Social Network and Bibliometric Analysis of Unmanned Aerial Vehicle Remote Sensing Applications from 2010 to 2021
Unmanned Aerial Vehicle (UAV) Remote sensing (RS) has unique advantages over traditional satellite RS, including convenience, high resolution, affordability and fast acquisition speed, making it widely used in many fields. To provide an overview of the development of UAV RS applications during the p...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 13; no. 15; p. 2912 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Unmanned Aerial Vehicle (UAV) Remote sensing (RS) has unique advantages over traditional satellite RS, including convenience, high resolution, affordability and fast acquisition speed, making it widely used in many fields. To provide an overview of the development of UAV RS applications during the past decade, we screened related publications from the Web of Science core database from 2010 to 2021, built co-author networks, a discipline interaction network, a keywords timeline view, a co-citation cluster, and detected burst citations using bibliometrics and social network analysis. Our results show that: (1) The number of UAV RS publications had an increasing trend, with explosive growth in the past five years. The number of papers published by China and the United States (US) is far ahead in this field; (2) The US has currently the greatest influence in this field through the largest number of international cooperations. Cooperation is mainly concentrated in countries and institutions with a large number of publications but is not widely distributed. (3) The application of UAV RS involves multiple interdisciplinary subjects, among which “Environmental Science and Ecology” ranks first; (4) Future research trends of UAV RS are expected to be related to artificial intelligence (e.g., artificial neural networks-based research). This paper provides a scientific basis and guidance for future developments of UAV RS applications, which can help the research community to better grasp the developments of this field. |
---|---|
AbstractList | Unmanned Aerial Vehicle (UAV) Remote sensing (RS) has unique advantages over traditional satellite RS, including convenience, high resolution, affordability and fast acquisition speed, making it widely used in many fields. To provide an overview of the development of UAV RS applications during the past decade, we screened related publications from the Web of Science core database from 2010 to 2021, built co-author networks, a discipline interaction network, a keywords timeline view, a co-citation cluster, and detected burst citations using bibliometrics and social network analysis. Our results show that: (1) The number of UAV RS publications had an increasing trend, with explosive growth in the past five years. The number of papers published by China and the United States (US) is far ahead in this field; (2) The US has currently the greatest influence in this field through the largest number of international cooperations. Cooperation is mainly concentrated in countries and institutions with a large number of publications but is not widely distributed. (3) The application of UAV RS involves multiple interdisciplinary subjects, among which “Environmental Science and Ecology” ranks first; (4) Future research trends of UAV RS are expected to be related to artificial intelligence (e.g., artificial neural networks-based research). This paper provides a scientific basis and guidance for future developments of UAV RS applications, which can help the research community to better grasp the developments of this field. |
Author | Zhong, Run Zou, Dongxiao Li, Hanliang Wang, Shuqing Chen, Huimin Zhou, Wei Yan, Kai Wang, Jingrui |
Author_xml | – sequence: 1 givenname: Jingrui surname: Wang fullname: Wang, Jingrui – sequence: 2 givenname: Shuqing surname: Wang fullname: Wang, Shuqing – sequence: 3 givenname: Dongxiao surname: Zou fullname: Zou, Dongxiao – sequence: 4 givenname: Huimin surname: Chen fullname: Chen, Huimin – sequence: 5 givenname: Run surname: Zhong fullname: Zhong, Run – sequence: 6 givenname: Hanliang surname: Li fullname: Li, Hanliang – sequence: 7 givenname: Wei surname: Zhou fullname: Zhou, Wei – sequence: 8 givenname: Kai orcidid: 0000-0003-4262-1772 surname: Yan fullname: Yan, Kai |
BookMark | eNptkU1rHDEMhoeSQtM0l_4CQy-lsI1le2bt4zb0IxAayEevRuOxU2899sb2UvLv682WtIToIiEevXqRXncHMUXbdW-BfuRc0ZNcgEPPFLAX3SGjS7YQTLGD_-pX3XEpa9qCc1BUHHZ3V8l4DOS7rb9T_kUwTuSTH4NPs63ZG7KKGO6LLyQ5chNnjNFOZGXzbuiH_elNsOTSzqlacmVj8fGWrDab4A1Wn2IhLqeZMAqU1NQygzfdS4eh2OO_-ai7-fL5-vTb4vzi69np6nxhuBJ1wZR1k-Ccjba5p6OSQ48CnTQAI186KiTFqQfHB4AlVUyMXDJEjmbqxRL4UXe2150SrvUm-xnzvU7o9UMj5VuNue7864FJaLuU7IUTkx2bjlJ0AByZGYWcmtb7vdYmp7utLVXPvhgbAkabtkWzgQ9i4MB2a989Qddpm9sRG9X3UgGVMDTqw54yOZWSrXs0CFTvnqn_PbPB9AlsfH04b83ow3MjfwCE35_R |
CitedBy_id | crossref_primary_10_3390_rs17071136 crossref_primary_10_3390_agronomy13020576 crossref_primary_10_1109_MGRS_2023_3311100 crossref_primary_10_51290_dpusbe_1455380 crossref_primary_10_3390_su142214971 crossref_primary_10_3390_rs14071604 crossref_primary_10_3390_rs14143332 crossref_primary_10_1108_JEDT_09_2023_0423 crossref_primary_10_3390_rs16244805 |
Cites_doi | 10.1016/j.jsg.2017.04.004 10.1016/j.eiar.2014.09.012 10.1016/j.isprsjprs.2010.08.002 10.2307/3322457 10.3390/rs10101606 10.1016/j.isprsjprs.2017.05.003 10.3390/rs4061671 10.1016/j.rse.2011.10.007 10.3390/rs70101074 10.1016/j.biocon.2015.03.031 10.1007/978-3-030-03017-9_20 10.1007/s00271-012-0382-9 10.1109/JSAC.2021.3088681 10.1073/pnas.0307513100 10.1016/j.ifacol.2018.08.126 10.1007/s40789-019-00264-5 10.1080/10095020.2017.1418263 10.1016/j.isprsjprs.2014.02.013 10.1109/LGRS.2010.2079913 10.3390/rs61110395 10.1890/120150 10.1016/j.eswa.2020.114417 10.1016/j.isprsjprs.2018.04.012 10.1002/asi.22883 10.3390/rs9080802 10.1109/TCYB.2020.2989241 10.3390/rs70302971 10.1525/ae.1997.24.1.219 10.1080/01431161.2018.1466085 10.1038/s41598-020-70964-5 10.3390/rs9090923 10.3390/f7030062 10.1517/14712598.2014.920813 10.3390/rs70404026 10.1016/j.apgeog.2019.02.002 10.4028/www.scientific.net/AMM.590.609 10.1016/j.fcr.2019.02.022 10.3390/rs9080828 10.3390/rs9040312 10.14358/PERS.81.4.281 10.1016/j.compag.2017.04.011 10.1051/e3sconf/201913101065 10.1007/s12518-013-0120-x 10.1071/BT01032 10.1016/j.jhydrol.2019.04.078 10.3390/rs12030508 10.1109/TGRS.2008.2010457 10.3390/rs9111110 10.1016/j.isprsjprs.2015.08.002 10.1109/ACCESS.2020.2987622 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs13152912 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection (via ProQuest) Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_6281d439854f4deb82a99061ab2cb48d 10_3390_rs13152912 |
GeographicLocations | United Kingdom--UK United States--US China |
GeographicLocations_xml | – name: United Kingdom--UK – name: China – name: United States--US |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c394t-29efd4332be0720b9865a4af8c11b37f0480ad51f361170924b382aa3acd54713 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:29:40 EDT 2025 Fri Jul 11 16:24:07 EDT 2025 Fri Jul 25 12:00:37 EDT 2025 Thu Apr 24 22:53:57 EDT 2025 Tue Jul 01 01:58:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-29efd4332be0720b9865a4af8c11b37f0480ad51f361170924b382aa3acd54713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4262-1772 |
OpenAccessLink | https://www.proquest.com/docview/2558910816?pq-origsite=%requestingapplication% |
PQID | 2558910816 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6281d439854f4deb82a99061ab2cb48d proquest_miscellaneous_2636463121 proquest_journals_2558910816 crossref_primary_10_3390_rs13152912 crossref_citationtrail_10_3390_rs13152912 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Ren (ref_25) 2019; 6 ref_57 ref_12 Roth (ref_33) 2018; 141 ref_54 Lazega (ref_14) 1995; 36 Freitas (ref_58) 2017; 138 Fogl (ref_26) 2019; 104 ref_16 Coburn (ref_19) 2018; 39 Colomina (ref_29) 2014; 92 Bendig (ref_47) 2014; 6 Anderson (ref_46) 2013; 11 Cawood (ref_53) 2017; 98 Wang (ref_22) 2018; 51 Lin (ref_24) 2011; 8 Wolfe (ref_15) 1997; 24 Bendig (ref_39) 2015; 39 (ref_44) 2012; 117 Yuzhe (ref_11) 2019; 39 Floreano (ref_3) 2015; 521 ref_21 Zhang (ref_55) 2014; 590 Aasen (ref_41) 2015; 108 ref_28 Yuan (ref_23) 2021; 169 Candiago (ref_45) 2015; 7 Pajares (ref_49) 2015; 81 Nex (ref_43) 2014; 6 Matese (ref_40) 2015; 7 ref_36 ref_35 Chen (ref_8) 2004; 101 ref_34 Li (ref_18) 2015; 50 Zhou (ref_48) 2017; 130 Watts (ref_2) 2012; 4 Chen (ref_10) 2014; 14 Baluja (ref_4) 2012; 30 Yu (ref_50) 2018; 21 Chianucci (ref_1) 2016; 47 Chen (ref_13) 2017; 2 Berni (ref_20) 2009; 47 ref_38 Fensham (ref_31) 2002; 50 Liu (ref_9) 2013; 64 Duan (ref_32) 2014; 26 Cui (ref_17) 2019; 574 Feng (ref_5) 2015; 7 Yang (ref_51) 2019; 235 ref_42 Xu (ref_52) 2020; 8 Zahawi (ref_30) 2015; 186 Jaakkola (ref_27) 2010; 65 Du (ref_56) 2019; 131 ref_6 He (ref_7) 2020; 10 Li (ref_37) 2021; 51 |
References_xml | – volume: 98 start-page: 67 year: 2017 ident: ref_53 article-title: LiDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models publication-title: J. Struct. Geol. doi: 10.1016/j.jsg.2017.04.004 – volume: 50 start-page: 158 year: 2015 ident: ref_18 article-title: Bibliometric analysis of global environmental assessment research in a 20-year period publication-title: Environ. Impact Assess. Rev. doi: 10.1016/j.eiar.2014.09.012 – volume: 65 start-page: 514 year: 2010 ident: ref_27 article-title: A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2010.08.002 – volume: 36 start-page: 781 year: 1995 ident: ref_14 article-title: Social Network Analysis: Methods and Applications publication-title: Rev. Française Sociol. doi: 10.2307/3322457 – ident: ref_34 doi: 10.3390/rs10101606 – volume: 521 start-page: 460 year: 2015 ident: ref_3 article-title: Science, technology and the future of small autonomous drones publication-title: Nat. Cell Biol. – volume: 26 start-page: 12 year: 2014 ident: ref_32 article-title: Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 2 start-page: 1 year: 2017 ident: ref_13 article-title: Science Mapping: A Systematic Review of the Literature publication-title: J. Data Inf. Sci. – volume: 130 start-page: 246 year: 2017 ident: ref_48 article-title: Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.05.003 – volume: 4 start-page: 1671 year: 2012 ident: ref_2 article-title: Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use publication-title: Remote Sens. doi: 10.3390/rs4061671 – ident: ref_16 – volume: 117 start-page: 322 year: 2012 ident: ref_44 article-title: Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.10.007 – volume: 7 start-page: 1074 year: 2015 ident: ref_5 article-title: UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis publication-title: Remote Sens. doi: 10.3390/rs70101074 – volume: 186 start-page: 287 year: 2015 ident: ref_30 article-title: Using lightweight unmanned aerial vehicles to monitor tropical forest recovery publication-title: Biol. Conserv. doi: 10.1016/j.biocon.2015.03.031 – ident: ref_54 doi: 10.1007/978-3-030-03017-9_20 – volume: 30 start-page: 511 year: 2012 ident: ref_4 article-title: Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV) publication-title: Irrig. Sci. doi: 10.1007/s00271-012-0382-9 – ident: ref_57 doi: 10.1109/JSAC.2021.3088681 – volume: 101 start-page: 5303 year: 2004 ident: ref_8 article-title: Searching for intellectual turning points: Progressive knowledge domain visualization publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0307513100 – volume: 51 start-page: 631 year: 2018 ident: ref_22 article-title: Development of Visualization System for Agricultural UAV Crop Growth Information Collection publication-title: IFAC PapersOnLine doi: 10.1016/j.ifacol.2018.08.126 – volume: 6 start-page: 320 year: 2019 ident: ref_25 article-title: A review of UAV monitoring in mining areas: Current status and future perspectives publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-019-00264-5 – volume: 21 start-page: 33 year: 2018 ident: ref_50 article-title: Analysis of large-scale UAV images using a multi-scale hierarchical representation publication-title: Geo Spat. Inf. Sci. doi: 10.1080/10095020.2017.1418263 – volume: 47 start-page: 60 year: 2016 ident: ref_1 article-title: Estimation of canopy attributes in beech forests using true colour digital images from a small fixed-wing UAV publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 92 start-page: 79 year: 2014 ident: ref_29 article-title: Unmanned aerial systems for photogrammetry and remote sensing: A review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.02.013 – volume: 8 start-page: 426 year: 2011 ident: ref_24 article-title: Mini-UAV-Borne LIDAR for Fine-Scale Mapping publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2010.2079913 – volume: 6 start-page: 10395 year: 2014 ident: ref_47 article-title: Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging publication-title: Remote Sens. doi: 10.3390/rs61110395 – volume: 11 start-page: 138 year: 2013 ident: ref_46 article-title: Lightweight unmanned aerial vehicles will revolutionize spatial ecology publication-title: Front. Ecol. Environ. doi: 10.1890/120150 – volume: 169 start-page: 114417 year: 2021 ident: ref_23 article-title: A review of deep learning methods for semantic segmentation of remote sensing imagery publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114417 – volume: 141 start-page: 161 year: 2018 ident: ref_33 article-title: Extracting leaf area index using viewing geometry effects—A new perspective on high-resolution unmanned aerial system photography publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.04.012 – volume: 64 start-page: 1852 year: 2013 ident: ref_9 article-title: The Evolution of Stakeholders’ Perceptions of Disaster: A Model of Information Flow publication-title: J. Am. Soc. Inf. Sci. Technol. doi: 10.1002/asi.22883 – ident: ref_12 doi: 10.3390/rs9080802 – volume: 51 start-page: 1756 year: 2021 ident: ref_37 article-title: Error-Tolerant Deep Learning for Remote Sensing Image Scene Classification publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2989241 – volume: 7 start-page: 2971 year: 2015 ident: ref_40 article-title: Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture publication-title: Remote Sens. doi: 10.3390/rs70302971 – volume: 24 start-page: 219 year: 1997 ident: ref_15 article-title: Social Network Analysis: Methods and Applications publication-title: Am. Ethnol. doi: 10.1525/ae.1997.24.1.219 – volume: 39 start-page: 4869 year: 2018 ident: ref_19 article-title: Radiometric and spectral comparison of inexpensive camera systems used for remote sensing publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1466085 – volume: 39 start-page: 79 year: 2015 ident: ref_39 article-title: Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 10 start-page: 1 year: 2020 ident: ref_7 article-title: Application of unmanned aerial vehicle (UAV) thermal infrared remote sensing to identify coal fires in the Huojitu coal mine in Shenmu city, China publication-title: Sci. Rep. doi: 10.1038/s41598-020-70964-5 – ident: ref_28 doi: 10.3390/rs9090923 – ident: ref_42 doi: 10.3390/f7030062 – volume: 14 start-page: 1295 year: 2014 ident: ref_10 article-title: Emerging trends and new developments in regenerative medicine: A scientometric update (2000–2014) publication-title: Expert Opin. Biol. Ther. doi: 10.1517/14712598.2014.920813 – volume: 39 start-page: 309 year: 2019 ident: ref_11 article-title: Knowledge map analysis of UAV remote sensing research based on citespace publication-title: Trop. Geogr. – volume: 7 start-page: 4026 year: 2015 ident: ref_45 article-title: Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images publication-title: Remote Sens. doi: 10.3390/rs70404026 – volume: 104 start-page: 32 year: 2019 ident: ref_26 article-title: Comparison of leaf-off and leaf-on combined UAV imagery and airborne LiDAR for assessment of a post-mining site terrain and vegetation structure: Prospects for monitoring hazards and restoration success publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2019.02.002 – volume: 590 start-page: 609 year: 2014 ident: ref_55 article-title: To Explore the UAV Application in Disaster Prevention and Reduction publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.590.609 – volume: 235 start-page: 142 year: 2019 ident: ref_51 article-title: Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2019.02.022 – ident: ref_6 doi: 10.3390/rs9080828 – ident: ref_38 doi: 10.3390/rs9040312 – volume: 81 start-page: 281 year: 2015 ident: ref_49 article-title: Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs) publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.81.4.281 – volume: 138 start-page: 210 year: 2017 ident: ref_58 article-title: An adaptive approach for UAV-based pesticide spraying in dynamic environments publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.04.011 – volume: 131 start-page: 01065 year: 2019 ident: ref_56 article-title: Research on rapid mapping technology in the field of unmanned aerial vehicle (UAV) aerial survey publication-title: E3S Web Conf. doi: 10.1051/e3sconf/201913101065 – volume: 6 start-page: 1 year: 2014 ident: ref_43 article-title: UAV for 3D mapping applications: A review publication-title: Appl. Geomat. doi: 10.1007/s12518-013-0120-x – volume: 50 start-page: 415 year: 2002 ident: ref_31 article-title: Aerial photography for assessing vegetation change: A review of applications and the relevance of findings for Australian vegetation history publication-title: Aust. J. Bot. doi: 10.1071/BT01032 – volume: 574 start-page: 892 year: 2019 ident: ref_17 article-title: Application of remote sensing to water environmental processes under a changing climate publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.04.078 – ident: ref_35 doi: 10.3390/rs12030508 – volume: 47 start-page: 722 year: 2009 ident: ref_20 article-title: Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring from an Unmanned Aerial Vehicle publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2010457 – ident: ref_36 – ident: ref_21 doi: 10.3390/rs9111110 – volume: 108 start-page: 245 year: 2015 ident: ref_41 article-title: Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.08.002 – volume: 8 start-page: 74175 year: 2020 ident: ref_52 article-title: Recent Research Progress of Unmanned Aerial Vehicle Regulation Policies and Technologies in Urban Low Altitude publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2987622 |
SSID | ssj0000331904 |
Score | 2.3691905 |
SecondaryResourceType | review_article |
Snippet | Unmanned Aerial Vehicle (UAV) Remote sensing (RS) has unique advantages over traditional satellite RS, including convenience, high resolution, affordability... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2912 |
SubjectTerms | affordability Artificial intelligence Artificial neural networks Bibliometric bibliometric analysis Bibliometrics China Citation analysis Citations Cocitation Cooperation Documents Environmental science Keywords Network analysis Neural networks Remote sensing Remote Sensing (RS) satellites Scientometric Social network analysis Social networks Social organization Trends Unmanned Aerial Vehicle (UAV) Unmanned aerial vehicles Visualization |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRS_iE-uLiF48FJtHs-lxV1xEcA_qireSpIkK2tXdevDfO9N21xUFL15aaIcSZibzaGa-IeRYFs7JkMnYag0JSqpcbAr8zcFlwURHBs-xG_lqoC6G8vI-vZ8b9YU1YQ08cMO4U8UhogKvqVMZZOGt5gYMqGLGcmelLtD6gs-bS6ZqGyxAtRLZ4JEKyOtPxxMmwFdljH_zQDVQ_w87XDuX_ipZaaNC2m1Ws0YWfLlOltoB5Y8fG-StaaOlg6Zqm0L-T3tP9hmb5xFjn07BRego0GH5YtB80m6tXvTOP-Jn6bUHuXh6gzXr5QPtzp1dU2wzoXhmTasR3DnbJMP--e3ZRdxOS4idyGQV88yHAtHIrE86PLGZVqmRJmjHmBWdgM3jpkhZEAqnzUDeZQUw0wjjihRclNgii-Wo9NuEJpAxg_y4CcHjNXM-2GASzzo6KMMjcjLlYO5aKHGcaPGcQ0qB3M6_uB2RoxntawOg8StVDwUxo0DQ6_oBqELeqkL-lypEZG8qxrzdiZMcUiYNIZFmKiKHs9ewh_BgxJR-9A40SiipBONs5z_WsUuWUU5NmeAeWazG734fQpfKHtRa-gkuxupW priority: 102 providerName: Directory of Open Access Journals |
Title | Social Network and Bibliometric Analysis of Unmanned Aerial Vehicle Remote Sensing Applications from 2010 to 2021 |
URI | https://www.proquest.com/docview/2558910816 https://www.proquest.com/docview/2636463121 https://doaj.org/article/6281d439854f4deb82a99061ab2cb48d |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB7R5AAXxFMESrQILhyseh_erE8ogYYK0Qi1BPVm7a53W6Rit0l64N8zY29SEIiLLdkjy9qZncfOzDcAb1TtvYqlypwxGKAU2me2pmMOoWouJyoGQd3Ixwt9tFSfzoqzdOC2TmWVW53YKeq69XRGfoCur0HTZrh-d3Wd0dQoyq6mERp7MEQVbMwAhrPDxZeT3SlLLlHEctXjkkqM7w9Way7RZpVc_GGJOsD-v_RxZ2TmD-B-8g7ZtGfnQ7gTmkdwNw0qv_j5GK77dlq26Ku3mW1qNvvuLqmJnrD22RZkhLWRLZsfltQom3Zixr6FC_osOwnIn8BOqXa9OWfT33LYjNpNGOWu2abFu-BPYDk__Pr-KEtTEzIvS7XJRBliTahkLuQTkbvS6MIqG43n3MlJpCZyWxc8Sk1TZzD-ctIIa6X1dYGmSj6FQdM24RmwHCNn5KOwMQa6lj5EF20e-MREbcUI3m5XsPIJUpwmW1xWGFrQale3qz2C1zvaqx5I459UM2LEjoLAr7sH7eq8Snup0gKdbHSkTKGiqoPDv0ebqrl1wjtl6hHsb9lYpR25rm7lZwSvdq9xL1GCxDahvUEaLbXSkgv-_P-feAH3iAN9IeA-DDarm_ASnZONG8OemX8cw3D64fjz6TjJ47gL9X8BIFPm6w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxFMsFDACDhyixo94nQNCW2DZ0nYP0EW9BduxW6SStLtbof4pfiMzeWxBIG69JFI8sqLx53l4PDMAL1TpvYq5Spwx6KBk2ie2pGMOoUouhyoGQdnI-1M9mamPh9nhGvzsc2HoWmUvExtBXdaezsi30PQ1qNoM129OzxLqGkXR1b6FRguL3XDxA122xeudd7i-L4UYvz94O0m6rgKJl7laJiIPsaSqXS6kQ5G63OjMKhuN59zJYaQka1tmPEpNXVnQP3HSCGul9WWGolzivNfgOs6Qk7Nnxh9WZzqpRECnqq2CiuPp1nzBJWrInIs_9F7THuAv6d-otPEtuNnZomzUguc2rIXqDmx0bdGPL-7CWZu8y6btXXFmq5Jtf3MnlLJPlf1ZX9KE1ZHNqu-WhDYbNaBmX8IxTcs-BURDYJ_ppnx1xEa_RcwZJbcwipSzZY1vwe_B7Eq4eR_Wq7oKD4Cl6KcjaoSNMdAz9yG6aNPAhyZqKwbwqudg4bsC5tRH46RAR4a4XVxyewDPV7SnbdmOf1Jt00KsKKjUdvOhnh8V3c4ttECTHs02k6moyuDw71GDa26d8E6ZcgCb_TIW3f5fFJdoHcCz1TDuXArH2CrU50ijpVZacsEf_n-Kp7AxOdjfK_Z2pruP4AatRnsFcRPWl_Pz8BjNoqV70mCRwderBv8v-nEdgw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VVAIuiFWkFBgEHDhY8SyejA8IJbRRSyGqCkG9mVlbpNZuk1Sof41fx3teUhCIWy-2ZD-NrHmf3zJvI-SV9M7JmMvEag0OSqZcYjwec3DpmRjKGDhWI3-aqp2Z_HCYHa6Rn10tDKZVdjKxFtS-cnhGPgDTV4Nq00wNYpsWsb81eXd2nuAEKYy0duM0Gojshcsf4L4t3u5uAa9fcz7Z_vJ-J2knDCRO5HKZ8DxEjx28bEiHPLW5VpmRJmrHmBXDiAXXxmcsCoUTWsBXsUJzY4RxPgOxLmDdG2R9iF5Rj6yPt6f7B6sTnlQAvFPZ9EQVIk8H8wUToC9zxv_QgvWwgL90Qa3gJnfJndYypaMGSvfIWijvk1vtkPTjywfkvCnlpdMmc5ya0tPxd3uCBfzY5592DU5oFemsPDUowumohjj9Go5xWXoQABuBfsa8-fKIjn6Ln1MsdaEYN6fLCu6cPSSza9nPR6RXVmV4TGgKXjtgiJsYA15zF6KNJg1sqKMyvE_edDtYuLadOU7VOCnArcHdLq52u09ermjPmiYe_6QaIyNWFNh4u35QzY-K9j8uFAcDH4w4nckofbDw9aDPFTOWOyu175PNjo1FKw0WxRV2--TF6jX8xxicMWWoLoBGCSWVYJxt_H-J5-QmAL_4uDvde0JuIzOafMRN0lvOL8JTsJGW9lkLRkq-XTf-fwELtCMV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Social+Network+and+Bibliometric+Analysis+of+Unmanned+Aerial+Vehicle+Remote+Sensing+Applications+from+2010+to+2021&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Jingrui&rft.au=Zou%2C+Dongxiao&rft.au=Chen%2C+Huimin&rft.au=Zhong%2C+Run&rft.date=2021-08-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=15&rft.spage=2912&rft_id=info:doi/10.3390%2Frs13152912&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |