Dust settling and rings in the outer regions of protoplanetary discs subject to ambipolar diffusion
Context. Magnetohydrodynamic (MHD) turbulence plays a crucial role in the dust dynamics of protoplanetary discs. It affects planet formation, vertical settling, and is one possible origin of the large scale axisymmetric structures, such as rings, recently imaged by ALMA and SPHERE. Among the variety...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 617; p. A117 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
EDP Sciences
01.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Context. Magnetohydrodynamic (MHD) turbulence plays a crucial role in the dust dynamics of protoplanetary discs. It affects planet formation, vertical settling, and is one possible origin of the large scale axisymmetric structures, such as rings, recently imaged by ALMA and SPHERE. Among the variety of MHD processes in discs, the magnetorotational instability (MRI) has raised particular interest since it provides a source of turbulence and potentially organizes the flow into large scale structures. However, the weak ionization of discs prevents the MRI from being excited beyond 1 AU. Moreover, the low velocity dispersion observed in CO and strong sedimentation of millimetre dust measured in T-Tauri discs are in contradiction with predictions based on ideal MRI turbulence. Aims. In this paper, we study the effects of non-ideal MHD and magnetized winds on the dynamics and sedimentation of dust grains. We consider a weakly ionized plasma subject to ambipolar diffusion characterizing the disc outer regions (≫1 AU). Methods. To compute the dust and gas motions, we performed numerical MHD simulations in the stratified shearing box, using a modified version of the PLUTO code. We explored different grain sizes from micrometre to few centimetres and different disc vertical magnetizations with plasma beta ranging from 103 to 105. Results. Our simulations show that the mm-cm dust is contained vertically in a very thin layer, with typical heightscale ≲0.4 AU at R = 30 AU, compatible with recent ALMA observations. Horizontally, the grains are trapped within the pressure maxima (or zonal flows) induced by ambipolar diffusion, leading to the formation of dust rings. For micrometre grains and strong magnetization, we find that the dust layer has a size comparable to the disc heightscale H. In this regime, dust settling cannot be explained by a simple 1D diffusion theory but results from a large scale 2D circulation induced by both MHD winds and zonal flows. Conclusions. Our results suggest that non-ideal MHD effects and MHD winds associated with zonal flows play a major role in shaping the radial and vertical distribution of dust in protoplanetary discs. Leading to effective accretion efficiency α ≃ 10−3–10−1, non-ideal MHD models are also a promising avenue to reconcile the low turbulent activity measured in discs with their relatively high accretion rates. |
---|---|
AbstractList | Context. Magnetohydrodynamic (MHD) turbulence plays a crucial role in the dust dynamics of protoplanetary discs. It affects planet formation, vertical settling, and is one possible origin of the large scale axisymmetric structures, such as rings, recently imaged by ALMA and SPHERE. Among the variety of MHD processes in discs, the magnetorotational instability (MRI) has raised particular interest since it provides a source of turbulence and potentially organizes the flow into large scale structures. However, the weak ionization of discs prevents the MRI from being excited beyond 1 AU. Moreover, the low velocity dispersion observed in CO and strong sedimentation of millimetre dust measured in T-Tauri discs are in contradiction with predictions based on ideal MRI turbulence. Aims. In this paper, we study the effects of non-ideal MHD and magnetized winds on the dynamics and sedimentation of dust grains. We consider a weakly ionized plasma subject to ambipolar diffusion characterizing the disc outer regions (≫1 AU). Methods. To compute the dust and gas motions, we performed numerical MHD simulations in the stratified shearing box, using a modified version of the PLUTO code. We explored different grain sizes from micrometre to few centimetres and different disc vertical magnetizations with plasma beta ranging from 103 to 105. Results. Our simulations show that the mm-cm dust is contained vertically in a very thin layer, with typical heightscale ≲0.4 AU at R = 30 AU, compatible with recent ALMA observations. Horizontally, the grains are trapped within the pressure maxima (or zonal flows) induced by ambipolar diffusion, leading to the formation of dust rings. For micrometre grains and strong magnetization, we find that the dust layer has a size comparable to the disc heightscale H. In this regime, dust settling cannot be explained by a simple 1D diffusion theory but results from a large scale 2D circulation induced by both MHD winds and zonal flows. Conclusions. Our results suggest that non-ideal MHD effects and MHD winds associated with zonal flows play a major role in shaping the radial and vertical distribution of dust in protoplanetary discs. Leading to effective accretion efficiency α ≃ 10−3–10−1, non-ideal MHD models are also a promising avenue to reconcile the low turbulent activity measured in discs with their relatively high accretion rates. Context . Magnetohydrodynamic (MHD) turbulence plays a crucial role in the dust dynamics of protoplanetary discs. It affects planet formation, vertical settling, and is one possible origin of the large scale axisymmetric structures, such as rings, recently imaged by ALMA and SPHERE. Among the variety of MHD processes in discs, the magnetorotational instability (MRI) has raised particular interest since it provides a source of turbulence and potentially organizes the flow into large scale structures. However, the weak ionization of discs prevents the MRI from being excited beyond 1 AU. Moreover, the low velocity dispersion observed in CO and strong sedimentation of millimetre dust measured in T-Tauri discs are in contradiction with predictions based on ideal MRI turbulence. Aims . In this paper, we study the effects of non-ideal MHD and magnetized winds on the dynamics and sedimentation of dust grains. We consider a weakly ionized plasma subject to ambipolar diffusion characterizing the disc outer regions (≫1 AU). Methods . To compute the dust and gas motions, we performed numerical MHD simulations in the stratified shearing box, using a modified version of the PLUTO code. We explored different grain sizes from micrometre to few centimetres and different disc vertical magnetizations with plasma beta ranging from 10 3 to 10 5 . Results . Our simulations show that the mm-cm dust is contained vertically in a very thin layer, with typical heightscale ≲0.4 AU at R = 30 AU, compatible with recent ALMA observations. Horizontally, the grains are trapped within the pressure maxima (or zonal flows) induced by ambipolar diffusion, leading to the formation of dust rings. For micrometre grains and strong magnetization, we find that the dust layer has a size comparable to the disc heightscale H . In this regime, dust settling cannot be explained by a simple 1D diffusion theory but results from a large scale 2D circulation induced by both MHD winds and zonal flows. Conclusions . Our results suggest that non-ideal MHD effects and MHD winds associated with zonal flows play a major role in shaping the radial and vertical distribution of dust in protoplanetary discs. Leading to effective accretion efficiency α ≃ 10 −3 –10 −1 , non-ideal MHD models are also a promising avenue to reconcile the low turbulent activity measured in discs with their relatively high accretion rates. |
Author | Lesur, G. Riols, A. |
Author_xml | – sequence: 1 givenname: A. surname: Riols fullname: Riols, A. organization: Univ. Grenoble-Alpes, CNRS, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), 38000 Grenoble, France – sequence: 2 givenname: G. surname: Lesur fullname: Lesur, G. organization: Univ. Grenoble-Alpes, CNRS, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), 38000 Grenoble, France |
BackLink | https://hal.science/hal-03009197$$DView record in HAL |
BookMark | eNqFkEtPAyEUhYnRxPr4BW5IXLkY5Q4MdJamWh9pookal4Shd5Q6DhUYo_9empou3LgBLnzncs_ZI9u975GQI2CnwCo4Y4yJQnIJZyWDMecllFtkBIKXBVNCbpPRhtglezEucllmcETsxRATjZhS5_oXavo5DfkQqetpekXqh4SBBnxxvo_Ut3QZfPLLzvSYTPimcxdtpHFoFmgTTZ6a98YtfWdCfmrbIWbdAdlpTRfx8HffJ0_Ty8fJdTG7u7qZnM8Ky2uRCgDGpBAcpa2xahAYNELNmxbVGDio0kqTF4OgKlvJlpuxqI2S2eUchbR8n5ys-76aTi-De88Dam-cvj6f6dUd44zVUKtPyOzxms1-PgaMSS_8EPo8ns7hKVlVJbBM8TVlg48xYLtpC0yvkterXPUqV71JPqvqPyrrkkk5iRSM6_7RFmutiwm_Nt-Z8Kal4qrSY_asHycPt-J-WmZDP4t0l7Y |
CitedBy_id | crossref_primary_10_1051_0004_6361_201937418 crossref_primary_10_1093_mnras_stab112 crossref_primary_10_1093_mnras_stae1635 crossref_primary_10_1093_mnras_stae1835 crossref_primary_10_3847_1538_3881_acf9a7 crossref_primary_10_3847_PSJ_ace716 crossref_primary_10_1051_0004_6361_201936281 crossref_primary_10_1093_pasj_psac107 crossref_primary_10_1134_S0021894421040167 crossref_primary_10_1093_mnras_stae272 crossref_primary_10_1093_mnras_stz701 crossref_primary_10_3847_1538_4357_aae7d4 crossref_primary_10_3847_1538_4357_ac1f8c crossref_primary_10_3847_2041_8213_ad0c54 crossref_primary_10_1051_0004_6361_201731460 crossref_primary_10_1051_0004_6361_202142571 crossref_primary_10_3847_1538_4357_aba005 crossref_primary_10_1093_mnras_stab2581 crossref_primary_10_3847_2041_8213_acb651 crossref_primary_10_1093_mnras_stab2220 crossref_primary_10_1093_mnras_stab3474 crossref_primary_10_1093_mnras_stac2625 crossref_primary_10_1093_mnras_stz3232 crossref_primary_10_3847_1538_4357_ac5fae crossref_primary_10_1007_s11214_023_00949_z crossref_primary_10_1051_0004_6361_202346555 crossref_primary_10_1093_mnras_staa3608 crossref_primary_10_3847_1538_4357_ad84df crossref_primary_10_1051_0004_6361_201834813 crossref_primary_10_1093_pasj_psae036 crossref_primary_10_1093_mnras_stac2580 crossref_primary_10_1051_0004_6361_202142946 crossref_primary_10_3847_1538_4357_abddb4 crossref_primary_10_1209_0295_5075_124_59001 crossref_primary_10_1051_0004_6361_202346442 crossref_primary_10_1051_0004_6361_202347730 crossref_primary_10_1093_mnras_staa567 crossref_primary_10_3847_2041_8213_ab2596 crossref_primary_10_1093_mnras_stab931 crossref_primary_10_1093_mnras_sty3502 crossref_primary_10_1051_0004_6361_202038087 crossref_primary_10_1093_mnras_stad2626 crossref_primary_10_3847_1538_4357_ac37b6 crossref_primary_10_3847_1538_4357_ac5899 crossref_primary_10_1051_0004_6361_202141582 crossref_primary_10_1093_mnras_stab2853 crossref_primary_10_1051_0004_6361_201834800 crossref_primary_10_3847_1538_4357_ad47a2 crossref_primary_10_3847_1538_4357_ab899d crossref_primary_10_1093_mnras_staa2084 crossref_primary_10_1093_mnras_stz802 crossref_primary_10_3847_1538_4357_ac7fee crossref_primary_10_1051_0004_6361_202348271 crossref_primary_10_1051_0004_6361_202141840 crossref_primary_10_1093_mnras_staa3943 crossref_primary_10_1093_mnras_staa994 crossref_primary_10_1051_0004_6361_202450289 crossref_primary_10_1093_mnras_stad2471 crossref_primary_10_1051_0004_6361_202450236 crossref_primary_10_1051_0004_6361_202039200 crossref_primary_10_1051_0004_6361_202449176 crossref_primary_10_1051_0004_6361_201833784 crossref_primary_10_3847_1538_4357_abfe5c crossref_primary_10_1007_s10509_018_3468_x crossref_primary_10_3847_1538_4365_ab0a0e crossref_primary_10_1088_1538_3873_ad3455 crossref_primary_10_1093_mnras_stab090 |
Cites_doi | 10.1086/426895 10.1111/j.1365-2966.2011.20202.x 10.3847/1538-4357/aa8620 10.1088/0004-637X/772/2/96 10.1051/0004-6361:20040284 10.1051/0004-6361/201220016 10.1111/j.1365-2966.2011.20022.x 10.1111/j.1365-2966.2005.09319.x 10.1086/423831 10.1088/2041-8205/808/1/L3 10.1086/175311 10.1051/0004-6361/201423660 10.1086/176735 10.1143/PTPS.70.35 10.1051/0004-6361/200811577 10.3847/2041-8213/aa7e33 10.1051/0004-6361:20054612 10.3847/0004-637X/821/2/82 10.1088/0004-637X/775/1/73 10.1093/mnras/sty181 10.1088/0004-637X/810/1/59 10.3847/0004-637X/821/1/3 10.1088/0004-637X/801/2/81 10.1051/0004-6361/201526616 10.1051/0004-6361:20065371 10.1051/0004-6361/201014903 10.1111/j.1365-2966.2009.14606.x 10.3847/2041-8205/820/2/L40 10.1088/0004-637X/801/2/84 10.1051/0004-6361/201322451 10.1111/j.1365-2966.2011.18971.x 10.1051/0004-6361/201630056 10.1093/mnras/stv2070 10.1111/j.1365-2966.2006.11118.x 10.1051/0004-6361/201423776 10.1088/0004-637X/697/2/1269 10.3847/0004-637X/816/1/25 10.1111/j.1745-3933.2006.00191.x 10.1007/s11214-016-0256-1 10.1086/308338 10.1051/0004-6361/201424693 10.1103/PhysRevLett.117.251101 10.1088/0004-637X/767/1/30 10.3847/0004-637X/830/1/32 10.1006/icar.1995.1058 10.1111/j.1365-2966.2009.14800.x 10.1088/0004-637X/794/1/55 10.1051/0004-6361/201527874 10.1088/0004-637X/735/1/8 10.1111/j.1365-2966.2011.19291.x 10.1088/0004-637X/784/1/15 10.1093/mnras/180.2.57 10.1086/170270 10.1146/annurev-earth-040809-152513 10.1086/497118 10.1086/513316 10.3847/1538-4357/aa9981 10.1086/342172 10.1051/0004-6361/201731878 10.1007/s10509-007-9575-8 10.3847/1538-4357/aa79f9 10.1093/mnras/stt1171 10.1086/516729 10.1088/0004-637X/735/2/122 10.1088/0004-637X/791/2/137 10.1088/0004-637X/798/2/84 10.1093/mnras/130.2.125 |
ContentType | Journal Article |
Copyright | 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL AAYXX CITATION 8FD H8D L7M 1XC VOOES |
DOI | 10.1051/0004-6361/201833212 |
DatabaseName | Istex CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | oai_HAL_hal_03009197v1 10_1051_0004_6361_201833212 ark_67375_80W_TCSJ4PF2_0 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOTM ABDNZ ABDPE ABPPZ ABTAH ABUBZ ABZDU ACACO ACGFS ACNCT ACYGS ACYRX ADCOW ADHUB ADIYS AEILP AENEX AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ BSCLL CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNP RNS RSV SDH SJN SOJ TR2 UPT UQL VH1 VOH WH7 XOL ZY4 AAOGA AAYXX ABNSH ACRPL ADNMO AGQPQ CITATION 8FD H8D L7M 1XC VOOES |
ID | FETCH-LOGICAL-c394t-11006443e6c9e5be101b47dbfe7813172c6a72cae175c56f3a849a76432de46c3 |
ISSN | 0004-6361 |
IngestDate | Wed Aug 20 06:51:45 EDT 2025 Wed Aug 13 03:10:19 EDT 2025 Tue Jul 01 03:59:12 EDT 2025 Thu Apr 24 23:07:23 EDT 2025 Wed Oct 30 09:21:48 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | accretion protoplanetary disks turbulence planets and satellites: formation magnetohydrodynamics (MHD) accretion disks |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c394t-11006443e6c9e5be101b47dbfe7813172c6a72cae175c56f3a849a76432de46c3 |
Notes | istex:88A3A43A53C5BCECD3E4BF3829F08E8743FDD44F dkey:10.1051/0004-6361/201833212 bibcode:2018A%26A...617A.117R e-mail: antoine.riols@univ-grenoble-alpes.fr publisher-ID:aa33212-18 href:https://www.aanda.org/articles/aa/abs/2018/09/aa33212-18/aa33212-18.html ark:/67375/80W-TCSJ4PF2-0 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8896-9435 |
OpenAccessLink | https://hal.science/hal-03009197 |
PQID | 2127655210 |
PQPubID | 1796397 |
ParticipantIDs | hal_primary_oai_HAL_hal_03009197v1 proquest_journals_2127655210 crossref_primary_10_1051_0004_6361_201833212 crossref_citationtrail_10_1051_0004_6361_201833212 istex_primary_ark_67375_80W_TCSJ4PF2_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2018 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Laibe (R43) 2012; 420 Youdin (R72) 2005; 620 Fleming (R19) 2000; 530 Hawley (R32) 1995; 440 Lesur (R45) 2009; 498 Ruge (R55) 2016; 590 Balsara (R8) 2009; 397 Perez-Becker (R53) 2011; 735 Jacquet (R36) 2011; 415 Andrews (R2) 2016; 820 Ormel (R52) 2010; 520 Fromang (R24) 2006; 457 Gressel (R30) 2015; 810 Fromang (R25) 2013; 552 Youdin (R71) 2007; 662 Hayashi (R33) 1981; 70 Isella (R35) 2016; 117 Heinemann (R34) 2009; 397 Schräpler (R57) 2004; 614 Weidenschilling (R66) 1977; 180 Shakura (R58) 1973; 24 Fromang (R23) 2006; 452 Laibe (R42) 2011; 418 Béthune (R10) 2017; 600 Flock (R21) 2013; 560 Kunz (R41) 2013; 434 Flock (R20) 2011; 735 Dullemond (R16) 2004; 421 Xu (R70) 2017; 847 Chiang (R13) 2010; 38 Simon (R60) 2013; 775 Okuzumi (R51) 2016; 821 Garufi (R27) 2017; 169 Simon (R59) 2014; 784 Balbus (R7) 1991; 376 Flaherty (R18) 2017; 843 Partnership (R1) 2015; 808 Gammie (R26) 1996; 457 Wardle (R64) 2007; 311 Dipierro (R14) 2018; 475 Goldreich (R28) 1965; 130 Flock (R22) 2015; 574 Béthune (R9) 2016; 589 Johansen (R38) 2006; 370 Lighthill (R47) 1952; 211 Williams (R67) 2016; 830 Kataoka (R40) 2017; 844 Dubrulle (R15) 1995; 114 Venuti (R63) 2014; 570 Johansen (R39) 2009; 697 Lesur (R46) 2014; 566 Miyake (R49) 2016; 821 Wardle (R65) 2012; 422 Wünsch (R69) 2005; 362 Zhu (R73) 2015; 801 Gressel (R31) 2015; 801 Bai (R3) 2013; 772 Pinte (R54) 2016; 816 Sano (R56) 2002; 577 Takahashi (R62) 2014; 794 Gonzalez (R29) 2017; 467 R50 Birnstiel (R11) 2016; 205 Simon (R61) 2015; 454 Bai (R4) 2014; 791 Carballido (R12) 2006; 373 Mignone (R48) 2007; 170 Bai (R5) 2015; 798 Dullemond (R17) 2018; 609 Johansen (R37) 2005; 634 Bai (R6) 2013; 767 Wolff (R68) 2017; 851 Lambrechts (R44) 2012; 544 |
References_xml | – volume: 620 start-page: 459 year: 2005 ident: R72 publication-title: ApJ doi: 10.1086/426895 – volume: 420 start-page: 2345 year: 2012 ident: R43 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.20202.x – volume: 847 start-page: 52 year: 2017 ident: R70 publication-title: ApJ doi: 10.3847/1538-4357/aa8620 – volume: 772 start-page: 96 year: 2013 ident: R3 publication-title: ApJ doi: 10.1088/0004-637X/772/2/96 – volume: 421 start-page: 1075 year: 2004 ident: R16 publication-title: A&A doi: 10.1051/0004-6361:20040284 – volume: 552 start-page: A71 year: 2013 ident: R25 publication-title: A&A doi: 10.1051/0004-6361/201220016 – volume: 422 start-page: 2737 year: 2012 ident: R65 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.20022.x – volume: 362 start-page: 361 year: 2005 ident: R69 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09319.x – volume: 614 start-page: 960 year: 2004 ident: R57 publication-title: ApJ doi: 10.1086/423831 – volume: 808 start-page: L3 year: 2015 ident: R1 publication-title: ApJ doi: 10.1088/2041-8205/808/1/L3 – volume: 440 start-page: 742 year: 1995 ident: R32 publication-title: ApJ doi: 10.1086/175311 – volume: 24 start-page: 337 year: 1973 ident: R58 publication-title: A&A – volume: 566 start-page: A56 year: 2014 ident: R46 publication-title: A&A doi: 10.1051/0004-6361/201423660 – volume: 457 start-page: 355 year: 1996 ident: R26 publication-title: ApJ doi: 10.1086/176735 – volume: 70 start-page: 35 year: 1981 ident: R33 publication-title: Progress of Theoretical Physics Supplement doi: 10.1143/PTPS.70.35 – volume: 544 start-page: A32 year: 2012 ident: R44 publication-title: MNRAS – volume: 498 start-page: 1 year: 2009 ident: R45 publication-title: A&A doi: 10.1051/0004-6361/200811577 – volume: 211 start-page: 564 year: 1952 ident: R47 publication-title: Proc. Roy. Soc. London Philos. Trans. Ser. A – volume: 844 start-page: L5 year: 2017 ident: R40 publication-title: ApJ doi: 10.3847/2041-8213/aa7e33 – volume: 452 start-page: 751 year: 2006 ident: R23 publication-title: A&A doi: 10.1051/0004-6361:20054612 – volume: 821 start-page: 82 year: 2016 ident: R51 publication-title: ApJ doi: 10.3847/0004-637X/821/2/82 – volume: 775 start-page: 73 year: 2013 ident: R60 publication-title: ApJ doi: 10.1088/0004-637X/775/1/73 – volume: 475 start-page: 5296 year: 2018 ident: R14 publication-title: MNRAS doi: 10.1093/mnras/sty181 – volume: 810 start-page: 59 year: 2015 ident: R30 publication-title: ApJ doi: 10.1088/0004-637X/810/1/59 – volume: 821 start-page: 3 year: 2016 ident: R49 publication-title: ApJ doi: 10.3847/0004-637X/821/1/3 – volume: 801 start-page: 81 year: 2015 ident: R73 publication-title: ApJ doi: 10.1088/0004-637X/801/2/81 – volume: 590 start-page: A17 year: 2016 ident: R55 publication-title: A&A doi: 10.1051/0004-6361/201526616 – volume: 457 start-page: 371 year: 2006 ident: R24 publication-title: A&A doi: 10.1051/0004-6361:20065371 – volume: 520 start-page: A43 year: 2010 ident: R52 publication-title: A&A doi: 10.1051/0004-6361/201014903 – volume: 397 start-page: 24 year: 2009 ident: R8 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.14606.x – volume: 820 start-page: L40 year: 2016 ident: R2 publication-title: ApJ doi: 10.3847/2041-8205/820/2/L40 – volume: 801 start-page: 84 year: 2015 ident: R31 publication-title: ApJ doi: 10.1088/0004-637X/801/2/84 – volume: 560 start-page: A43 year: 2013 ident: R21 publication-title: A&A doi: 10.1051/0004-6361/201322451 – volume: 415 start-page: 3591 year: 2011 ident: R36 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.18971.x – volume: 600 start-page: A75 year: 2017 ident: R10 publication-title: A&A doi: 10.1051/0004-6361/201630056 – volume: 454 start-page: 1117 year: 2015 ident: R61 publication-title: MNRAS doi: 10.1093/mnras/stv2070 – volume: 373 start-page: 1633 year: 2006 ident: R12 publication-title: MNRAS doi: 10.1111/j.1365-2966.2006.11118.x – volume: 570 start-page: A82 year: 2014 ident: R63 publication-title: A&A doi: 10.1051/0004-6361/201423776 – volume: 697 start-page: 1269 year: 2009 ident: R39 publication-title: ApJ doi: 10.1088/0004-637X/697/2/1269 – volume: 816 start-page: 25 year: 2016 ident: R54 publication-title: ApJ doi: 10.3847/0004-637X/816/1/25 – volume: 370 start-page: L71 year: 2006 ident: R38 publication-title: MNRAS doi: 10.1111/j.1745-3933.2006.00191.x – volume: 205 start-page: 41 year: 2016 ident: R11 publication-title: Space Sci. Rev. doi: 10.1007/s11214-016-0256-1 – volume: 530 start-page: 464 year: 2000 ident: R19 publication-title: ApJ doi: 10.1086/308338 – volume: 574 start-page: A68 year: 2015 ident: R22 publication-title: A&A doi: 10.1051/0004-6361/201424693 – volume: 117 start-page: 251101 year: 2016 ident: R35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.251101 – volume: 767 start-page: 30 year: 2013 ident: R6 publication-title: ApJ doi: 10.1088/0004-637X/767/1/30 – volume: 830 start-page: 32 year: 2016 ident: R67 publication-title: ApJ doi: 10.3847/0004-637X/830/1/32 – volume: 114 start-page: 237 year: 1995 ident: R15 publication-title: ICARUS doi: 10.1006/icar.1995.1058 – volume: 397 start-page: 64 year: 2009 ident: R34 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.14800.x – volume: 794 start-page: 55 year: 2014 ident: R62 publication-title: ApJ doi: 10.1088/0004-637X/794/1/55 – volume: 589 start-page: A87 year: 2016 ident: R9 publication-title: A&A doi: 10.1051/0004-6361/201527874 – volume: 735 start-page: 8 year: 2011 ident: R53 publication-title: ApJ doi: 10.1088/0004-637X/735/1/8 – volume: 418 start-page: 1491 year: 2011 ident: R42 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.19291.x – volume: 784 start-page: 15 year: 2014 ident: R59 publication-title: ApJ doi: 10.1088/0004-637X/784/1/15 – ident: R50 – volume: 180 start-page: 57 year: 1977 ident: R66 publication-title: MNRAS doi: 10.1093/mnras/180.2.57 – volume: 376 start-page: 214 year: 1991 ident: R7 publication-title: ApJ doi: 10.1086/170270 – volume: 38 start-page: 493 year: 2010 ident: R13 publication-title: Annual Review of Earth and Planetary Sciences doi: 10.1146/annurev-earth-040809-152513 – volume: 634 start-page: 1353 year: 2005 ident: R37 publication-title: ApJ doi: 10.1086/497118 – volume: 170 start-page: 228 year: 2007 ident: R48 publication-title: ApJS doi: 10.1086/513316 – volume: 851 start-page: 56 year: 2017 ident: R68 publication-title: ApJ doi: 10.3847/1538-4357/aa9981 – volume: 467 start-page: 1984 year: 2017 ident: R29 publication-title: MNRAS – volume: 577 start-page: 534 year: 2002 ident: R56 publication-title: ApJ doi: 10.1086/342172 – volume: 609 start-page: A50 year: 2018 ident: R17 publication-title: A&A doi: 10.1051/0004-6361/201731878 – volume: 311 start-page: 35 year: 2007 ident: R64 publication-title: Ap&SS doi: 10.1007/s10509-007-9575-8 – volume: 843 start-page: 150 year: 2017 ident: R18 publication-title: ApJ doi: 10.3847/1538-4357/aa79f9 – volume: 434 start-page: 2295 year: 2013 ident: R41 publication-title: MNRAS doi: 10.1093/mnras/stt1171 – volume: 662 start-page: 613 year: 2007 ident: R71 publication-title: ApJ doi: 10.1086/516729 – volume: 735 start-page: 122 year: 2011 ident: R20 publication-title: ApJ doi: 10.1088/0004-637X/735/2/122 – volume: 791 start-page: 137 year: 2014 ident: R4 publication-title: ApJ doi: 10.1088/0004-637X/791/2/137 – volume: 798 start-page: 84 year: 2015 ident: R5 publication-title: ApJ doi: 10.1088/0004-637X/798/2/84 – volume: 169 start-page: 32 year: 2017 ident: R27 publication-title: The Messenger – volume: 130 start-page: 125 year: 1965 ident: R28 publication-title: MNRAS doi: 10.1093/mnras/130.2.125 |
SSID | ssj0002183 |
Score | 2.5793571 |
Snippet | Context. Magnetohydrodynamic (MHD) turbulence plays a crucial role in the dust dynamics of protoplanetary discs. It affects planet formation, vertical... Context . Magnetohydrodynamic (MHD) turbulence plays a crucial role in the dust dynamics of protoplanetary discs. It affects planet formation, vertical... |
SourceID | hal proquest crossref istex |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | A117 |
SubjectTerms | accretion Accretion disks Ambipolar diffusion Astrophysics Computational fluid dynamics Computer simulation Deposition Diffusion theory Dust Fluid flow Grains Ionization Magnetic fields Magnetohydrodynamic turbulence magnetohydrodynamics (MHD) Mathematical models Physics Planet formation planets and satellites: formation protoplanetary disks Protoplanets Sedimentation Sedimentation & deposition Settling Shearing Stability turbulence Turbulent flow Vertical distribution Wind effects |
Title | Dust settling and rings in the outer regions of protoplanetary discs subject to ambipolar diffusion |
URI | https://api.istex.fr/ark:/67375/80W-TCSJ4PF2-0/fulltext.pdf https://www.proquest.com/docview/2127655210 https://hal.science/hal-03009197 |
Volume | 617 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgExIvCAZohYEshPZS0jWJ8-uxWindmKaKdWJvVuI4WrWuqZoEIR7427mzHbfVJjR4idLUTaJ-n8_n03d3hHxMQsHStJ870vOkw1xZwJQKQieP8wyXDz8WqtrneTi-ZKdXwdVabquyS-qsJ37dm1fyP6jCNcAVs2T_AVl7U7gA54AvHAFhOD4I42FT1d1K1vW8TTVcqS6cRrtYYruGLrZeMGI3LMpQLlHeWqNYDjNyq27VZBiLQSc0vc1mS9zrqr4pTdVi1laprTBuXt7qkk0pftKBERW51YWzNiIL32blXPc67q1lP1WjKPKltxlucGOrpzIxsOGktTrVll1lTujrsuo9qU0p81HXagKMxtaGOlHzjt0G06CFjvo2mKYCz_Z9z2ist-pkjwcXfDIc8bOT86_b39qC2ePBGb8GPMGEgUOURD9gg7zrwU5C5YOf_LaLNXqIeoekn9wWpgrcI3vtyL7LlvPy-Bqls7s4G3_eWcmVezJ9Tp6ZfQUdaJK8II_kYo_sW8ToIR1s4LVHnkz02UsikEW0ZREFaKliEZ0tKLCIKhZRwyJaFnSbRVSxiBoW0bqklkXUsugVuRx9nh6PHdN6wxF-wmoHCwmCp-zLUCQyyCQY7oxFeVbIKHbB5fREmMIhleB9iiAs_DRmSRqBe-vlkoXCf012FuVC7hMaZ0XkC6Y6pDFfiEy4ceIVSSRkkcuo6BCv_U-5MHXpsT3KnCt9ROCiPoJxBIJbIDrkk_3RUpdl-fvwD8iGduT9DOmQQ4WlHZaublD2GAU87n_n0-OLUzYZebzfIQct2NxYg4pjp4QwAGe4_-YhD3tLnq5n1wHZqVeNfAfubZ29VwT9A8iMoGM |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dust+settling+and+rings+in+the+outer+regions+of+protoplanetary+discs+subject+to+ambipolar+diffusion&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Riols%2C+A.&rft.au=Lesur%2C+G.&rft.date=2018-09-01&rft.pub=EDP+Sciences&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=617&rft_id=info:doi/10.1051%2F0004-6361%2F201833212&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03009197v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |