Fast Ground Segmentation for 3D LiDAR Point Cloud Based on Jump-Convolution-Process

LiDAR occupies a vital position in self-driving as the advanced detection technology enables autonomous vehicles (AVs) to obtain much environmental information. Ground segmentation for LiDAR point cloud is a crucial procedure to ensure AVs’ driving safety. However, some current algorithms suffer fro...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 13; no. 16; p. 3239
Main Authors Shen, Zhihao, Liang, Huawei, Lin, Linglong, Wang, Zhiling, Huang, Weixin, Yu, Jie
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 15.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract LiDAR occupies a vital position in self-driving as the advanced detection technology enables autonomous vehicles (AVs) to obtain much environmental information. Ground segmentation for LiDAR point cloud is a crucial procedure to ensure AVs’ driving safety. However, some current algorithms suffer from embarrassments such as unavailability on complex terrains, excessive time and memory usage, and additional pre-training requirements. The Jump-Convolution-Process (JCP) is proposed to solve these issues. JCP converts the segmentation problem of the 3D point cloud into the smoothing problem of the 2D image and takes little time to improve the segmentation effect significantly. First, the point cloud marked by an improved local feature extraction algorithm is projected onto an RGB image. Then, the pixel value is initialized with the points’ label and continuously updated according to image convolution. Finally, a jump operation is introduced in the convolution process to perform calculations only on the low-confidence points filtered by the credibility propagation algorithm, reducing the time cost. Experiments on three datasets show that our approach has a better segmentation accuracy and terrain adaptability than those of the three existing methods. Meanwhile, the average time for the proposed method to deal with one scan data of 64-beam and 128-beam LiDAR is only 8.61 ms and 15.62 ms, which fully meets the AVs’ requirement for real-time performance.
AbstractList LiDAR occupies a vital position in self-driving as the advanced detection technology enables autonomous vehicles (AVs) to obtain much environmental information. Ground segmentation for LiDAR point cloud is a crucial procedure to ensure AVs’ driving safety. However, some current algorithms suffer from embarrassments such as unavailability on complex terrains, excessive time and memory usage, and additional pre-training requirements. The Jump-Convolution-Process (JCP) is proposed to solve these issues. JCP converts the segmentation problem of the 3D point cloud into the smoothing problem of the 2D image and takes little time to improve the segmentation effect significantly. First, the point cloud marked by an improved local feature extraction algorithm is projected onto an RGB image. Then, the pixel value is initialized with the points’ label and continuously updated according to image convolution. Finally, a jump operation is introduced in the convolution process to perform calculations only on the low-confidence points filtered by the credibility propagation algorithm, reducing the time cost. Experiments on three datasets show that our approach has a better segmentation accuracy and terrain adaptability than those of the three existing methods. Meanwhile, the average time for the proposed method to deal with one scan data of 64-beam and 128-beam LiDAR is only 8.61 ms and 15.62 ms, which fully meets the AVs’ requirement for real-time performance.
Author Liang, Huawei
Lin, Linglong
Shen, Zhihao
Huang, Weixin
Yu, Jie
Wang, Zhiling
Author_xml – sequence: 1
  givenname: Zhihao
  orcidid: 0000-0002-6809-503X
  surname: Shen
  fullname: Shen, Zhihao
– sequence: 2
  givenname: Huawei
  surname: Liang
  fullname: Liang, Huawei
– sequence: 3
  givenname: Linglong
  orcidid: 0000-0002-0941-2402
  surname: Lin
  fullname: Lin, Linglong
– sequence: 4
  givenname: Zhiling
  surname: Wang
  fullname: Wang, Zhiling
– sequence: 5
  givenname: Weixin
  surname: Huang
  fullname: Huang, Weixin
– sequence: 6
  givenname: Jie
  surname: Yu
  fullname: Yu, Jie
BookMark eNptkVtr3DAQhUVIIGmSl_4CQV5Kwakutiw9pptrWUjI5VmMpXHQ4pW2kh3Iv6_TbWgJnZcZhu8cODOfyG5MEQn5zNmplIZ9y4VLrqSQZoccCNaKqhZG7P4z75PjUlZsLim5YfUBebiEMtKrnKbo6QM-rzGOMIYUaZ8yled0Gc7P7uldCnGkiyFNnn6Hgp7OxI9pvakWKb6kYXqTVHc5OSzliOz1MBQ8_tMPydPlxePiulreXt0szpaVk6YeK25a1WrecQUMO2R9D0yChs45AC1bh7qed4hSuJYx33POtVISvfK8Y7U8JDdbX59gZTc5rCG_2gTB_l6k_Gwhj8ENaFvErtXMiL7vau1B-9ohc0ZwgY3v_Oz1Zeu1yennhGW061AcDgNETFOxQknVMN5KNqMnH9BVmnKck1rRqEYZo3UzU2xLuZxKydhbF7aXHTOEwXJm355m_z5tlnz9IHnP9B_4F7XGmBU
CitedBy_id crossref_primary_10_1007_s12559_023_10211_x
crossref_primary_10_3390_s23020601
crossref_primary_10_54097_ajst_v8i1_14321
crossref_primary_10_3390_machines11010054
crossref_primary_10_3390_s23010375
crossref_primary_10_3390_agronomy12102409
crossref_primary_10_1109_LRA_2025_3546071
crossref_primary_10_3390_machines10070507
crossref_primary_10_3788_LOP230491
crossref_primary_10_1109_LRA_2024_3349828
crossref_primary_10_1109_JSEN_2022_3225293
crossref_primary_10_3390_electronics13122250
crossref_primary_10_1016_j_ecoinf_2023_102207
crossref_primary_10_1007_s00138_024_01593_5
crossref_primary_10_3390_rs13173437
crossref_primary_10_1109_LRA_2023_3333233
crossref_primary_10_5194_gi_11_195_2022
crossref_primary_10_1007_s13177_024_00436_x
crossref_primary_10_1016_j_eswa_2023_121552
crossref_primary_10_1016_j_measurement_2024_114890
crossref_primary_10_3390_s23136119
crossref_primary_10_3788_IRLA20230169
crossref_primary_10_1109_TITS_2023_3339334
Cites_doi 10.1016/j.cageo.2016.11.002
10.1109/ROBIO49542.2019.8961567
10.1177/1687814020956494
10.1007/978-3-319-07488-7_4
10.1109/CVPR46437.2021.00981
10.3390/machines5010006
10.1109/ROBIO.2014.7090625
10.1007/978-981-15-0474-7_105
10.1109/ICCV.2019.00939
10.1002/rob.20147
10.1109/ICPR.2018.8546281
10.1109/ICRA.2011.5979818
10.2991/meees-18.2018.4
10.1109/IVS.2017.7995861
10.1109/3DV.2015.76
10.1109/ICRA.2017.7989591
10.1109/ITSC.2018.8569534
10.1109/ICCP.2017.8117022
10.1109/ICCSS52145.2020.9336862
10.1109/TITS.2021.3086804
10.1109/ICInfA.2018.8812461
10.1109/MFI.2017.8170397
10.1186/s13673-019-0178-5
10.1109/ACCESS.2019.2899674
10.1109/ICCAS.2014.6987936
10.1109/CCDC.2015.7162621
10.1109/ICCV.2019.00859
10.1109/TITS.2021.3073151
10.1007/s10846-013-9889-4
10.1109/IROS.2016.7759050
10.3390/app10238534
10.1016/j.cviu.2018.06.004
10.1109/IVS.2011.5940502
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs13163239
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_7eeb78092ffb48da8d4ce0c9212e5dbd
10_3390_rs13163239
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-1976781b16a0ebe0ffa03a8abccaa837ce84ffaee32c700df1118663ed6d1b043
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:28:29 EDT 2025
Fri Jul 11 04:05:11 EDT 2025
Fri Jul 25 09:32:54 EDT 2025
Thu Apr 24 22:57:24 EDT 2025
Tue Jul 01 01:58:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-1976781b16a0ebe0ffa03a8abccaa837ce84ffaee32c700df1118663ed6d1b043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0941-2402
0000-0002-6809-503X
OpenAccessLink https://doaj.org/article/7eeb78092ffb48da8d4ce0c9212e5dbd
PQID 2565699885
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_7eeb78092ffb48da8d4ce0c9212e5dbd
proquest_miscellaneous_2636501730
proquest_journals_2565699885
crossref_citationtrail_10_3390_rs13163239
crossref_primary_10_3390_rs13163239
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210815
PublicationDateYYYYMMDD 2021-08-15
PublicationDate_xml – month: 08
  year: 2021
  text: 20210815
  day: 15
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Avraham (ref_24) 2018; 174
ref_14
ref_36
ref_35
ref_12
ref_34
ref_11
Chu (ref_10) 2017; 13
Tsai (ref_17) 2019; 30
ref_32
ref_31
ref_30
Chu (ref_15) 2019; 9
Chen (ref_19) 2014; 76
Jiao (ref_13) 2021; 54
Liu (ref_21) 2019; 7
ref_18
ref_39
ref_38
ref_37
Thrun (ref_7) 2006; 23
Wang (ref_16) 2017; 99
Zhang (ref_33) 2017; 47
ref_25
ref_22
ref_43
ref_20
ref_42
ref_41
ref_40
ref_1
ref_3
ref_2
ref_29
ref_28
ref_27
ref_26
ref_9
ref_8
Li (ref_4) 2020; 37
ref_5
ref_6
Bogoslavskyi (ref_23) 2017; 85
References_xml – volume: 99
  start-page: 100
  year: 2017
  ident: ref_16
  article-title: A region-growing approach for automatic outcrop fracture extraction from a three-dimensional point cloud
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2016.11.002
– ident: ref_25
  doi: 10.1109/ROBIO49542.2019.8961567
– volume: 54
  start-page: 227
  year: 2021
  ident: ref_13
  article-title: Point cloud parallel de-noising algorithms based on scale change
  publication-title: Eng. J. Wuhan Univ.
– ident: ref_3
  doi: 10.1177/1687814020956494
– ident: ref_30
  doi: 10.1007/978-3-319-07488-7_4
– ident: ref_40
  doi: 10.1109/CVPR46437.2021.00981
– ident: ref_2
  doi: 10.3390/machines5010006
– ident: ref_43
  doi: 10.1109/ROBIO.2014.7090625
– ident: ref_12
  doi: 10.1007/978-981-15-0474-7_105
– ident: ref_41
  doi: 10.1109/ICCV.2019.00939
– volume: 23
  start-page: 661
  year: 2006
  ident: ref_7
  article-title: Stanley: The robot that won the DARPA Grand Challenge
  publication-title: J. Field Robot.
  doi: 10.1002/rob.20147
– ident: ref_38
  doi: 10.1109/ICPR.2018.8546281
– ident: ref_18
  doi: 10.1109/ICRA.2011.5979818
– volume: 85
  start-page: 41
  year: 2017
  ident: ref_23
  article-title: Efficient online segmentation for sparse 3d laser scans
  publication-title: PFG J. Photogramm. Remote. Sens. Geoinf. Sci.
– ident: ref_39
– ident: ref_14
  doi: 10.2991/meees-18.2018.4
– volume: 30
  start-page: 323
  year: 2019
  ident: ref_17
  article-title: Dynamic Road Surface Detection Method Based on 3D Lidar
  publication-title: J. Comput.
– ident: ref_6
  doi: 10.1109/IVS.2017.7995861
– ident: ref_42
– ident: ref_35
– ident: ref_32
  doi: 10.1109/3DV.2015.76
– volume: 37
  start-page: 50
  year: 2020
  ident: ref_4
  article-title: Lidar for autonomous driving: The principles, challenges, and trends for automotive lidar and perception systems
  publication-title: IEEE Signal Process. Mag.
– ident: ref_8
  doi: 10.1109/ICRA.2017.7989591
– ident: ref_11
  doi: 10.1109/ITSC.2018.8569534
– volume: 47
  start-page: 1387
  year: 2017
  ident: ref_33
  article-title: Road segmentation method based on irregular three dimensional point cloud
  publication-title: J. Jilin Univ. (Eng. Technol. Ed.)
– ident: ref_9
  doi: 10.1109/ICCP.2017.8117022
– ident: ref_27
  doi: 10.1109/ICCSS52145.2020.9336862
– ident: ref_1
  doi: 10.1109/TITS.2021.3086804
– ident: ref_5
  doi: 10.1109/ICInfA.2018.8812461
– ident: ref_26
  doi: 10.1109/MFI.2017.8170397
– volume: 9
  start-page: 17
  year: 2019
  ident: ref_15
  article-title: Enhanced ground segmentation method for Lidar point clouds in human-centric autonomous robot systems
  publication-title: Hum.-Centric Comput. Inf. Sci.
  doi: 10.1186/s13673-019-0178-5
– volume: 7
  start-page: 23270
  year: 2019
  ident: ref_21
  article-title: Ground surface filtering of 3D point clouds based on hybrid regression technique
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2899674
– ident: ref_31
  doi: 10.1109/ICCAS.2014.6987936
– ident: ref_20
  doi: 10.1109/CCDC.2015.7162621
– volume: 13
  start-page: 491
  year: 2017
  ident: ref_10
  article-title: A Fast Ground Segmentation Method for 3D Point Cloud
  publication-title: JIPS
– ident: ref_37
  doi: 10.1109/ICCV.2019.00859
– ident: ref_36
– ident: ref_34
  doi: 10.1109/TITS.2021.3073151
– volume: 76
  start-page: 563
  year: 2014
  ident: ref_19
  article-title: Gaussian-process-based real-time ground segmentation for autonomous land vehicles
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-013-9889-4
– ident: ref_22
  doi: 10.1109/IROS.2016.7759050
– ident: ref_28
  doi: 10.3390/app10238534
– volume: 174
  start-page: 12
  year: 2018
  ident: ref_24
  article-title: Graph based over-segmentation methods for 3d point clouds
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2018.06.004
– ident: ref_29
  doi: 10.1109/IVS.2011.5940502
SSID ssj0000331904
Score 2.442563
Snippet LiDAR occupies a vital position in self-driving as the advanced detection technology enables autonomous vehicles (AVs) to obtain much environmental...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3239
SubjectTerms Accuracy
Adaptability
Algorithms
autonomous vehicles
Clouds
Convolution
data collection
Deep learning
Driving ability
Environmental information
Feature extraction
ground segmentation
Image segmentation
landscapes
LiDAR
memory
Methods
Neural networks
Propagation
real-time
Roads & highways
Three dimensional models
Vehicle safety
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RT9swED5t7QN7QWwDUSiT0fayBwvHdhLnaaKFqqo2hGBIvEV27BQkSEqbIvHvd27ddhKIV-cURXfnu-8u9n0AP_y8Oy5LQz3jG5VRlFHDpKYls9LJTBnJ_X3nPxfJ8EaObuPb0HCbhWOVq5i4CNS2LnyP_IR75IG1gYp_TZ6oZ43yf1cDhcZHaGMIVqoF7d75xeXVusvCBLoYk8u5pALr-5PpLBKIQbhnB_8vEy0G9r-Kx4skM9iB7YAOyenSnJ_hg6u-wFYgKr97-QrXAz1riG8YVZZcu_FjuDpUEQSfRJyR3_dnp1fksr6vGtJ_qOeW9DBPWYISI7Qc7dfVc_A2Gi4J7MLN4Pxvf0gDLwItRCYbGiGESBFuRolmaANWlpoJrbRBa2gsOAunJK45J3iRMmZLjGcKkYWziY3QEmIPWlVduX0gVjnBCoYpKmEytTxzrEBI4WKTGY61TAd-rnSUF2FouOeueMixePD6zDf67MD3texkOSrjTameV_Vawo-3XizU03EedkueOmdSxTJelkYqq5WVBX5ZhkZ2sTW2A92VofKw52b5xkM6cLx-jLvF_wLRlavnKJMIhKQRhrWD919xCJ-4P73ih9_GXWg107k7QvjRmG_Bx_4BIAbZ-w
  priority: 102
  providerName: ProQuest
Title Fast Ground Segmentation for 3D LiDAR Point Cloud Based on Jump-Convolution-Process
URI https://www.proquest.com/docview/2565699885
https://www.proquest.com/docview/2636501730
https://doaj.org/article/7eeb78092ffb48da8d4ce0c9212e5dbd
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7xOJQLKo-qS-nKFVw4WDi2kzjHfbBFCBBiQeIW2bHTIkGC2Gwl_j3jxCwrUamXniI5c7Dms2e-SexvAA693h2XpaG-4xuVUZRRw6SmJbPSyUwZyf1954vL5PRWnt3Fd0utvvyZsE4euHPcceqcSRXLeFkaqaxWVhaOFRmGXBdbY330xZy3VEy1MVjg0mKy0yMVWNcfP88igdyD-67gSxmoFer_EIfb5DL5DJuBFZJBN5stWHHVNnwKDcp_v-zAdKJnDfEfiipLpu7XY7gyVBEknUSMyfn9eHBNrur7qiGjh3puyRDzkyVocYaI0VFd_QmrjIbLAbtwOzm5GZ3S0A-BFiKTDY2QOqRIM6NEM_Q9K0vNhFbaIAoaC83CKYljzglepIzZEuOYQkbhbGIjREB8gbWqrtxXIFY5wQqGqSlhMrU8Q5cilXCxyQzHGqYHR28-yosgFu57VjzkWDR4f-bv_uzBwcL2qZPI-KvV0Lt6YeFlrdsBBDsPYOf_ArsH-29A5WGvzXLuOSlWjSruwY_Fa9wl_teHrlw9R5tEIBWNMJzt_Y95fIMN7s-2eGnceB_Wmue5-47kpDF9WFWTn31YH4wvzqf4HJ5cXl3329X5CoTp5qU
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1ReqCXqp_qFiiu2h56sHBsJ3EOVQW7bBdYUFVA4hbs2KFINIHdLBV_qr-x46yzVGrVG9d4ZMWT55k3dmYG4L2vd8dlaajv-EZlFGXUMKlpyax0MlNGcp_vfHCYjE7k3ml8ugS_ulwY_1tlZxNbQ23rwp-Rb3LPPDA2UPHnq2vqu0b529WuhcYcFvvu9ieGbNNPuwP8vh84H-4c90c0dBWghchkQyN0wCmStSjRDFfAylIzoZU2uBaN4VrhlMRnzglepIzZEq2BQr_sbGIjXIfAeR_AQynQk_vM9OGXxZkOEwhoJudVUHGcbU6mkUDGw30v8j_8Xtse4C_r37q04RN4HLgo2ZqD5yksueoZrIS26N9vn8PRUE8b4o-nKkuO3PmPkKhUEaS6RAzI-GKw9Y18rS-qhvQv65kl2-gVLUGJPcQJ7dfVTcA2DSkJL-DkXvT1EparunKvgFjlBCsYOsSEydTyzLECCYyLTWY4Rk49-NjpKC9CiXLfKeMyx1DF6zO_02cP3i1kr-aFOf4pte1VvZDwxbTbB_XkPA97M0-dM6liGS9LI5XVysoC3yxDr-5ia2wP1roPlYcdPs3v8NiDt4th3Jv-wkVXrp6hTCKQAEdoRF__f4oNWBkdH4zz8e7h_io84v6_GV92N16D5WYyc-tIfBrzpkUbgbP7hvdvuEYXBA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEJ-ibIAR8MCDVcd2EudhQmu7al9U1cakvQU7dsakkWxtyrR_jb-Oc-t0SCDe9uqcrPj8s-_O9t0P4IOvd8dlaahnfKMyijJqmNS0ZFY6mSkjuc93_jJOdk_k_ml8uga_2lwY_6yy3RMXG7WtC39G3uPe88DYQMW9MjyLmAxHny-vqGeQ8jetLZ3GEiIH7uYaw7fZ1t4Q5_oj56Odr4NdGhgGaCEy2dAIjXGKjluUaIajYWWpmdBKGxyXxtCtcEpim3OCFyljtsSdQaGNdjaxEY5JYL_3YD31UVEH1vs748nR6oSHCYQ3k8uaqEJkrDedRQL9H-6Zyf-wgguygL9swcLAjR7Do-CZku0llJ7AmquewoNAkv795hkcj_SsIf6wqrLk2J39CGlLFUHHl4ghOTwfbh-RSX1eNWRwUc8t6aONtAQl9hE1dFBXPwPSaUhQeA4nd6KxF9Cp6sq9BGKVE6xgaB4TJlPLM8cKdGdcbDLDMY7qwqdWR3kRCpZ73oyLHAMXr8_8Vp9deL-SvVyW6finVN-reiXhS2svGurpWR5Wap46Z1LFMl6WRiqrlZUF_lmGNt7F1tgubLYTlYf1Pstv0dmFd6vPuFL99YuuXD1HmUSgOxzhlvrq_128hfsI7fxwb3ywAQ-5f0Tja_DGm9BppnP3Gr2gxrwJcCPw7a4R_hsgKRyW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Ground+Segmentation+for+3D+LiDAR+Point+Cloud+Based+on+Jump-Convolution-Process&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Shen%2C+Zhihao&rft.au=Liang%2C+Huawei&rft.au=Lin%2C+Linglong&rft.au=Wang%2C+Zhiling&rft.date=2021-08-15&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=13&rft.issue=16&rft_id=info:doi/10.3390%2Frs13163239&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon