Sparsity in long-time control of neural ODEs

We consider the neural ODE and optimal control perspective of supervised learning, with ℓ1-control penalties, where rather than only minimizing a final cost (the empirical risk) for the state, we integrate this cost over the entire time horizon. We prove that any optimal control (for this cost) vani...

Full description

Saved in:
Bibliographic Details
Published inSystems & control letters Vol. 172; p. 105452
Main Authors Esteve-Yagüe, Carlos, Geshkovski, Borjan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider the neural ODE and optimal control perspective of supervised learning, with ℓ1-control penalties, where rather than only minimizing a final cost (the empirical risk) for the state, we integrate this cost over the entire time horizon. We prove that any optimal control (for this cost) vanishes beyond some positive stopping time. When seen in the discrete-time context, this result entails an ordered sparsity pattern for the parameters of the associated residual neural network: ordered in the sense that these parameters are all 0 beyond a certain layer. Furthermore, we provide a polynomial stability estimate for the empirical risk with respect to the time horizon. This can be seen as a turnpike property, for nonsmooth dynamics and functionals with ℓ1 penalties, and without any smallness assumptions on the data, both of which are new in the literature.
AbstractList We consider the neural ODE and optimal control perspective of supervised learning, with ℓ1-control penalties, where rather than only minimizing a final cost (the empirical risk) for the state, we integrate this cost over the entire time horizon. We prove that any optimal control (for this cost) vanishes beyond some positive stopping time. When seen in the discrete-time context, this result entails an ordered sparsity pattern for the parameters of the associated residual neural network: ordered in the sense that these parameters are all 0 beyond a certain layer. Furthermore, we provide a polynomial stability estimate for the empirical risk with respect to the time horizon. This can be seen as a turnpike property, for nonsmooth dynamics and functionals with ℓ1 penalties, and without any smallness assumptions on the data, both of which are new in the literature.
ArticleNumber 105452
Author Esteve-Yagüe, Carlos
Geshkovski, Borjan
Author_xml – sequence: 1
  givenname: Carlos
  surname: Esteve-Yagüe
  fullname: Esteve-Yagüe, Carlos
  email: ce423@cam.ac.uk
  organization: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, UK
– sequence: 2
  givenname: Borjan
  orcidid: 0000-0002-7890-3352
  surname: Geshkovski
  fullname: Geshkovski, Borjan
  email: borjan@mit.edu
  organization: Department of Mathematics, Massachusetts Institute of Technology, Simons Building, Room 246C, 77 Massachusetts Avenue, Cambridge, MA, 02139-4307, USA
BookMark eNqFj01LAzEQQINUsK3-Bdkf4NZJskl2wYNS6wcUelDPIc3OSso2KUkU-u_dUr146WlgmPeYNyEjHzwSck1hRoHK280s7ZMNvscZA8aGpagEOyNjWitWqkbIERkPh6qUDaUXZJLSBgAYcD4mN287E5PL-8L5og_-s8xui8WgyzH0RegKj1_R9MXqcZEuyXln-oRXv3NKPp4W7_OXcrl6fp0_LEvLmyqX1ALWIIwwaq0qC4quWSU6VCA73nBJFVStNbXBWhhOpWiblnVMNEwZUIbyKbk7em0MKUXstHXZZHd4yrheU9CHcr3Rf-X6UK6P5QMu_-G76LYm7k-D90cQh7hvh1En69BbbF1Em3Ub3CnFD8SDeC0
CitedBy_id crossref_primary_10_1016_j_matpur_2023_10_005
crossref_primary_10_1016_j_sysconle_2025_106069
crossref_primary_10_1137_21M1411433
crossref_primary_10_1016_j_eswa_2024_126041
crossref_primary_10_1016_j_neunet_2024_106640
Cites_doi 10.1016/j.sysconle.2022.105182
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.ejcon.2017.02.001
10.1051/cocv/2019038
10.3934/jcd.2019009
10.3934/mcrf.2013.3.447
10.1098/rsta.2013.0400
10.1088/1361-6420/aa9a90
10.1017/S0956792521000139
10.1142/S0218202515400059
10.1137/18M1223083
10.1007/s10957-016-1016-9
10.4171/JEMS/1221
10.1016/j.jde.2014.09.005
10.1017/S0962492922000046
10.1137/18M118709X
10.1002/oca.781
10.1109/CVPR.2016.90
10.1109/TAC.2022.3190051
10.4171/jems/245
10.1145/3446776
10.1088/1361-6544/ac4e61
10.1109/TAC.2022.3181222
10.1137/0907087
10.1007/s40304-017-0103-z
10.1098/rsta.2015.0203
10.1002/oca.2126
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sysconle.2022.105452
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7956
ExternalDocumentID 10_1016_j_sysconle_2022_105452
S0167691122002298
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
TN5
WH7
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c394t-1c0e805a5a7b74c071b245fe706f39361704dca8ae85a3165d9d2f25927a07a13
IEDL.DBID .~1
ISSN 0167-6911
IngestDate Thu Apr 24 22:57:55 EDT 2025
Tue Jul 01 03:29:11 EDT 2025
Fri Feb 23 02:38:07 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Neural ODEs
Learning
Sparsity
Optimal Control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-1c0e805a5a7b74c071b245fe706f39361704dca8ae85a3165d9d2f25927a07a13
ORCID 0000-0002-7890-3352
OpenAccessLink https://hal.science/hal-03154149v2/file/manuscript.pdf
ParticipantIDs crossref_citationtrail_10_1016_j_sysconle_2022_105452
crossref_primary_10_1016_j_sysconle_2022_105452
elsevier_sciencedirect_doi_10_1016_j_sysconle_2022_105452
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Systems & control letters
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Caponigro, Fornasier, Piccoli, Trélat (b34) 2013; 3
Zhang, Bengio, Hardt, Recht, Vinyals (b3) 2021; 64
T.Q. Chen, Y. Rubanova, J. Bettencourt, D.K. Duvenaud, Neural ordinary differential equations, in: Advances in Neural Information Processing Systems, 2018, pp. 6571–6583.
E. Dupont, A. Doucet, Y.W. Teh, Augmented Neural ODEs, in: Advances in Neural Information Processing Systems, 2019, pp. 3134–3144.
Esteve-Yagüe, Geshkovski, Pighin, Zuazua (b11) 2021
Vossen, Maurer (b33) 2006; 27
Li, Lin, Shen (b21) 2022
Ruiz-Balet, Zuazua (b23) 2021
Caponigro, Fornasier, Piccoli, Trélat (b36) 2015; 25
Yoon, Shin, Yang (b42) 2022
Haber, Ruthotto (b5) 2017; 34
Faulwasser, Bonvin (b20) 2017; 35
Ruiz-Balet, Affili, Zuazua (b24) 2022; 162
Tabuada, Gharesifard (b26) 2022
Alt, Schneider (b29) 2015; 36
Kidger (b45) 2022
Kalise, Kunisch, Rao (b31) 2017; 172
Li, Chen, Tai, E (b39) 2017; 18
Bölcskei, Grohs, Kutyniok, Petersen (b47) 2020
Esteve-Yagüe, Geshkovski, Pighin, Zuazua (b16) 2022; 35
Yeh (b48) 2006
Elsayed, Krishnan, Mobahi, Regan, Bengio (b9) 2018; 31
Fornasier, Piccoli, Rossi (b35) 2014; 372
Geshkovski, Zuazua (b8) 2022; 31
Grathwohl, Chen, Bettencourt, Sutskever, Duvenaud (b43) 2018
Geshkovski (b27) 2021
E (b4) 2017; 5
Zuazua (b28) 2010; 13
Geshkovski, Zuazua (b30) 2022
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
Papamakarios, Nalisnick, Rezende, Mohamed, Lakshminarayanan (b44) 2021; 22
Celledoni, Ehrhardt, Etmann, McLachlan, Owren, Schönlieb, Sherry (b38) 2021; 32
Tibshirani (b2) 1996; 58
Grüne, Schaller, Schiela (b10) 2019; 57
Trélat, Zuazua (b14) 2015; 258
Gugat, Schuster, Zuazua (b19) 2021
Y. Rubanova, R.T. Chen, D.K. Duvenaud, Latent ordinary differential equations for irregularly-sampled time series, in: Advances in Neural Information Processing Systems, 2019, pp. 5320–5330.
Faulwasser, Grüne (b15) 2022; 23
Effland, Kobler, Kunisch, Pock (b18) 2020
Chizat, Bach (b13) 2018; 31
Benning, Celledoni, Ehrhardt, Owren, Schönlieb (b40) 2019; 6
Kalise, Kunisch, Rao (b32) 2020; 26
Agrachev, Sarychev (b22) 2021
Faulwasser, Hempel, Streif (b17) 2021
Goodfellow, Bengio, Courville (b12) 2016
Santosa, Symes (b1) 1986; 7
Bárcena-Petisco (b25) 2021
Mallat (b46) 2016; 374
Li (10.1016/j.sysconle.2022.105452_b39) 2017; 18
Faulwasser (10.1016/j.sysconle.2022.105452_b15) 2022; 23
Tibshirani (10.1016/j.sysconle.2022.105452_b2) 1996; 58
Esteve-Yagüe (10.1016/j.sysconle.2022.105452_b11) 2021
Caponigro (10.1016/j.sysconle.2022.105452_b34) 2013; 3
Mallat (10.1016/j.sysconle.2022.105452_b46) 2016; 374
E (10.1016/j.sysconle.2022.105452_b4) 2017; 5
Zhang (10.1016/j.sysconle.2022.105452_b3) 2021; 64
Chizat (10.1016/j.sysconle.2022.105452_b13) 2018; 31
Geshkovski (10.1016/j.sysconle.2022.105452_b8) 2022; 31
Li (10.1016/j.sysconle.2022.105452_b21) 2022
Caponigro (10.1016/j.sysconle.2022.105452_b36) 2015; 25
Gugat (10.1016/j.sysconle.2022.105452_b19) 2021
Goodfellow (10.1016/j.sysconle.2022.105452_b12) 2016
Agrachev (10.1016/j.sysconle.2022.105452_b22) 2021
Haber (10.1016/j.sysconle.2022.105452_b5) 2017; 34
Trélat (10.1016/j.sysconle.2022.105452_b14) 2015; 258
Grathwohl (10.1016/j.sysconle.2022.105452_b43) 2018
Zuazua (10.1016/j.sysconle.2022.105452_b28) 2010; 13
Faulwasser (10.1016/j.sysconle.2022.105452_b20) 2017; 35
Vossen (10.1016/j.sysconle.2022.105452_b33) 2006; 27
Kalise (10.1016/j.sysconle.2022.105452_b31) 2017; 172
Celledoni (10.1016/j.sysconle.2022.105452_b38) 2021; 32
Tabuada (10.1016/j.sysconle.2022.105452_b26) 2022
10.1016/j.sysconle.2022.105452_b37
Papamakarios (10.1016/j.sysconle.2022.105452_b44) 2021; 22
Kalise (10.1016/j.sysconle.2022.105452_b32) 2020; 26
Yoon (10.1016/j.sysconle.2022.105452_b42) 2022
Bárcena-Petisco (10.1016/j.sysconle.2022.105452_b25) 2021
Elsayed (10.1016/j.sysconle.2022.105452_b9) 2018; 31
Grüne (10.1016/j.sysconle.2022.105452_b10) 2019; 57
Santosa (10.1016/j.sysconle.2022.105452_b1) 1986; 7
Geshkovski (10.1016/j.sysconle.2022.105452_b30) 2022
10.1016/j.sysconle.2022.105452_b41
Benning (10.1016/j.sysconle.2022.105452_b40) 2019; 6
Geshkovski (10.1016/j.sysconle.2022.105452_b27) 2021
10.1016/j.sysconle.2022.105452_b7
10.1016/j.sysconle.2022.105452_b6
Ruiz-Balet (10.1016/j.sysconle.2022.105452_b23) 2021
Fornasier (10.1016/j.sysconle.2022.105452_b35) 2014; 372
Yeh (10.1016/j.sysconle.2022.105452_b48) 2006
Alt (10.1016/j.sysconle.2022.105452_b29) 2015; 36
Faulwasser (10.1016/j.sysconle.2022.105452_b17) 2021
Ruiz-Balet (10.1016/j.sysconle.2022.105452_b24) 2022; 162
Kidger (10.1016/j.sysconle.2022.105452_b45) 2022
Effland (10.1016/j.sysconle.2022.105452_b18) 2020
Bölcskei (10.1016/j.sysconle.2022.105452_b47) 2020
Esteve-Yagüe (10.1016/j.sysconle.2022.105452_b16) 2022; 35
References_xml – volume: 31
  year: 2018
  ident: b9
  article-title: Large margin deep networks for classification
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2021
  ident: b27
  article-title: Control in Moving Interfaces and Deep Learning
– volume: 162
  year: 2022
  ident: b24
  article-title: Interpolation and approximation via momentum ResNets and neural ODEs
  publication-title: Systems Control Lett.
– volume: 22
  start-page: 1
  year: 2021
  end-page: 64
  ident: b44
  article-title: Normalizing flows for probabilistic modeling and inference
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 1307
  year: 1986
  end-page: 1330
  ident: b1
  article-title: Linear inversion of band-limited reflection seismograms
  publication-title: SIAM J. Sci. Stat. Comput.
– year: 2022
  ident: b26
  article-title: Universal approximation power of deep residual neural networks through the lens of control
  publication-title: IEEE Trans. Automat. Control
– start-page: 1
  year: 2021
  end-page: 20
  ident: b22
  article-title: Control on the manifolds of mappings with a view to the deep learning
  publication-title: J. Dyn. Control Syst.
– volume: 18
  start-page: 5998
  year: 2017
  end-page: 6026
  ident: b39
  article-title: Maximum principle based algorithms for deep learning
  publication-title: J. Mach. Learn. Res.
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
– volume: 36
  start-page: 512
  year: 2015
  end-page: 534
  ident: b29
  article-title: Linear-quadratic control problems with
  publication-title: Optimal Control Appl. Methods
– volume: 3
  start-page: 447
  year: 2013
  end-page: 466
  ident: b34
  article-title: Sparse stabilization and optimal control of the Cucker-Smale model
  publication-title: Math. Control Relat. Fields
– year: 2022
  ident: b21
  article-title: Deep learning via dynamical systems: An approximation perspective
  publication-title: J. Eur. Math. Soc.
– year: 2021
  ident: b25
  article-title: Optimal control for neural ODE in a long time horizon and applications to the classification and simultaneous controllability problems
– year: 2021
  ident: b23
  article-title: Neural ODE control for classification, approximation and transport
– start-page: 17
  year: 2021
  end-page: 41
  ident: b19
  article-title: The finite-time turnpike phenomenon for optimal control problems: Stabilization by non-smooth tracking terms
  publication-title: Stabilization of Distributed Parameter Systems: Design Methods and Applications
– volume: 35
  start-page: 1652
  year: 2022
  ident: b16
  article-title: Turnpike in Lipschitz—nonlinear optimal control
  publication-title: Nonlinearity
– year: 2021
  ident: b11
  article-title: Large-time asymptotics in deep learning
– volume: 258
  start-page: 81
  year: 2015
  end-page: 114
  ident: b14
  article-title: The turnpike property in finite-dimensional nonlinear optimal control
  publication-title: J. Differential Equations
– reference: T.Q. Chen, Y. Rubanova, J. Bettencourt, D.K. Duvenaud, Neural ordinary differential equations, in: Advances in Neural Information Processing Systems, 2018, pp. 6571–6583.
– year: 2016
  ident: b12
  article-title: Deep Learning
– volume: 13
  start-page: 85
  year: 2010
  end-page: 117
  ident: b28
  article-title: Switching control
  publication-title: J. Eur. Math. Soc.
– volume: 26
  start-page: 61
  year: 2020
  ident: b32
  article-title: Sparse and switching infinite horizon optimal controls with mixed-norm penalizations
  publication-title: ESAIM Control Optim. Calc. Var.
– volume: 23
  start-page: 367
  year: 2022
  ident: b15
  article-title: Turnpike properties in optimal control
  publication-title: Numer. Control: A
– year: 2018
  ident: b43
  article-title: Ffjord: Free-form continuous dynamics for scalable reversible generative models
– reference: Y. Rubanova, R.T. Chen, D.K. Duvenaud, Latent ordinary differential equations for irregularly-sampled time series, in: Advances in Neural Information Processing Systems, 2019, pp. 5320–5330.
– volume: 32
  start-page: 888
  year: 2021
  end-page: 936
  ident: b38
  article-title: Structure-preserving deep learning
  publication-title: European J. Appl. Math.
– year: 2021
  ident: b17
  article-title: On the turnpike to design of deep neural nets: Explicit depth bounds
– start-page: 1
  year: 2020
  end-page: 21
  ident: b18
  article-title: Variational networks: An optimal control approach to early stopping variational methods for image restoration
  publication-title: J. Math. Imaging Vision
– reference: E. Dupont, A. Doucet, Y.W. Teh, Augmented Neural ODEs, in: Advances in Neural Information Processing Systems, 2019, pp. 3134–3144.
– volume: 27
  start-page: 301
  year: 2006
  end-page: 321
  ident: b33
  article-title: On
  publication-title: Optim. Control Appl. Methods
– volume: 35
  start-page: 34
  year: 2017
  end-page: 41
  ident: b20
  article-title: Exact turnpike properties and economic NMPC
  publication-title: Eur. J. Control
– year: 2006
  ident: b48
  article-title: Real Analysis: Theory of Measure and Integration
– volume: 172
  start-page: 481
  year: 2017
  end-page: 517
  ident: b31
  article-title: Infinite horizon sparse optimal control
  publication-title: J. Optim. Theory Appl.
– volume: 6
  start-page: 171
  year: 2019
  ident: b40
  article-title: Deep learning as optimal control problems: Models and numerical methods
  publication-title: J. Comput. Dyn.
– volume: 31
  start-page: 135
  year: 2022
  end-page: 263
  ident: b8
  article-title: Turnpike in optimal control of PDEs, ResNets, and beyond
  publication-title: Acta Numer.
– volume: 31
  year: 2018
  ident: b13
  article-title: On the global convergence of gradient descent for over-parameterized models using optimal transport
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 57
  start-page: 2753
  year: 2019
  end-page: 2774
  ident: b10
  article-title: Sensitivity analysis of optimal control for a class of parabolic PDEs motivated by model predictive control
  publication-title: SIAM J. Control Optim.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: b2
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– year: 2022
  ident: b45
  article-title: On neural differential equations
– volume: 374
  year: 2016
  ident: b46
  article-title: Understanding deep convolutional networks
  publication-title: Phil. Trans. R. Soc. A
– year: 2022
  ident: b30
  article-title: Optimal actuator design via Brunovsky’s normal form
  publication-title: IEEE Trans. Automat. Control
– volume: 25
  start-page: 521
  year: 2015
  end-page: 564
  ident: b36
  article-title: Sparse stabilization and control of alignment models
  publication-title: Math. Models Methods Appl. Sci.
– year: 2022
  ident: b42
  article-title: Learning polymorphic Neural ODEs with time-evolving mixture
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 8
  year: 2020
  end-page: 45
  ident: b47
  article-title: Optimal approximation with sparsely connected deep neural networks
  publication-title: SIAM J. Math. Data Sci.
– volume: 64
  start-page: 107
  year: 2021
  end-page: 115
  ident: b3
  article-title: Understanding deep learning (still) requires rethinking generalization
  publication-title: Commun. ACM
– volume: 372
  year: 2014
  ident: b35
  article-title: Mean-field sparse optimal control
  publication-title: Phil. Trans. R. Soc. A
– volume: 5
  start-page: 1
  year: 2017
  end-page: 11
  ident: b4
  article-title: A proposal on machine learning via dynamical systems
  publication-title: Commun. Math. Stat.
– volume: 34
  year: 2017
  ident: b5
  article-title: Stable architectures for deep neural networks
  publication-title: Inverse Problems
– volume: 162
  year: 2022
  ident: 10.1016/j.sysconle.2022.105452_b24
  article-title: Interpolation and approximation via momentum ResNets and neural ODEs
  publication-title: Systems Control Lett.
  doi: 10.1016/j.sysconle.2022.105182
– year: 2021
  ident: 10.1016/j.sysconle.2022.105452_b11
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.sysconle.2022.105452_b2
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 35
  start-page: 34
  year: 2017
  ident: 10.1016/j.sysconle.2022.105452_b20
  article-title: Exact turnpike properties and economic NMPC
  publication-title: Eur. J. Control
  doi: 10.1016/j.ejcon.2017.02.001
– year: 2021
  ident: 10.1016/j.sysconle.2022.105452_b25
– year: 2022
  ident: 10.1016/j.sysconle.2022.105452_b45
– volume: 26
  start-page: 61
  year: 2020
  ident: 10.1016/j.sysconle.2022.105452_b32
  article-title: Sparse and switching infinite horizon optimal controls with mixed-norm penalizations
  publication-title: ESAIM Control Optim. Calc. Var.
  doi: 10.1051/cocv/2019038
– volume: 6
  start-page: 171
  issue: 2
  year: 2019
  ident: 10.1016/j.sysconle.2022.105452_b40
  article-title: Deep learning as optimal control problems: Models and numerical methods
  publication-title: J. Comput. Dyn.
  doi: 10.3934/jcd.2019009
– volume: 3
  start-page: 447
  issue: 4
  year: 2013
  ident: 10.1016/j.sysconle.2022.105452_b34
  article-title: Sparse stabilization and optimal control of the Cucker-Smale model
  publication-title: Math. Control Relat. Fields
  doi: 10.3934/mcrf.2013.3.447
– volume: 372
  issue: 2028
  year: 2014
  ident: 10.1016/j.sysconle.2022.105452_b35
  article-title: Mean-field sparse optimal control
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2013.0400
– ident: 10.1016/j.sysconle.2022.105452_b6
– volume: 34
  issue: 1
  year: 2017
  ident: 10.1016/j.sysconle.2022.105452_b5
  article-title: Stable architectures for deep neural networks
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/aa9a90
– volume: 32
  start-page: 888
  issue: 5
  year: 2021
  ident: 10.1016/j.sysconle.2022.105452_b38
  article-title: Structure-preserving deep learning
  publication-title: European J. Appl. Math.
  doi: 10.1017/S0956792521000139
– volume: 22
  start-page: 1
  issue: 57
  year: 2021
  ident: 10.1016/j.sysconle.2022.105452_b44
  article-title: Normalizing flows for probabilistic modeling and inference
  publication-title: J. Mach. Learn. Res.
– year: 2021
  ident: 10.1016/j.sysconle.2022.105452_b23
– volume: 25
  start-page: 521
  issue: 03
  year: 2015
  ident: 10.1016/j.sysconle.2022.105452_b36
  article-title: Sparse stabilization and control of alignment models
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202515400059
– volume: 18
  start-page: 5998
  issue: 1
  year: 2017
  ident: 10.1016/j.sysconle.2022.105452_b39
  article-title: Maximum principle based algorithms for deep learning
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.sysconle.2022.105452_b37
– volume: 31
  year: 2018
  ident: 10.1016/j.sysconle.2022.105452_b9
  article-title: Large margin deep networks for classification
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 57
  start-page: 2753
  issue: 4
  year: 2019
  ident: 10.1016/j.sysconle.2022.105452_b10
  article-title: Sensitivity analysis of optimal control for a class of parabolic PDEs motivated by model predictive control
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/18M1223083
– volume: 172
  start-page: 481
  issue: 2
  year: 2017
  ident: 10.1016/j.sysconle.2022.105452_b31
  article-title: Infinite horizon sparse optimal control
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-016-1016-9
– volume: 31
  year: 2018
  ident: 10.1016/j.sysconle.2022.105452_b13
  article-title: On the global convergence of gradient descent for over-parameterized models using optimal transport
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2022
  ident: 10.1016/j.sysconle.2022.105452_b21
  article-title: Deep learning via dynamical systems: An approximation perspective
  publication-title: J. Eur. Math. Soc.
  doi: 10.4171/JEMS/1221
– volume: 258
  start-page: 81
  issue: 1
  year: 2015
  ident: 10.1016/j.sysconle.2022.105452_b14
  article-title: The turnpike property in finite-dimensional nonlinear optimal control
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2014.09.005
– volume: 31
  start-page: 135
  year: 2022
  ident: 10.1016/j.sysconle.2022.105452_b8
  article-title: Turnpike in optimal control of PDEs, ResNets, and beyond
  publication-title: Acta Numer.
  doi: 10.1017/S0962492922000046
– year: 2021
  ident: 10.1016/j.sysconle.2022.105452_b17
– ident: 10.1016/j.sysconle.2022.105452_b41
– start-page: 8
  issue: 1
  year: 2020
  ident: 10.1016/j.sysconle.2022.105452_b47
  article-title: Optimal approximation with sparsely connected deep neural networks
  publication-title: SIAM J. Math. Data Sci.
  doi: 10.1137/18M118709X
– start-page: 17
  year: 2021
  ident: 10.1016/j.sysconle.2022.105452_b19
  article-title: The finite-time turnpike phenomenon for optimal control problems: Stabilization by non-smooth tracking terms
– year: 2016
  ident: 10.1016/j.sysconle.2022.105452_b12
– start-page: 1
  year: 2021
  ident: 10.1016/j.sysconle.2022.105452_b22
  article-title: Control on the manifolds of mappings with a view to the deep learning
  publication-title: J. Dyn. Control Syst.
– start-page: 1
  year: 2020
  ident: 10.1016/j.sysconle.2022.105452_b18
  article-title: Variational networks: An optimal control approach to early stopping variational methods for image restoration
  publication-title: J. Math. Imaging Vision
– volume: 27
  start-page: 301
  issue: 6
  year: 2006
  ident: 10.1016/j.sysconle.2022.105452_b33
  article-title: On L1-minimization in optimal control and applications to robotics
  publication-title: Optim. Control Appl. Methods
  doi: 10.1002/oca.781
– ident: 10.1016/j.sysconle.2022.105452_b7
  doi: 10.1109/CVPR.2016.90
– year: 2022
  ident: 10.1016/j.sysconle.2022.105452_b26
  article-title: Universal approximation power of deep residual neural networks through the lens of control
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2022.3190051
– volume: 23
  start-page: 367
  year: 2022
  ident: 10.1016/j.sysconle.2022.105452_b15
  article-title: Turnpike properties in optimal control
  publication-title: Numer. Control: A
– year: 2021
  ident: 10.1016/j.sysconle.2022.105452_b27
– volume: 13
  start-page: 85
  issue: 1
  year: 2010
  ident: 10.1016/j.sysconle.2022.105452_b28
  article-title: Switching control
  publication-title: J. Eur. Math. Soc.
  doi: 10.4171/jems/245
– year: 2022
  ident: 10.1016/j.sysconle.2022.105452_b42
  article-title: Learning polymorphic Neural ODEs with time-evolving mixture
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 64
  start-page: 107
  issue: 3
  year: 2021
  ident: 10.1016/j.sysconle.2022.105452_b3
  article-title: Understanding deep learning (still) requires rethinking generalization
  publication-title: Commun. ACM
  doi: 10.1145/3446776
– volume: 35
  start-page: 1652
  issue: 4
  year: 2022
  ident: 10.1016/j.sysconle.2022.105452_b16
  article-title: Turnpike in Lipschitz—nonlinear optimal control
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/ac4e61
– year: 2018
  ident: 10.1016/j.sysconle.2022.105452_b43
– year: 2006
  ident: 10.1016/j.sysconle.2022.105452_b48
– year: 2022
  ident: 10.1016/j.sysconle.2022.105452_b30
  article-title: Optimal actuator design via Brunovsky’s normal form
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2022.3181222
– volume: 7
  start-page: 1307
  year: 1986
  ident: 10.1016/j.sysconle.2022.105452_b1
  article-title: Linear inversion of band-limited reflection seismograms
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0907087
– volume: 5
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.sysconle.2022.105452_b4
  article-title: A proposal on machine learning via dynamical systems
  publication-title: Commun. Math. Stat.
  doi: 10.1007/s40304-017-0103-z
– volume: 374
  issue: 2065
  year: 2016
  ident: 10.1016/j.sysconle.2022.105452_b46
  article-title: Understanding deep convolutional networks
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2015.0203
– volume: 36
  start-page: 512
  issue: 4
  year: 2015
  ident: 10.1016/j.sysconle.2022.105452_b29
  article-title: Linear-quadratic control problems with L1-control cost
  publication-title: Optimal Control Appl. Methods
  doi: 10.1002/oca.2126
SSID ssj0002033
Score 2.4524567
Snippet We consider the neural ODE and optimal control perspective of supervised learning, with ℓ1-control penalties, where rather than only minimizing a final cost...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105452
SubjectTerms Learning
Neural ODEs
Optimal Control
Sparsity
Title Sparsity in long-time control of neural ODEs
URI https://dx.doi.org/10.1016/j.sysconle.2022.105452
Volume 172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfGJ9lBw8mmazmc1mj6W2VIsVrMXewuax0hLSYuvBi7_dnSbRCkIPngJhJySzuzOz4ZvvI-TaTGmsJTc7TVGwIdCRrVwlbVN5J2AOY5Rp_KH_MPT7Y7if8EmNdKpeGIRVlrG_iOnraF3ecUpvOovp1BkhgN43e5UhzoBJbPgFELjKW58_MA9GCzl55PfG0RtdwrPW8mNpTp0Z0mUyhpK3wNnfCWoj6fQOyH5ZLVrt4oUOSS3Nj8jeBofgMbkZLdQaWGFNcyub5682ysVbJQTdmmsLKSvNQx5vu8sTMu51nzt9u5RAsGNPwsp2Y5oGlCuuRCQgNvVAxIDrVFBfe9JDNnVIYhWoNODKc32eyMR4l0smFBXK9U5JPZ_n6RmxlAQlEppAYNKykGag9mOpwIQZD1INDcKr7w7jkh8cZSqysAKCzcLKXyH6Kyz81SDOt92iYMjYaiErt4a_5jo0YXyL7fk_bC_ILorFF5jrS1Jfvb2nV6akWEXN9Zppkp323aA_xOvg6WXwBb7AyuY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED2VMgAD4lOUzwyMpHEcO4lHVFoVaMvQVupmOR9Graq0omVg4bdzbhIoElIH1sgXJc-58zl6fg_gFqc01oJjpinCbBbqyFauEjZ23gnDzRih2vzQ7_b89pA9jfioAo3yLIyhVRa1P6_pq2pdXHEKNJ35eOz0DYHex1ylhmdARbgF2wzT19gY1D9_eB6U5H7yRuDbDF87JjypLz4WuO2cGr1MSo3nLeP07xVqbdVpHcB-0S5a9_kTHUIlzY5gb01E8Bju-nO1YlZY48yazrJX2_jFWwUH3Zppy2hW4k1eHpqLExi2moNG2y48EOzYE2xpuzFJQ8IVV0EUsBgbgogyrtOA-NoTnpFTZ0msQpWGXHmuzxORILxc0ECRQLneKVSzWZaegaUEU0FCEhbiuhwIHKj9WCiGdcZjqWY14OV7y7gQCDc-FVNZMsEmssRLGrxkjlcNnO-4eS6RsTFClLDKX5MtsY5viD3_R-wN7LQH3Y7sPPaeL2DXOMfnBOxLqC7f3tMr7C-W0fXq-_kCPxvK0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparsity+in+long-time+control+of+neural+ODEs&rft.jtitle=Systems+%26+control+letters&rft.au=Esteve-Yag%C3%BCe%2C+Carlos&rft.au=Geshkovski%2C+Borjan&rft.date=2023-02-01&rft.issn=0167-6911&rft.volume=172&rft.spage=105452&rft_id=info:doi/10.1016%2Fj.sysconle.2022.105452&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sysconle_2022_105452
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6911&client=summon