Retrieving the Infected Area of Pine Wilt Disease-Disturbed Pine Forests from Medium-Resolution Satellite Images Using the Stochastic Radiative Transfer Theory

Pine wilt disease (PWD) is a global destructive threat to forests which has been widely spread and has caused severe tree mortality all over the world. It is important to establish an effective method for forest managers to detect the infected area in a large region. Remote sensing is a feasible too...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 14; no. 6; p. 1526
Main Authors Li, Xiaoyao, Tong, Tong, Luo, Tao, Wang, Jingxu, Rao, Yueming, Li, Linyuan, Jin, Decai, Wu, Dewei, Huang, Huaguo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pine wilt disease (PWD) is a global destructive threat to forests which has been widely spread and has caused severe tree mortality all over the world. It is important to establish an effective method for forest managers to detect the infected area in a large region. Remote sensing is a feasible tool to detect PWD, but the traditional empirical methods lack the ability to explain the signals and can hardly be extended to large scales. The studies using physically-based models either ignore the within-canopy heterogeneity or rely too much on prior knowledge. In this study, we propose an approach to retrieve PWD infected areas from medium-resolution satellite images of two phases based on the simulations of an extended stochastic radiative transfer model for forests infected by pests (SRTP). A small amount of prior knowledge was used, and a change of background soil was considered in this approach. The performance was evaluated in different study sites. The inversion method performs best in the three-dimensional model LESS simulation sample plots (R2 = 0.88, RMSE = 0.059), and the inversion accuracy decreases in the real forest sample plots. For Jiangxi masson pine stand with large coverage and serious damage, R2 = 0.57, RMSE = 0.074; and for Shandong black pine stand with sparse and a small number of single plant damage, R2 = 0.48, RMSE = 0.063. This study indicates that the SRTP model is more feasible for pest damage inversion over different regions compared with empirical methods. The stochastic radiative transfer theory provides a potential approach for future monitoring of terrestrial vegetation parameters.
AbstractList Pine wilt disease (PWD) is a global destructive threat to forests which has been widely spread and has caused severe tree mortality all over the world. It is important to establish an effective method for forest managers to detect the infected area in a large region. Remote sensing is a feasible tool to detect PWD, but the traditional empirical methods lack the ability to explain the signals and can hardly be extended to large scales. The studies using physically-based models either ignore the within-canopy heterogeneity or rely too much on prior knowledge. In this study, we propose an approach to retrieve PWD infected areas from medium-resolution satellite images of two phases based on the simulations of an extended stochastic radiative transfer model for forests infected by pests (SRTP). A small amount of prior knowledge was used, and a change of background soil was considered in this approach. The performance was evaluated in different study sites. The inversion method performs best in the three-dimensional model LESS simulation sample plots (R2 = 0.88, RMSE = 0.059), and the inversion accuracy decreases in the real forest sample plots. For Jiangxi masson pine stand with large coverage and serious damage, R2 = 0.57, RMSE = 0.074; and for Shandong black pine stand with sparse and a small number of single plant damage, R2 = 0.48, RMSE = 0.063. This study indicates that the SRTP model is more feasible for pest damage inversion over different regions compared with empirical methods. The stochastic radiative transfer theory provides a potential approach for future monitoring of terrestrial vegetation parameters.
Pine wilt disease (PWD) is a global destructive threat to forests which has been widely spread and has caused severe tree mortality all over the world. It is important to establish an effective method for forest managers to detect the infected area in a large region. Remote sensing is a feasible tool to detect PWD, but the traditional empirical methods lack the ability to explain the signals and can hardly be extended to large scales. The studies using physically-based models either ignore the within-canopy heterogeneity or rely too much on prior knowledge. In this study, we propose an approach to retrieve PWD infected areas from medium-resolution satellite images of two phases based on the simulations of an extended stochastic radiative transfer model for forests infected by pests (SRTP). A small amount of prior knowledge was used, and a change of background soil was considered in this approach. The performance was evaluated in different study sites. The inversion method performs best in the three-dimensional model LESS simulation sample plots (R² = 0.88, RMSE = 0.059), and the inversion accuracy decreases in the real forest sample plots. For Jiangxi masson pine stand with large coverage and serious damage, R² = 0.57, RMSE = 0.074; and for Shandong black pine stand with sparse and a small number of single plant damage, R² = 0.48, RMSE = 0.063. This study indicates that the SRTP model is more feasible for pest damage inversion over different regions compared with empirical methods. The stochastic radiative transfer theory provides a potential approach for future monitoring of terrestrial vegetation parameters.
Author Luo, Tao
Huang, Huaguo
Li, Linyuan
Tong, Tong
Wang, Jingxu
Rao, Yueming
Li, Xiaoyao
Wu, Dewei
Jin, Decai
Author_xml – sequence: 1
  givenname: Xiaoyao
  surname: Li
  fullname: Li, Xiaoyao
– sequence: 2
  givenname: Tong
  surname: Tong
  fullname: Tong, Tong
– sequence: 3
  givenname: Tao
  surname: Luo
  fullname: Luo, Tao
– sequence: 4
  givenname: Jingxu
  orcidid: 0000-0002-4544-1593
  surname: Wang
  fullname: Wang, Jingxu
– sequence: 5
  givenname: Yueming
  surname: Rao
  fullname: Rao, Yueming
– sequence: 6
  givenname: Linyuan
  surname: Li
  fullname: Li, Linyuan
– sequence: 7
  givenname: Decai
  surname: Jin
  fullname: Jin, Decai
– sequence: 8
  givenname: Dewei
  surname: Wu
  fullname: Wu, Dewei
– sequence: 9
  givenname: Huaguo
  orcidid: 0000-0001-9355-2338
  surname: Huang
  fullname: Huang, Huaguo
BookMark eNptkt9rFDEQxxepYK198S8I-CLC2mwm-yOPpVo9qCjXKz6G2WT2LsfepibZQv8a_1VzvRalmJcJmc98M_NlXhdHk5-oKN5W_COA4mchVpI3VS2aF8Wx4K0opVDi6J_7q-I0xi3PB6BSXB4Xv5eUgqM7N61Z2hBbTAOZRJadB0LmB_bDTcR-ujGxTy4SRipzTHPoM_OQu_SBYopsCH7HvpF1865cUvTjnJyf2DUmGkeXsvQO1xTZTXz66zp5s8GYnGFLtA6TuyO2CjjFgQJbbciH-zfFywHHSKeP8aS4ufy8uvhaXn3_srg4vyoNKJlK6AxSxYVseY-9ASNsCx2BhYbXqq4tdL2VAI3iqgOLNUoL1JNppaxbS3BSLA661uNW3wa3w3CvPTr98ODDWmPInY6kbWd7tEgWDJdYDyikqG0P1PWt5Wqv9f6gdRv8rzmbo3cumuwCTuTnqEUju65tZKMy-u4ZuvVzmPKke0rIWskOMsUPlAk-xkCDNi7h3t4U0I264nq_APrvAuSSD89Knmb6D_wHH6C0tQ
CitedBy_id crossref_primary_10_1016_j_rsase_2024_101341
crossref_primary_10_3390_f15050891
crossref_primary_10_1051_bioconf_202411601003
crossref_primary_10_3390_rs14205164
crossref_primary_10_3390_app12136676
crossref_primary_10_3390_f14030588
crossref_primary_10_1016_j_rse_2023_113698
crossref_primary_10_3390_f15101706
crossref_primary_10_3390_rs15174295
crossref_primary_10_1109_TGRS_2024_3421332
crossref_primary_10_3390_rs14133075
Cites_doi 10.1016/S0034-4257(96)00072-7
10.1016/j.foreco.2012.08.003
10.14358/PERS.69.3.283
10.1016/S0034-4257(02)00010-X
10.1016/j.foreco.2010.03.008
10.1016/S0034-4257(03)00112-3
10.1016/j.rse.2013.01.013
10.1016/j.rse.2013.05.008
10.1094/PDIS.2000.84.6.675
10.1016/j.rse.2019.111480
10.1016/j.rse.2010.07.008
10.1029/97JD03380
10.1016/j.rse.2009.02.015
10.1016/j.rse.2009.11.005
10.3390/rs10071133
10.1016/j.rse.2012.05.016
10.1007/978-94-009-8647-3
10.1016/j.jqsrt.2007.01.053
10.1109/TGRS.2013.2238242
10.1016/j.rse.2006.03.012
10.1016/j.rse.2007.12.011
10.1016/j.rse.2011.02.018
10.1023/A:1010933404324
10.1016/S0176-1617(11)81633-0
10.1016/j.isprsjprs.2013.10.010
10.1016/j.rse.2018.11.036
10.1016/j.foreco.2017.11.005
10.3390/f9030115
10.1016/j.isprsjprs.2014.05.013
10.1016/S0034-4257(00)00128-0
10.1016/j.rse.2011.09.009
10.1016/j.rse.2021.112475
10.1016/j.isprsjprs.2016.01.011
10.1080/01431160802566439
10.1016/j.rse.2008.05.005
10.1034/j.1399-3054.1999.106119.x
10.1016/j.rse.2020.112040
10.3390/rs11212540
10.1016/j.foreco.2013.03.038
10.3390/rs5073280
10.1080/01431169408954345
10.1016/j.rse.2009.12.005
10.3390/rs4092661
10.1016/j.eng.2020.07.001
10.1016/j.rse.2011.12.023
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs14061526
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_d8dbadaed3c04a5fa2425db3e8b7d09e
10_3390_rs14061526
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-38cae102470babc3c2d738e3d3605955d38bd433690983da5a4d3ebec74457de3
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:31:51 EDT 2025
Fri Jul 11 10:18:59 EDT 2025
Fri Jul 25 09:28:39 EDT 2025
Thu Apr 24 23:11:42 EDT 2025
Tue Jul 01 01:59:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-38cae102470babc3c2d738e3d3605955d38bd433690983da5a4d3ebec74457de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4544-1593
0000-0001-9355-2338
OpenAccessLink https://www.proquest.com/docview/2642459483?pq-origsite=%requestingapplication%
PQID 2642459483
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_d8dbadaed3c04a5fa2425db3e8b7d09e
proquest_miscellaneous_2648876469
proquest_journals_2642459483
crossref_citationtrail_10_3390_rs14061526
crossref_primary_10_3390_rs14061526
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Sun (ref_4) 2021; 40
Townsend (ref_29) 2012; 119
Rivera (ref_50) 2013; 5
ref_10
Sims (ref_41) 2002; 81
Babst (ref_26) 2010; 114
Meddens (ref_19) 2011; 115
Pontius (ref_25) 2008; 112
Qi (ref_35) 2019; 221
Oumar (ref_23) 2014; 87
Gitelson (ref_39) 1994; 143
Shabanov (ref_44) 2000; 74
Thayn (ref_20) 2013; 136
Coops (ref_13) 2010; 259
Stoyan (ref_46) 2013; 45
Verrelst (ref_51) 2014; 52
Goodwin (ref_14) 2008; 112
Skakun (ref_16) 2003; 86
Li (ref_33) 2020; 250
Shabanov (ref_45) 2007; 107
Hicke (ref_8) 2009; 30
Gitelson (ref_37) 1996; 58
Kennedy (ref_27) 2010; 114
Hornero (ref_32) 2020; 236
Olsson (ref_12) 2012; 285
Bright (ref_18) 2012; 124
Cheng (ref_22) 2010; 114
Merzlyak (ref_38) 2010; 106
Quintano (ref_40) 2016; 50
ref_30
Ye (ref_2) 2019; 55
Franklin (ref_7) 2003; 69
Belgiu (ref_48) 2016; 114
Coops (ref_15) 2009; 113
Ichihara (ref_3) 2000; 84
Defries (ref_36) 1994; 15
Meigs (ref_28) 2011; 115
Adelabu (ref_17) 2014; 95
Oumar (ref_24) 2013; 21
Higashi (ref_52) 2009; 10
Yu (ref_5) 2021; 101
ref_42
Huang (ref_34) 2013; 132
Walter (ref_21) 2013; 302
Lin (ref_31) 2021; 260
Breiman (ref_47) 2001; 45
Syifa (ref_53) 2020; 6
Ikegami (ref_1) 2018; 409
Knyazikhin (ref_43) 1998; 103
ref_9
Coops (ref_11) 2006; 103
Immitzer (ref_49) 2012; 4
ref_6
References_xml – volume: 58
  start-page: 289
  year: 1996
  ident: ref_37
  article-title: Use of a green channel in remote sensing of global vegetation from EOS-MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00072-7
– volume: 285
  start-page: 29
  year: 2012
  ident: ref_12
  article-title: A new invasive insect in Sweden-Physokermes inopinatus: Tracing forest damage with satellite based remote sensing
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2012.08.003
– volume: 69
  start-page: 283
  year: 2003
  ident: ref_7
  article-title: Mountain pine beetle red-attack forest damage classification using stratified Landsat TM data in British Columbia, Canada
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.69.3.283
– volume: 81
  start-page: 337
  year: 2002
  ident: ref_41
  article-title: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00010-X
– volume: 259
  start-page: 2355
  year: 2010
  ident: ref_13
  article-title: Assessing changes in forest fragmentation following infestation using time series Landsat imagery
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2010.03.008
– volume: 86
  start-page: 433
  year: 2003
  ident: ref_16
  article-title: Sensitivity of the thematic mapper enhanced wetness difference index to detect mountain pine beetle red-attack damage
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(03)00112-3
– volume: 101
  start-page: 102363
  year: 2021
  ident: ref_5
  article-title: A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 132
  start-page: 221
  year: 2013
  ident: ref_34
  article-title: RAPID: A Radiosity Applicable to Porous IndiviDual Objects for directional reflectance over complex vegetated scenes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.01.013
– volume: 136
  start-page: 210
  year: 2013
  ident: ref_20
  article-title: Using a remotely sensed optimized Disturbance Index to detect insect defoliation in the Apostle Islands, Wisconsin, USA
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.05.008
– volume: 84
  start-page: 675
  year: 2000
  ident: ref_3
  article-title: Early Symptom Development and Histological Changes Associated with Migration of Bursaphelenchus xylophilus in Seedling Tissues of Pinus thunbergii
  publication-title: Plant Dis.
  doi: 10.1094/PDIS.2000.84.6.675
– volume: 236
  start-page: 111480
  year: 2020
  ident: ref_32
  article-title: Monitoring the incidence of Xylella fastidiosa infection in olive orchards using ground-based evaluations, airborne imaging spectroscopy and Sentinel-2 time series through 3-D radiative transfer modelling
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111480
– volume: 114
  start-page: 2897
  year: 2010
  ident: ref_27
  article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr-Temporal segmentation algorithms
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.07.008
– volume: 103
  start-page: 6133
  year: 1998
  ident: ref_43
  article-title: Influence of small-scale structure on radiative transfer and photosynthesis in vegetation cover
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/97JD03380
– volume: 50
  start-page: 170
  year: 2016
  ident: ref_40
  article-title: SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 113
  start-page: 1250
  year: 2009
  ident: ref_15
  article-title: Large area monitoring with a MODIS-based Disturbance Index (DI) sensitive to annual and seasonal variations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.02.015
– volume: 114
  start-page: 637
  year: 2010
  ident: ref_26
  article-title: Landsat TM/ETM plus and tree-ring based assessment of spatiotemporal patterns of the autumnal moth (Epirrita autumnata) in northernmost Fennoscandia
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.11.005
– ident: ref_10
– ident: ref_30
  doi: 10.3390/rs10071133
– volume: 124
  start-page: 270
  year: 2012
  ident: ref_18
  article-title: Estimating aboveground carbon stocks of a forest affected by mountain pine beetle in Idaho using lidar and multispectral imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.05.016
– ident: ref_42
  doi: 10.1007/978-94-009-8647-3
– volume: 107
  start-page: 236
  year: 2007
  ident: ref_45
  article-title: Stochastic radiative transfer model for mixture of discontinuous vegetation canopies
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2007.01.053
– volume: 52
  start-page: 257
  year: 2014
  ident: ref_51
  article-title: Optimizing LUT-Based RTM Inversion for Semiautomatic Mapping of Crop Biophysical Parameters from Sentinel-2 and-3 Data: Role of Cost Functions
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2238242
– volume: 103
  start-page: 67
  year: 2006
  ident: ref_11
  article-title: Assessment of QuickBird high spatial resolution imagery to detect red attack damage due to mountain pine beetle infestation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.03.012
– volume: 112
  start-page: 2665
  year: 2008
  ident: ref_25
  article-title: Ash decline assessment in emerald ash borer-infested regions: A test of tree-level, hyperspectral technologies
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.12.011
– volume: 115
  start-page: 1632
  year: 2011
  ident: ref_19
  article-title: Evaluating the potential of multispectral imagery to map multiple stages of tree mortality
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.02.018
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_47
  article-title: Random Forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 143
  start-page: 286
  year: 1994
  ident: ref_39
  article-title: Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(11)81633-0
– volume: 87
  start-page: 39
  year: 2014
  ident: ref_23
  article-title: Integrating environmental variables and WorldView-2 image data to improve the prediction and mapping of Thaumastocoris peregrinus (bronze bug) damage in plantation forests
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.10.010
– volume: 21
  start-page: 113
  year: 2013
  ident: ref_24
  article-title: Predicting Thaumastocoris peregrinus damage using narrow band normalized indices and hyperspectral indices using field spectra resampled to the Hyperion sensor
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 221
  start-page: 695
  year: 2019
  ident: ref_35
  article-title: LESS: LargE-Scale remote sensing data and image simulation framework over heterogeneous 3D scenes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.036
– volume: 409
  start-page: 343
  year: 2018
  ident: ref_1
  article-title: Estimate global risks of a forest disease under current and future climates using species distribution model and simple thermal model Pine Wilt disease as a model case
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2017.11.005
– ident: ref_9
  doi: 10.3390/f9030115
– volume: 95
  start-page: 34
  year: 2014
  ident: ref_17
  article-title: Evaluating the impact of red-edge band from Rapideye image for classifying insect defoliation levels
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.05.013
– volume: 74
  start-page: 125
  year: 2000
  ident: ref_44
  article-title: Stochastic Modeling of Radiation Regime in Discontinuous Vegetation Canopies
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00128-0
– volume: 45
  start-page: 345
  year: 2013
  ident: ref_46
  article-title: Stochastic Geometry and its Applications
  publication-title: J. R. Stat. Soc.
– volume: 115
  start-page: 3707
  year: 2011
  ident: ref_28
  article-title: A Landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.09.009
– volume: 260
  start-page: 112475
  year: 2021
  ident: ref_31
  article-title: Using the 3D model RAPID to invert the shoot dieback ratio of vertically heterogeneous Yunnan pine forests to detect beetle damage
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112475
– volume: 114
  start-page: 24
  year: 2016
  ident: ref_48
  article-title: Random forest in remote sensing: A review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume: 55
  start-page: 1
  year: 2019
  ident: ref_2
  article-title: Epidemic Status of Pine Wilt Disease in China and Its Prevention and Control Techniques and Counter Measures
  publication-title: Sci. Silvae Sin.
– volume: 30
  start-page: 4427
  year: 2009
  ident: ref_8
  article-title: Mapping whitebark pine mortality caused by a mountain pine beetle outbreak with high spatial resolution satellite imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160802566439
– volume: 112
  start-page: 3680
  year: 2008
  ident: ref_14
  article-title: Estimation of insect infestation dynamics using a temporal sequence of Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.05.005
– volume: 106
  start-page: 135
  year: 2010
  ident: ref_38
  article-title: Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening
  publication-title: Physiol. Plant.
  doi: 10.1034/j.1399-3054.1999.106119.x
– volume: 250
  start-page: 112040
  year: 2020
  ident: ref_33
  article-title: Extending the stochastic radiative transfer theory to simulate BRF over forests with heterogeneous distribution of damaged foliage inside of tree crowns
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112040
– ident: ref_6
  doi: 10.3390/rs11212540
– volume: 302
  start-page: 308
  year: 2013
  ident: ref_21
  article-title: Multi-temporal analysis reveals that predictors of mountain pine beetle infestation change during outbreak cycles
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2013.03.038
– volume: 10
  start-page: 389
  year: 2009
  ident: ref_52
  article-title: Extraction of Expanded Area of Damaged Stands by Pine Wilt Disease Using Two Landsat TM Data
  publication-title: J. Remote Sens. Soc. Jpn.
– volume: 5
  start-page: 3280
  year: 2013
  ident: ref_50
  article-title: Multiple Cost Functions and Regularization Options for Improved Retrieval of Leaf Chlorophyll Content and LAI through Inversion of the PROSAIL Model
  publication-title: Remote Sens.
  doi: 10.3390/rs5073280
– volume: 15
  start-page: 3567
  year: 1994
  ident: ref_36
  article-title: NDVI-derived land cover classifications at a global scale
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169408954345
– volume: 114
  start-page: 899
  year: 2010
  ident: ref_22
  article-title: Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.12.005
– volume: 4
  start-page: 2661
  year: 2012
  ident: ref_49
  article-title: Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data
  publication-title: Remote Sens.
  doi: 10.3390/rs4092661
– volume: 40
  start-page: 45
  year: 2021
  ident: ref_4
  article-title: Occurrence of major forest pests in 2020 and prediction of occurrence trend in 2021 in China
  publication-title: For. Pest Dis.
– volume: 6
  start-page: 919
  year: 2020
  ident: ref_53
  article-title: Detection of the Pine Wilt Disease Tree Candidates for Drone Remote Sensing Using Artificial Intelligence Techniques
  publication-title: Engineering
  doi: 10.1016/j.eng.2020.07.001
– volume: 119
  start-page: 255
  year: 2012
  ident: ref_29
  article-title: A general Landsat model to predict canopy defoliation in broadleaf deciduous forests
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.12.023
SSID ssj0000331904
Score 2.3882713
Snippet Pine wilt disease (PWD) is a global destructive threat to forests which has been widely spread and has caused severe tree mortality all over the world. It is...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1526
SubjectTerms Algorithms
China
Coniferous forests
Damage
Disease
Forest management
Forests
Heterogeneity
infected area
Knowledge
Pests
Pine
pine wilt disease
Pinus massoniana
Pinus nigra
plant damage
Radiative transfer
random forest
Remote sensing
Satellite imagery
satellites
Simulation
soil
stochastic radiative transfer
Three dimensional models
tree mortality
Trees
Unmanned aerial vehicles
vascular wilt
Wilt
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLvSCWmjFli0yopceIsKO8_CR8hAgUVVLkbhFHo8jDrCLNtlDfw1_lRknu10JJC6cIiWTxPKM52HPfKPUDyooGxUo-18lJCbYPMEU80SqVbxFm1Psn3L1Oz-_MZe32e1Kqy_JCevggbuJO6CS0JELBD41Lqud-MiEEEosKLVBtC_bvJVgKupgYNFKTYdHChzXH8yaQ7FdmaAorFigCNT_Qg9H43L2SW30XqE-6kbzWX0Ik0213jcov_u3pZ7GsfOVRP-aXTZ9EXOoAvErwelprf-wt6h5ibf6pDtySfjK5gSZJj6THpxN22ipJ9FyPDN_SGTvvpM8fe0iNGfLn35gFdPomEsQ_3XdTv2dEzxnPRYkA1GQOtq4Osx0V9z_Rd2cnf49Pk_63gqJB2vaBErvAjsXpkjRoQc_ogLKAAQc39gsIyiRDAAHz7YEcpkzBMLwwpisoABf1dpkOgnbSqeIeFhA7oMxxjpEksPXOjBRzfoEB-rnYr4r3wOPS_-L-4oDEOFN9Z83A7W_pH3s4DZepfolbFtSCER2vMGCU_WCU70lOAM1XDC96tdtU7F7ODKCYAMDtbd8zCtOjlHcJEznkYY1c25y--09xrGjPo6kpCLmtQ3VWjubh-_s6LS4G2X6GRYmAPo
  priority: 102
  providerName: Directory of Open Access Journals
Title Retrieving the Infected Area of Pine Wilt Disease-Disturbed Pine Forests from Medium-Resolution Satellite Images Using the Stochastic Radiative Transfer Theory
URI https://www.proquest.com/docview/2642459483
https://www.proquest.com/docview/2648876469
https://doaj.org/article/d8dbadaed3c04a5fa2425db3e8b7d09e
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB7R5AAXxFMESrQILhysupm1vT5VLW0oiFZVQqXerH25PdC4xM6BX9O_ysx6kyK14mTJHq8lz3tm9xuAT65w2aQwXP9SmEhf5olJTZ7waRVbmjJ3YX7KyWl-fC6_X2QXseDWxm2Va5sYDLVrLNfId8hxTyRji-Deze-Ep0ZxdzWO0NiCIZlgpQYwPDg6PZttqiwpkoilssclRcrvd5btLvuwjNEU_vFEAbD_nj0OTmb6DJ7G6FDs9-x8Do_84gU8joPKr_68hNtZmIDFVQBBoZv4FvZSeUeveC2aWpxR1ChI1Ttx2LdeErqSWzFEE57xLM62awWfKxHcplldJ1zD7yVQzHWA6Oxo6WsyNa0IewrCt-ZdY6804zqLGSMasKEUwdfVfin6Q_6v4Hx69PPLcRJnLCQWS9klqKz2FGTIIjXaWLQTV6Dy6JDynDLLHCrjJCIl0aVCpzMtHTLjCymzwnl8DYNFs_BvQKTGmN0Cc-ullKU2xnETtvZEVJNdMSP4vP7flY0A5DwH41dFiQjzprrjzQg-bmhvetiNB6kOmG0bCobKDjea5WUVNa9yyhnttHdoU6mzWnOS5Qx6ZQqXln4E22umV1F_2-pO2kbwYfOYNI_bKXrhm1WgIQudy7x8-_8l3sGTCR-aCDvXtmHQLVf-PYUynRnDlpp-HcNw__Dkx3wcpXccCgN_AcLL-wo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxFMsLWAEHDhETWPn4QNCQFl26UOoD6m3YHscemg3ZZMV6q_hH_AbmXGSLRKIW08rrWe9SmY8D4_9fQAvMcc0yS3vfxUyUl5nkY1tFvFtFaetzjDwp-ztZ5Nj9fkkPVmBX8NdGD5WOfjE4KixdrxHvkmBO1GMLSLfXnyPmDWKu6sDhUZnFjv-8geVbM2b6Tbp91WSjD8efZhEPatA5KRWbSQLZzyFVZXH1lgnXYK5LLxESZm9TlOUhUUlJZWNupBoUqNQ8qPmSqU5eknz3oCbJKG52CvGn5Z7OrEkg45Vh4JK4_HmvNniiJkydsMfcS_QA_zl_UNIG9-B230uKt51xnMXVvzsHqz1tOinl_fh50Hg2-I9B0GJopiGk1se6SfeiLoSXyhHFeRYWrHdNXoi-qQgZkkmjDHzZ9M2gm-xCG4KLc4j7hh09i4OTQAEbWnqc3JsjQgnGMJ_Hba1OzWMIi0OGD-B3bIIkbXyc9FBCjyA42t59w9hdVbP_CMQsbV2K5eZ80opbaxFbvlWnoQq8mJ2BK-H9126Hu6cWTfOSip7WDfllW5G8GIpe9GBfPxT6j2rbSnBwNzhi3r-rezXeYkFWoPGo3SxMmlluKRDK31hc4y1H8HGoPSy9xZNeWXbI3i-HKZ1zs0bM_P1IshQPMhUph__f4pnsDY52tstd6f7O-twK-HrGuHM3AastvOFf0JJVGufBssV8PW6l8pvCa4y7g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKcIFFgEHDhYcT3r1wEhSho1FKIopVJvZl-mBxqX2BHqr-F_8OuYWdspEohbT5bs8VremZ3Hzuw3AC9tauMo1bz_lWEgXZ4EOtRJwKdVTK7zxPr-KZ9mycGx_HASn2zBr_4sDJdV9jrRK2pbGd4jH5HhjiRji-Co7Moi5uPJ2_PvAXeQ4kxr306jFZFDd_GDwrf6zXRMvH4VRZP9z-8Pgq7DQGAwl02AmVGOTKxMQ620QRPZFDOHFsnLz-PYYqatRKQQMs_QqlhJi_zbqZRxah3SuNdgO-WoaADbe_uz-WKzwxMiiXcoW0xUxDwcrepdtp8xIzn8YQV9s4C_bIE3cJPbcKvzTMW7VpTuwJZb3oUbXZP004t78HPhu2_xDoQgt1FMfR2Xs_SKU6IqxZw8VkFqphHjNu0T0JVMmiYa_4z7gNZNLfhMi-AU0fos4PxBK_3iSHl40IaGPiM1Vwtfz-C_ddRU5lQxprRYMJoCK2nh7WzpVqIFGLgPx1cy-w9gsKyW7iGIUGu9m2JinJQyV1pbTgCXjohK0ml6CK_7-S5MB37OPTi-FRQEMW-KS94M4cWG9ryF_Pgn1R6zbUPBMN3-RrX6WnSrvrCZ1coqZ9GEUsWl4gDPanSZTm2YuyHs9EwvOt1RF5eSPoTnm8e06jmVo5auWnsasg6JTPJH_x_iGVynZVJ8nM4OH8PNiM9u-AK6HRg0q7V7Qh5Vo592oivgy1Wvlt8aTjiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retrieving+the+Infected+Area+of+Pine+Wilt+Disease-Disturbed+Pine+Forests+from+Medium-Resolution+Satellite+Images+Using+the+Stochastic+Radiative+Transfer+Theory&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Xiaoyao&rft.au=Tong%2C+Tong&rft.au=Luo%2C+Tao&rft.au=Wang%2C+Jingxu&rft.date=2022-03-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=6&rft.spage=1526&rft_id=info:doi/10.3390%2Frs14061526&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon