Bioinspired Ultrastrong Nanocomposite Membranes for Salinity Gradient Energy Harvesting from Organic Solutions
Efforts to extract energy from waste organic solutions can not only support clean environments but also help to alleviate the energy crisis. Here, a bioinspired ultrastrong nanocomposite membrane is developed via the layer‐by‐layer method based on aramid nanofiber‐graphene oxide (AGO) with good mech...
Saved in:
Published in | Advanced energy materials Vol. 10; no. 18 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Efforts to extract energy from waste organic solutions can not only support clean environments but also help to alleviate the energy crisis. Here, a bioinspired ultrastrong nanocomposite membrane is developed via the layer‐by‐layer method based on aramid nanofiber‐graphene oxide (AGO) with good mechanical properties for salinity gradient energy harvesting from organic solutions. Benefiting from the 1D and 2D network interlocking arrangement, the AGO membrane shows an unprecedented mechanical stress of 688 MPa and maintains its integrity after soaking in organic solvents for 24 h. Impressively, when LiCl is diluted in methanol, the AGO membrane device with a working area of 113 mm2 produces a current and a measured power generation of 28 ± 11 µA and 3140 ± 960 nW (Cfeed = 2 mol L−1), respectively. Thus, the working area of the AGO membrane for salinity gradient energy harvesting and temperature‐related energy harvesting enables its use in practical applications. In addition, 14 cells with the methanol‐LiCl solution (Cfeed = 1 mol L−1) can produce a voltage up to 1.82 V to light a liquid crystal display. Therefore, this AGO nanocomposite membrane presents a promising avenue to harvest salinity gradient energy from organic solutions.
Bioinspired ultrastrong aramid nanofiber‐graphene oxide (AGO) nanocomposite membranes are developed by the layer‐by‐layer method based on aramid nanofibers and graphene oxide nanosheets. The AGO membrane shows an unprecedented mechanical stress of 688 MPa and a promising avenue to harvest salinity gradient energy from organic solutions. |
---|---|
AbstractList | Efforts to extract energy from waste organic solutions can not only support clean environments but also help to alleviate the energy crisis. Here, a bioinspired ultrastrong nanocomposite membrane is developed via the layer‐by‐layer method based on aramid nanofiber‐graphene oxide (AGO) with good mechanical properties for salinity gradient energy harvesting from organic solutions. Benefiting from the 1D and 2D network interlocking arrangement, the AGO membrane shows an unprecedented mechanical stress of 688 MPa and maintains its integrity after soaking in organic solvents for 24 h. Impressively, when LiCl is diluted in methanol, the AGO membrane device with a working area of 113 mm2 produces a current and a measured power generation of 28 ± 11 µA and 3140 ± 960 nW (Cfeed = 2 mol L−1), respectively. Thus, the working area of the AGO membrane for salinity gradient energy harvesting and temperature‐related energy harvesting enables its use in practical applications. In addition, 14 cells with the methanol‐LiCl solution (Cfeed = 1 mol L−1) can produce a voltage up to 1.82 V to light a liquid crystal display. Therefore, this AGO nanocomposite membrane presents a promising avenue to harvest salinity gradient energy from organic solutions.
Bioinspired ultrastrong aramid nanofiber‐graphene oxide (AGO) nanocomposite membranes are developed by the layer‐by‐layer method based on aramid nanofibers and graphene oxide nanosheets. The AGO membrane shows an unprecedented mechanical stress of 688 MPa and a promising avenue to harvest salinity gradient energy from organic solutions. Efforts to extract energy from waste organic solutions can not only support clean environments but also help to alleviate the energy crisis. Here, a bioinspired ultrastrong nanocomposite membrane is developed via the layer‐by‐layer method based on aramid nanofiber‐graphene oxide (AGO) with good mechanical properties for salinity gradient energy harvesting from organic solutions. Benefiting from the 1D and 2D network interlocking arrangement, the AGO membrane shows an unprecedented mechanical stress of 688 MPa and maintains its integrity after soaking in organic solvents for 24 h. Impressively, when LiCl is diluted in methanol, the AGO membrane device with a working area of 113 mm2 produces a current and a measured power generation of 28 ± 11 µA and 3140 ± 960 nW (Cfeed = 2 mol L−1), respectively. Thus, the working area of the AGO membrane for salinity gradient energy harvesting and temperature‐related energy harvesting enables its use in practical applications. In addition, 14 cells with the methanol‐LiCl solution (Cfeed = 1 mol L−1) can produce a voltage up to 1.82 V to light a liquid crystal display. Therefore, this AGO nanocomposite membrane presents a promising avenue to harvest salinity gradient energy from organic solutions. Efforts to extract energy from waste organic solutions can not only support clean environments but also help to alleviate the energy crisis. Here, a bioinspired ultrastrong nanocomposite membrane is developed via the layer‐by‐layer method based on aramid nanofiber‐graphene oxide (AGO) with good mechanical properties for salinity gradient energy harvesting from organic solutions. Benefiting from the 1D and 2D network interlocking arrangement, the AGO membrane shows an unprecedented mechanical stress of 688 MPa and maintains its integrity after soaking in organic solvents for 24 h. Impressively, when LiCl is diluted in methanol, the AGO membrane device with a working area of 113 mm 2 produces a current and a measured power generation of 28 ± 11 µA and 3140 ± 960 nW ( C feed = 2 mol L −1 ), respectively. Thus, the working area of the AGO membrane for salinity gradient energy harvesting and temperature‐related energy harvesting enables its use in practical applications. In addition, 14 cells with the methanol‐LiCl solution ( C feed = 1 mol L −1 ) can produce a voltage up to 1.82 V to light a liquid crystal display. Therefore, this AGO nanocomposite membrane presents a promising avenue to harvest salinity gradient energy from organic solutions. |
Author | Yang, Guoliang Wang, Jiemin Lei, Weiwei Wang, Lifeng Chen, Cheng Liu, Dan |
Author_xml | – sequence: 1 givenname: Cheng surname: Chen fullname: Chen, Cheng organization: Deakin University – sequence: 2 givenname: Dan surname: Liu fullname: Liu, Dan email: dan.liu@deakin.edu.au organization: Deakin University – sequence: 3 givenname: Guoliang surname: Yang fullname: Yang, Guoliang organization: Deakin University – sequence: 4 givenname: Jiemin surname: Wang fullname: Wang, Jiemin organization: Deakin University – sequence: 5 givenname: Lifeng surname: Wang fullname: Wang, Lifeng organization: Deakin University – sequence: 6 givenname: Weiwei orcidid: 0000-0003-2698-299X surname: Lei fullname: Lei, Weiwei email: weiwei.lei@deakin.edu.au organization: Deakin University |
BookMark | eNqFkElPwzAQhS0EEqX0ytkS55Rx4iw-lqq0SF0OpefIcSeVq8QudgrKvydVUZGQEHN5c3jfLO-OXBtrkJAHBkMGED5JNPUwBCaAg8iuSI8ljAdJxuH60kfhLRl4v4euuGAQRT1inrXVxh-0wy3dVI2TvnHW7OhSGqtsfbBeN0gXWBdOGvS0tI6uZaWNblo6dXKr0TR0YtDtWjqT7gN9ozu-dLamK7eTRiu6ttWx0db4e3JTysrj4Fv7ZPMyeRvPgvlq-joezQMVCZ4FCcaFSoFjKNI0UUUcx6LsNOGp2iZShTFyiWmsoiSFAhRjMYAQEjlDjgqiPnk8zz04-37sTsr39uhMtzIPOUCWJWksOtfw7FLOeu-wzA9O19K1OYP8FGt-ijW_xNoB_BegdCNPn3XB6epvTJyxT11h-8-SfDRZLn7YLwXlkNw |
CitedBy_id | crossref_primary_10_1002_smll_202206878 crossref_primary_10_1002_smll_202204898 crossref_primary_10_1039_D1AN02232F crossref_primary_10_1002_ange_202116910 crossref_primary_10_1039_D3CS00367A crossref_primary_10_1016_j_cej_2024_153891 crossref_primary_10_1126_sciadv_ads5591 crossref_primary_10_1002_smll_202402284 crossref_primary_10_1016_j_enconman_2021_115068 crossref_primary_10_1039_D3SE01582C crossref_primary_10_1002_smll_202107600 crossref_primary_10_1021_acsami_4c10263 crossref_primary_10_1016_j_carbpol_2021_119023 crossref_primary_10_1002_ange_202100205 crossref_primary_10_1038_s41427_022_00451_y crossref_primary_10_1002_adma_202302511 crossref_primary_10_1016_j_cej_2023_144761 crossref_primary_10_1021_acs_inorgchem_2c04257 crossref_primary_10_1002_anie_202116910 crossref_primary_10_1002_anie_202218321 crossref_primary_10_1039_D1SC03581A crossref_primary_10_1039_D3EN00827D crossref_primary_10_1021_acsnano_1c08347 crossref_primary_10_1021_acsami_2c04307 crossref_primary_10_1002_anie_202110731 crossref_primary_10_1039_D0MH00979B crossref_primary_10_1038_s41467_024_52487_z crossref_primary_10_1002_adfm_202109210 crossref_primary_10_1002_ange_202218321 crossref_primary_10_1039_D3NA00744H crossref_primary_10_1007_s40843_022_2057_5 crossref_primary_10_1002_ange_202006320 crossref_primary_10_1021_jacs_1c07392 crossref_primary_10_1016_j_cej_2022_139244 crossref_primary_10_1016_j_cej_2022_135484 crossref_primary_10_1039_D1NR03826E crossref_primary_10_1002_adfm_202306834 crossref_primary_10_1002_adfm_202414342 crossref_primary_10_1016_j_apsusc_2021_149004 crossref_primary_10_1007_s40843_024_2963_6 crossref_primary_10_1002_cey2_458 crossref_primary_10_1016_j_mattod_2023_03_002 crossref_primary_10_1002_anie_202006320 crossref_primary_10_1021_acs_accounts_1c00431 crossref_primary_10_1002_adfm_202308176 crossref_primary_10_1016_j_carbpol_2024_122015 crossref_primary_10_1016_j_enconman_2023_117614 crossref_primary_10_1021_acsapm_1c00471 crossref_primary_10_1021_acsestengg_1c00309 crossref_primary_10_1002_adfm_202313914 crossref_primary_10_1002_ange_202110731 crossref_primary_10_1021_acs_nanolett_4c00768 crossref_primary_10_1021_acscentsci_1c00633 crossref_primary_10_1038_s41578_021_00300_4 crossref_primary_10_1002_anie_202100205 crossref_primary_10_1002_adma_202301285 |
Cites_doi | 10.1002/adma.201300118 10.1038/nature15371 10.1021/ja503692z 10.1002/adfm.201500998 10.1038/532435a 10.1002/adma.201001068 10.1002/adma.201601606 10.1016/0032-3861(79)90038-7 10.1002/adma.201302441 10.1016/j.memsci.2013.10.053 10.1021/jacs.6b11100 10.1007/s10098-004-0245-z 10.1002/adfm.201603623 10.1038/nature04233 10.1021/nn2014003 10.1038/nmat747 10.1016/j.carbon.2008.09.045 10.1002/adfm.201403809 10.1002/adma.200803726 10.1021/jacs.9b00086 10.1038/srep33185 10.1038/s41467-018-04294-6 10.1126/science.aaa2491 10.1126/sciadv.aau1665 10.1557/mrs2010.652 10.1039/c3cs35460a 10.1016/j.desal.2014.06.009 10.1016/j.joule.2019.09.005 10.1016/j.joule.2019.11.010 10.1038/s41467-018-03612-2 10.1021/ja01539a017 10.1002/adfm.201000723 10.1021/acsami.7b03449 10.1002/adma.200800757 10.1021/acsnano.7b00790 10.1021/ma902862u 10.1038/ncomms8418 10.1016/j.rser.2015.12.112 10.1038/nature11477 10.1021/acsnano.5b06719 10.1038/nature04969 10.1016/j.desal.2005.12.052 10.1021/jacs.5b09918 10.1038/nature11876 10.1016/j.erss.2015.06.007 10.1007/s10570-010-9405-y 10.1021/nn700349a 10.1002/smll.200900548 10.1021/jz900265j 10.1038/nature18593 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201904098 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_201904098 AENM201904098 |
Genre | article |
GrantInformation_xml | – fundername: Australian Research Council funderid: DE150101617 – fundername: Australian Research Council Discovery Program funderid: DP190103290 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3948-6e5bc704e29776cb5559f6cb647cd6ac25e4ae75c3670b0c1150099ae41e4ec03 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:03:03 EDT 2025 Tue Jul 01 01:43:33 EDT 2025 Thu Apr 24 23:06:29 EDT 2025 Wed Jan 22 16:33:32 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3948-6e5bc704e29776cb5559f6cb647cd6ac25e4ae75c3670b0c1150099ae41e4ec03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2698-299X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/aenm.201904098 |
PQID | 2400886759 |
PQPubID | 886389 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2400886759 crossref_primary_10_1002_aenm_201904098 crossref_citationtrail_10_1002_aenm_201904098 wiley_primary_10_1002_aenm_201904098_AENM201904098 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 202 2009; 47 2015; 6 2019; 3 2013; 25 2009; 21 2010; 35 2017; 27 2010; 17 2004; 7 2013; 42 2015; 10 2002; 1 2016; 10 2005; 438 2015; 525 2015; 348 2012; 488 2019; 141 2008; 2 2011; 5 2017; 9 2014; 136 2016; 57 2014; 453 2017; 139 2010; 22 2010; 43 2016; 6 2018; 9 2015; 25 2010; 20 2014; 348 2020; 4 2010; 1 2018; 4 2015; 137 2016; 536 2017; 11 2017 2009; 5 1958; 80 2016; 532 2008; 20 2013; 494 1979; 20 2016; 28 2006; 442 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 Edward S. C. (e_1_2_7_5_1) 2017 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 6682 year: 2017 publication-title: ACS Nano – volume: 25 start-page: 2980 year: 2013 publication-title: Adv. Mater. – volume: 47 start-page: 145 year: 2009 publication-title: Carbon – volume: 453 start-page: 337 year: 2014 publication-title: J. Membr. Sci. – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 42 year: 2004 publication-title: Clean Technol. Environ. Policy – volume: 20 start-page: 31 year: 1979 publication-title: Polymer – volume: 348 year: 2015 publication-title: Science – volume: 9 start-page: 1902 year: 2018 publication-title: Nat. Commun. – volume: 20 start-page: 3557 year: 2008 publication-title: Adv. Mater. – volume: 438 start-page: 197 year: 2005 publication-title: Nature – volume: 42 start-page: 3114 year: 2013 publication-title: Chem. Soc. Rev. – volume: 80 start-page: 1339 year: 1958 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 2184 year: 2016 publication-title: ACS Nano – volume: 348 start-page: 26 year: 2014 publication-title: Desalination – volume: 22 start-page: 3906 year: 2010 publication-title: Adv. Mater. – volume: 35 start-page: 201 year: 2010 publication-title: MRS Bull. – volume: 20 start-page: 3322 year: 2010 publication-title: Adv. Funct. Mater. – volume: 494 start-page: 455 year: 2013 publication-title: Nature – volume: 5 start-page: 2212 year: 2009 publication-title: Small – volume: 57 start-page: 850 year: 2016 publication-title: Renewable Sustainable Energy Rev. – volume: 525 start-page: 367 year: 2015 publication-title: Nature – volume: 25 start-page: 3756 year: 2015 publication-title: Adv. Funct. Mater. – volume: 21 start-page: 3007 year: 2009 publication-title: Adv. Mater. – volume: 2 start-page: 572 year: 2008 publication-title: ACS Nano – volume: 28 start-page: 8669 year: 2016 publication-title: Adv. Mater. – volume: 25 start-page: 6064 year: 2013 publication-title: Adv. Mater. – volume: 141 start-page: 8658 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 459 year: 2010 publication-title: Cellulose – volume: 6 start-page: 7418 year: 2015 publication-title: Nat. Commun. – volume: 3 start-page: 2364 year: 2019 publication-title: Joule – volume: 442 start-page: 282 year: 2006 publication-title: Nature – volume: 4 start-page: 247 year: 2020 publication-title: Joule – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 536 start-page: 197 year: 2016 publication-title: Nature – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 532 start-page: 435 year: 2016 publication-title: Nature – volume: 1 start-page: 190 year: 2002 publication-title: Nat. Mater. – volume: 43 start-page: 2357 year: 2010 publication-title: Macromolecules – volume: 5 start-page: 6945 year: 2011 publication-title: ACS Nano – volume: 9 start-page: 1426 year: 2018 publication-title: Nat. Commun. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 559 year: 2015 publication-title: Adv. Funct. Mater. – volume: 139 start-page: 6314 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 520 year: 2010 publication-title: J. Phys. Chem. Lett. – volume: 488 start-page: 313 year: 2012 publication-title: Nature – volume: 6 year: 2016 publication-title: Sci. Rep. – year: 2017 – volume: 10 start-page: 31 year: 2015 publication-title: Energy Res. Soc. Sci. – volume: 202 start-page: 156 year: 2007 publication-title: Desalination – ident: e_1_2_7_39_1 doi: 10.1002/adma.201300118 – ident: e_1_2_7_2_1 doi: 10.1038/nature15371 – ident: e_1_2_7_47_1 doi: 10.1021/ja503692z – ident: e_1_2_7_30_1 doi: 10.1002/adfm.201500998 – ident: e_1_2_7_3_1 doi: 10.1038/532435a – ident: e_1_2_7_27_1 doi: 10.1002/adma.201001068 – ident: e_1_2_7_45_1 doi: 10.1002/adma.201601606 – ident: e_1_2_7_26_1 doi: 10.1016/0032-3861(79)90038-7 – ident: e_1_2_7_14_1 doi: 10.1002/adma.201302441 – ident: e_1_2_7_42_1 doi: 10.1016/j.memsci.2013.10.053 – ident: e_1_2_7_46_1 doi: 10.1021/jacs.6b11100 – ident: e_1_2_7_10_1 doi: 10.1007/s10098-004-0245-z – ident: e_1_2_7_13_1 doi: 10.1002/adfm.201603623 – ident: e_1_2_7_12_1 doi: 10.1038/nature04233 – ident: e_1_2_7_16_1 doi: 10.1021/nn2014003 – ident: e_1_2_7_24_1 doi: 10.1038/nmat747 – ident: e_1_2_7_28_1 doi: 10.1016/j.carbon.2008.09.045 – ident: e_1_2_7_34_1 doi: 10.1002/adfm.201403809 – ident: e_1_2_7_31_1 doi: 10.1002/adma.200803726 – ident: e_1_2_7_8_1 doi: 10.1021/jacs.9b00086 – ident: e_1_2_7_35_1 doi: 10.1038/srep33185 – ident: e_1_2_7_44_1 doi: 10.1038/s41467-018-04294-6 – ident: e_1_2_7_22_1 doi: 10.1126/science.aaa2491 – ident: e_1_2_7_51_1 doi: 10.1126/sciadv.aau1665 – ident: e_1_2_7_18_1 doi: 10.1557/mrs2010.652 – ident: e_1_2_7_23_1 doi: 10.1039/c3cs35460a – ident: e_1_2_7_49_1 doi: 10.1016/j.desal.2014.06.009 – ident: e_1_2_7_9_1 doi: 10.1016/j.joule.2019.09.005 – volume-title: Introduction to Energy: Resources, Technology and Society year: 2017 ident: e_1_2_7_5_1 – ident: e_1_2_7_7_1 doi: 10.1016/j.joule.2019.11.010 – ident: e_1_2_7_50_1 doi: 10.1038/s41467-018-03612-2 – ident: e_1_2_7_20_1 doi: 10.1021/ja01539a017 – ident: e_1_2_7_38_1 doi: 10.1002/adfm.201000723 – ident: e_1_2_7_25_1 doi: 10.1021/acsami.7b03449 – ident: e_1_2_7_29_1 doi: 10.1002/adma.200800757 – ident: e_1_2_7_36_1 doi: 10.1021/acsnano.7b00790 – ident: e_1_2_7_33_1 doi: 10.1021/ma902862u – ident: e_1_2_7_15_1 doi: 10.1038/ncomms8418 – ident: e_1_2_7_4_1 doi: 10.1016/j.rser.2015.12.112 – ident: e_1_2_7_6_1 doi: 10.1038/nature11477 – ident: e_1_2_7_37_1 doi: 10.1021/acsnano.5b06719 – ident: e_1_2_7_11_1 doi: 10.1038/nature04969 – ident: e_1_2_7_43_1 doi: 10.1016/j.desal.2005.12.052 – ident: e_1_2_7_48_1 doi: 10.1021/jacs.5b09918 – ident: e_1_2_7_41_1 doi: 10.1038/nature11876 – ident: e_1_2_7_1_1 doi: 10.1016/j.erss.2015.06.007 – ident: e_1_2_7_17_1 doi: 10.1007/s10570-010-9405-y – ident: e_1_2_7_32_1 doi: 10.1021/nn700349a – ident: e_1_2_7_19_1 doi: 10.1002/smll.200900548 – ident: e_1_2_7_21_1 doi: 10.1021/jz900265j – ident: e_1_2_7_40_1 doi: 10.1038/nature18593 |
SSID | ssj0000491033 |
Score | 2.558714 |
Snippet | Efforts to extract energy from waste organic solutions can not only support clean environments but also help to alleviate the energy crisis. Here, a... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | aramid Clean energy Electric power generation Energy Energy harvesting Graphene graphene oxide layer‐by‐layer assembly Liquid crystal displays Lithium chloride Mechanical properties Membranes Methanol nanocomposite membranes Nanocomposites Nanofibers organic osmotic energy Salinity Waste to energy |
Title | Bioinspired Ultrastrong Nanocomposite Membranes for Salinity Gradient Energy Harvesting from Organic Solutions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201904098 https://www.proquest.com/docview/2400886759 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4ED2vghygbyAYnDFHAdx3WOBbpNE9tlq9gtso2DKm0p6lIO--v3Xuw4KSpicElby06bvs_P7z1_75mQd1rlKnWlTLQ1BqNVNslzLpNUSCsl16I0DdviXJ7MxelVdjUY_Oqxlta1-WDvtuaV_I9UoQ3kilmy_yDZeFNogPcgX7iChOH6IBl_WiwXFW6Vg9U4v65X-hYD2z9QZS6RK46ELJi27gZcYlBpDaXwQmMuJJjex6uG7VUfznz6H54ShCU3kFmJOSc-S9MedoGznh07bakDzg8Gu9c_cEcXcGE734W1EVk_i3VIa4_KJoSrj9dLjLfEnt9C--kCi5_0QxOcdUTAoE1h7U-kCgFM12_zNZqiCmZ9qKmtqt2XitWuwvoBYMaAY6q6RazduP9tbYuMQ1-dmRc4vojjH5EdDu4FH5Kd6ZezrxcxOgd-05ilTXZG-wxtxU_GP27-iE2LpnNT-s5OY61c7pKnwc2gU4-ZPTJw1TPypFd88jmpeuihPfTQDfTQiB4K6KEtemiLHurRQzv0UEQPDeihET0vyPxodvn5JAmnbyQ2zYVKpMuMnTDhOLgI0poMfM8SXqWY2O9SW545od0ks1gC0DCLrgW4G9qJsRPOsvQlGVbLyr0iVLDS4dEZrszB3NUyH2eqZGZsZWo4y9SIJO0_WNhQmh5PSLkutottRN7H_j99UZY_9jxoBVKEiXtbIG1aKfCU8xHhjZD-cpdiOjs_i59eP_jb98njblockGG9Wrs3YMPW5m0A3D3uKpyY |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioinspired+Ultrastrong+Nanocomposite+Membranes+for+Salinity+Gradient+Energy+Harvesting+from+Organic+Solutions&rft.jtitle=Advanced+energy+materials&rft.au=Chen%2C+Cheng&rft.au=Liu%2C+Dan&rft.au=Yang%2C+Guoliang&rft.au=Wang%2C+Jiemin&rft.date=2020-05-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=18&rft_id=info:doi/10.1002%2Faenm.201904098&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_201904098 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |