Cyclic plastic deformation mechanism and cyclic hardening model of Sanicro 25 steel welded joint

The low cycle fatigue (LCF) behaviors of Sanicro 25 steel welded joint were investigated under different total strain amplitudes (Δεt/2) at 700 °C. The results revealed that the stress amplitude increased with an increase in Δεt/2, while the fatigue life decreased. In addition, the cyclic hardening...

Full description

Saved in:
Bibliographic Details
Published inMaterials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 827; p. 141878
Main Authors Li, Haizhou, Chen, Jintao, Chen, Hui, Xu, Lianyong, Wang, Qingyuan
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 19.10.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The low cycle fatigue (LCF) behaviors of Sanicro 25 steel welded joint were investigated under different total strain amplitudes (Δεt/2) at 700 °C. The results revealed that the stress amplitude increased with an increase in Δεt/2, while the fatigue life decreased. In addition, the cyclic hardening ratio first increased and then decreased with increasing Δεt/2. This abnormal trend was attributed to the variation in the cyclic yielding stress, indicating the evolution of the dislocation morphology. The microstructure analysis revealed a significant change in the cyclic plastic deformation mechanism from the dislocation tangle (0.2%–0.4%) to the entanglement of dislocations on the precipitate (0.5%) with an increase in Δεt/2. Furthermore, the cyclic hardening models considering the entanglement of dislocations on the precipitate and the dislocation tangle were unified according to the modified Taylor stress. The validated results indicated that the unified cyclic hardening model accurately calculated the maximum cyclic stress during LCF for a 316H welded joint.
AbstractList The low cycle fatigue (LCF) behaviors of Sanicro 25 steel welded joint were investigated under different total strain amplitudes (Δεt/2) at 700 °C. The results revealed that the stress amplitude increased with an increase in Δεt/2, while the fatigue life decreased. In addition, the cyclic hardening ratio first increased and then decreased with increasing Δεt/2. This abnormal trend was attributed to the variation in the cyclic yielding stress, indicating the evolution of the dislocation morphology. The microstructure analysis revealed a significant change in the cyclic plastic deformation mechanism from the dislocation tangle (0.2%–0.4%) to the entanglement of dislocations on the precipitate (0.5%) with an increase in Δεt/2. Furthermore, the cyclic hardening models considering the entanglement of dislocations on the precipitate and the dislocation tangle were unified according to the modified Taylor stress. The validated results indicated that the unified cyclic hardening model accurately calculated the maximum cyclic stress during LCF for a 316H welded joint.
The low cycle fatigue (LCF) behaviors of Sanicro 25 steel welded joint were investigated under different total strain amplitudes (Δεt/2) at 700 °C. The results revealed that the stress amplitude increased with an increase in Δεt/2, while the fatigue life decreased. In addition, the cyclic hardening ratio first increased and then decreased with increasing Δεt/2. This abnormal trend was attributed to the variation in the cyclic yielding stress, indicating the evolution of the dislocation morphology. The microstructure analysis revealed a significant change in the cyclic plastic deformation mechanism from the dislocation tangle (0.2%–0.4%) to the entanglement of dislocations on the precipitate (0.5%) with an increase in Δεt/2. Furthermore, the cyclic hardening models considering the entanglement of dislocations on the precipitate and the dislocation tangle were unified according to the modified Taylor stress. The validated results indicated that the unified cyclic hardening model accurately calculated the maximum cyclic stress during LCF for a 316H welded joint.
ArticleNumber 141878
Author Chen, Jintao
Xu, Lianyong
Chen, Hui
Wang, Qingyuan
Li, Haizhou
Author_xml – sequence: 1
  givenname: Haizhou
  surname: Li
  fullname: Li, Haizhou
  organization: Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
– sequence: 2
  givenname: Jintao
  surname: Chen
  fullname: Chen, Jintao
  organization: Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
– sequence: 3
  givenname: Hui
  surname: Chen
  fullname: Chen, Hui
  organization: Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
– sequence: 4
  givenname: Lianyong
  surname: Xu
  fullname: Xu, Lianyong
  email: xulianyong@tju.edu.cn
  organization: School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, PR China
– sequence: 5
  givenname: Qingyuan
  surname: Wang
  fullname: Wang, Qingyuan
  email: wangqy@scu.edu.cn
  organization: Failure Mechanics and Engineering Disaster Prevention and Mitigation Key Laboratory of Sichuan Province, College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
BookMark eNp9kEuLFDEUhYOMYM_oH3AVcF3tzaOqq8CNNL5gwIW6jumbGydFVdImGWX-vWnLlYtZXA43nC_JOdfsKqZIjL0UsBcghtfzfi1k9xKk2AstxsP4hO2aqE5ParhiO5ik6HqY1DN2XcoMAEJDv2Pfjw-4BOTnxZba1JFPebU1pMhXwjsbQ1m5jY7jZryz2VEM8Qdfk6OFJ8-_NBPmxGXPS6V29psWR47PKcT6nD31din04p_esG_v3309fuxuP3_4dHx726GadO2k1jg6QI1eqOEEgxdej3hyKEXvwYK-rFY4Se6AKK1HNYCCk-sPgyShbtir7d5zTj_vqVQzp_sc25NGDjBMqs3YXOPmav8tJZM3GOrftDXbsBgB5tKnmc2lT3Pp02x9NlT-h55zWG1-eBx6s0HUov8KlE3BQBHJhUxYjUvhMfwPIz-Rdg
CitedBy_id crossref_primary_10_1016_j_engfracmech_2022_108644
crossref_primary_10_1111_ffe_14093
crossref_primary_10_1002_srin_202400719
crossref_primary_10_1016_j_ijfatigue_2023_107637
crossref_primary_10_2355_isijinternational_ISIJINT_2022_211
Cites_doi 10.1016/j.euromechsol.2007.05.001
10.1002/pssb.2220530227
10.1016/j.scriptamat.2006.05.018
10.1080/14786437108217406
10.1016/0025-5416(87)90463-0
10.1016/j.ijplas.2013.01.017
10.1088/0953-8984/24/19/195502
10.1016/j.tafmec.2017.02.004
10.1016/j.matchar.2017.05.037
10.1016/j.actamat.2007.07.012
10.1016/j.ijfatigue.2018.09.026
10.1016/j.commatsci.2014.05.034
10.1016/j.msea.2016.10.076
10.1016/j.msea.2014.07.075
10.1016/j.ijfatigue.2020.106097
10.1016/j.msea.2017.01.002
10.1098/rspa.1934.0106
10.1016/0025-5416(80)90175-5
10.1016/j.ijplas.2018.12.010
10.1016/j.ijplas.2019.11.013
10.1016/S1003-6326(20)65271-2
10.1016/0001-6160(72)90190-3
10.1016/j.ijfatigue.2016.03.003
10.1016/j.ijplas.2019.02.006
10.1016/0020-7225(85)90114-4
10.1016/j.jnucmat.2018.08.031
10.1016/j.msea.2018.02.004
10.1016/j.ijfatigue.2020.105942
10.1016/j.msea.2015.12.096
10.1016/j.msea.2014.01.016
10.1016/j.msea.2018.11.150
10.1016/j.pnsc.2019.01.002
10.1016/j.msea.2015.11.015
10.1016/j.ijplas.2016.05.009
10.1080/14786430801894569
10.1016/j.ijfatigue.2017.03.018
10.1016/0025-5416(84)90118-6
10.1016/j.corsci.2015.10.030
ContentType Journal Article
Copyright 2021
Copyright Elsevier BV Oct 19, 2021
Copyright_xml – notice: 2021
– notice: Copyright Elsevier BV Oct 19, 2021
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.msea.2021.141878
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4936
ExternalDocumentID 10_1016_j_msea_2021_141878
S0921509321011448
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SSM
SSZ
T5K
~02
~G-
29M
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SSH
WUQ
7SR
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c394t-244c8d0c4cf136b06f1f48cbdc215f0a04f48ca1d2ed7cc2afc36030bd5762e13
IEDL.DBID .~1
ISSN 0921-5093
IngestDate Fri Jul 25 08:33:56 EDT 2025
Tue Jul 01 01:26:40 EDT 2025
Thu Apr 24 23:04:09 EDT 2025
Fri Feb 23 02:42:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cyclic plastic deformation mechanism
Welded joint
Dislocation morphology
Cyclic hardening model
Low cycle fatigue
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-244c8d0c4cf136b06f1f48cbdc215f0a04f48ca1d2ed7cc2afc36030bd5762e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2606930698
PQPubID 2045432
ParticipantIDs proquest_journals_2606930698
crossref_citationtrail_10_1016_j_msea_2021_141878
crossref_primary_10_1016_j_msea_2021_141878
elsevier_sciencedirect_doi_10_1016_j_msea_2021_141878
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-19
PublicationDateYYYYMMDD 2021-10-19
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-19
  day: 19
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Materials science & engineering. A, Structural materials : properties, microstructure and processing
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Zhang, Jing, Xu, Zhao, Han, Liang (bib2) 2017; 130
Proudhon, Poole, Wang, Brechet (bib25) 2008; 5
Chen, Zhang, Xu, Lin, Chen (bib17) 2016; 655
Sinclair, Poole, Bréchet (bib28) 2006; 55
Wang, Mughrabi (bib23) 1984; 63
Heczko, Esser, Smith, Beran, Mazánová, McComb, Kruml, Polák, Mills (bib30) 2018; 719
Vucko, Bosch, Delafosse (bib19) 2014; 597
Schoeck, Frydman (bib37) 1972; 2
Li, Jing, Xu, Han, Zhao, Yang, Tang (bib29) 2020; 127
Mughrabi (bib22) 1987; 85
Pham, Holdsworth, Janssens, Mazza (bib18) 2013; 47
Zhang, Jing, Xu, Zhao, Han, Zhao (bib1) 2017; 686
Li, Jing, Xu, Zhao, Han, Tang, Wang, Zhang (bib14) 2019; 744
He, Sandström (bib31) 2017; 89
Hu, Chen, Smith, Flewitt, Cocks (bib39) 2016; 84
Rutkowski, Gil, Czyrska-Filemonowicz (bib3) 2016; 102
Zhang, Jing, Xu, Han, Zhao, Li, Tang, Tong (bib16) 2020; 30
Walgraef, Aifantis (bib24) 1985; 23
Long, Zhang, Zhang, Ning, Zhuang, Zhang, Na (bib7) 2021; 142
Lavrentev (bib36) 1980; 46
Chen, Liu, Chen, Yeh, Tseng, Natesan (bib38) 2018; 510
Barrett, O'Donoghue, Leen (bib12) 2014; 92
Simar, Bréchet, Meester, Denquin, Pardoen (bib34) 2007; 55
Devaney, Barrett, O'Donoghue, Leen (bib11) 2021; 145
Legut, Pavlů (bib33) 2012; 24
Barrett, O'Donoghue, Leen (bib13) 2017; 100
Kchaou, Pelosin, Hénaff, Haddar, Elleuch (bib8) 2016; 651
Brown, Stobbs (bib26) 1971; 23
Taylor (bib10) 1934; 145
Li, Jing, Xu, Han, Zhao, Tang, Xiao, Zhang (bib15) 2019; 118
Heczko, Polák, Kruml (bib32) 2017; 680
Li, Jing, Xu, Han, Zhao, Rong, Tang, Xiao, Zhang, Luo, Wu (bib5) 2019; 116
Li, Jing, Xu, Zhao, Han, Tang, Xiao, Zhang (bib6) 2019; 119
Zhang, Zhang, Zhao, Huang, Yu, Fang (bib9) 2016; 88
Polák, Petráš, Heczko, Kuběna, Kruml, Chai (bib4) 2014; 615
Zhang, Jing, Xu, Han, Zhao, Xie, Tang (bib21) 2019; 29
Hart (bib27) 1972; 2
Michel, Champier (bib35) 2006; 43
Viatkina, Brekelmans, Geers (bib20) 2007; 26
Barrett (10.1016/j.msea.2021.141878_bib13) 2017; 100
Michel (10.1016/j.msea.2021.141878_bib35) 2006; 43
Li (10.1016/j.msea.2021.141878_bib14) 2019; 744
Polák (10.1016/j.msea.2021.141878_bib4) 2014; 615
Pham (10.1016/j.msea.2021.141878_bib18) 2013; 47
Li (10.1016/j.msea.2021.141878_bib29) 2020; 127
Li (10.1016/j.msea.2021.141878_bib5) 2019; 116
Rutkowski (10.1016/j.msea.2021.141878_bib3) 2016; 102
Sinclair (10.1016/j.msea.2021.141878_bib28) 2006; 55
Taylor (10.1016/j.msea.2021.141878_bib10) 1934; 145
Long (10.1016/j.msea.2021.141878_bib7) 2021; 142
Wang (10.1016/j.msea.2021.141878_bib23) 1984; 63
Viatkina (10.1016/j.msea.2021.141878_bib20) 2007; 26
Heczko (10.1016/j.msea.2021.141878_bib30) 2018; 719
Brown (10.1016/j.msea.2021.141878_bib26) 1971; 23
Vucko (10.1016/j.msea.2021.141878_bib19) 2014; 597
Lavrentev (10.1016/j.msea.2021.141878_bib36) 1980; 46
Barrett (10.1016/j.msea.2021.141878_bib12) 2014; 92
Devaney (10.1016/j.msea.2021.141878_bib11) 2021; 145
Mughrabi (10.1016/j.msea.2021.141878_bib22) 1987; 85
Zhang (10.1016/j.msea.2021.141878_bib1) 2017; 686
Walgraef (10.1016/j.msea.2021.141878_bib24) 1985; 23
Simar (10.1016/j.msea.2021.141878_bib34) 2007; 55
Zhang (10.1016/j.msea.2021.141878_bib2) 2017; 130
Hu (10.1016/j.msea.2021.141878_bib39) 2016; 84
Heczko (10.1016/j.msea.2021.141878_bib32) 2017; 680
Hart (10.1016/j.msea.2021.141878_bib27) 1972; 2
Kchaou (10.1016/j.msea.2021.141878_bib8) 2016; 651
Zhang (10.1016/j.msea.2021.141878_bib16) 2020; 30
Legut (10.1016/j.msea.2021.141878_bib33) 2012; 24
Zhang (10.1016/j.msea.2021.141878_bib9) 2016; 88
Zhang (10.1016/j.msea.2021.141878_bib21) 2019; 29
Schoeck (10.1016/j.msea.2021.141878_bib37) 1972; 2
Li (10.1016/j.msea.2021.141878_bib15) 2019; 118
Proudhon (10.1016/j.msea.2021.141878_bib25) 2008; 5
Chen (10.1016/j.msea.2021.141878_bib17) 2016; 655
He (10.1016/j.msea.2021.141878_bib31) 2017; 89
Chen (10.1016/j.msea.2021.141878_bib38) 2018; 510
Li (10.1016/j.msea.2021.141878_bib6) 2019; 119
References_xml – volume: 88
  start-page: 78
  year: 2016
  end-page: 87
  ident: bib9
  article-title: Low-cycle fatigue behaviors of a new type of 10% Cr martensitic steel and welded joint with Ni-based weld metal
  publication-title: Int. J. Fatig.
– volume: 23
  start-page: 1201
  year: 1971
  end-page: 1233
  ident: bib26
  article-title: The work-hardening of copper-silica II. The role of plastic relaxation
  publication-title: Philos. Mag. A
– volume: 680
  start-page: 168
  year: 2017
  end-page: 181
  ident: bib32
  article-title: Microstructure and dislocation arrangements in Sanicro 25 steel fatigued at ambient and elevated temperatures
  publication-title: Mater. Sci. Eng., A
– volume: 145
  start-page: 362
  year: 1934
  end-page: 387
  ident: bib10
  article-title: The mechanism of plastic deformation of crystals. part i. theoretical
  publication-title: Proc. Roy. Soc. Lond. A
– volume: 655
  start-page: 175
  year: 2016
  end-page: 182
  ident: bib17
  article-title: Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650 °C
  publication-title: Mater. Sci. Eng., A
– volume: 142
  start-page: 105942
  year: 2021
  ident: bib7
  article-title: Analysis of heterogeneity of fatigue properties of double-sided electron beam welded 140-mm thick TC4 titanium alloy joints
  publication-title: Int. J. Fatig.
– volume: 26
  start-page: 982
  year: 2007
  end-page: 998
  ident: bib20
  article-title: Modelling of the internal stress in dislocation cell structures
  publication-title: Eur. J. Mech. Solid.
– volume: 63
  start-page: 147
  year: 1984
  end-page: 163
  ident: bib23
  article-title: Secondary cyclic hardening in fatigue copper monocrystals and polycrystals
  publication-title: Mater. Sci. Eng.
– volume: 686
  start-page: 102
  year: 2017
  end-page: 112
  ident: bib1
  article-title: High-temperature deformation and fracture mechanisms of an advanced heat resistant Fe-Cr-Ni alloy
  publication-title: Mater. Sci. Eng., A
– volume: 85
  start-page: 15
  year: 1987
  end-page: 31
  ident: bib22
  article-title: A two-parameter description of heterogeneous dislocation distributions in deformed metal crystals
  publication-title: Mater. Sci. Eng.
– volume: 119
  start-page: 20
  year: 2019
  end-page: 33
  ident: bib6
  article-title: Life, dislocation evolution, and fracture mechanism of a 41Fe-25.5Ni-23.5Cr alloy during low cycle fatigue at 700 °C
  publication-title: Int. J. Fatig.
– volume: 651
  start-page: 556
  year: 2016
  end-page: 566
  ident: bib8
  article-title: Low cycle fatigue behavior of SMAW welded Alloy28 superaustenitic stainless steel at room temperature
  publication-title: Mater. Sci. Eng., A
– volume: 510
  start-page: 421
  year: 2018
  end-page: 430
  ident: bib38
  article-title: Irradiation effects in high entropy alloys and 316H stainless steel at 300 °C
  publication-title: J. Nucl. Mater.
– volume: 84
  start-page: 203
  year: 2016
  end-page: 223
  ident: bib39
  article-title: On the evaluation of the Bauschinger effect in an austenitic stainless steel—the role of multi-scale residual stresses
  publication-title: Int. J. Plast.
– volume: 145
  start-page: 106097
  year: 2021
  ident: bib11
  article-title: A dislocation mechanics constitutive model for effects of welding-induced microstructural transformation on cyclic plasticity and low-cycle fatigue for X100Q bainitic steel
  publication-title: Int. J. Fatig.
– volume: 102
  start-page: 373
  year: 2016
  end-page: 383
  ident: bib3
  article-title: Microstructure and chemical composition of the oxide scale formed on the Sanicro 25 steel tubes after fireside corrosion
  publication-title: Corrosion Sci.
– volume: 100
  start-page: 388
  year: 2017
  end-page: 406
  ident: bib13
  article-title: A physically-based constitutive model for high temperature microstructural degradation under cyclic deformation
  publication-title: Int. J. Fatig.
– volume: 92
  start-page: 286
  year: 2014
  end-page: 297
  ident: bib12
  article-title: A dislocation-based model for high temperature cyclic viscoplasticity of 9–12Cr steels
  publication-title: Comput. Mater. Sci.
– volume: 23
  start-page: 1359
  year: 1985
  end-page: 1364
  ident: bib24
  article-title: On the formation and stability of dislocation patterns—II: two-dimensional considerations
  publication-title: Int. J. Eng. Sci.
– volume: 89
  start-page: 139
  year: 2017
  end-page: 146
  ident: bib31
  article-title: Basic modelling of creep rupture in austenitic stainless steels
  publication-title: Theor. Appl. Fract. Mech.
– volume: 55
  start-page: 739
  year: 2006
  end-page: 742
  ident: bib28
  article-title: A model for the grain size dependent work hardening of copper
  publication-title: Scripta Mater.
– volume: 2
  start-page: 275
  year: 1972
  end-page: 289
  ident: bib27
  article-title: Theory of dispersion hardening in metals
  publication-title: Acta Metall.
– volume: 5
  start-page: 621
  year: 2008
  end-page: 640
  ident: bib25
  article-title: The role of internal stresses on the plastic deformation of the Al – Mg – Si – Cu alloy AA6111
  publication-title: Philos. Mag. A
– volume: 47
  start-page: 143
  year: 2013
  end-page: 164
  ident: bib18
  article-title: Cyclic deformation response of AISI 316L at room temperature: mechanical behaviour, microstructural evolution, physically-based evolutionary constitutive modelling
  publication-title: Int. J. Plast.
– volume: 597
  start-page: 381
  year: 2014
  end-page: 386
  ident: bib19
  article-title: Experimental investigations of internal and effective stresses during fatigue loading of high-strength steel
  publication-title: Mater. Sci. Eng., A
– volume: 744
  start-page: 94
  year: 2019
  end-page: 111
  ident: bib14
  article-title: Cyclic deformation behavior of an Fe-Ni-Cr alloy at 700 °C: microstructural evolution and cyclic hardening model
  publication-title: Mater. Sci. Eng., A
– volume: 130
  start-page: 156
  year: 2017
  end-page: 172
  ident: bib2
  article-title: Microstructure and texture study on an advanced heat-resistant alloy during creep
  publication-title: Mater. Char.
– volume: 29
  start-page: 41
  year: 2019
  end-page: 49
  ident: bib21
  article-title: Fusion boundary evolution, precipitation behaviour, and interaction with dislocations in an Fe–22Cr–15Ni steel weldment during long-term creep
  publication-title: Prog. Nat. Sci. Mater.
– volume: 24
  start-page: 195502
  year: 2012
  ident: bib33
  article-title: Electronic structure and elasticity of Z-phases in the Cr–Nb–V–N system
  publication-title: J. Phys. Condens. Matter
– volume: 55
  start-page: 6133
  year: 2007
  end-page: 6143
  ident: bib34
  article-title: Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A-T6
  publication-title: Acta Mater.
– volume: 43
  start-page: 139
  year: 2006
  end-page: 1155
  ident: bib35
  article-title: The contribution of pyramidal forest dislocations to the hardening of zinc single crystals
  publication-title: Philos. Mag. A
– volume: 615
  start-page: 175
  year: 2014
  end-page: 182
  ident: bib4
  article-title: Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature
  publication-title: Mater. Sci. Eng., A
– volume: 46
  start-page: 191
  year: 1980
  end-page: 208
  ident: bib36
  article-title: The type of dislocation interaction as the factor determining work hardening
  publication-title: Mater. Sci. Eng.
– volume: 719
  start-page: 49
  year: 2018
  end-page: 60
  ident: bib30
  article-title: Atomic resolution characterization of strengthening nanoparticles in a new high-temperature-capable 43Fe-25Ni-22.5Cr austenitic stainless steel
  publication-title: Mater. Sci. Eng., A
– volume: 116
  start-page: 91
  year: 2019
  end-page: 117
  ident: bib5
  article-title: Cyclic damage behavior of Sanicro 25 alloy at 700 °C: dispersed damage and concentrated damage
  publication-title: Int. J. Plast.
– volume: 2
  start-page: 661
  year: 1972
  end-page: 673
  ident: bib37
  article-title: The contribution of the dislocation forest to the flow stress
  publication-title: Phys. Status Solidi B
– volume: 127
  start-page: 102634
  year: 2020
  ident: bib29
  article-title: Effect of strain rate induced M
  publication-title: Int. J. Plast.
– volume: 118
  start-page: 105
  year: 2019
  end-page: 129
  ident: bib15
  article-title: Fatigue behavior, microstructural evolution, and fatigue life model based on dislocation annihilation of an Fe-Ni-Cr alloy at 700 °C
  publication-title: Int. J. Plast.
– volume: 30
  start-page: 992
  year: 2020
  end-page: 1004
  ident: bib16
  article-title: Microstructure and grain boundary engineering of a novel Fe-Cr-Ni alloy weldment made with self-developed composition-matched weld filler metal
  publication-title: T Nonferr Metal Soc
– volume: 26
  start-page: 982
  year: 2007
  ident: 10.1016/j.msea.2021.141878_bib20
  article-title: Modelling of the internal stress in dislocation cell structures
  publication-title: Eur. J. Mech. Solid.
  doi: 10.1016/j.euromechsol.2007.05.001
– volume: 2
  start-page: 661
  year: 1972
  ident: 10.1016/j.msea.2021.141878_bib37
  article-title: The contribution of the dislocation forest to the flow stress
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.2220530227
– volume: 55
  start-page: 739
  year: 2006
  ident: 10.1016/j.msea.2021.141878_bib28
  article-title: A model for the grain size dependent work hardening of copper
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2006.05.018
– volume: 23
  start-page: 1201
  year: 1971
  ident: 10.1016/j.msea.2021.141878_bib26
  article-title: The work-hardening of copper-silica II. The role of plastic relaxation
  publication-title: Philos. Mag. A
  doi: 10.1080/14786437108217406
– volume: 85
  start-page: 15
  year: 1987
  ident: 10.1016/j.msea.2021.141878_bib22
  article-title: A two-parameter description of heterogeneous dislocation distributions in deformed metal crystals
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0025-5416(87)90463-0
– volume: 47
  start-page: 143
  year: 2013
  ident: 10.1016/j.msea.2021.141878_bib18
  article-title: Cyclic deformation response of AISI 316L at room temperature: mechanical behaviour, microstructural evolution, physically-based evolutionary constitutive modelling
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2013.01.017
– volume: 24
  start-page: 195502
  year: 2012
  ident: 10.1016/j.msea.2021.141878_bib33
  article-title: Electronic structure and elasticity of Z-phases in the Cr–Nb–V–N system
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/24/19/195502
– volume: 89
  start-page: 139
  year: 2017
  ident: 10.1016/j.msea.2021.141878_bib31
  article-title: Basic modelling of creep rupture in austenitic stainless steels
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2017.02.004
– volume: 130
  start-page: 156
  year: 2017
  ident: 10.1016/j.msea.2021.141878_bib2
  article-title: Microstructure and texture study on an advanced heat-resistant alloy during creep
  publication-title: Mater. Char.
  doi: 10.1016/j.matchar.2017.05.037
– volume: 43
  start-page: 139
  year: 2006
  ident: 10.1016/j.msea.2021.141878_bib35
  article-title: The contribution of pyramidal forest dislocations to the hardening of zinc single crystals
  publication-title: Philos. Mag. A
– volume: 55
  start-page: 6133
  year: 2007
  ident: 10.1016/j.msea.2021.141878_bib34
  article-title: Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A-T6
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2007.07.012
– volume: 119
  start-page: 20
  year: 2019
  ident: 10.1016/j.msea.2021.141878_bib6
  article-title: Life, dislocation evolution, and fracture mechanism of a 41Fe-25.5Ni-23.5Cr alloy during low cycle fatigue at 700 °C
  publication-title: Int. J. Fatig.
  doi: 10.1016/j.ijfatigue.2018.09.026
– volume: 92
  start-page: 286
  year: 2014
  ident: 10.1016/j.msea.2021.141878_bib12
  article-title: A dislocation-based model for high temperature cyclic viscoplasticity of 9–12Cr steels
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2014.05.034
– volume: 680
  start-page: 168
  year: 2017
  ident: 10.1016/j.msea.2021.141878_bib32
  article-title: Microstructure and dislocation arrangements in Sanicro 25 steel fatigued at ambient and elevated temperatures
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2016.10.076
– volume: 615
  start-page: 175
  year: 2014
  ident: 10.1016/j.msea.2021.141878_bib4
  article-title: Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2014.07.075
– volume: 145
  start-page: 106097
  year: 2021
  ident: 10.1016/j.msea.2021.141878_bib11
  article-title: A dislocation mechanics constitutive model for effects of welding-induced microstructural transformation on cyclic plasticity and low-cycle fatigue for X100Q bainitic steel
  publication-title: Int. J. Fatig.
  doi: 10.1016/j.ijfatigue.2020.106097
– volume: 686
  start-page: 102
  year: 2017
  ident: 10.1016/j.msea.2021.141878_bib1
  article-title: High-temperature deformation and fracture mechanisms of an advanced heat resistant Fe-Cr-Ni alloy
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2017.01.002
– volume: 145
  start-page: 362
  year: 1934
  ident: 10.1016/j.msea.2021.141878_bib10
  article-title: The mechanism of plastic deformation of crystals. part i. theoretical
  publication-title: Proc. Roy. Soc. Lond. A
  doi: 10.1098/rspa.1934.0106
– volume: 46
  start-page: 191
  year: 1980
  ident: 10.1016/j.msea.2021.141878_bib36
  article-title: The type of dislocation interaction as the factor determining work hardening
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0025-5416(80)90175-5
– volume: 116
  start-page: 91
  year: 2019
  ident: 10.1016/j.msea.2021.141878_bib5
  article-title: Cyclic damage behavior of Sanicro 25 alloy at 700 °C: dispersed damage and concentrated damage
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2018.12.010
– volume: 127
  start-page: 102634
  year: 2020
  ident: 10.1016/j.msea.2021.141878_bib29
  article-title: Effect of strain rate induced M23C6 distribution on cyclic deformation behavior: cyclic hardening model
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2019.11.013
– volume: 30
  start-page: 992
  year: 2020
  ident: 10.1016/j.msea.2021.141878_bib16
  article-title: Microstructure and grain boundary engineering of a novel Fe-Cr-Ni alloy weldment made with self-developed composition-matched weld filler metal
  publication-title: T Nonferr Metal Soc
  doi: 10.1016/S1003-6326(20)65271-2
– volume: 2
  start-page: 275
  year: 1972
  ident: 10.1016/j.msea.2021.141878_bib27
  article-title: Theory of dispersion hardening in metals
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(72)90190-3
– volume: 88
  start-page: 78
  year: 2016
  ident: 10.1016/j.msea.2021.141878_bib9
  article-title: Low-cycle fatigue behaviors of a new type of 10% Cr martensitic steel and welded joint with Ni-based weld metal
  publication-title: Int. J. Fatig.
  doi: 10.1016/j.ijfatigue.2016.03.003
– volume: 118
  start-page: 105
  year: 2019
  ident: 10.1016/j.msea.2021.141878_bib15
  article-title: Fatigue behavior, microstructural evolution, and fatigue life model based on dislocation annihilation of an Fe-Ni-Cr alloy at 700 °C
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2019.02.006
– volume: 23
  start-page: 1359
  year: 1985
  ident: 10.1016/j.msea.2021.141878_bib24
  article-title: On the formation and stability of dislocation patterns—II: two-dimensional considerations
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/0020-7225(85)90114-4
– volume: 510
  start-page: 421
  year: 2018
  ident: 10.1016/j.msea.2021.141878_bib38
  article-title: Irradiation effects in high entropy alloys and 316H stainless steel at 300 °C
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2018.08.031
– volume: 719
  start-page: 49
  year: 2018
  ident: 10.1016/j.msea.2021.141878_bib30
  article-title: Atomic resolution characterization of strengthening nanoparticles in a new high-temperature-capable 43Fe-25Ni-22.5Cr austenitic stainless steel
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2018.02.004
– volume: 142
  start-page: 105942
  year: 2021
  ident: 10.1016/j.msea.2021.141878_bib7
  article-title: Analysis of heterogeneity of fatigue properties of double-sided electron beam welded 140-mm thick TC4 titanium alloy joints
  publication-title: Int. J. Fatig.
  doi: 10.1016/j.ijfatigue.2020.105942
– volume: 655
  start-page: 175
  year: 2016
  ident: 10.1016/j.msea.2021.141878_bib17
  article-title: Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650 °C
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2015.12.096
– volume: 597
  start-page: 381
  year: 2014
  ident: 10.1016/j.msea.2021.141878_bib19
  article-title: Experimental investigations of internal and effective stresses during fatigue loading of high-strength steel
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2014.01.016
– volume: 744
  start-page: 94
  year: 2019
  ident: 10.1016/j.msea.2021.141878_bib14
  article-title: Cyclic deformation behavior of an Fe-Ni-Cr alloy at 700 °C: microstructural evolution and cyclic hardening model
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2018.11.150
– volume: 29
  start-page: 41
  year: 2019
  ident: 10.1016/j.msea.2021.141878_bib21
  article-title: Fusion boundary evolution, precipitation behaviour, and interaction with dislocations in an Fe–22Cr–15Ni steel weldment during long-term creep
  publication-title: Prog. Nat. Sci. Mater.
  doi: 10.1016/j.pnsc.2019.01.002
– volume: 651
  start-page: 556
  year: 2016
  ident: 10.1016/j.msea.2021.141878_bib8
  article-title: Low cycle fatigue behavior of SMAW welded Alloy28 superaustenitic stainless steel at room temperature
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2015.11.015
– volume: 84
  start-page: 203
  year: 2016
  ident: 10.1016/j.msea.2021.141878_bib39
  article-title: On the evaluation of the Bauschinger effect in an austenitic stainless steel—the role of multi-scale residual stresses
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2016.05.009
– volume: 5
  start-page: 621
  year: 2008
  ident: 10.1016/j.msea.2021.141878_bib25
  article-title: The role of internal stresses on the plastic deformation of the Al – Mg – Si – Cu alloy AA6111
  publication-title: Philos. Mag. A
  doi: 10.1080/14786430801894569
– volume: 100
  start-page: 388
  year: 2017
  ident: 10.1016/j.msea.2021.141878_bib13
  article-title: A physically-based constitutive model for high temperature microstructural degradation under cyclic deformation
  publication-title: Int. J. Fatig.
  doi: 10.1016/j.ijfatigue.2017.03.018
– volume: 63
  start-page: 147
  year: 1984
  ident: 10.1016/j.msea.2021.141878_bib23
  article-title: Secondary cyclic hardening in fatigue copper monocrystals and polycrystals
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0025-5416(84)90118-6
– volume: 102
  start-page: 373
  year: 2016
  ident: 10.1016/j.msea.2021.141878_bib3
  article-title: Microstructure and chemical composition of the oxide scale formed on the Sanicro 25 steel tubes after fireside corrosion
  publication-title: Corrosion Sci.
  doi: 10.1016/j.corsci.2015.10.030
SSID ssj0001405
Score 2.4013588
Snippet The low cycle fatigue (LCF) behaviors of Sanicro 25 steel welded joint were investigated under different total strain amplitudes (Δεt/2) at 700 °C. The results...
The low cycle fatigue (LCF) behaviors of Sanicro 25 steel welded joint were investigated under different total strain amplitudes (Δεt/2) at 700 °C. The results...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 141878
SubjectTerms Amplitudes
Austenitic stainless steels
Cyclic hardening model
Cyclic plastic deformation mechanism
Deformation mechanisms
Dislocation morphology
Entanglement
Fatigue life
Low cycle fatigue
Plastic deformation
Precipitation hardening steels
Welded joint
Welded joints
Title Cyclic plastic deformation mechanism and cyclic hardening model of Sanicro 25 steel welded joint
URI https://dx.doi.org/10.1016/j.msea.2021.141878
https://www.proquest.com/docview/2606930698
Volume 827
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTywodA4dpxkrCqqAqJLqdTNJLYjpWrTigYhFn4758QpD6EOjLbOkXV3vrsvugdCV2ECQTxhgRNEPnMYi7kDbiR0NE-DQGlJk3J-yuOIDyfsfupPG6hf18KYtEpr-yubXlpru9O13Oyusqw7diNwVwDIAbRAUM9MwS9jgdHym4-vNA8AEGUaIxA7htoWzlQ5XgtQJ8CIHgGDQUIzau1v5_TLTJe-Z3CA9m3QiHvVvQ5RQ-dHaO9bK8Fj9Nx_l_NM4hVEw0CFld6UJeKFNuW92XqB41xhWRGaaittforgchgOXqZ4DERwMez5GGQPe296rrTCs2WWFydoMrh96g8dOz3BkTRihQN-W4bKlUymhPLE5SlJWSgTJYFtqRu7zCxjojytAim9OJWUw5NPFEAQTxN6ipr5MtdnCHseoCrKAxJrEB1gJMoBfHIW0YjCWdpCpGabkLa1uJlwMRd1DtlMGFYLw2pRsbqFrjdnVlVjja3Ufi0N8UM9BFj-refateiEfZxrARDODIDkUXj-z89eoF2zMj6MRG3ULF5e9SUEJ0XSKbWvg3Z6dw_D0SdrBeF8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIAD4inGMwduqFrTpGl7nCbQYGMXQOIW2iSVirZuYkOIf4_TphMgxIFjU7uK7MT2V_kBcBFnGMRTHnlREnKP81R46EZiz4g8irRRLKvmp9yNRP-R3z6FTyvQa2phbFqls_21Ta-stVvpOGl2ZkXRufcTdFcIyBG0YFDP41VYs92pwhasdW8G_dHSICOGqDIZkd6zDK52pk7zmuCJQpgYULQZNLbT1n73Tz8sdeV-rrdhy8WNpFtvbQdWTLkLm1-6Ce7Bc-9DjQtFZhgQIxXRZlmZSCbGVvgW8wlJS01UTWgLroz9L0KqeThkmpN7JMKNkSAkqH5cezdjbTR5mRblYh8er68een3PDVDwFEv4wkPXrWLtK65yykTmi5zmPFaZVii53E99bh9TqgOjI6WCNFdM4K3PNKKQwFB2AK1yWppDIEGAwIqJiKYGtYcwiQnEn4InLGHIy9pAG7FJ5bqL2yEXY9mkkb1IK2ppRS1rUbfhcskzq3tr_EkdNtqQ306IROP_J99Jozrp7udcIoqzMyBFEh_987PnsN5_uBvK4c1ocAwb9o11aTQ5gdbi9c2cYqyyyM7cWfwEMXbkLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclic+plastic+deformation+mechanism+and+cyclic+hardening+model+of+Sanicro+25+steel+welded+joint&rft.jtitle=Materials+science+%26+engineering.+A%2C+Structural+materials+%3A+properties%2C+microstructure+and+processing&rft.au=Li%2C+Haizhou&rft.au=Chen%2C+Jintao&rft.au=Chen%2C+Hui&rft.au=Xu%2C+Lianyong&rft.date=2021-10-19&rft.issn=0921-5093&rft.volume=827&rft.spage=141878&rft_id=info:doi/10.1016%2Fj.msea.2021.141878&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_msea_2021_141878
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5093&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5093&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5093&client=summon