Fast Ground Segmentation for 3D LiDAR Point Cloud Based on Jump-Convolution-Process
LiDAR occupies a vital position in self-driving as the advanced detection technology enables autonomous vehicles (AVs) to obtain much environmental information. Ground segmentation for LiDAR point cloud is a crucial procedure to ensure AVs’ driving safety. However, some current algorithms suffer fro...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 13; no. 16; p. 3239 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
15.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | LiDAR occupies a vital position in self-driving as the advanced detection technology enables autonomous vehicles (AVs) to obtain much environmental information. Ground segmentation for LiDAR point cloud is a crucial procedure to ensure AVs’ driving safety. However, some current algorithms suffer from embarrassments such as unavailability on complex terrains, excessive time and memory usage, and additional pre-training requirements. The Jump-Convolution-Process (JCP) is proposed to solve these issues. JCP converts the segmentation problem of the 3D point cloud into the smoothing problem of the 2D image and takes little time to improve the segmentation effect significantly. First, the point cloud marked by an improved local feature extraction algorithm is projected onto an RGB image. Then, the pixel value is initialized with the points’ label and continuously updated according to image convolution. Finally, a jump operation is introduced in the convolution process to perform calculations only on the low-confidence points filtered by the credibility propagation algorithm, reducing the time cost. Experiments on three datasets show that our approach has a better segmentation accuracy and terrain adaptability than those of the three existing methods. Meanwhile, the average time for the proposed method to deal with one scan data of 64-beam and 128-beam LiDAR is only 8.61 ms and 15.62 ms, which fully meets the AVs’ requirement for real-time performance. |
---|---|
AbstractList | LiDAR occupies a vital position in self-driving as the advanced detection technology enables autonomous vehicles (AVs) to obtain much environmental information. Ground segmentation for LiDAR point cloud is a crucial procedure to ensure AVs’ driving safety. However, some current algorithms suffer from embarrassments such as unavailability on complex terrains, excessive time and memory usage, and additional pre-training requirements. The Jump-Convolution-Process (JCP) is proposed to solve these issues. JCP converts the segmentation problem of the 3D point cloud into the smoothing problem of the 2D image and takes little time to improve the segmentation effect significantly. First, the point cloud marked by an improved local feature extraction algorithm is projected onto an RGB image. Then, the pixel value is initialized with the points’ label and continuously updated according to image convolution. Finally, a jump operation is introduced in the convolution process to perform calculations only on the low-confidence points filtered by the credibility propagation algorithm, reducing the time cost. Experiments on three datasets show that our approach has a better segmentation accuracy and terrain adaptability than those of the three existing methods. Meanwhile, the average time for the proposed method to deal with one scan data of 64-beam and 128-beam LiDAR is only 8.61 ms and 15.62 ms, which fully meets the AVs’ requirement for real-time performance. |
Author | Liang, Huawei Lin, Linglong Shen, Zhihao Huang, Weixin Yu, Jie Wang, Zhiling |
Author_xml | – sequence: 1 givenname: Zhihao orcidid: 0000-0002-6809-503X surname: Shen fullname: Shen, Zhihao – sequence: 2 givenname: Huawei surname: Liang fullname: Liang, Huawei – sequence: 3 givenname: Linglong orcidid: 0000-0002-0941-2402 surname: Lin fullname: Lin, Linglong – sequence: 4 givenname: Zhiling surname: Wang fullname: Wang, Zhiling – sequence: 5 givenname: Weixin surname: Huang fullname: Huang, Weixin – sequence: 6 givenname: Jie surname: Yu fullname: Yu, Jie |
BookMark | eNptkVtr3DAQhUVIIGmSl_4CQV5Kwakutiw9pptrWUjI5VmMpXHQ4pW2kh3Iv6_TbWgJnZcZhu8cODOfyG5MEQn5zNmplIZ9y4VLrqSQZoccCNaKqhZG7P4z75PjUlZsLim5YfUBebiEMtKrnKbo6QM-rzGOMIYUaZ8yled0Gc7P7uldCnGkiyFNnn6Hgp7OxI9pvakWKb6kYXqTVHc5OSzliOz1MBQ8_tMPydPlxePiulreXt0szpaVk6YeK25a1WrecQUMO2R9D0yChs45AC1bh7qed4hSuJYx33POtVISvfK8Y7U8JDdbX59gZTc5rCG_2gTB_l6k_Gwhj8ENaFvErtXMiL7vau1B-9ohc0ZwgY3v_Oz1Zeu1yennhGW061AcDgNETFOxQknVMN5KNqMnH9BVmnKck1rRqEYZo3UzU2xLuZxKydhbF7aXHTOEwXJm355m_z5tlnz9IHnP9B_4F7XGmBU |
CitedBy_id | crossref_primary_10_1007_s12559_023_10211_x crossref_primary_10_3390_s23020601 crossref_primary_10_54097_ajst_v8i1_14321 crossref_primary_10_3390_machines11010054 crossref_primary_10_3390_s23010375 crossref_primary_10_3390_agronomy12102409 crossref_primary_10_1109_LRA_2025_3546071 crossref_primary_10_3390_machines10070507 crossref_primary_10_3788_LOP230491 crossref_primary_10_1109_LRA_2024_3349828 crossref_primary_10_1109_JSEN_2022_3225293 crossref_primary_10_3390_electronics13122250 crossref_primary_10_1016_j_ecoinf_2023_102207 crossref_primary_10_1007_s00138_024_01593_5 crossref_primary_10_3390_rs13173437 crossref_primary_10_1109_LRA_2023_3333233 crossref_primary_10_5194_gi_11_195_2022 crossref_primary_10_1007_s13177_024_00436_x crossref_primary_10_1016_j_eswa_2023_121552 crossref_primary_10_1016_j_measurement_2024_114890 crossref_primary_10_3390_s23136119 crossref_primary_10_3788_IRLA20230169 crossref_primary_10_1109_TITS_2023_3339334 |
Cites_doi | 10.1016/j.cageo.2016.11.002 10.1109/ROBIO49542.2019.8961567 10.1177/1687814020956494 10.1007/978-3-319-07488-7_4 10.1109/CVPR46437.2021.00981 10.3390/machines5010006 10.1109/ROBIO.2014.7090625 10.1007/978-981-15-0474-7_105 10.1109/ICCV.2019.00939 10.1002/rob.20147 10.1109/ICPR.2018.8546281 10.1109/ICRA.2011.5979818 10.2991/meees-18.2018.4 10.1109/IVS.2017.7995861 10.1109/3DV.2015.76 10.1109/ICRA.2017.7989591 10.1109/ITSC.2018.8569534 10.1109/ICCP.2017.8117022 10.1109/ICCSS52145.2020.9336862 10.1109/TITS.2021.3086804 10.1109/ICInfA.2018.8812461 10.1109/MFI.2017.8170397 10.1186/s13673-019-0178-5 10.1109/ACCESS.2019.2899674 10.1109/ICCAS.2014.6987936 10.1109/CCDC.2015.7162621 10.1109/ICCV.2019.00859 10.1109/TITS.2021.3073151 10.1007/s10846-013-9889-4 10.1109/IROS.2016.7759050 10.3390/app10238534 10.1016/j.cviu.2018.06.004 10.1109/IVS.2011.5940502 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
DOI | 10.3390/rs13163239 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_7eeb78092ffb48da8d4ce0c9212e5dbd 10_3390_rs13163239 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c394t-1976781b16a0ebe0ffa03a8abccaa837ce84ffaee32c700df1118663ed6d1b043 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:28:29 EDT 2025 Fri Jul 11 04:05:11 EDT 2025 Fri Jul 25 09:32:54 EDT 2025 Thu Apr 24 22:57:24 EDT 2025 Tue Jul 01 01:58:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c394t-1976781b16a0ebe0ffa03a8abccaa837ce84ffaee32c700df1118663ed6d1b043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0941-2402 0000-0002-6809-503X |
OpenAccessLink | https://doaj.org/article/7eeb78092ffb48da8d4ce0c9212e5dbd |
PQID | 2565699885 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7eeb78092ffb48da8d4ce0c9212e5dbd proquest_miscellaneous_2636501730 proquest_journals_2565699885 crossref_citationtrail_10_3390_rs13163239 crossref_primary_10_3390_rs13163239 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210815 |
PublicationDateYYYYMMDD | 2021-08-15 |
PublicationDate_xml | – month: 08 year: 2021 text: 20210815 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Avraham (ref_24) 2018; 174 ref_14 ref_36 ref_35 ref_12 ref_34 ref_11 Chu (ref_10) 2017; 13 Tsai (ref_17) 2019; 30 ref_32 ref_31 ref_30 Chu (ref_15) 2019; 9 Chen (ref_19) 2014; 76 Jiao (ref_13) 2021; 54 Liu (ref_21) 2019; 7 ref_18 ref_39 ref_38 ref_37 Thrun (ref_7) 2006; 23 Wang (ref_16) 2017; 99 Zhang (ref_33) 2017; 47 ref_25 ref_22 ref_43 ref_20 ref_42 ref_41 ref_40 ref_1 ref_3 ref_2 ref_29 ref_28 ref_27 ref_26 ref_9 ref_8 Li (ref_4) 2020; 37 ref_5 ref_6 Bogoslavskyi (ref_23) 2017; 85 |
References_xml | – volume: 99 start-page: 100 year: 2017 ident: ref_16 article-title: A region-growing approach for automatic outcrop fracture extraction from a three-dimensional point cloud publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2016.11.002 – ident: ref_25 doi: 10.1109/ROBIO49542.2019.8961567 – volume: 54 start-page: 227 year: 2021 ident: ref_13 article-title: Point cloud parallel de-noising algorithms based on scale change publication-title: Eng. J. Wuhan Univ. – ident: ref_3 doi: 10.1177/1687814020956494 – ident: ref_30 doi: 10.1007/978-3-319-07488-7_4 – ident: ref_40 doi: 10.1109/CVPR46437.2021.00981 – ident: ref_2 doi: 10.3390/machines5010006 – ident: ref_43 doi: 10.1109/ROBIO.2014.7090625 – ident: ref_12 doi: 10.1007/978-981-15-0474-7_105 – ident: ref_41 doi: 10.1109/ICCV.2019.00939 – volume: 23 start-page: 661 year: 2006 ident: ref_7 article-title: Stanley: The robot that won the DARPA Grand Challenge publication-title: J. Field Robot. doi: 10.1002/rob.20147 – ident: ref_38 doi: 10.1109/ICPR.2018.8546281 – ident: ref_18 doi: 10.1109/ICRA.2011.5979818 – volume: 85 start-page: 41 year: 2017 ident: ref_23 article-title: Efficient online segmentation for sparse 3d laser scans publication-title: PFG J. Photogramm. Remote. Sens. Geoinf. Sci. – ident: ref_39 – ident: ref_14 doi: 10.2991/meees-18.2018.4 – volume: 30 start-page: 323 year: 2019 ident: ref_17 article-title: Dynamic Road Surface Detection Method Based on 3D Lidar publication-title: J. Comput. – ident: ref_6 doi: 10.1109/IVS.2017.7995861 – ident: ref_42 – ident: ref_35 – ident: ref_32 doi: 10.1109/3DV.2015.76 – volume: 37 start-page: 50 year: 2020 ident: ref_4 article-title: Lidar for autonomous driving: The principles, challenges, and trends for automotive lidar and perception systems publication-title: IEEE Signal Process. Mag. – ident: ref_8 doi: 10.1109/ICRA.2017.7989591 – ident: ref_11 doi: 10.1109/ITSC.2018.8569534 – volume: 47 start-page: 1387 year: 2017 ident: ref_33 article-title: Road segmentation method based on irregular three dimensional point cloud publication-title: J. Jilin Univ. (Eng. Technol. Ed.) – ident: ref_9 doi: 10.1109/ICCP.2017.8117022 – ident: ref_27 doi: 10.1109/ICCSS52145.2020.9336862 – ident: ref_1 doi: 10.1109/TITS.2021.3086804 – ident: ref_5 doi: 10.1109/ICInfA.2018.8812461 – ident: ref_26 doi: 10.1109/MFI.2017.8170397 – volume: 9 start-page: 17 year: 2019 ident: ref_15 article-title: Enhanced ground segmentation method for Lidar point clouds in human-centric autonomous robot systems publication-title: Hum.-Centric Comput. Inf. Sci. doi: 10.1186/s13673-019-0178-5 – volume: 7 start-page: 23270 year: 2019 ident: ref_21 article-title: Ground surface filtering of 3D point clouds based on hybrid regression technique publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2899674 – ident: ref_31 doi: 10.1109/ICCAS.2014.6987936 – ident: ref_20 doi: 10.1109/CCDC.2015.7162621 – volume: 13 start-page: 491 year: 2017 ident: ref_10 article-title: A Fast Ground Segmentation Method for 3D Point Cloud publication-title: JIPS – ident: ref_37 doi: 10.1109/ICCV.2019.00859 – ident: ref_36 – ident: ref_34 doi: 10.1109/TITS.2021.3073151 – volume: 76 start-page: 563 year: 2014 ident: ref_19 article-title: Gaussian-process-based real-time ground segmentation for autonomous land vehicles publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-013-9889-4 – ident: ref_22 doi: 10.1109/IROS.2016.7759050 – ident: ref_28 doi: 10.3390/app10238534 – volume: 174 start-page: 12 year: 2018 ident: ref_24 article-title: Graph based over-segmentation methods for 3d point clouds publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2018.06.004 – ident: ref_29 doi: 10.1109/IVS.2011.5940502 |
SSID | ssj0000331904 |
Score | 2.442563 |
Snippet | LiDAR occupies a vital position in self-driving as the advanced detection technology enables autonomous vehicles (AVs) to obtain much environmental... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 3239 |
SubjectTerms | Accuracy Adaptability Algorithms autonomous vehicles Clouds Convolution data collection Deep learning Driving ability Environmental information Feature extraction ground segmentation Image segmentation landscapes LiDAR memory Methods Neural networks Propagation real-time Roads & highways Three dimensional models Vehicle safety |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RT9swED5t7QN7QWwDUSiT0fayBwvHdhLnaaKFqqo2hGBIvEV27BQkSEqbIvHvd27ddhKIV-cURXfnu-8u9n0AP_y8Oy5LQz3jG5VRlFHDpKYls9LJTBnJ_X3nPxfJ8EaObuPb0HCbhWOVq5i4CNS2LnyP_IR75IG1gYp_TZ6oZ43yf1cDhcZHaGMIVqoF7d75xeXVusvCBLoYk8u5pALr-5PpLBKIQbhnB_8vEy0G9r-Kx4skM9iB7YAOyenSnJ_hg6u-wFYgKr97-QrXAz1riG8YVZZcu_FjuDpUEQSfRJyR3_dnp1fksr6vGtJ_qOeW9DBPWYISI7Qc7dfVc_A2Gi4J7MLN4Pxvf0gDLwItRCYbGiGESBFuRolmaANWlpoJrbRBa2gsOAunJK45J3iRMmZLjGcKkYWziY3QEmIPWlVduX0gVjnBCoYpKmEytTxzrEBI4WKTGY61TAd-rnSUF2FouOeueMixePD6zDf67MD3texkOSrjTameV_Vawo-3XizU03EedkueOmdSxTJelkYqq5WVBX5ZhkZ2sTW2A92VofKw52b5xkM6cLx-jLvF_wLRlavnKJMIhKQRhrWD919xCJ-4P73ih9_GXWg107k7QvjRmG_Bx_4BIAbZ-w priority: 102 providerName: ProQuest |
Title | Fast Ground Segmentation for 3D LiDAR Point Cloud Based on Jump-Convolution-Process |
URI | https://www.proquest.com/docview/2565699885 https://www.proquest.com/docview/2636501730 https://doaj.org/article/7eeb78092ffb48da8d4ce0c9212e5dbd |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7xOJQLKo-qS-nKFVw4WDi2kzjHfbBFCBBiQeIW2bHTIkGC2Gwl_j3jxCwrUamXniI5c7Dms2e-SexvAA693h2XpaG-4xuVUZRRw6SmJbPSyUwZyf1954vL5PRWnt3Fd0utvvyZsE4euHPcceqcSRXLeFkaqaxWVhaOFRmGXBdbY330xZy3VEy1MVjg0mKy0yMVWNcfP88igdyD-67gSxmoFer_EIfb5DL5DJuBFZJBN5stWHHVNnwKDcp_v-zAdKJnDfEfiipLpu7XY7gyVBEknUSMyfn9eHBNrur7qiGjh3puyRDzkyVocYaI0VFd_QmrjIbLAbtwOzm5GZ3S0A-BFiKTDY2QOqRIM6NEM_Q9K0vNhFbaIAoaC83CKYljzglepIzZEuOYQkbhbGIjREB8gbWqrtxXIFY5wQqGqSlhMrU8Q5cilXCxyQzHGqYHR28-yosgFu57VjzkWDR4f-bv_uzBwcL2qZPI-KvV0Lt6YeFlrdsBBDsPYOf_ArsH-29A5WGvzXLuOSlWjSruwY_Fa9wl_teHrlw9R5tEIBWNMJzt_Y95fIMN7s-2eGnceB_Wmue5-47kpDF9WFWTn31YH4wvzqf4HJ5cXl3329X5CoTp5qU |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1ReqCXqp_qFiiu2h56sHBsJ3EOVQW7bBdYUFVA4hbs2KFINIHdLBV_qr-x46yzVGrVG9d4ZMWT55k3dmYG4L2vd8dlaajv-EZlFGXUMKlpyax0MlNGcp_vfHCYjE7k3ml8ugS_ulwY_1tlZxNbQ23rwp-Rb3LPPDA2UPHnq2vqu0b529WuhcYcFvvu9ieGbNNPuwP8vh84H-4c90c0dBWghchkQyN0wCmStSjRDFfAylIzoZU2uBaN4VrhlMRnzglepIzZEq2BQr_sbGIjXIfAeR_AQynQk_vM9OGXxZkOEwhoJudVUHGcbU6mkUDGw30v8j_8Xtse4C_r37q04RN4HLgo2ZqD5yksueoZrIS26N9vn8PRUE8b4o-nKkuO3PmPkKhUEaS6RAzI-GKw9Y18rS-qhvQv65kl2-gVLUGJPcQJ7dfVTcA2DSkJL-DkXvT1EparunKvgFjlBCsYOsSEydTyzLECCYyLTWY4Rk49-NjpKC9CiXLfKeMyx1DF6zO_02cP3i1kr-aFOf4pte1VvZDwxbTbB_XkPA97M0-dM6liGS9LI5XVysoC3yxDr-5ia2wP1roPlYcdPs3v8NiDt4th3Jv-wkVXrp6hTCKQAEdoRF__f4oNWBkdH4zz8e7h_io84v6_GV92N16D5WYyc-tIfBrzpkUbgbP7hvdvuEYXBA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEJ-ibIAR8MCDVcd2EudhQmu7al9U1cakvQU7dsakkWxtyrR_jb-Oc-t0SCDe9uqcrPj8s-_O9t0P4IOvd8dlaahnfKMyijJqmNS0ZFY6mSkjuc93_jJOdk_k_ml8uga_2lwY_6yy3RMXG7WtC39G3uPe88DYQMW9MjyLmAxHny-vqGeQ8jetLZ3GEiIH7uYaw7fZ1t4Q5_oj56Odr4NdGhgGaCEy2dAIjXGKjluUaIajYWWpmdBKGxyXxtCtcEpim3OCFyljtsSdQaGNdjaxEY5JYL_3YD31UVEH1vs748nR6oSHCYQ3k8uaqEJkrDedRQL9H-6Zyf-wgguygL9swcLAjR7Do-CZku0llJ7AmquewoNAkv795hkcj_SsIf6wqrLk2J39CGlLFUHHl4ghOTwfbh-RSX1eNWRwUc8t6aONtAQl9hE1dFBXPwPSaUhQeA4nd6KxF9Cp6sq9BGKVE6xgaB4TJlPLM8cKdGdcbDLDMY7qwqdWR3kRCpZ73oyLHAMXr8_8Vp9deL-SvVyW6finVN-reiXhS2svGurpWR5Wap46Z1LFMl6WRiqrlZUF_lmGNt7F1tgubLYTlYf1Pstv0dmFd6vPuFL99YuuXD1HmUSgOxzhlvrq_128hfsI7fxwb3ywAQ-5f0Tja_DGm9BppnP3Gr2gxrwJcCPw7a4R_hsgKRyW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Ground+Segmentation+for+3D+LiDAR+Point+Cloud+Based+on+Jump-Convolution-Process&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Shen%2C+Zhihao&rft.au=Liang%2C+Huawei&rft.au=Lin%2C+Linglong&rft.au=Wang%2C+Zhiling&rft.date=2021-08-15&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=13&rft.issue=16&rft_id=info:doi/10.3390%2Frs13163239&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |