Cyclic plastic deformation mechanism and cyclic hardening model of Sanicro 25 steel welded joint
The low cycle fatigue (LCF) behaviors of Sanicro 25 steel welded joint were investigated under different total strain amplitudes (Δεt/2) at 700 °C. The results revealed that the stress amplitude increased with an increase in Δεt/2, while the fatigue life decreased. In addition, the cyclic hardening...
Saved in:
Published in | Materials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 827; p. 141878 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
19.10.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The low cycle fatigue (LCF) behaviors of Sanicro 25 steel welded joint were investigated under different total strain amplitudes (Δεt/2) at 700 °C. The results revealed that the stress amplitude increased with an increase in Δεt/2, while the fatigue life decreased. In addition, the cyclic hardening ratio first increased and then decreased with increasing Δεt/2. This abnormal trend was attributed to the variation in the cyclic yielding stress, indicating the evolution of the dislocation morphology. The microstructure analysis revealed a significant change in the cyclic plastic deformation mechanism from the dislocation tangle (0.2%–0.4%) to the entanglement of dislocations on the precipitate (0.5%) with an increase in Δεt/2. Furthermore, the cyclic hardening models considering the entanglement of dislocations on the precipitate and the dislocation tangle were unified according to the modified Taylor stress. The validated results indicated that the unified cyclic hardening model accurately calculated the maximum cyclic stress during LCF for a 316H welded joint. |
---|---|
AbstractList | The low cycle fatigue (LCF) behaviors of Sanicro 25 steel welded joint were investigated under different total strain amplitudes (Δεt/2) at 700 °C. The results revealed that the stress amplitude increased with an increase in Δεt/2, while the fatigue life decreased. In addition, the cyclic hardening ratio first increased and then decreased with increasing Δεt/2. This abnormal trend was attributed to the variation in the cyclic yielding stress, indicating the evolution of the dislocation morphology. The microstructure analysis revealed a significant change in the cyclic plastic deformation mechanism from the dislocation tangle (0.2%–0.4%) to the entanglement of dislocations on the precipitate (0.5%) with an increase in Δεt/2. Furthermore, the cyclic hardening models considering the entanglement of dislocations on the precipitate and the dislocation tangle were unified according to the modified Taylor stress. The validated results indicated that the unified cyclic hardening model accurately calculated the maximum cyclic stress during LCF for a 316H welded joint. The low cycle fatigue (LCF) behaviors of Sanicro 25 steel welded joint were investigated under different total strain amplitudes (Δεt/2) at 700 °C. The results revealed that the stress amplitude increased with an increase in Δεt/2, while the fatigue life decreased. In addition, the cyclic hardening ratio first increased and then decreased with increasing Δεt/2. This abnormal trend was attributed to the variation in the cyclic yielding stress, indicating the evolution of the dislocation morphology. The microstructure analysis revealed a significant change in the cyclic plastic deformation mechanism from the dislocation tangle (0.2%–0.4%) to the entanglement of dislocations on the precipitate (0.5%) with an increase in Δεt/2. Furthermore, the cyclic hardening models considering the entanglement of dislocations on the precipitate and the dislocation tangle were unified according to the modified Taylor stress. The validated results indicated that the unified cyclic hardening model accurately calculated the maximum cyclic stress during LCF for a 316H welded joint. |
ArticleNumber | 141878 |
Author | Chen, Jintao Xu, Lianyong Chen, Hui Wang, Qingyuan Li, Haizhou |
Author_xml | – sequence: 1 givenname: Haizhou surname: Li fullname: Li, Haizhou organization: Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China – sequence: 2 givenname: Jintao surname: Chen fullname: Chen, Jintao organization: Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China – sequence: 3 givenname: Hui surname: Chen fullname: Chen, Hui organization: Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China – sequence: 4 givenname: Lianyong surname: Xu fullname: Xu, Lianyong email: xulianyong@tju.edu.cn organization: School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, PR China – sequence: 5 givenname: Qingyuan surname: Wang fullname: Wang, Qingyuan email: wangqy@scu.edu.cn organization: Failure Mechanics and Engineering Disaster Prevention and Mitigation Key Laboratory of Sichuan Province, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China |
BookMark | eNp9kEuLFDEUhYOMYM_oH3AVcF3tzaOqq8CNNL5gwIW6jumbGydFVdImGWX-vWnLlYtZXA43nC_JOdfsKqZIjL0UsBcghtfzfi1k9xKk2AstxsP4hO2aqE5ParhiO5ik6HqY1DN2XcoMAEJDv2Pfjw-4BOTnxZba1JFPebU1pMhXwjsbQ1m5jY7jZryz2VEM8Qdfk6OFJ8-_NBPmxGXPS6V29psWR47PKcT6nD31din04p_esG_v3309fuxuP3_4dHx726GadO2k1jg6QI1eqOEEgxdej3hyKEXvwYK-rFY4Se6AKK1HNYCCk-sPgyShbtir7d5zTj_vqVQzp_sc25NGDjBMqs3YXOPmav8tJZM3GOrftDXbsBgB5tKnmc2lT3Pp02x9NlT-h55zWG1-eBx6s0HUov8KlE3BQBHJhUxYjUvhMfwPIz-Rdg |
CitedBy_id | crossref_primary_10_1016_j_engfracmech_2022_108644 crossref_primary_10_1111_ffe_14093 crossref_primary_10_1002_srin_202400719 crossref_primary_10_1016_j_ijfatigue_2023_107637 crossref_primary_10_2355_isijinternational_ISIJINT_2022_211 |
Cites_doi | 10.1016/j.euromechsol.2007.05.001 10.1002/pssb.2220530227 10.1016/j.scriptamat.2006.05.018 10.1080/14786437108217406 10.1016/0025-5416(87)90463-0 10.1016/j.ijplas.2013.01.017 10.1088/0953-8984/24/19/195502 10.1016/j.tafmec.2017.02.004 10.1016/j.matchar.2017.05.037 10.1016/j.actamat.2007.07.012 10.1016/j.ijfatigue.2018.09.026 10.1016/j.commatsci.2014.05.034 10.1016/j.msea.2016.10.076 10.1016/j.msea.2014.07.075 10.1016/j.ijfatigue.2020.106097 10.1016/j.msea.2017.01.002 10.1098/rspa.1934.0106 10.1016/0025-5416(80)90175-5 10.1016/j.ijplas.2018.12.010 10.1016/j.ijplas.2019.11.013 10.1016/S1003-6326(20)65271-2 10.1016/0001-6160(72)90190-3 10.1016/j.ijfatigue.2016.03.003 10.1016/j.ijplas.2019.02.006 10.1016/0020-7225(85)90114-4 10.1016/j.jnucmat.2018.08.031 10.1016/j.msea.2018.02.004 10.1016/j.ijfatigue.2020.105942 10.1016/j.msea.2015.12.096 10.1016/j.msea.2014.01.016 10.1016/j.msea.2018.11.150 10.1016/j.pnsc.2019.01.002 10.1016/j.msea.2015.11.015 10.1016/j.ijplas.2016.05.009 10.1080/14786430801894569 10.1016/j.ijfatigue.2017.03.018 10.1016/0025-5416(84)90118-6 10.1016/j.corsci.2015.10.030 |
ContentType | Journal Article |
Copyright | 2021 Copyright Elsevier BV Oct 19, 2021 |
Copyright_xml | – notice: 2021 – notice: Copyright Elsevier BV Oct 19, 2021 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.msea.2021.141878 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4936 |
ExternalDocumentID | 10_1016_j_msea_2021_141878 S0921509321011448 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SMS SPC SPCBC SSM SSZ T5K ~02 ~G- 29M 6TJ 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SSH WUQ 7SR 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c394t-244c8d0c4cf136b06f1f48cbdc215f0a04f48ca1d2ed7cc2afc36030bd5762e13 |
IEDL.DBID | .~1 |
ISSN | 0921-5093 |
IngestDate | Fri Jul 25 08:33:56 EDT 2025 Tue Jul 01 01:26:40 EDT 2025 Thu Apr 24 23:04:09 EDT 2025 Fri Feb 23 02:42:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cyclic plastic deformation mechanism Welded joint Dislocation morphology Cyclic hardening model Low cycle fatigue |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-244c8d0c4cf136b06f1f48cbdc215f0a04f48ca1d2ed7cc2afc36030bd5762e13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2606930698 |
PQPubID | 2045432 |
ParticipantIDs | proquest_journals_2606930698 crossref_citationtrail_10_1016_j_msea_2021_141878 crossref_primary_10_1016_j_msea_2021_141878 elsevier_sciencedirect_doi_10_1016_j_msea_2021_141878 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-19 |
PublicationDateYYYYMMDD | 2021-10-19 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Zhang, Jing, Xu, Zhao, Han, Liang (bib2) 2017; 130 Proudhon, Poole, Wang, Brechet (bib25) 2008; 5 Chen, Zhang, Xu, Lin, Chen (bib17) 2016; 655 Sinclair, Poole, Bréchet (bib28) 2006; 55 Wang, Mughrabi (bib23) 1984; 63 Heczko, Esser, Smith, Beran, Mazánová, McComb, Kruml, Polák, Mills (bib30) 2018; 719 Vucko, Bosch, Delafosse (bib19) 2014; 597 Schoeck, Frydman (bib37) 1972; 2 Li, Jing, Xu, Han, Zhao, Yang, Tang (bib29) 2020; 127 Mughrabi (bib22) 1987; 85 Pham, Holdsworth, Janssens, Mazza (bib18) 2013; 47 Zhang, Jing, Xu, Zhao, Han, Zhao (bib1) 2017; 686 Li, Jing, Xu, Zhao, Han, Tang, Wang, Zhang (bib14) 2019; 744 He, Sandström (bib31) 2017; 89 Hu, Chen, Smith, Flewitt, Cocks (bib39) 2016; 84 Rutkowski, Gil, Czyrska-Filemonowicz (bib3) 2016; 102 Zhang, Jing, Xu, Han, Zhao, Li, Tang, Tong (bib16) 2020; 30 Walgraef, Aifantis (bib24) 1985; 23 Long, Zhang, Zhang, Ning, Zhuang, Zhang, Na (bib7) 2021; 142 Lavrentev (bib36) 1980; 46 Chen, Liu, Chen, Yeh, Tseng, Natesan (bib38) 2018; 510 Barrett, O'Donoghue, Leen (bib12) 2014; 92 Simar, Bréchet, Meester, Denquin, Pardoen (bib34) 2007; 55 Devaney, Barrett, O'Donoghue, Leen (bib11) 2021; 145 Legut, Pavlů (bib33) 2012; 24 Barrett, O'Donoghue, Leen (bib13) 2017; 100 Kchaou, Pelosin, Hénaff, Haddar, Elleuch (bib8) 2016; 651 Brown, Stobbs (bib26) 1971; 23 Taylor (bib10) 1934; 145 Li, Jing, Xu, Han, Zhao, Tang, Xiao, Zhang (bib15) 2019; 118 Heczko, Polák, Kruml (bib32) 2017; 680 Li, Jing, Xu, Han, Zhao, Rong, Tang, Xiao, Zhang, Luo, Wu (bib5) 2019; 116 Li, Jing, Xu, Zhao, Han, Tang, Xiao, Zhang (bib6) 2019; 119 Zhang, Zhang, Zhao, Huang, Yu, Fang (bib9) 2016; 88 Polák, Petráš, Heczko, Kuběna, Kruml, Chai (bib4) 2014; 615 Zhang, Jing, Xu, Han, Zhao, Xie, Tang (bib21) 2019; 29 Hart (bib27) 1972; 2 Michel, Champier (bib35) 2006; 43 Viatkina, Brekelmans, Geers (bib20) 2007; 26 Barrett (10.1016/j.msea.2021.141878_bib13) 2017; 100 Michel (10.1016/j.msea.2021.141878_bib35) 2006; 43 Li (10.1016/j.msea.2021.141878_bib14) 2019; 744 Polák (10.1016/j.msea.2021.141878_bib4) 2014; 615 Pham (10.1016/j.msea.2021.141878_bib18) 2013; 47 Li (10.1016/j.msea.2021.141878_bib29) 2020; 127 Li (10.1016/j.msea.2021.141878_bib5) 2019; 116 Rutkowski (10.1016/j.msea.2021.141878_bib3) 2016; 102 Sinclair (10.1016/j.msea.2021.141878_bib28) 2006; 55 Taylor (10.1016/j.msea.2021.141878_bib10) 1934; 145 Long (10.1016/j.msea.2021.141878_bib7) 2021; 142 Wang (10.1016/j.msea.2021.141878_bib23) 1984; 63 Viatkina (10.1016/j.msea.2021.141878_bib20) 2007; 26 Heczko (10.1016/j.msea.2021.141878_bib30) 2018; 719 Brown (10.1016/j.msea.2021.141878_bib26) 1971; 23 Vucko (10.1016/j.msea.2021.141878_bib19) 2014; 597 Lavrentev (10.1016/j.msea.2021.141878_bib36) 1980; 46 Barrett (10.1016/j.msea.2021.141878_bib12) 2014; 92 Devaney (10.1016/j.msea.2021.141878_bib11) 2021; 145 Mughrabi (10.1016/j.msea.2021.141878_bib22) 1987; 85 Zhang (10.1016/j.msea.2021.141878_bib1) 2017; 686 Walgraef (10.1016/j.msea.2021.141878_bib24) 1985; 23 Simar (10.1016/j.msea.2021.141878_bib34) 2007; 55 Zhang (10.1016/j.msea.2021.141878_bib2) 2017; 130 Hu (10.1016/j.msea.2021.141878_bib39) 2016; 84 Heczko (10.1016/j.msea.2021.141878_bib32) 2017; 680 Hart (10.1016/j.msea.2021.141878_bib27) 1972; 2 Kchaou (10.1016/j.msea.2021.141878_bib8) 2016; 651 Zhang (10.1016/j.msea.2021.141878_bib16) 2020; 30 Legut (10.1016/j.msea.2021.141878_bib33) 2012; 24 Zhang (10.1016/j.msea.2021.141878_bib9) 2016; 88 Zhang (10.1016/j.msea.2021.141878_bib21) 2019; 29 Schoeck (10.1016/j.msea.2021.141878_bib37) 1972; 2 Li (10.1016/j.msea.2021.141878_bib15) 2019; 118 Proudhon (10.1016/j.msea.2021.141878_bib25) 2008; 5 Chen (10.1016/j.msea.2021.141878_bib17) 2016; 655 He (10.1016/j.msea.2021.141878_bib31) 2017; 89 Chen (10.1016/j.msea.2021.141878_bib38) 2018; 510 Li (10.1016/j.msea.2021.141878_bib6) 2019; 119 |
References_xml | – volume: 88 start-page: 78 year: 2016 end-page: 87 ident: bib9 article-title: Low-cycle fatigue behaviors of a new type of 10% Cr martensitic steel and welded joint with Ni-based weld metal publication-title: Int. J. Fatig. – volume: 23 start-page: 1201 year: 1971 end-page: 1233 ident: bib26 article-title: The work-hardening of copper-silica II. The role of plastic relaxation publication-title: Philos. Mag. A – volume: 680 start-page: 168 year: 2017 end-page: 181 ident: bib32 article-title: Microstructure and dislocation arrangements in Sanicro 25 steel fatigued at ambient and elevated temperatures publication-title: Mater. Sci. Eng., A – volume: 145 start-page: 362 year: 1934 end-page: 387 ident: bib10 article-title: The mechanism of plastic deformation of crystals. part i. theoretical publication-title: Proc. Roy. Soc. Lond. A – volume: 655 start-page: 175 year: 2016 end-page: 182 ident: bib17 article-title: Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650 °C publication-title: Mater. Sci. Eng., A – volume: 142 start-page: 105942 year: 2021 ident: bib7 article-title: Analysis of heterogeneity of fatigue properties of double-sided electron beam welded 140-mm thick TC4 titanium alloy joints publication-title: Int. J. Fatig. – volume: 26 start-page: 982 year: 2007 end-page: 998 ident: bib20 article-title: Modelling of the internal stress in dislocation cell structures publication-title: Eur. J. Mech. Solid. – volume: 63 start-page: 147 year: 1984 end-page: 163 ident: bib23 article-title: Secondary cyclic hardening in fatigue copper monocrystals and polycrystals publication-title: Mater. Sci. Eng. – volume: 686 start-page: 102 year: 2017 end-page: 112 ident: bib1 article-title: High-temperature deformation and fracture mechanisms of an advanced heat resistant Fe-Cr-Ni alloy publication-title: Mater. Sci. Eng., A – volume: 85 start-page: 15 year: 1987 end-page: 31 ident: bib22 article-title: A two-parameter description of heterogeneous dislocation distributions in deformed metal crystals publication-title: Mater. Sci. Eng. – volume: 119 start-page: 20 year: 2019 end-page: 33 ident: bib6 article-title: Life, dislocation evolution, and fracture mechanism of a 41Fe-25.5Ni-23.5Cr alloy during low cycle fatigue at 700 °C publication-title: Int. J. Fatig. – volume: 651 start-page: 556 year: 2016 end-page: 566 ident: bib8 article-title: Low cycle fatigue behavior of SMAW welded Alloy28 superaustenitic stainless steel at room temperature publication-title: Mater. Sci. Eng., A – volume: 510 start-page: 421 year: 2018 end-page: 430 ident: bib38 article-title: Irradiation effects in high entropy alloys and 316H stainless steel at 300 °C publication-title: J. Nucl. Mater. – volume: 84 start-page: 203 year: 2016 end-page: 223 ident: bib39 article-title: On the evaluation of the Bauschinger effect in an austenitic stainless steel—the role of multi-scale residual stresses publication-title: Int. J. Plast. – volume: 145 start-page: 106097 year: 2021 ident: bib11 article-title: A dislocation mechanics constitutive model for effects of welding-induced microstructural transformation on cyclic plasticity and low-cycle fatigue for X100Q bainitic steel publication-title: Int. J. Fatig. – volume: 102 start-page: 373 year: 2016 end-page: 383 ident: bib3 article-title: Microstructure and chemical composition of the oxide scale formed on the Sanicro 25 steel tubes after fireside corrosion publication-title: Corrosion Sci. – volume: 100 start-page: 388 year: 2017 end-page: 406 ident: bib13 article-title: A physically-based constitutive model for high temperature microstructural degradation under cyclic deformation publication-title: Int. J. Fatig. – volume: 92 start-page: 286 year: 2014 end-page: 297 ident: bib12 article-title: A dislocation-based model for high temperature cyclic viscoplasticity of 9–12Cr steels publication-title: Comput. Mater. Sci. – volume: 23 start-page: 1359 year: 1985 end-page: 1364 ident: bib24 article-title: On the formation and stability of dislocation patterns—II: two-dimensional considerations publication-title: Int. J. Eng. Sci. – volume: 89 start-page: 139 year: 2017 end-page: 146 ident: bib31 article-title: Basic modelling of creep rupture in austenitic stainless steels publication-title: Theor. Appl. Fract. Mech. – volume: 55 start-page: 739 year: 2006 end-page: 742 ident: bib28 article-title: A model for the grain size dependent work hardening of copper publication-title: Scripta Mater. – volume: 2 start-page: 275 year: 1972 end-page: 289 ident: bib27 article-title: Theory of dispersion hardening in metals publication-title: Acta Metall. – volume: 5 start-page: 621 year: 2008 end-page: 640 ident: bib25 article-title: The role of internal stresses on the plastic deformation of the Al – Mg – Si – Cu alloy AA6111 publication-title: Philos. Mag. A – volume: 47 start-page: 143 year: 2013 end-page: 164 ident: bib18 article-title: Cyclic deformation response of AISI 316L at room temperature: mechanical behaviour, microstructural evolution, physically-based evolutionary constitutive modelling publication-title: Int. J. Plast. – volume: 597 start-page: 381 year: 2014 end-page: 386 ident: bib19 article-title: Experimental investigations of internal and effective stresses during fatigue loading of high-strength steel publication-title: Mater. Sci. Eng., A – volume: 744 start-page: 94 year: 2019 end-page: 111 ident: bib14 article-title: Cyclic deformation behavior of an Fe-Ni-Cr alloy at 700 °C: microstructural evolution and cyclic hardening model publication-title: Mater. Sci. Eng., A – volume: 130 start-page: 156 year: 2017 end-page: 172 ident: bib2 article-title: Microstructure and texture study on an advanced heat-resistant alloy during creep publication-title: Mater. Char. – volume: 29 start-page: 41 year: 2019 end-page: 49 ident: bib21 article-title: Fusion boundary evolution, precipitation behaviour, and interaction with dislocations in an Fe–22Cr–15Ni steel weldment during long-term creep publication-title: Prog. Nat. Sci. Mater. – volume: 24 start-page: 195502 year: 2012 ident: bib33 article-title: Electronic structure and elasticity of Z-phases in the Cr–Nb–V–N system publication-title: J. Phys. Condens. Matter – volume: 55 start-page: 6133 year: 2007 end-page: 6143 ident: bib34 article-title: Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A-T6 publication-title: Acta Mater. – volume: 43 start-page: 139 year: 2006 end-page: 1155 ident: bib35 article-title: The contribution of pyramidal forest dislocations to the hardening of zinc single crystals publication-title: Philos. Mag. A – volume: 615 start-page: 175 year: 2014 end-page: 182 ident: bib4 article-title: Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature publication-title: Mater. Sci. Eng., A – volume: 46 start-page: 191 year: 1980 end-page: 208 ident: bib36 article-title: The type of dislocation interaction as the factor determining work hardening publication-title: Mater. Sci. Eng. – volume: 719 start-page: 49 year: 2018 end-page: 60 ident: bib30 article-title: Atomic resolution characterization of strengthening nanoparticles in a new high-temperature-capable 43Fe-25Ni-22.5Cr austenitic stainless steel publication-title: Mater. Sci. Eng., A – volume: 116 start-page: 91 year: 2019 end-page: 117 ident: bib5 article-title: Cyclic damage behavior of Sanicro 25 alloy at 700 °C: dispersed damage and concentrated damage publication-title: Int. J. Plast. – volume: 2 start-page: 661 year: 1972 end-page: 673 ident: bib37 article-title: The contribution of the dislocation forest to the flow stress publication-title: Phys. Status Solidi B – volume: 127 start-page: 102634 year: 2020 ident: bib29 article-title: Effect of strain rate induced M publication-title: Int. J. Plast. – volume: 118 start-page: 105 year: 2019 end-page: 129 ident: bib15 article-title: Fatigue behavior, microstructural evolution, and fatigue life model based on dislocation annihilation of an Fe-Ni-Cr alloy at 700 °C publication-title: Int. J. Plast. – volume: 30 start-page: 992 year: 2020 end-page: 1004 ident: bib16 article-title: Microstructure and grain boundary engineering of a novel Fe-Cr-Ni alloy weldment made with self-developed composition-matched weld filler metal publication-title: T Nonferr Metal Soc – volume: 26 start-page: 982 year: 2007 ident: 10.1016/j.msea.2021.141878_bib20 article-title: Modelling of the internal stress in dislocation cell structures publication-title: Eur. J. Mech. Solid. doi: 10.1016/j.euromechsol.2007.05.001 – volume: 2 start-page: 661 year: 1972 ident: 10.1016/j.msea.2021.141878_bib37 article-title: The contribution of the dislocation forest to the flow stress publication-title: Phys. Status Solidi B doi: 10.1002/pssb.2220530227 – volume: 55 start-page: 739 year: 2006 ident: 10.1016/j.msea.2021.141878_bib28 article-title: A model for the grain size dependent work hardening of copper publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2006.05.018 – volume: 23 start-page: 1201 year: 1971 ident: 10.1016/j.msea.2021.141878_bib26 article-title: The work-hardening of copper-silica II. The role of plastic relaxation publication-title: Philos. Mag. A doi: 10.1080/14786437108217406 – volume: 85 start-page: 15 year: 1987 ident: 10.1016/j.msea.2021.141878_bib22 article-title: A two-parameter description of heterogeneous dislocation distributions in deformed metal crystals publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(87)90463-0 – volume: 47 start-page: 143 year: 2013 ident: 10.1016/j.msea.2021.141878_bib18 article-title: Cyclic deformation response of AISI 316L at room temperature: mechanical behaviour, microstructural evolution, physically-based evolutionary constitutive modelling publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2013.01.017 – volume: 24 start-page: 195502 year: 2012 ident: 10.1016/j.msea.2021.141878_bib33 article-title: Electronic structure and elasticity of Z-phases in the Cr–Nb–V–N system publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/24/19/195502 – volume: 89 start-page: 139 year: 2017 ident: 10.1016/j.msea.2021.141878_bib31 article-title: Basic modelling of creep rupture in austenitic stainless steels publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2017.02.004 – volume: 130 start-page: 156 year: 2017 ident: 10.1016/j.msea.2021.141878_bib2 article-title: Microstructure and texture study on an advanced heat-resistant alloy during creep publication-title: Mater. Char. doi: 10.1016/j.matchar.2017.05.037 – volume: 43 start-page: 139 year: 2006 ident: 10.1016/j.msea.2021.141878_bib35 article-title: The contribution of pyramidal forest dislocations to the hardening of zinc single crystals publication-title: Philos. Mag. A – volume: 55 start-page: 6133 year: 2007 ident: 10.1016/j.msea.2021.141878_bib34 article-title: Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A-T6 publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.07.012 – volume: 119 start-page: 20 year: 2019 ident: 10.1016/j.msea.2021.141878_bib6 article-title: Life, dislocation evolution, and fracture mechanism of a 41Fe-25.5Ni-23.5Cr alloy during low cycle fatigue at 700 °C publication-title: Int. J. Fatig. doi: 10.1016/j.ijfatigue.2018.09.026 – volume: 92 start-page: 286 year: 2014 ident: 10.1016/j.msea.2021.141878_bib12 article-title: A dislocation-based model for high temperature cyclic viscoplasticity of 9–12Cr steels publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2014.05.034 – volume: 680 start-page: 168 year: 2017 ident: 10.1016/j.msea.2021.141878_bib32 article-title: Microstructure and dislocation arrangements in Sanicro 25 steel fatigued at ambient and elevated temperatures publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2016.10.076 – volume: 615 start-page: 175 year: 2014 ident: 10.1016/j.msea.2021.141878_bib4 article-title: Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2014.07.075 – volume: 145 start-page: 106097 year: 2021 ident: 10.1016/j.msea.2021.141878_bib11 article-title: A dislocation mechanics constitutive model for effects of welding-induced microstructural transformation on cyclic plasticity and low-cycle fatigue for X100Q bainitic steel publication-title: Int. J. Fatig. doi: 10.1016/j.ijfatigue.2020.106097 – volume: 686 start-page: 102 year: 2017 ident: 10.1016/j.msea.2021.141878_bib1 article-title: High-temperature deformation and fracture mechanisms of an advanced heat resistant Fe-Cr-Ni alloy publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2017.01.002 – volume: 145 start-page: 362 year: 1934 ident: 10.1016/j.msea.2021.141878_bib10 article-title: The mechanism of plastic deformation of crystals. part i. theoretical publication-title: Proc. Roy. Soc. Lond. A doi: 10.1098/rspa.1934.0106 – volume: 46 start-page: 191 year: 1980 ident: 10.1016/j.msea.2021.141878_bib36 article-title: The type of dislocation interaction as the factor determining work hardening publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(80)90175-5 – volume: 116 start-page: 91 year: 2019 ident: 10.1016/j.msea.2021.141878_bib5 article-title: Cyclic damage behavior of Sanicro 25 alloy at 700 °C: dispersed damage and concentrated damage publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2018.12.010 – volume: 127 start-page: 102634 year: 2020 ident: 10.1016/j.msea.2021.141878_bib29 article-title: Effect of strain rate induced M23C6 distribution on cyclic deformation behavior: cyclic hardening model publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2019.11.013 – volume: 30 start-page: 992 year: 2020 ident: 10.1016/j.msea.2021.141878_bib16 article-title: Microstructure and grain boundary engineering of a novel Fe-Cr-Ni alloy weldment made with self-developed composition-matched weld filler metal publication-title: T Nonferr Metal Soc doi: 10.1016/S1003-6326(20)65271-2 – volume: 2 start-page: 275 year: 1972 ident: 10.1016/j.msea.2021.141878_bib27 article-title: Theory of dispersion hardening in metals publication-title: Acta Metall. doi: 10.1016/0001-6160(72)90190-3 – volume: 88 start-page: 78 year: 2016 ident: 10.1016/j.msea.2021.141878_bib9 article-title: Low-cycle fatigue behaviors of a new type of 10% Cr martensitic steel and welded joint with Ni-based weld metal publication-title: Int. J. Fatig. doi: 10.1016/j.ijfatigue.2016.03.003 – volume: 118 start-page: 105 year: 2019 ident: 10.1016/j.msea.2021.141878_bib15 article-title: Fatigue behavior, microstructural evolution, and fatigue life model based on dislocation annihilation of an Fe-Ni-Cr alloy at 700 °C publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2019.02.006 – volume: 23 start-page: 1359 year: 1985 ident: 10.1016/j.msea.2021.141878_bib24 article-title: On the formation and stability of dislocation patterns—II: two-dimensional considerations publication-title: Int. J. Eng. Sci. doi: 10.1016/0020-7225(85)90114-4 – volume: 510 start-page: 421 year: 2018 ident: 10.1016/j.msea.2021.141878_bib38 article-title: Irradiation effects in high entropy alloys and 316H stainless steel at 300 °C publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2018.08.031 – volume: 719 start-page: 49 year: 2018 ident: 10.1016/j.msea.2021.141878_bib30 article-title: Atomic resolution characterization of strengthening nanoparticles in a new high-temperature-capable 43Fe-25Ni-22.5Cr austenitic stainless steel publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2018.02.004 – volume: 142 start-page: 105942 year: 2021 ident: 10.1016/j.msea.2021.141878_bib7 article-title: Analysis of heterogeneity of fatigue properties of double-sided electron beam welded 140-mm thick TC4 titanium alloy joints publication-title: Int. J. Fatig. doi: 10.1016/j.ijfatigue.2020.105942 – volume: 655 start-page: 175 year: 2016 ident: 10.1016/j.msea.2021.141878_bib17 article-title: Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650 °C publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2015.12.096 – volume: 597 start-page: 381 year: 2014 ident: 10.1016/j.msea.2021.141878_bib19 article-title: Experimental investigations of internal and effective stresses during fatigue loading of high-strength steel publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2014.01.016 – volume: 744 start-page: 94 year: 2019 ident: 10.1016/j.msea.2021.141878_bib14 article-title: Cyclic deformation behavior of an Fe-Ni-Cr alloy at 700 °C: microstructural evolution and cyclic hardening model publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2018.11.150 – volume: 29 start-page: 41 year: 2019 ident: 10.1016/j.msea.2021.141878_bib21 article-title: Fusion boundary evolution, precipitation behaviour, and interaction with dislocations in an Fe–22Cr–15Ni steel weldment during long-term creep publication-title: Prog. Nat. Sci. Mater. doi: 10.1016/j.pnsc.2019.01.002 – volume: 651 start-page: 556 year: 2016 ident: 10.1016/j.msea.2021.141878_bib8 article-title: Low cycle fatigue behavior of SMAW welded Alloy28 superaustenitic stainless steel at room temperature publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2015.11.015 – volume: 84 start-page: 203 year: 2016 ident: 10.1016/j.msea.2021.141878_bib39 article-title: On the evaluation of the Bauschinger effect in an austenitic stainless steel—the role of multi-scale residual stresses publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2016.05.009 – volume: 5 start-page: 621 year: 2008 ident: 10.1016/j.msea.2021.141878_bib25 article-title: The role of internal stresses on the plastic deformation of the Al – Mg – Si – Cu alloy AA6111 publication-title: Philos. Mag. A doi: 10.1080/14786430801894569 – volume: 100 start-page: 388 year: 2017 ident: 10.1016/j.msea.2021.141878_bib13 article-title: A physically-based constitutive model for high temperature microstructural degradation under cyclic deformation publication-title: Int. J. Fatig. doi: 10.1016/j.ijfatigue.2017.03.018 – volume: 63 start-page: 147 year: 1984 ident: 10.1016/j.msea.2021.141878_bib23 article-title: Secondary cyclic hardening in fatigue copper monocrystals and polycrystals publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(84)90118-6 – volume: 102 start-page: 373 year: 2016 ident: 10.1016/j.msea.2021.141878_bib3 article-title: Microstructure and chemical composition of the oxide scale formed on the Sanicro 25 steel tubes after fireside corrosion publication-title: Corrosion Sci. doi: 10.1016/j.corsci.2015.10.030 |
SSID | ssj0001405 |
Score | 2.4013588 |
Snippet | The low cycle fatigue (LCF) behaviors of Sanicro 25 steel welded joint were investigated under different total strain amplitudes (Δεt/2) at 700 °C. The results... The low cycle fatigue (LCF) behaviors of Sanicro 25 steel welded joint were investigated under different total strain amplitudes (Δεt/2) at 700 °C. The results... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 141878 |
SubjectTerms | Amplitudes Austenitic stainless steels Cyclic hardening model Cyclic plastic deformation mechanism Deformation mechanisms Dislocation morphology Entanglement Fatigue life Low cycle fatigue Plastic deformation Precipitation hardening steels Welded joint Welded joints |
Title | Cyclic plastic deformation mechanism and cyclic hardening model of Sanicro 25 steel welded joint |
URI | https://dx.doi.org/10.1016/j.msea.2021.141878 https://www.proquest.com/docview/2606930698 |
Volume | 827 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTywodA4dpxkrCqqAqJLqdTNJLYjpWrTigYhFn4758QpD6EOjLbOkXV3vrsvugdCV2ECQTxhgRNEPnMYi7kDbiR0NE-DQGlJk3J-yuOIDyfsfupPG6hf18KYtEpr-yubXlpru9O13Oyusqw7diNwVwDIAbRAUM9MwS9jgdHym4-vNA8AEGUaIxA7htoWzlQ5XgtQJ8CIHgGDQUIzau1v5_TLTJe-Z3CA9m3QiHvVvQ5RQ-dHaO9bK8Fj9Nx_l_NM4hVEw0CFld6UJeKFNuW92XqB41xhWRGaaittforgchgOXqZ4DERwMez5GGQPe296rrTCs2WWFydoMrh96g8dOz3BkTRihQN-W4bKlUymhPLE5SlJWSgTJYFtqRu7zCxjojytAim9OJWUw5NPFEAQTxN6ipr5MtdnCHseoCrKAxJrEB1gJMoBfHIW0YjCWdpCpGabkLa1uJlwMRd1DtlMGFYLw2pRsbqFrjdnVlVjja3Ufi0N8UM9BFj-refateiEfZxrARDODIDkUXj-z89eoF2zMj6MRG3ULF5e9SUEJ0XSKbWvg3Z6dw_D0SdrBeF8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIAD4inGMwduqFrTpGl7nCbQYGMXQOIW2iSVirZuYkOIf4_TphMgxIFjU7uK7MT2V_kBcBFnGMRTHnlREnKP81R46EZiz4g8irRRLKvmp9yNRP-R3z6FTyvQa2phbFqls_21Ta-stVvpOGl2ZkXRufcTdFcIyBG0YFDP41VYs92pwhasdW8G_dHSICOGqDIZkd6zDK52pk7zmuCJQpgYULQZNLbT1n73Tz8sdeV-rrdhy8WNpFtvbQdWTLkLm1-6Ce7Bc-9DjQtFZhgQIxXRZlmZSCbGVvgW8wlJS01UTWgLroz9L0KqeThkmpN7JMKNkSAkqH5cezdjbTR5mRblYh8er68een3PDVDwFEv4wkPXrWLtK65yykTmi5zmPFaZVii53E99bh9TqgOjI6WCNFdM4K3PNKKQwFB2AK1yWppDIEGAwIqJiKYGtYcwiQnEn4InLGHIy9pAG7FJ5bqL2yEXY9mkkb1IK2ppRS1rUbfhcskzq3tr_EkdNtqQ306IROP_J99Jozrp7udcIoqzMyBFEh_987PnsN5_uBvK4c1ocAwb9o11aTQ5gdbi9c2cYqyyyM7cWfwEMXbkLQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclic+plastic+deformation+mechanism+and+cyclic+hardening+model+of+Sanicro+25+steel+welded+joint&rft.jtitle=Materials+science+%26+engineering.+A%2C+Structural+materials+%3A+properties%2C+microstructure+and+processing&rft.au=Li%2C+Haizhou&rft.au=Chen%2C+Jintao&rft.au=Chen%2C+Hui&rft.au=Xu%2C+Lianyong&rft.date=2021-10-19&rft.issn=0921-5093&rft.volume=827&rft.spage=141878&rft_id=info:doi/10.1016%2Fj.msea.2021.141878&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_msea_2021_141878 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5093&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5093&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5093&client=summon |