Composite Colloidal Gels Made of Bisphosphonate‐Functionalized Gelatin and Bioactive Glass Particles for Regeneration of Osteoporotic Bone Defects
Injectable composite colloidal gels are developed for regeneration of osteoporotic bone defects through a bottom‐up assembly from bisphosphonate‐functionalized gelatin and bioactive glass particles. Upon bisphosphonate functionalization, gelatin nanoparticles show superior adhesion toward bioactive...
Saved in:
Published in | Advanced functional materials Vol. 27; no. 45 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Injectable composite colloidal gels are developed for regeneration of osteoporotic bone defects through a bottom‐up assembly from bisphosphonate‐functionalized gelatin and bioactive glass particles. Upon bisphosphonate functionalization, gelatin nanoparticles show superior adhesion toward bioactive glass particles, resulting in elastic composite gels. By tuning their composition, these composite colloidal gels combine mechanical robustness with self‐healing ability. The composite colloidal gels support cell proliferation and differentiation in vitro without requiring any osteogenic supplement. In vivo evaluation of the composite colloidal gels reveals their capacity to support the regeneration of osteoporotic bone defects. Furthermore, the bisphosphonate modification of gelatin induces a therapeutic effect on the peri‐implantation region by enhancing the bone density of the osteoporotic bone tissue. Consequently, these composite colloidal gels offer new therapeutic opportunities for treatment of osteoporotic bone defects.
Injectable composite colloidal gels are developed via bottom‐up assembly from bisphosphonate‐functionalized gelatin and bioactive glass particles. These composite gels combine mechanical robustness with self‐healing ability, and stimulate cellular activities in vitro. Moreover, these materials exhibit a strong capacity to support the regeneration of osteoporotic bone defects, and also induce a therapeutic effect on peridefect osteoporotic bone in vivo. |
---|---|
AbstractList | Injectable composite colloidal gels are developed for regeneration of osteoporotic bone defects through a bottom-up assembly from bisphosphonate-functionalized gelatin and bioactive glass particles. Upon bisphosphonate functionalization, gelatin nanoparticles show superior adhesion toward bioactive glass particles, resulting in elastic composite gels. By tuning their composition, these composite colloidal gels combine mechanical robustness with self-healing ability. The composite colloidal gels support cell proliferation and differentiation in vitro without requiring any osteogenic supplement. In vivo evaluation of the composite colloidal gels reveals their capacity to support the regeneration of osteoporotic bone defects. Furthermore, the bisphosphonate modification of gelatin induces a therapeutic effect on the peri-implantation region by enhancing the bone density of the osteoporotic bone tissue. Consequently, these composite colloidal gels offer new therapeutic opportunities for treatment of osteoporotic bone defects. Injectable composite colloidal gels are developed for regeneration of osteoporotic bone defects through a bottom‐up assembly from bisphosphonate‐functionalized gelatin and bioactive glass particles. Upon bisphosphonate functionalization, gelatin nanoparticles show superior adhesion toward bioactive glass particles, resulting in elastic composite gels. By tuning their composition, these composite colloidal gels combine mechanical robustness with self‐healing ability. The composite colloidal gels support cell proliferation and differentiation in vitro without requiring any osteogenic supplement. In vivo evaluation of the composite colloidal gels reveals their capacity to support the regeneration of osteoporotic bone defects. Furthermore, the bisphosphonate modification of gelatin induces a therapeutic effect on the peri‐implantation region by enhancing the bone density of the osteoporotic bone tissue. Consequently, these composite colloidal gels offer new therapeutic opportunities for treatment of osteoporotic bone defects. Injectable composite colloidal gels are developed via bottom‐up assembly from bisphosphonate‐functionalized gelatin and bioactive glass particles. These composite gels combine mechanical robustness with self‐healing ability, and stimulate cellular activities in vitro. Moreover, these materials exhibit a strong capacity to support the regeneration of osteoporotic bone defects, and also induce a therapeutic effect on peridefect osteoporotic bone in vivo. |
Author | Camargo, Winston A. Klymov, Alexey Draghi, Lorenza Farbod, Kambiz Schmidt, Stephan van den Beucken, Jeroen J. J. P. Leeuwenburgh, Sander C. G. Diba, Mani Harrington, Matthew J. Boccaccini, Aldo R. Brindisi, Mariateresa Jansen, John A. |
Author_xml | – sequence: 1 givenname: Mani surname: Diba fullname: Diba, Mani organization: Radboud University Medical Center – sequence: 2 givenname: Winston A. surname: Camargo fullname: Camargo, Winston A. organization: Radboud University Medical Center – sequence: 3 givenname: Mariateresa surname: Brindisi fullname: Brindisi, Mariateresa organization: Politecnico di Milano – sequence: 4 givenname: Kambiz surname: Farbod fullname: Farbod, Kambiz organization: Radboud University Medical Center – sequence: 5 givenname: Alexey surname: Klymov fullname: Klymov, Alexey organization: Radboud University Medical Center – sequence: 6 givenname: Stephan surname: Schmidt fullname: Schmidt, Stephan organization: Heinrich‐Heine‐University Düsseldorf – sequence: 7 givenname: Matthew J. surname: Harrington fullname: Harrington, Matthew J. organization: Max Planck Institute for Colloids and Interfaces – sequence: 8 givenname: Lorenza surname: Draghi fullname: Draghi, Lorenza organization: Politecnico di Milano – sequence: 9 givenname: Aldo R. surname: Boccaccini fullname: Boccaccini, Aldo R. organization: University of Erlangen–Nuremberg – sequence: 10 givenname: John A. surname: Jansen fullname: Jansen, John A. organization: Radboud University Medical Center – sequence: 11 givenname: Jeroen J. J. P. surname: van den Beucken fullname: van den Beucken, Jeroen J. J. P. organization: Radboud University Medical Center – sequence: 12 givenname: Sander C. G. surname: Leeuwenburgh fullname: Leeuwenburgh, Sander C. G. email: sander.leeuwenburgh@radboudumc.nl organization: Radboud University Medical Center |
BookMark | eNqFkMtKAzEUhoMoeN26Driemsy1s2xHWwWlIgruhkxyopF0MiapoisfwYVP6JOYsVJBEBchOeT7Dvz_NlpvTQsI7VMyoITEh0zI-SAmtCBJmgzX0BbNaR4lJB6ur970ZhNtO3dPAlYk6RZ6r8y8M055wJXR2ijBNJ6CdvicCcBG4rFy3Z3pT8s8fLy-TRYt9ypMWr2A6GHmVYtZKwJrWPh7BDzVzDl8waxXXIPD0lh8CbfQgmW93G-eOQ-mM9YEBo9DGHwEErh3u2hDMu1g7_veQdeT46vqJDqbTU-r0VnEkzIdRk2Sx0QywSEBTknTEEFjTqgss5CtAd40vMlyEJymPCtiScqsDLSMcwFZmSc76GC5t7PmYQHO1_dmYUMwV9OyIFmZpXFPpUuKW-OcBVlz5b9CeMuUrimp-_7rvv961X_QBr-0zqo5s89_C-VSeFIanv-h69HR5PzH_QSUdJ-K |
CitedBy_id | crossref_primary_10_1002_admi_201800118 crossref_primary_10_1021_acs_chemmater_4c00123 crossref_primary_10_1002_app_53362 crossref_primary_10_1002_ppsc_201800507 crossref_primary_10_1016_j_polymer_2020_122248 crossref_primary_10_1021_acsomega_8b01103 crossref_primary_10_1016_j_bioactmat_2020_06_002 crossref_primary_10_1021_acs_chemrev_0c01088 crossref_primary_10_1002_adfm_201802642 crossref_primary_10_1021_acsami_4c12721 crossref_primary_10_26599_NR_2025_94907143 crossref_primary_10_1021_acsbiomaterials_0c00143 crossref_primary_10_1016_j_bioactmat_2022_03_032 crossref_primary_10_1021_acsami_8b09879 crossref_primary_10_1002_adfm_202002438 crossref_primary_10_1016_j_jconrel_2023_07_034 crossref_primary_10_1016_j_jconrel_2025_01_061 crossref_primary_10_1016_j_ijbiomac_2023_125001 crossref_primary_10_1002_jbm_a_36470 crossref_primary_10_1039_C8TB03062F crossref_primary_10_1016_j_cclet_2020_12_001 crossref_primary_10_1039_C8TB02812E crossref_primary_10_1088_1748_605X_ac4324 crossref_primary_10_1016_j_reth_2022_05_006 crossref_primary_10_3390_polym13040513 crossref_primary_10_3390_ijms221910233 crossref_primary_10_1016_j_biomaterials_2021_120871 crossref_primary_10_3390_jfb14010023 crossref_primary_10_1002_adhm_202301420 crossref_primary_10_1016_j_mtadv_2019_100014 crossref_primary_10_1126_sciadv_adq6700 crossref_primary_10_1002_adfm_201909218 crossref_primary_10_1016_j_matt_2021_05_019 crossref_primary_10_1080_09205063_2022_2127143 crossref_primary_10_1093_rb_rbad054 crossref_primary_10_1002_adhm_202200722 crossref_primary_10_1021_acs_chemrev_2c00179 crossref_primary_10_1080_15583724_2021_1897995 crossref_primary_10_1021_acs_biomac_9b00792 crossref_primary_10_1002_advs_201900520 crossref_primary_10_1016_j_actbio_2020_06_024 crossref_primary_10_1016_j_ijbiomac_2021_08_196 crossref_primary_10_1088_1758_5090_acab36 crossref_primary_10_1002_biot_202300469 crossref_primary_10_1021_acs_molpharmaceut_4c00595 crossref_primary_10_1002_adhm_202303134 crossref_primary_10_1016_j_jcis_2022_07_039 crossref_primary_10_1016_j_matdes_2022_111070 crossref_primary_10_1016_j_matlet_2021_129755 crossref_primary_10_1039_C9MH00020H crossref_primary_10_1039_D1CS01022K crossref_primary_10_1016_j_bioactmat_2022_01_004 crossref_primary_10_1002_adfm_202206863 crossref_primary_10_1016_j_actbio_2021_09_034 crossref_primary_10_3390_gels9100809 crossref_primary_10_3390_ma14185371 crossref_primary_10_1016_j_cclet_2024_109684 crossref_primary_10_1016_j_actbio_2021_10_053 crossref_primary_10_1016_j_eurpolymj_2021_110732 crossref_primary_10_1021_acs_biomac_3c00058 crossref_primary_10_1021_acs_biomac_3c00177 crossref_primary_10_1002_adma_202102900 crossref_primary_10_1016_j_msec_2018_06_038 crossref_primary_10_1002_adma_202207526 crossref_primary_10_1007_s11426_018_9324_0 crossref_primary_10_1116_6_0003611 crossref_primary_10_1002_marc_201800837 crossref_primary_10_2174_2210315513666230428113707 crossref_primary_10_1016_j_matdes_2021_109490 crossref_primary_10_1002_adfm_201908381 crossref_primary_10_1016_j_actbio_2022_11_034 crossref_primary_10_1016_j_msec_2021_112497 crossref_primary_10_1021_acsami_1c08372 crossref_primary_10_1038_s41578_020_0204_2 crossref_primary_10_1016_j_supflu_2023_105979 crossref_primary_10_1021_acsbiomaterials_3c00399 |
Cites_doi | 10.3109/03008207.2012.730081 10.1016/j.biomaterials.2007.10.040 10.1002/aic.11610 10.1016/j.jconrel.2012.12.015 10.1007/s10853-015-9382-5 10.1177/0883911511423563 10.1016/j.biomaterials.2006.01.017 10.1016/j.actbio.2011.06.042 10.1016/j.biomaterials.2013.02.033 10.1089/ten.tea.2013.0075 10.1016/S0142-9612(03)00339-9 10.1016/j.actbio.2010.07.019 10.1002/adma.200702099 10.1016/j.cocis.2016.09.008 10.1016/S0006-3495(04)74298-8 10.1016/j.actamat.2012.10.037 10.1002/jbm.a.33000 10.1016/j.biomaterials.2010.02.052 10.1007/s00198-006-0172-4 10.1089/ten.tec.2013.0327 10.1088/1748-6041/11/3/035017 10.1016/j.biomaterials.2014.03.053 10.1002/jbm.a.35602 10.1210/edrv.19.1.0325 10.1016/j.biomaterials.2012.08.024 10.1039/c3sm50209k 10.1002/marc.201600353 10.1089/ten.tec.2012.0572 10.1016/j.vibspec.2012.04.006 10.1039/C6RA19915A 10.1002/adma.201604672 10.1023/A:1010011209064 10.1122/1.549892 10.1097/BOT.0b013e3181cec4a1 10.1016/j.biomaterials.2006.01.039 10.1016/j.biomaterials.2011.01.004 10.1007/s10856-014-5337-7 10.1016/0300-9629(74)90554-4 10.1016/j.actbio.2012.08.023 10.1007/s12274-017-1500-z 10.1002/adma.200802009 10.1016/S0142-9612(00)00094-6 10.1016/j.jcms.2010.10.007 10.1016/j.actbio.2013.08.036 10.1002/mabi.201500005 10.1002/mabi.201500414 10.3109/10520298809107179 10.1002/adma.201501558 10.1016/j.jcis.2016.10.014 10.1007/s11051-012-0966-6 10.1002/jbm.820270405 10.1089/ten.tea.2009.0583 10.1089/ten.tea.2013.0181 10.1002/9783527610969 10.1002/adma.201003908 10.1002/jbm.a.32080 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201703438 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201703438 ADFM201703438 |
Genre | article |
GrantInformation_xml | – fundername: Netherlands Enterprise Agency funderid: SHM012014 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3948-b3620fadce3ec10bb0d12c01f95734becbbcb56edc14c572f0959dcef26de5963 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sun Jul 13 04:02:20 EDT 2025 Thu Apr 24 23:09:23 EDT 2025 Tue Jul 01 04:11:42 EDT 2025 Wed Jan 22 16:28:48 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3948-b3620fadce3ec10bb0d12c01f95734becbbcb56edc14c572f0959dcef26de5963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://pure.tue.nl/ws/files/138604347/adfm.201703438.pdf |
PQID | 1970595426 |
PQPubID | 2045204 |
PageCount | 12 |
ParticipantIDs | proquest_journals_1970595426 crossref_citationtrail_10_1002_adfm_201703438 crossref_primary_10_1002_adfm_201703438 wiley_primary_10_1002_adfm_201703438_ADFM201703438 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 1, 2017 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: December 1, 2017 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 31 2009; 21 1993; 27 1986; 30 2004 2017; 86 27 2000; 21 2006; 17 2013; 61 2013; 20 2016 2015; 104 26 2007 2014 2010; 35 6 2016; 51 2011; 32 2012; 19 2008; 54 2012; 14 2015 2013 2013 2012; 15 19 166 33 2016; 16 2016; 37 2009 2013; 90A 49 2012; 53 2013; 9 2016; 11 1974; 49 2013 2011; 19 96A 2016; 6 1998; 19 2015; 27 2010; 24 2017 2014 2011 2008; 29 10 23 20 2001 2009; 2 16 2013; 34 2006; 27 2017; 10 2006 2003; 27 24 2008 2017 2011; 29 487 39 2011; 26 1988; 63 2012 2011; 62 7 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_24_2 e_1_2_8_26_1 e_1_2_8_26_2 e_1_2_8_9_3 e_1_2_8_9_2 e_1_2_8_9_4 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_5_2 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_20_2 e_1_2_8_22_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_38_2 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_30_2 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_29_2 e_1_2_8_29_3 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_8_4 e_1_2_8_8_3 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_37_2 e_1_2_8_16_1 e_1_2_8_37_1 Hench L. L. (e_1_2_8_23_2) 2013; 49 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – volume: 90A 49 start-page: 114 1 year: 2009 2013 publication-title: J. Biomed. Mater. Res., Part A J. Aust. Ceram. Soc. – volume: 14 start-page: 966 year: 2012 publication-title: J. Nanopart. Res. – volume: 19 start-page: 80 year: 1998 publication-title: Endocr. Rev. – volume: 19 start-page: 479 year: 2012 publication-title: Tissue Eng., Part C – volume: 26 start-page: 565 year: 2011 publication-title: J. Bioact. Compat. Polym. – volume: 21 start-page: 3368 year: 2009 publication-title: Adv. Mater. – volume: 6 start-page: 113025 year: 2016 publication-title: RSC Adv. – year: 2007 – volume: 37 start-page: 1952 year: 2016 publication-title: Macromol. Rapid Commun. – volume: 31 start-page: 4980 year: 2010 publication-title: Biomaterials – volume: 11 start-page: 035017 year: 2016 publication-title: Biomed. Mater. – volume: 17 start-page: 1726 year: 2006 publication-title: Osteoporosis Int. – volume: 29 487 39 start-page: 790 1 562 year: 2008 2017 2011 publication-title: Biomaterials J. Colloid Interface Sci. J. Craniomaxillofac. Surg. – volume: 19 96A start-page: 2586 520 year: 2013 2011 publication-title: Tissue Eng., Part A J. Biomed. Mater. Res., Part A – volume: 86 27 start-page: 2414 9 year: 2004 2017 publication-title: Biophys. J. Curr. Opin. Colloid Interface Sci. – volume: 34 start-page: 3747 year: 2013 publication-title: Biomaterials – volume: 54 start-page: 3048 year: 2008 publication-title: AIChE J. – volume: 27 24 start-page: 3413 4353 year: 2006 2003 publication-title: Biomaterials Biomaterials – volume: 10 start-page: 1393 year: 2017 publication-title: Nano Res. – volume: 104 26 start-page: 620 11 year: 2016 2015 publication-title: J. Biomed. Mater. Res., Part A J. Mater. Sci.: Mater. Med. – volume: 24 start-page: S36 year: 2010 publication-title: J. Orthop. Trauma – volume: 16 start-page: 717 year: 2016 publication-title: Macromol. Biosci. – volume: 2 16 start-page: 81 431 year: 2001 2009 publication-title: Rev. Endocr. Metab. Disord. Tissue Eng., Part A – volume: 32 start-page: 2757 year: 2011 publication-title: Biomaterials – volume: 27 start-page: 445 year: 1993 publication-title: J. Biomed. Mater. Res. – volume: 20 start-page: 493 year: 2013 publication-title: Tissue Eng., Part C – volume: 15 19 166 33 start-page: 901 2605 172 8695 year: 2015 2013 2013 2012 publication-title: Macromol. Biosci. Tissue Eng., Part A J. Controlled Release Biomaterials – volume: 62 7 start-page: 172 3606 year: 2012 2011 publication-title: Vib. Spectrosc. Acta Biomater. – volume: 35 6 start-page: 5619 4513 year: 2014 2010 publication-title: Biomaterials Acta Biomater. – volume: 53 start-page: 438 year: 2012 publication-title: Connect. Tissue Res. – volume: 29 10 23 20 start-page: 1604672 508 H119 236 year: 2017 2014 2011 2008 publication-title: Adv. Mater. Acta Biomater. Adv. Mater. Adv. Mater. – volume: 21 start-page: 2003 year: 2000 publication-title: Biomaterials – volume: 27 start-page: 2907 year: 2006 publication-title: Biomaterials – volume: 49 start-page: 183 year: 1974 publication-title: Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. – volume: 30 start-page: 1015 year: 1986 publication-title: J. Rheol. – volume: 9 start-page: 4457 year: 2013 publication-title: Acta Biomater. – volume: 51 start-page: 271 year: 2016 publication-title: J. Mater. Sci. – volume: 9 start-page: 5492 year: 2013 publication-title: Soft Matter – volume: 27 start-page: 3717 year: 2015 publication-title: Adv. Mater. – volume: 63 start-page: 171 year: 1988 publication-title: Stain Technol. – volume: 61 start-page: 931 year: 2013 publication-title: Acta Mater. – ident: e_1_2_8_28_1 doi: 10.3109/03008207.2012.730081 – ident: e_1_2_8_29_1 doi: 10.1016/j.biomaterials.2007.10.040 – ident: e_1_2_8_4_1 doi: 10.1002/aic.11610 – ident: e_1_2_8_9_3 doi: 10.1016/j.jconrel.2012.12.015 – ident: e_1_2_8_7_1 doi: 10.1007/s10853-015-9382-5 – ident: e_1_2_8_14_1 doi: 10.1177/0883911511423563 – ident: e_1_2_8_25_1 doi: 10.1016/j.biomaterials.2006.01.017 – volume: 49 start-page: 1 year: 2013 ident: e_1_2_8_23_2 publication-title: J. Aust. Ceram. Soc. – ident: e_1_2_8_24_2 doi: 10.1016/j.actbio.2011.06.042 – ident: e_1_2_8_1_1 doi: 10.1016/j.biomaterials.2013.02.033 – ident: e_1_2_8_20_1 doi: 10.1089/ten.tea.2013.0075 – ident: e_1_2_8_5_2 doi: 10.1016/S0142-9612(03)00339-9 – ident: e_1_2_8_38_2 doi: 10.1016/j.actbio.2010.07.019 – ident: e_1_2_8_8_4 doi: 10.1002/adma.200702099 – ident: e_1_2_8_26_2 doi: 10.1016/j.cocis.2016.09.008 – ident: e_1_2_8_26_1 doi: 10.1016/S0006-3495(04)74298-8 – ident: e_1_2_8_34_1 doi: 10.1016/j.actamat.2012.10.037 – ident: e_1_2_8_20_2 doi: 10.1002/jbm.a.33000 – ident: e_1_2_8_21_1 doi: 10.1016/j.biomaterials.2010.02.052 – ident: e_1_2_8_19_1 doi: 10.1007/s00198-006-0172-4 – ident: e_1_2_8_40_1 doi: 10.1089/ten.tec.2013.0327 – ident: e_1_2_8_10_1 doi: 10.1088/1748-6041/11/3/035017 – ident: e_1_2_8_38_1 doi: 10.1016/j.biomaterials.2014.03.053 – ident: e_1_2_8_37_1 doi: 10.1002/jbm.a.35602 – ident: e_1_2_8_17_1 doi: 10.1210/edrv.19.1.0325 – ident: e_1_2_8_9_4 doi: 10.1016/j.biomaterials.2012.08.024 – ident: e_1_2_8_27_1 doi: 10.1039/c3sm50209k – ident: e_1_2_8_16_1 doi: 10.1002/marc.201600353 – ident: e_1_2_8_32_1 doi: 10.1089/ten.tec.2012.0572 – ident: e_1_2_8_24_1 doi: 10.1016/j.vibspec.2012.04.006 – ident: e_1_2_8_12_1 doi: 10.1039/C6RA19915A – ident: e_1_2_8_8_1 doi: 10.1002/adma.201604672 – ident: e_1_2_8_30_1 doi: 10.1023/A:1010011209064 – ident: e_1_2_8_39_1 doi: 10.1122/1.549892 – ident: e_1_2_8_2_1 doi: 10.1097/BOT.0b013e3181cec4a1 – ident: e_1_2_8_5_1 doi: 10.1016/j.biomaterials.2006.01.039 – ident: e_1_2_8_31_1 doi: 10.1016/j.biomaterials.2011.01.004 – ident: e_1_2_8_37_2 doi: 10.1007/s10856-014-5337-7 – ident: e_1_2_8_36_1 doi: 10.1016/0300-9629(74)90554-4 – ident: e_1_2_8_15_1 doi: 10.1016/j.actbio.2012.08.023 – ident: e_1_2_8_22_1 doi: 10.1007/s12274-017-1500-z – ident: e_1_2_8_6_1 doi: 10.1002/adma.200802009 – ident: e_1_2_8_3_1 doi: 10.1016/S0142-9612(00)00094-6 – ident: e_1_2_8_29_3 doi: 10.1016/j.jcms.2010.10.007 – ident: e_1_2_8_8_2 doi: 10.1016/j.actbio.2013.08.036 – ident: e_1_2_8_9_1 doi: 10.1002/mabi.201500005 – ident: e_1_2_8_11_1 doi: 10.1002/mabi.201500414 – ident: e_1_2_8_41_1 doi: 10.3109/10520298809107179 – ident: e_1_2_8_33_1 doi: 10.1002/adma.201501558 – ident: e_1_2_8_29_2 doi: 10.1016/j.jcis.2016.10.014 – ident: e_1_2_8_18_1 doi: 10.1007/s11051-012-0966-6 – ident: e_1_2_8_35_1 doi: 10.1002/jbm.820270405 – ident: e_1_2_8_30_2 doi: 10.1089/ten.tea.2009.0583 – ident: e_1_2_8_9_2 doi: 10.1089/ten.tea.2013.0181 – ident: e_1_2_8_13_1 doi: 10.1002/9783527610969 – ident: e_1_2_8_8_3 doi: 10.1002/adma.201003908 – ident: e_1_2_8_23_1 doi: 10.1002/jbm.a.32080 |
SSID | ssj0017734 |
Score | 2.5123715 |
Snippet | Injectable composite colloidal gels are developed for regeneration of osteoporotic bone defects through a bottom‐up assembly from bisphosphonate‐functionalized... Injectable composite colloidal gels are developed for regeneration of osteoporotic bone defects through a bottom-up assembly from bisphosphonate-functionalized... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Biocompatibility Biological activity biomedical applications Biomedical materials Colloids composite materials Defects Gels hydrogels Implantation Materials science Particulate composites Regeneration self‐healing Surgical implants |
Title | Composite Colloidal Gels Made of Bisphosphonate‐Functionalized Gelatin and Bioactive Glass Particles for Regeneration of Osteoporotic Bone Defects |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201703438 https://www.proquest.com/docview/1970595426 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwELYQe1kOu7CAtksX-YC0p5TYiZPm2NItCNEFFZB6i_y7W4ESRNtLTzwCB55wn4SZpAkFCSHBIVIijZ3EnvF8Ho8_E7InhVBxEoOlGV97oQNLlzbWHhKLsHZiQW9wc_LgT3R0GR6PxGhpF3_JD1EH3NAyivEaDVyqyf4Taag0DneSM1DZMMDdvpiwhahoWPNHsTgul5UjhglebFSxNvp8_3nx517pCWouA9bC4_S_Ell9a5loctWaTVVLz1_QOH7kZ9bJlwUcpZ1SfzbIis2-kbUlksJN8oBDBqZ2WYpRhnxsoMAhuFQ6kMbS3NHueHLzL8crA-T6_-6-D86yjDGO59agMPR_RmVmQDaXxRBLDxG307MqM48CeqZD-7egwcbCWPMp6GAOM4QcZGg3zyzt2SL_ZItc9n9fHBx5i7McPB0kYdtT4Ch9J422gdXMV8o3jGufuURAH4EiKaWViKzRLNQi5g7jkyDteGSsgFFim6xm8JrvhBong5ArmHm1Ha7yKslBz9qSB0pGSogG8aq-TPWC6BzP27hOS4pmnmJrp3VrN8ivWv6mpPh4VbJZqUa6MPVJypIYIKoApNMgvOjjN2pJO73-oH768Z5CO-Qz3pdpNU2yOr2d2Z8AjqZql3zq9AYn57uFITwCCbML6Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_CMWCvgA4pQ2duL8HDi0LNst7RZUtdLegn9hBUoqditETzwCB16EV-EReBJm8tcWCSEh9cAhh0RjJ7Fn7G_G488Aj5WUOs1TtDQbmiD2aOnKpSYgYhGe5Q71hjYnT3aT8UH8ciqnS_C92wvT8EP0ATeyjHq8JgOngPTaCWuosp62knPU2TjK2rzKbff5E3pt82dbQ-ziJ0KMXuw_HwftwQKBifI4CzSO2qFX1rjIGR5qHVouTMh9LtMoxr_S2miZOGt4bGQqPAXLUNqLxDqJKov1XoCLdIw40fUP93rGKp6mzUJ2wimljE87nshQrJ393rPz4Am4PQ2R6zludA1-dK3TpLa8Xz1a6FVz_Btx5H_VfNfhaou42XpjIjdgyZU34copHsZb8I1GRcpec4wCKdXMYoFNRA1soqxjlWcbs_nhu4quEsH5zy9fR4gHmjDq7NhZEkYVL5kqLcpWqp5F2Ca5Jux1l3zI0EFge-5tzfRNhanmV2hmFTpBFcqwjap0bOjqFJvbcHAuzXIHlkt8zV1g1qsoFhqdy8zTQrZWAk0pUyLSKtFSDiDolKcwLZc7HSnyoWhYqEVBvVv0vTuAp738YcNi8kfJlU4Xi3Y0mxc8TxGFSwRzAxC1Uv2llmJ9OJr0d_f-pdAjuDTen-wUO1u72_fhMj1vsohWYHnx8cg9QCy40A9r62Pw5rz19Rf7Pmte |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE48I9YKOADiFPa2Pk_cGgJaUvZUlVU2lvqX1iBkhW7FaInHoEDD8Kr8Ao8CTP5a4uEkJB64JBDorGT2DP2N-PxZ4DHMopUkiVoacbXXujQ0qVNtEfEIjzNLOoNbU4e78ZbB-HLSTRZgu_9XpiWH2IIuJFlNOM1GfjMuLUT0lBpHO0k56iyYZB2aZU79vMndNrmz7Zz7OEnQhQv3jzf8rpzBTwdZGHqKRy0fSeNtoHV3FfKN1xon7ssSoIQf0opraLYGs1DHSXCUawMpZ2IjY1QY7HeC3AxjP2MDovI9wfCKp4k7Tp2zCmjjE96mkhfrJ393rPT4Am2PY2QmymuuAY_-sZpM1verx4t1Ko-_o038n9qvetwtcPbbL01kBuwZKubcOUUC-Mt-EZjIuWuWUZhlHpqsMAmYgY2lsay2rGN6Xz2rqarQmj-88vXAtFAG0SdHltDwqjgFZOVQdlaNnMI2yTHhO31qYcM3QO2b982PN9UmGp-jUZWowtUowzbqCvLctsk2NyGg3NpljuwXOFr7gIzTgahUOhapo6WsZUUaEipFIGSsYqiEXi97pS6Y3KnA0U-lC0HtSipd8uhd0fwdJCftRwmf5Rc6VWx7MayecmzBDF4hFBuBKLRqb_UUq7nxXi4u_cvhR7Bpb28KF9t7-7ch8v0uE0hWoHlxccj-wCB4EI9bGyPweF5q-svQwxqDQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Composite+Colloidal+Gels+Made+of+Bisphosphonate%E2%80%90Functionalized+Gelatin+and+Bioactive+Glass+Particles+for+Regeneration+of+Osteoporotic+Bone+Defects&rft.jtitle=Advanced+functional+materials&rft.au=Diba%2C+Mani&rft.au=Camargo%2C+Winston+A.&rft.au=Brindisi%2C+Mariateresa&rft.au=Farbod%2C+Kambiz&rft.date=2017-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=27&rft.issue=45&rft_id=info:doi/10.1002%2Fadfm.201703438&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201703438 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |