Bioinspired Ultrastrong Nanocomposite Membranes for Salinity Gradient Energy Harvesting from Organic Solutions

Efforts to extract energy from waste organic solutions can not only support clean environments but also help to alleviate the energy crisis. Here, a bioinspired ultrastrong nanocomposite membrane is developed via the layer‐by‐layer method based on aramid nanofiber‐graphene oxide (AGO) with good mech...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 10; no. 18
Main Authors Chen, Cheng, Liu, Dan, Yang, Guoliang, Wang, Jiemin, Wang, Lifeng, Lei, Weiwei
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Efforts to extract energy from waste organic solutions can not only support clean environments but also help to alleviate the energy crisis. Here, a bioinspired ultrastrong nanocomposite membrane is developed via the layer‐by‐layer method based on aramid nanofiber‐graphene oxide (AGO) with good mechanical properties for salinity gradient energy harvesting from organic solutions. Benefiting from the 1D and 2D network interlocking arrangement, the AGO membrane shows an unprecedented mechanical stress of 688 MPa and maintains its integrity after soaking in organic solvents for 24 h. Impressively, when LiCl is diluted in methanol, the AGO membrane device with a working area of 113 mm2 produces a current and a measured power generation of 28 ± 11 µA and 3140 ± 960 nW (Cfeed = 2 mol L−1), respectively. Thus, the working area of the AGO membrane for salinity gradient energy harvesting and temperature‐related energy harvesting enables its use in practical applications. In addition, 14 cells with the methanol‐LiCl solution (Cfeed = 1 mol L−1) can produce a voltage up to 1.82 V to light a liquid crystal display. Therefore, this AGO nanocomposite membrane presents a promising avenue to harvest salinity gradient energy from organic solutions. Bioinspired ultrastrong aramid nanofiber‐graphene oxide (AGO) nanocomposite membranes are developed by the layer‐by‐layer method based on aramid nanofibers and graphene oxide nanosheets. The AGO membrane shows an unprecedented mechanical stress of 688 MPa and a promising avenue to harvest salinity gradient energy from organic solutions.
AbstractList Efforts to extract energy from waste organic solutions can not only support clean environments but also help to alleviate the energy crisis. Here, a bioinspired ultrastrong nanocomposite membrane is developed via the layer‐by‐layer method based on aramid nanofiber‐graphene oxide (AGO) with good mechanical properties for salinity gradient energy harvesting from organic solutions. Benefiting from the 1D and 2D network interlocking arrangement, the AGO membrane shows an unprecedented mechanical stress of 688 MPa and maintains its integrity after soaking in organic solvents for 24 h. Impressively, when LiCl is diluted in methanol, the AGO membrane device with a working area of 113 mm2 produces a current and a measured power generation of 28 ± 11 µA and 3140 ± 960 nW (Cfeed = 2 mol L−1), respectively. Thus, the working area of the AGO membrane for salinity gradient energy harvesting and temperature‐related energy harvesting enables its use in practical applications. In addition, 14 cells with the methanol‐LiCl solution (Cfeed = 1 mol L−1) can produce a voltage up to 1.82 V to light a liquid crystal display. Therefore, this AGO nanocomposite membrane presents a promising avenue to harvest salinity gradient energy from organic solutions. Bioinspired ultrastrong aramid nanofiber‐graphene oxide (AGO) nanocomposite membranes are developed by the layer‐by‐layer method based on aramid nanofibers and graphene oxide nanosheets. The AGO membrane shows an unprecedented mechanical stress of 688 MPa and a promising avenue to harvest salinity gradient energy from organic solutions.
Efforts to extract energy from waste organic solutions can not only support clean environments but also help to alleviate the energy crisis. Here, a bioinspired ultrastrong nanocomposite membrane is developed via the layer‐by‐layer method based on aramid nanofiber‐graphene oxide (AGO) with good mechanical properties for salinity gradient energy harvesting from organic solutions. Benefiting from the 1D and 2D network interlocking arrangement, the AGO membrane shows an unprecedented mechanical stress of 688 MPa and maintains its integrity after soaking in organic solvents for 24 h. Impressively, when LiCl is diluted in methanol, the AGO membrane device with a working area of 113 mm2 produces a current and a measured power generation of 28 ± 11 µA and 3140 ± 960 nW (Cfeed = 2 mol L−1), respectively. Thus, the working area of the AGO membrane for salinity gradient energy harvesting and temperature‐related energy harvesting enables its use in practical applications. In addition, 14 cells with the methanol‐LiCl solution (Cfeed = 1 mol L−1) can produce a voltage up to 1.82 V to light a liquid crystal display. Therefore, this AGO nanocomposite membrane presents a promising avenue to harvest salinity gradient energy from organic solutions.
Efforts to extract energy from waste organic solutions can not only support clean environments but also help to alleviate the energy crisis. Here, a bioinspired ultrastrong nanocomposite membrane is developed via the layer‐by‐layer method based on aramid nanofiber‐graphene oxide (AGO) with good mechanical properties for salinity gradient energy harvesting from organic solutions. Benefiting from the 1D and 2D network interlocking arrangement, the AGO membrane shows an unprecedented mechanical stress of 688 MPa and maintains its integrity after soaking in organic solvents for 24 h. Impressively, when LiCl is diluted in methanol, the AGO membrane device with a working area of 113 mm 2 produces a current and a measured power generation of 28 ± 11 µA and 3140 ± 960 nW ( C feed = 2 mol L −1 ), respectively. Thus, the working area of the AGO membrane for salinity gradient energy harvesting and temperature‐related energy harvesting enables its use in practical applications. In addition, 14 cells with the methanol‐LiCl solution ( C feed = 1 mol L −1 ) can produce a voltage up to 1.82 V to light a liquid crystal display. Therefore, this AGO nanocomposite membrane presents a promising avenue to harvest salinity gradient energy from organic solutions.
Author Yang, Guoliang
Wang, Jiemin
Lei, Weiwei
Wang, Lifeng
Chen, Cheng
Liu, Dan
Author_xml – sequence: 1
  givenname: Cheng
  surname: Chen
  fullname: Chen, Cheng
  organization: Deakin University
– sequence: 2
  givenname: Dan
  surname: Liu
  fullname: Liu, Dan
  email: dan.liu@deakin.edu.au
  organization: Deakin University
– sequence: 3
  givenname: Guoliang
  surname: Yang
  fullname: Yang, Guoliang
  organization: Deakin University
– sequence: 4
  givenname: Jiemin
  surname: Wang
  fullname: Wang, Jiemin
  organization: Deakin University
– sequence: 5
  givenname: Lifeng
  surname: Wang
  fullname: Wang, Lifeng
  organization: Deakin University
– sequence: 6
  givenname: Weiwei
  orcidid: 0000-0003-2698-299X
  surname: Lei
  fullname: Lei, Weiwei
  email: weiwei.lei@deakin.edu.au
  organization: Deakin University
BookMark eNqFkElPwzAQhS0EEqX0ytkS55Rx4iw-lqq0SF0OpefIcSeVq8QudgrKvydVUZGQEHN5c3jfLO-OXBtrkJAHBkMGED5JNPUwBCaAg8iuSI8ljAdJxuH60kfhLRl4v4euuGAQRT1inrXVxh-0wy3dVI2TvnHW7OhSGqtsfbBeN0gXWBdOGvS0tI6uZaWNblo6dXKr0TR0YtDtWjqT7gN9ozu-dLamK7eTRiu6ttWx0db4e3JTysrj4Fv7ZPMyeRvPgvlq-joezQMVCZ4FCcaFSoFjKNI0UUUcx6LsNOGp2iZShTFyiWmsoiSFAhRjMYAQEjlDjgqiPnk8zz04-37sTsr39uhMtzIPOUCWJWksOtfw7FLOeu-wzA9O19K1OYP8FGt-ijW_xNoB_BegdCNPn3XB6epvTJyxT11h-8-SfDRZLn7YLwXlkNw
CitedBy_id crossref_primary_10_1002_smll_202206878
crossref_primary_10_1002_smll_202204898
crossref_primary_10_1039_D1AN02232F
crossref_primary_10_1002_ange_202116910
crossref_primary_10_1039_D3CS00367A
crossref_primary_10_1016_j_cej_2024_153891
crossref_primary_10_1126_sciadv_ads5591
crossref_primary_10_1002_smll_202402284
crossref_primary_10_1016_j_enconman_2021_115068
crossref_primary_10_1039_D3SE01582C
crossref_primary_10_1002_smll_202107600
crossref_primary_10_1021_acsami_4c10263
crossref_primary_10_1016_j_carbpol_2021_119023
crossref_primary_10_1002_ange_202100205
crossref_primary_10_1038_s41427_022_00451_y
crossref_primary_10_1002_adma_202302511
crossref_primary_10_1016_j_cej_2023_144761
crossref_primary_10_1021_acs_inorgchem_2c04257
crossref_primary_10_1002_anie_202116910
crossref_primary_10_1002_anie_202218321
crossref_primary_10_1039_D1SC03581A
crossref_primary_10_1039_D3EN00827D
crossref_primary_10_1021_acsnano_1c08347
crossref_primary_10_1021_acsami_2c04307
crossref_primary_10_1002_anie_202110731
crossref_primary_10_1039_D0MH00979B
crossref_primary_10_1038_s41467_024_52487_z
crossref_primary_10_1002_adfm_202109210
crossref_primary_10_1002_ange_202218321
crossref_primary_10_1039_D3NA00744H
crossref_primary_10_1007_s40843_022_2057_5
crossref_primary_10_1002_ange_202006320
crossref_primary_10_1021_jacs_1c07392
crossref_primary_10_1016_j_cej_2022_139244
crossref_primary_10_1016_j_cej_2022_135484
crossref_primary_10_1039_D1NR03826E
crossref_primary_10_1002_adfm_202306834
crossref_primary_10_1002_adfm_202414342
crossref_primary_10_1016_j_apsusc_2021_149004
crossref_primary_10_1007_s40843_024_2963_6
crossref_primary_10_1002_cey2_458
crossref_primary_10_1016_j_mattod_2023_03_002
crossref_primary_10_1002_anie_202006320
crossref_primary_10_1021_acs_accounts_1c00431
crossref_primary_10_1002_adfm_202308176
crossref_primary_10_1016_j_carbpol_2024_122015
crossref_primary_10_1016_j_enconman_2023_117614
crossref_primary_10_1021_acsapm_1c00471
crossref_primary_10_1021_acsestengg_1c00309
crossref_primary_10_1002_adfm_202313914
crossref_primary_10_1002_ange_202110731
crossref_primary_10_1021_acs_nanolett_4c00768
crossref_primary_10_1021_acscentsci_1c00633
crossref_primary_10_1038_s41578_021_00300_4
crossref_primary_10_1002_anie_202100205
crossref_primary_10_1002_adma_202301285
Cites_doi 10.1002/adma.201300118
10.1038/nature15371
10.1021/ja503692z
10.1002/adfm.201500998
10.1038/532435a
10.1002/adma.201001068
10.1002/adma.201601606
10.1016/0032-3861(79)90038-7
10.1002/adma.201302441
10.1016/j.memsci.2013.10.053
10.1021/jacs.6b11100
10.1007/s10098-004-0245-z
10.1002/adfm.201603623
10.1038/nature04233
10.1021/nn2014003
10.1038/nmat747
10.1016/j.carbon.2008.09.045
10.1002/adfm.201403809
10.1002/adma.200803726
10.1021/jacs.9b00086
10.1038/srep33185
10.1038/s41467-018-04294-6
10.1126/science.aaa2491
10.1126/sciadv.aau1665
10.1557/mrs2010.652
10.1039/c3cs35460a
10.1016/j.desal.2014.06.009
10.1016/j.joule.2019.09.005
10.1016/j.joule.2019.11.010
10.1038/s41467-018-03612-2
10.1021/ja01539a017
10.1002/adfm.201000723
10.1021/acsami.7b03449
10.1002/adma.200800757
10.1021/acsnano.7b00790
10.1021/ma902862u
10.1038/ncomms8418
10.1016/j.rser.2015.12.112
10.1038/nature11477
10.1021/acsnano.5b06719
10.1038/nature04969
10.1016/j.desal.2005.12.052
10.1021/jacs.5b09918
10.1038/nature11876
10.1016/j.erss.2015.06.007
10.1007/s10570-010-9405-y
10.1021/nn700349a
10.1002/smll.200900548
10.1021/jz900265j
10.1038/nature18593
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201904098
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_201904098
AENM201904098
Genre article
GrantInformation_xml – fundername: Australian Research Council
  funderid: DE150101617
– fundername: Australian Research Council Discovery Program
  funderid: DP190103290
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3948-6e5bc704e29776cb5559f6cb647cd6ac25e4ae75c3670b0c1150099ae41e4ec03
ISSN 1614-6832
IngestDate Fri Jul 25 12:03:03 EDT 2025
Tue Jul 01 01:43:33 EDT 2025
Thu Apr 24 23:06:29 EDT 2025
Wed Jan 22 16:33:32 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3948-6e5bc704e29776cb5559f6cb647cd6ac25e4ae75c3670b0c1150099ae41e4ec03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2698-299X
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/aenm.201904098
PQID 2400886759
PQPubID 886389
PageCount 7
ParticipantIDs proquest_journals_2400886759
crossref_primary_10_1002_aenm_201904098
crossref_citationtrail_10_1002_aenm_201904098
wiley_primary_10_1002_aenm_201904098_AENM201904098
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 202
2009; 47
2015; 6
2019; 3
2013; 25
2009; 21
2010; 35
2017; 27
2010; 17
2004; 7
2013; 42
2015; 10
2002; 1
2016; 10
2005; 438
2015; 525
2015; 348
2012; 488
2019; 141
2008; 2
2011; 5
2017; 9
2014; 136
2016; 57
2014; 453
2017; 139
2010; 22
2010; 43
2016; 6
2018; 9
2015; 25
2010; 20
2014; 348
2020; 4
2010; 1
2018; 4
2015; 137
2016; 536
2017; 11
2017
2009; 5
1958; 80
2016; 532
2008; 20
2013; 494
1979; 20
2016; 28
2006; 442
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
Edward S. C. (e_1_2_7_5_1) 2017
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 6682
  year: 2017
  publication-title: ACS Nano
– volume: 25
  start-page: 2980
  year: 2013
  publication-title: Adv. Mater.
– volume: 47
  start-page: 145
  year: 2009
  publication-title: Carbon
– volume: 453
  start-page: 337
  year: 2014
  publication-title: J. Membr. Sci.
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 42
  year: 2004
  publication-title: Clean Technol. Environ. Policy
– volume: 20
  start-page: 31
  year: 1979
  publication-title: Polymer
– volume: 348
  year: 2015
  publication-title: Science
– volume: 9
  start-page: 1902
  year: 2018
  publication-title: Nat. Commun.
– volume: 20
  start-page: 3557
  year: 2008
  publication-title: Adv. Mater.
– volume: 438
  start-page: 197
  year: 2005
  publication-title: Nature
– volume: 42
  start-page: 3114
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 80
  start-page: 1339
  year: 1958
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 2184
  year: 2016
  publication-title: ACS Nano
– volume: 348
  start-page: 26
  year: 2014
  publication-title: Desalination
– volume: 22
  start-page: 3906
  year: 2010
  publication-title: Adv. Mater.
– volume: 35
  start-page: 201
  year: 2010
  publication-title: MRS Bull.
– volume: 20
  start-page: 3322
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 494
  start-page: 455
  year: 2013
  publication-title: Nature
– volume: 5
  start-page: 2212
  year: 2009
  publication-title: Small
– volume: 57
  start-page: 850
  year: 2016
  publication-title: Renewable Sustainable Energy Rev.
– volume: 525
  start-page: 367
  year: 2015
  publication-title: Nature
– volume: 25
  start-page: 3756
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 21
  start-page: 3007
  year: 2009
  publication-title: Adv. Mater.
– volume: 2
  start-page: 572
  year: 2008
  publication-title: ACS Nano
– volume: 28
  start-page: 8669
  year: 2016
  publication-title: Adv. Mater.
– volume: 25
  start-page: 6064
  year: 2013
  publication-title: Adv. Mater.
– volume: 141
  start-page: 8658
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 459
  year: 2010
  publication-title: Cellulose
– volume: 6
  start-page: 7418
  year: 2015
  publication-title: Nat. Commun.
– volume: 3
  start-page: 2364
  year: 2019
  publication-title: Joule
– volume: 442
  start-page: 282
  year: 2006
  publication-title: Nature
– volume: 4
  start-page: 247
  year: 2020
  publication-title: Joule
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 536
  start-page: 197
  year: 2016
  publication-title: Nature
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 532
  start-page: 435
  year: 2016
  publication-title: Nature
– volume: 1
  start-page: 190
  year: 2002
  publication-title: Nat. Mater.
– volume: 43
  start-page: 2357
  year: 2010
  publication-title: Macromolecules
– volume: 5
  start-page: 6945
  year: 2011
  publication-title: ACS Nano
– volume: 9
  start-page: 1426
  year: 2018
  publication-title: Nat. Commun.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 559
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 139
  start-page: 6314
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 520
  year: 2010
  publication-title: J. Phys. Chem. Lett.
– volume: 488
  start-page: 313
  year: 2012
  publication-title: Nature
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– year: 2017
– volume: 10
  start-page: 31
  year: 2015
  publication-title: Energy Res. Soc. Sci.
– volume: 202
  start-page: 156
  year: 2007
  publication-title: Desalination
– ident: e_1_2_7_39_1
  doi: 10.1002/adma.201300118
– ident: e_1_2_7_2_1
  doi: 10.1038/nature15371
– ident: e_1_2_7_47_1
  doi: 10.1021/ja503692z
– ident: e_1_2_7_30_1
  doi: 10.1002/adfm.201500998
– ident: e_1_2_7_3_1
  doi: 10.1038/532435a
– ident: e_1_2_7_27_1
  doi: 10.1002/adma.201001068
– ident: e_1_2_7_45_1
  doi: 10.1002/adma.201601606
– ident: e_1_2_7_26_1
  doi: 10.1016/0032-3861(79)90038-7
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.201302441
– ident: e_1_2_7_42_1
  doi: 10.1016/j.memsci.2013.10.053
– ident: e_1_2_7_46_1
  doi: 10.1021/jacs.6b11100
– ident: e_1_2_7_10_1
  doi: 10.1007/s10098-004-0245-z
– ident: e_1_2_7_13_1
  doi: 10.1002/adfm.201603623
– ident: e_1_2_7_12_1
  doi: 10.1038/nature04233
– ident: e_1_2_7_16_1
  doi: 10.1021/nn2014003
– ident: e_1_2_7_24_1
  doi: 10.1038/nmat747
– ident: e_1_2_7_28_1
  doi: 10.1016/j.carbon.2008.09.045
– ident: e_1_2_7_34_1
  doi: 10.1002/adfm.201403809
– ident: e_1_2_7_31_1
  doi: 10.1002/adma.200803726
– ident: e_1_2_7_8_1
  doi: 10.1021/jacs.9b00086
– ident: e_1_2_7_35_1
  doi: 10.1038/srep33185
– ident: e_1_2_7_44_1
  doi: 10.1038/s41467-018-04294-6
– ident: e_1_2_7_22_1
  doi: 10.1126/science.aaa2491
– ident: e_1_2_7_51_1
  doi: 10.1126/sciadv.aau1665
– ident: e_1_2_7_18_1
  doi: 10.1557/mrs2010.652
– ident: e_1_2_7_23_1
  doi: 10.1039/c3cs35460a
– ident: e_1_2_7_49_1
  doi: 10.1016/j.desal.2014.06.009
– ident: e_1_2_7_9_1
  doi: 10.1016/j.joule.2019.09.005
– volume-title: Introduction to Energy: Resources, Technology and Society
  year: 2017
  ident: e_1_2_7_5_1
– ident: e_1_2_7_7_1
  doi: 10.1016/j.joule.2019.11.010
– ident: e_1_2_7_50_1
  doi: 10.1038/s41467-018-03612-2
– ident: e_1_2_7_20_1
  doi: 10.1021/ja01539a017
– ident: e_1_2_7_38_1
  doi: 10.1002/adfm.201000723
– ident: e_1_2_7_25_1
  doi: 10.1021/acsami.7b03449
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.200800757
– ident: e_1_2_7_36_1
  doi: 10.1021/acsnano.7b00790
– ident: e_1_2_7_33_1
  doi: 10.1021/ma902862u
– ident: e_1_2_7_15_1
  doi: 10.1038/ncomms8418
– ident: e_1_2_7_4_1
  doi: 10.1016/j.rser.2015.12.112
– ident: e_1_2_7_6_1
  doi: 10.1038/nature11477
– ident: e_1_2_7_37_1
  doi: 10.1021/acsnano.5b06719
– ident: e_1_2_7_11_1
  doi: 10.1038/nature04969
– ident: e_1_2_7_43_1
  doi: 10.1016/j.desal.2005.12.052
– ident: e_1_2_7_48_1
  doi: 10.1021/jacs.5b09918
– ident: e_1_2_7_41_1
  doi: 10.1038/nature11876
– ident: e_1_2_7_1_1
  doi: 10.1016/j.erss.2015.06.007
– ident: e_1_2_7_17_1
  doi: 10.1007/s10570-010-9405-y
– ident: e_1_2_7_32_1
  doi: 10.1021/nn700349a
– ident: e_1_2_7_19_1
  doi: 10.1002/smll.200900548
– ident: e_1_2_7_21_1
  doi: 10.1021/jz900265j
– ident: e_1_2_7_40_1
  doi: 10.1038/nature18593
SSID ssj0000491033
Score 2.558714
Snippet Efforts to extract energy from waste organic solutions can not only support clean environments but also help to alleviate the energy crisis. Here, a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms aramid
Clean energy
Electric power generation
Energy
Energy harvesting
Graphene
graphene oxide
layer‐by‐layer assembly
Liquid crystal displays
Lithium chloride
Mechanical properties
Membranes
Methanol
nanocomposite membranes
Nanocomposites
Nanofibers
organic osmotic energy
Salinity
Waste to energy
Title Bioinspired Ultrastrong Nanocomposite Membranes for Salinity Gradient Energy Harvesting from Organic Solutions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201904098
https://www.proquest.com/docview/2400886759
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4ED2vghygbyAYnDFHAdx3WOBbpNE9tlq9gtso2DKm0p6lIO--v3Xuw4KSpicElby06bvs_P7z1_75mQd1rlKnWlTLQ1BqNVNslzLpNUSCsl16I0DdviXJ7MxelVdjUY_Oqxlta1-WDvtuaV_I9UoQ3kilmy_yDZeFNogPcgX7iChOH6IBl_WiwXFW6Vg9U4v65X-hYD2z9QZS6RK46ELJi27gZcYlBpDaXwQmMuJJjex6uG7VUfznz6H54ShCU3kFmJOSc-S9MedoGznh07bakDzg8Gu9c_cEcXcGE734W1EVk_i3VIa4_KJoSrj9dLjLfEnt9C--kCi5_0QxOcdUTAoE1h7U-kCgFM12_zNZqiCmZ9qKmtqt2XitWuwvoBYMaAY6q6RazduP9tbYuMQ1-dmRc4vojjH5EdDu4FH5Kd6ZezrxcxOgd-05ilTXZG-wxtxU_GP27-iE2LpnNT-s5OY61c7pKnwc2gU4-ZPTJw1TPypFd88jmpeuihPfTQDfTQiB4K6KEtemiLHurRQzv0UEQPDeihET0vyPxodvn5JAmnbyQ2zYVKpMuMnTDhOLgI0poMfM8SXqWY2O9SW545od0ks1gC0DCLrgW4G9qJsRPOsvQlGVbLyr0iVLDS4dEZrszB3NUyH2eqZGZsZWo4y9SIJO0_WNhQmh5PSLkutottRN7H_j99UZY_9jxoBVKEiXtbIG1aKfCU8xHhjZD-cpdiOjs_i59eP_jb98njblockGG9Wrs3YMPW5m0A3D3uKpyY
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioinspired+Ultrastrong+Nanocomposite+Membranes+for+Salinity+Gradient+Energy+Harvesting+from+Organic+Solutions&rft.jtitle=Advanced+energy+materials&rft.au=Chen%2C+Cheng&rft.au=Liu%2C+Dan&rft.au=Yang%2C+Guoliang&rft.au=Wang%2C+Jiemin&rft.date=2020-05-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=18&rft_id=info:doi/10.1002%2Faenm.201904098&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_201904098
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon