methods lack the ability to explain the signals and can hardly be extended to large scales. The studies using physically-based models either ignore the within-canopy heterogeneity or rely too much on prior knowledge. In this study, we propose an approach to retrieve PWD infected areas from medium-resolution satellite images of two phases based on the simulations of an extended stochastic radiative transfer model for forests infected by pests (SRTP). A small amount of prior knowledge was used, and a change of background soil was considered in this approach. The performance was evaluated in different study sites. The inversion method performs best in the three-dimensional model LESS simulation sample plots (R² = 0.88, RMSE = 0.059), and the inversion accuracy decreases in the real forest sample plots. For Jiangxi masson pine stand with large coverage and serious damage, R² = 0.57, RMSE = 0.074; and for Shandong black pine stand with sparse and a small number of single plant damage, R² = 0.48, RMSE = 0.063. This study indicates that the SRTP model is more feasible for pest damage inversion over different regions compared with empirical methods. The stochastic radiative transfer theory provides a potential approach for future monitoring of terrestrial vegetation parameters. |
Author | Luo, Tao Huang, Huaguo Li, Linyuan Tong, Tong Wang, Jingxu Rao, Yueming Li, Xiaoyao Wu, Dewei Jin, Decai |
Author_xml | – sequence: 1 givenname: Xiaoyao surname: Li fullname: Li, Xiaoyao – sequence: 2 givenname: Tong surname: Tong fullname: Tong, Tong – sequence: 3 givenname: Tao surname: Luo fullname: Luo, Tao – sequence: 4 givenname: Jingxu orcidid: 0000-0002-4544-1593 surname: Wang fullname: Wang, Jingxu – sequence: 5 givenname: Yueming surname: Rao fullname: Rao, Yueming – sequence: 6 givenname: Linyuan surname: Li fullname: Li, Linyuan – sequence: 7 givenname: Decai surname: Jin fullname: Jin, Decai – sequence: 8 givenname: Dewei surname: Wu fullname: Wu, Dewei – sequence: 9 givenname: Huaguo orcidid: 0000-0001-9355-2338 surname: Huang fullname: Huang, Huaguo |
BookMark | eNptkt9rFDEQxxepYK198S8I-CLC2mwm-yOPpVo9qCjXKz6G2WT2LsfepibZQv8a_1VzvRalmJcJmc98M_NlXhdHk5-oKN5W_COA4mchVpI3VS2aF8Wx4K0opVDi6J_7q-I0xi3PB6BSXB4Xv5eUgqM7N61Z2hBbTAOZRJadB0LmB_bDTcR-ujGxTy4SRipzTHPoM_OQu_SBYopsCH7HvpF1865cUvTjnJyf2DUmGkeXsvQO1xTZTXz66zp5s8GYnGFLtA6TuyO2CjjFgQJbbciH-zfFywHHSKeP8aS4ufy8uvhaXn3_srg4vyoNKJlK6AxSxYVseY-9ASNsCx2BhYbXqq4tdL2VAI3iqgOLNUoL1JNppaxbS3BSLA661uNW3wa3w3CvPTr98ODDWmPInY6kbWd7tEgWDJdYDyikqG0P1PWt5Wqv9f6gdRv8rzmbo3cumuwCTuTnqEUju65tZKMy-u4ZuvVzmPKke0rIWskOMsUPlAk-xkCDNi7h3t4U0I264nq_APrvAuSSD89Knmb6D_wHH6C0tQ |
CitedBy_id | crossref_primary_10_1016_j_rsase_2024_101341 crossref_primary_10_3390_f15050891 crossref_primary_10_1051_bioconf_202411601003 crossref_primary_10_3390_rs14205164 crossref_primary_10_3390_app12136676 crossref_primary_10_3390_f14030588 crossref_primary_10_1016_j_rse_2023_113698 crossref_primary_10_3390_f15101706 crossref_primary_10_3390_rs15174295 crossref_primary_10_1109_TGRS_2024_3421332 crossref_primary_10_3390_rs14133075 |
Cites_doi | 10.1016/S0034-4257(96)00072-7 10.1016/j.foreco.2012.08.003 10.14358/PERS.69.3.283 10.1016/S0034-4257(02)00010-X 10.1016/j.foreco.2010.03.008 10.1016/S0034-4257(03)00112-3 10.1016/j.rse.2013.01.013 10.1016/j.rse.2013.05.008 10.1094/PDIS.2000.84.6.675 10.1016/j.rse.2019.111480 10.1016/j.rse.2010.07.008 10.1029/97JD03380 10.1016/j.rse.2009.02.015 10.1016/j.rse.2009.11.005 10.3390/rs10071133 10.1016/j.rse.2012.05.016 10.1007/978-94-009-8647-3 10.1016/j.jqsrt.2007.01.053 10.1109/TGRS.2013.2238242 10.1016/j.rse.2006.03.012 10.1016/j.rse.2007.12.011 10.1016/j.rse.2011.02.018 10.1023/A:1010933404324 10.1016/S0176-1617(11)81633-0 10.1016/j.isprsjprs.2013.10.010 10.1016/j.rse.2018.11.036 10.1016/j.foreco.2017.11.005 10.3390/f9030115 10.1016/j.isprsjprs.2014.05.013 10.1016/S0034-4257(00)00128-0 10.1016/j.rse.2011.09.009 10.1016/j.rse.2021.112475 10.1016/j.isprsjprs.2016.01.011 10.1080/01431160802566439 10.1016/j.rse.2008.05.005 10.1034/j.1399-3054.1999.106119.x 10.1016/j.rse.2020.112040 10.3390/rs11212540 10.1016/j.foreco.2013.03.038 10.3390/rs5073280 10.1080/01431169408954345 10.1016/j.rse.2009.12.005 10.3390/rs4092661 10.1016/j.eng.2020.07.001 10.1016/j.rse.2011.12.023 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs14061526 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_d8dbadaed3c04a5fa2425db3e8b7d09e 10_3390_rs14061526 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c394t-38cae102470babc3c2d738e3d3605955d38bd433690983da5a4d3ebec74457de3 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:31:51 EDT 2025 Fri Jul 11 10:18:59 EDT 2025 Fri Jul 25 09:28:39 EDT 2025 Thu Apr 24 23:11:42 EDT 2025 Tue Jul 01 01:59:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-38cae102470babc3c2d738e3d3605955d38bd433690983da5a4d3ebec74457de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4544-1593 0000-0001-9355-2338 |
OpenAccessLink | https://www.proquest.com/docview/2642459483?pq-origsite=%requestingapplication% |
PQID | 2642459483 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d8dbadaed3c04a5fa2425db3e8b7d09e proquest_miscellaneous_2648876469 proquest_journals_2642459483 crossref_citationtrail_10_3390_rs14061526 crossref_primary_10_3390_rs14061526 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Sun (ref_4) 2021; 40 Townsend (ref_29) 2012; 119 Rivera (ref_50) 2013; 5 ref_10 Sims (ref_41) 2002; 81 Babst (ref_26) 2010; 114 Meddens (ref_19) 2011; 115 Pontius (ref_25) 2008; 112 Qi (ref_35) 2019; 221 Oumar (ref_23) 2014; 87 Gitelson (ref_39) 1994; 143 Shabanov (ref_44) 2000; 74 Thayn (ref_20) 2013; 136 Coops (ref_13) 2010; 259 Stoyan (ref_46) 2013; 45 Verrelst (ref_51) 2014; 52 Goodwin (ref_14) 2008; 112 Skakun (ref_16) 2003; 86 Li (ref_33) 2020; 250 Shabanov (ref_45) 2007; 107 Hicke (ref_8) 2009; 30 Gitelson (ref_37) 1996; 58 Kennedy (ref_27) 2010; 114 Hornero (ref_32) 2020; 236 Olsson (ref_12) 2012; 285 Bright (ref_18) 2012; 124 Cheng (ref_22) 2010; 114 Merzlyak (ref_38) 2010; 106 Quintano (ref_40) 2016; 50 ref_30 Ye (ref_2) 2019; 55 Franklin (ref_7) 2003; 69 Belgiu (ref_48) 2016; 114 Coops (ref_15) 2009; 113 Ichihara (ref_3) 2000; 84 Defries (ref_36) 1994; 15 Meigs (ref_28) 2011; 115 Adelabu (ref_17) 2014; 95 Oumar (ref_24) 2013; 21 Higashi (ref_52) 2009; 10 Yu (ref_5) 2021; 101 ref_42 Huang (ref_34) 2013; 132 Walter (ref_21) 2013; 302 Lin (ref_31) 2021; 260 Breiman (ref_47) 2001; 45 Syifa (ref_53) 2020; 6 Ikegami (ref_1) 2018; 409 Knyazikhin (ref_43) 1998; 103 ref_9 Coops (ref_11) 2006; 103 Immitzer (ref_49) 2012; 4 ref_6 |
References_xml | – volume: 58 start-page: 289 year: 1996 ident: ref_37 article-title: Use of a green channel in remote sensing of global vegetation from EOS-MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00072-7 – volume: 285 start-page: 29 year: 2012 ident: ref_12 article-title: A new invasive insect in Sweden-Physokermes inopinatus: Tracing forest damage with satellite based remote sensing publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2012.08.003 – volume: 69 start-page: 283 year: 2003 ident: ref_7 article-title: Mountain pine beetle red-attack forest damage classification using stratified Landsat TM data in British Columbia, Canada publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.69.3.283 – volume: 81 start-page: 337 year: 2002 ident: ref_41 article-title: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00010-X – volume: 259 start-page: 2355 year: 2010 ident: ref_13 article-title: Assessing changes in forest fragmentation following infestation using time series Landsat imagery publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2010.03.008 – volume: 86 start-page: 433 year: 2003 ident: ref_16 article-title: Sensitivity of the thematic mapper enhanced wetness difference index to detect mountain pine beetle red-attack damage publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(03)00112-3 – volume: 101 start-page: 102363 year: 2021 ident: ref_5 article-title: A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 132 start-page: 221 year: 2013 ident: ref_34 article-title: RAPID: A Radiosity Applicable to Porous IndiviDual Objects for directional reflectance over complex vegetated scenes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.01.013 – volume: 136 start-page: 210 year: 2013 ident: ref_20 article-title: Using a remotely sensed optimized Disturbance Index to detect insect defoliation in the Apostle Islands, Wisconsin, USA publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.05.008 – volume: 84 start-page: 675 year: 2000 ident: ref_3 article-title: Early Symptom Development and Histological Changes Associated with Migration of Bursaphelenchus xylophilus in Seedling Tissues of Pinus thunbergii publication-title: Plant Dis. doi: 10.1094/PDIS.2000.84.6.675 – volume: 236 start-page: 111480 year: 2020 ident: ref_32 article-title: Monitoring the incidence of Xylella fastidiosa infection in olive orchards using ground-based evaluations, airborne imaging spectroscopy and Sentinel-2 time series through 3-D radiative transfer modelling publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111480 – volume: 114 start-page: 2897 year: 2010 ident: ref_27 article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr-Temporal segmentation algorithms publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.07.008 – volume: 103 start-page: 6133 year: 1998 ident: ref_43 article-title: Influence of small-scale structure on radiative transfer and photosynthesis in vegetation cover publication-title: J. Geophys. Res. Atmos. doi: 10.1029/97JD03380 – volume: 50 start-page: 170 year: 2016 ident: ref_40 article-title: SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 113 start-page: 1250 year: 2009 ident: ref_15 article-title: Large area monitoring with a MODIS-based Disturbance Index (DI) sensitive to annual and seasonal variations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.02.015 – volume: 114 start-page: 637 year: 2010 ident: ref_26 article-title: Landsat TM/ETM plus and tree-ring based assessment of spatiotemporal patterns of the autumnal moth (Epirrita autumnata) in northernmost Fennoscandia publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.11.005 – ident: ref_10 – ident: ref_30 doi: 10.3390/rs10071133 – volume: 124 start-page: 270 year: 2012 ident: ref_18 article-title: Estimating aboveground carbon stocks of a forest affected by mountain pine beetle in Idaho using lidar and multispectral imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.05.016 – ident: ref_42 doi: 10.1007/978-94-009-8647-3 – volume: 107 start-page: 236 year: 2007 ident: ref_45 article-title: Stochastic radiative transfer model for mixture of discontinuous vegetation canopies publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2007.01.053 – volume: 52 start-page: 257 year: 2014 ident: ref_51 article-title: Optimizing LUT-Based RTM Inversion for Semiautomatic Mapping of Crop Biophysical Parameters from Sentinel-2 and-3 Data: Role of Cost Functions publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2238242 – volume: 103 start-page: 67 year: 2006 ident: ref_11 article-title: Assessment of QuickBird high spatial resolution imagery to detect red attack damage due to mountain pine beetle infestation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.03.012 – volume: 112 start-page: 2665 year: 2008 ident: ref_25 article-title: Ash decline assessment in emerald ash borer-infested regions: A test of tree-level, hyperspectral technologies publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.12.011 – volume: 115 start-page: 1632 year: 2011 ident: ref_19 article-title: Evaluating the potential of multispectral imagery to map multiple stages of tree mortality publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.02.018 – volume: 45 start-page: 5 year: 2001 ident: ref_47 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 143 start-page: 286 year: 1994 ident: ref_39 article-title: Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(11)81633-0 – volume: 87 start-page: 39 year: 2014 ident: ref_23 article-title: Integrating environmental variables and WorldView-2 image data to improve the prediction and mapping of Thaumastocoris peregrinus (bronze bug) damage in plantation forests publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.10.010 – volume: 21 start-page: 113 year: 2013 ident: ref_24 article-title: Predicting Thaumastocoris peregrinus damage using narrow band normalized indices and hyperspectral indices using field spectra resampled to the Hyperion sensor publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 221 start-page: 695 year: 2019 ident: ref_35 article-title: LESS: LargE-Scale remote sensing data and image simulation framework over heterogeneous 3D scenes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.036 – volume: 409 start-page: 343 year: 2018 ident: ref_1 article-title: Estimate global risks of a forest disease under current and future climates using species distribution model and simple thermal model Pine Wilt disease as a model case publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2017.11.005 – ident: ref_9 doi: 10.3390/f9030115 – volume: 95 start-page: 34 year: 2014 ident: ref_17 article-title: Evaluating the impact of red-edge band from Rapideye image for classifying insect defoliation levels publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.05.013 – volume: 74 start-page: 125 year: 2000 ident: ref_44 article-title: Stochastic Modeling of Radiation Regime in Discontinuous Vegetation Canopies publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00128-0 – volume: 45 start-page: 345 year: 2013 ident: ref_46 article-title: Stochastic Geometry and its Applications publication-title: J. R. Stat. Soc. – volume: 115 start-page: 3707 year: 2011 ident: ref_28 article-title: A Landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.09.009 – volume: 260 start-page: 112475 year: 2021 ident: ref_31 article-title: Using the 3D model RAPID to invert the shoot dieback ratio of vertically heterogeneous Yunnan pine forests to detect beetle damage publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112475 – volume: 114 start-page: 24 year: 2016 ident: ref_48 article-title: Random forest in remote sensing: A review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.011 – volume: 55 start-page: 1 year: 2019 ident: ref_2 article-title: Epidemic Status of Pine Wilt Disease in China and Its Prevention and Control Techniques and Counter Measures publication-title: Sci. Silvae Sin. – volume: 30 start-page: 4427 year: 2009 ident: ref_8 article-title: Mapping whitebark pine mortality caused by a mountain pine beetle outbreak with high spatial resolution satellite imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431160802566439 – volume: 112 start-page: 3680 year: 2008 ident: ref_14 article-title: Estimation of insect infestation dynamics using a temporal sequence of Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.05.005 – volume: 106 start-page: 135 year: 2010 ident: ref_38 article-title: Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening publication-title: Physiol. Plant. doi: 10.1034/j.1399-3054.1999.106119.x – volume: 250 start-page: 112040 year: 2020 ident: ref_33 article-title: Extending the stochastic radiative transfer theory to simulate BRF over forests with heterogeneous distribution of damaged foliage inside of tree crowns publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112040 – ident: ref_6 doi: 10.3390/rs11212540 – volume: 302 start-page: 308 year: 2013 ident: ref_21 article-title: Multi-temporal analysis reveals that predictors of mountain pine beetle infestation change during outbreak cycles publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2013.03.038 – volume: 10 start-page: 389 year: 2009 ident: ref_52 article-title: Extraction of Expanded Area of Damaged Stands by Pine Wilt Disease Using Two Landsat TM Data publication-title: J. Remote Sens. Soc. Jpn. – volume: 5 start-page: 3280 year: 2013 ident: ref_50 article-title: Multiple Cost Functions and Regularization Options for Improved Retrieval of Leaf Chlorophyll Content and LAI through Inversion of the PROSAIL Model publication-title: Remote Sens. doi: 10.3390/rs5073280 – volume: 15 start-page: 3567 year: 1994 ident: ref_36 article-title: NDVI-derived land cover classifications at a global scale publication-title: Int. J. Remote Sens. doi: 10.1080/01431169408954345 – volume: 114 start-page: 899 year: 2010 ident: ref_22 article-title: Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.12.005 – volume: 4 start-page: 2661 year: 2012 ident: ref_49 article-title: Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data publication-title: Remote Sens. doi: 10.3390/rs4092661 – volume: 40 start-page: 45 year: 2021 ident: ref_4 article-title: Occurrence of major forest pests in 2020 and prediction of occurrence trend in 2021 in China publication-title: For. Pest Dis. – volume: 6 start-page: 919 year: 2020 ident: ref_53 article-title: Detection of the Pine Wilt Disease Tree Candidates for Drone Remote Sensing Using Artificial Intelligence Techniques publication-title: Engineering doi: 10.1016/j.eng.2020.07.001 – volume: 119 start-page: 255 year: 2012 ident: ref_29 article-title: A general Landsat model to predict canopy defoliation in broadleaf deciduous forests publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.12.023 |
SSID | ssj0000331904 |
Score | 2.3882713 |
Snippet | Pine wilt disease (PWD) is a global destructive threat to forests which has been widely spread and has caused severe tree mortality all over the world. It is... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1526 |
SubjectTerms | Algorithms China Coniferous forests Damage Disease Forest management Forests Heterogeneity infected area Knowledge Pests Pine pine wilt disease Pinus massoniana Pinus nigra plant damage Radiative transfer random forest Remote sensing Satellite imagery satellites Simulation soil stochastic radiative transfer Three dimensional models tree mortality Trees Unmanned aerial vehicles vascular wilt Wilt |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLvSCWmjFli0yopceIsKO8_CR8hAgUVVLkbhFHo8jDrCLNtlDfw1_lRknu10JJC6cIiWTxPKM52HPfKPUDyooGxUo-18lJCbYPMEU80SqVbxFm1Psn3L1Oz-_MZe32e1Kqy_JCevggbuJO6CS0JELBD41Lqud-MiEEEosKLVBtC_bvJVgKupgYNFKTYdHChzXH8yaQ7FdmaAorFigCNT_Qg9H43L2SW30XqE-6kbzWX0Ik0213jcov_u3pZ7GsfOVRP-aXTZ9EXOoAvErwelprf-wt6h5ibf6pDtySfjK5gSZJj6THpxN22ipJ9FyPDN_SGTvvpM8fe0iNGfLn35gFdPomEsQ_3XdTv2dEzxnPRYkA1GQOtq4Osx0V9z_Rd2cnf49Pk_63gqJB2vaBErvAjsXpkjRoQc_ogLKAAQc39gsIyiRDAAHz7YEcpkzBMLwwpisoABf1dpkOgnbSqeIeFhA7oMxxjpEksPXOjBRzfoEB-rnYr4r3wOPS_-L-4oDEOFN9Z83A7W_pH3s4DZepfolbFtSCER2vMGCU_WCU70lOAM1XDC96tdtU7F7ODKCYAMDtbd8zCtOjlHcJEznkYY1c25y--09xrGjPo6kpCLmtQ3VWjubh-_s6LS4G2X6GRYmAPo priority: 102 providerName: Directory of Open Access Journals |
Title | Retrieving the Infected Area of Pine Wilt Disease-Disturbed Pine Forests from Medium-Resolution Satellite Images Using the Stochastic Radiative Transfer Theory |
URI | https://www.proquest.com/docview/2642459483 https://www.proquest.com/docview/2648876469 https://doaj.org/article/d8dbadaed3c04a5fa2425db3e8b7d09e |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB7R5AAXxFMESrQILhysupm1vT5VLW0oiFZVQqXerH25PdC4xM6BX9O_ysx6kyK14mTJHq8lz3tm9xuAT65w2aQwXP9SmEhf5olJTZ7waRVbmjJ3YX7KyWl-fC6_X2QXseDWxm2Va5sYDLVrLNfId8hxTyRji-Deze-Ep0ZxdzWO0NiCIZlgpQYwPDg6PZttqiwpkoilssclRcrvd5btLvuwjNEU_vFEAbD_nj0OTmb6DJ7G6FDs9-x8Do_84gU8joPKr_68hNtZmIDFVQBBoZv4FvZSeUeveC2aWpxR1ChI1Ttx2LdeErqSWzFEE57xLM62awWfKxHcplldJ1zD7yVQzHWA6Oxo6WsyNa0IewrCt-ZdY6804zqLGSMasKEUwdfVfin6Q_6v4Hx69PPLcRJnLCQWS9klqKz2FGTIIjXaWLQTV6Dy6JDynDLLHCrjJCIl0aVCpzMtHTLjCymzwnl8DYNFs_BvQKTGmN0Cc-ullKU2xnETtvZEVJNdMSP4vP7flY0A5DwH41dFiQjzprrjzQg-bmhvetiNB6kOmG0bCobKDjea5WUVNa9yyhnttHdoU6mzWnOS5Qx6ZQqXln4E22umV1F_2-pO2kbwYfOYNI_bKXrhm1WgIQudy7x8-_8l3sGTCR-aCDvXtmHQLVf-PYUynRnDlpp-HcNw__Dkx3wcpXccCgN_AcLL-wo |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxFMsLWAEHDhETWPn4QNCQFl26UOoD6m3YHscemg3ZZMV6q_hH_AbmXGSLRKIW08rrWe9SmY8D4_9fQAvMcc0yS3vfxUyUl5nkY1tFvFtFaetzjDwp-ztZ5Nj9fkkPVmBX8NdGD5WOfjE4KixdrxHvkmBO1GMLSLfXnyPmDWKu6sDhUZnFjv-8geVbM2b6Tbp91WSjD8efZhEPatA5KRWbSQLZzyFVZXH1lgnXYK5LLxESZm9TlOUhUUlJZWNupBoUqNQ8qPmSqU5eknz3oCbJKG52CvGn5Z7OrEkg45Vh4JK4_HmvNniiJkydsMfcS_QA_zl_UNIG9-B230uKt51xnMXVvzsHqz1tOinl_fh50Hg2-I9B0GJopiGk1se6SfeiLoSXyhHFeRYWrHdNXoi-qQgZkkmjDHzZ9M2gm-xCG4KLc4j7hh09i4OTQAEbWnqc3JsjQgnGMJ_Hba1OzWMIi0OGD-B3bIIkbXyc9FBCjyA42t59w9hdVbP_CMQsbV2K5eZ80opbaxFbvlWnoQq8mJ2BK-H9126Hu6cWTfOSip7WDfllW5G8GIpe9GBfPxT6j2rbSnBwNzhi3r-rezXeYkFWoPGo3SxMmlluKRDK31hc4y1H8HGoPSy9xZNeWXbI3i-HKZ1zs0bM_P1IshQPMhUph__f4pnsDY52tstd6f7O-twK-HrGuHM3AastvOFf0JJVGufBssV8PW6l8pvCa4y7g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKcIFFgEHDhYcT3r1wEhSho1FKIopVJvZl-mBxqX2BHqr-F_8OuYWdspEohbT5bs8VremZ3Hzuw3AC9tauMo1bz_lWEgXZ4EOtRJwKdVTK7zxPr-KZ9mycGx_HASn2zBr_4sDJdV9jrRK2pbGd4jH5HhjiRji-Co7Moi5uPJ2_PvAXeQ4kxr306jFZFDd_GDwrf6zXRMvH4VRZP9z-8Pgq7DQGAwl02AmVGOTKxMQ620QRPZFDOHFsnLz-PYYqatRKQQMs_QqlhJi_zbqZRxah3SuNdgO-WoaADbe_uz-WKzwxMiiXcoW0xUxDwcrepdtp8xIzn8YQV9s4C_bIE3cJPbcKvzTMW7VpTuwJZb3oUbXZP004t78HPhu2_xDoQgt1FMfR2Xs_SKU6IqxZw8VkFqphHjNu0T0JVMmiYa_4z7gNZNLfhMi-AU0fos4PxBK_3iSHl40IaGPiM1Vwtfz-C_ddRU5lQxprRYMJoCK2nh7WzpVqIFGLgPx1cy-w9gsKyW7iGIUGu9m2JinJQyV1pbTgCXjohK0ml6CK_7-S5MB37OPTi-FRQEMW-KS94M4cWG9ryF_Pgn1R6zbUPBMN3-RrX6WnSrvrCZ1coqZ9GEUsWl4gDPanSZTm2YuyHs9EwvOt1RF5eSPoTnm8e06jmVo5auWnsasg6JTPJH_x_iGVynZVJ8nM4OH8PNiM9u-AK6HRg0q7V7Qh5Vo592oivgy1Wvlt8aTjiA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retrieving+the+Infected+Area+of+Pine+Wilt+Disease-Disturbed+Pine+Forests+from+Medium-Resolution+Satellite+Images+Using+the+Stochastic+Radiative+Transfer+Theory&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Xiaoyao&rft.au=Tong%2C+Tong&rft.au=Luo%2C+Tao&rft.au=Wang%2C+Jingxu&rft.date=2022-03-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=6&rft.spage=1526&rft_id=info:doi/10.3390%2Frs14061526&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |