Sulfonylureas exert antidiabetic action on adipocytes by inhibition of PPARγ serine 273 phosphorylation

Sulfonylureas (SUs) are still among the mostly prescribed antidiabetic drugs with an established mode of action: release of insulin from pancreatic β-cells. In addition, effects of SUs on adipocytes by activation of the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) have been...

Full description

Saved in:
Bibliographic Details
Published inMolecular metabolism (Germany) Vol. 85; p. 101956
Main Authors Haas, Bodo, Hass, Moritz David Sebastian, Voltz, Alexander, Vogel, Matthias, Walther, Julia, Biswas, Arijit, Hass, Daniela, Pfeifer, Alexander
Format Journal Article
LanguageEnglish
Published Germany Elsevier GmbH 01.07.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sulfonylureas (SUs) are still among the mostly prescribed antidiabetic drugs with an established mode of action: release of insulin from pancreatic β-cells. In addition, effects of SUs on adipocytes by activation of the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) have been described, which might explain their insulin-sensitizing potential observed in patients. However, there is a discrepancy between the impact of SUs on antidiabetic action and their rather moderate in vitro effect on PPARγ transcriptional activity. Recent studies have shown that some PPARγ ligands can improve insulin sensitivity by blocking PPARγ Ser-273 phosphorylation without having full agonist activity. It is unknown if SUs elicit their antidiabetic effects on adipocytes by inhibition of PPARγ phosphorylation. Here, we investigated if binding of SUs to PPARγ can interfere with PPARγ Ser-273 phosphorylation and determined their antidiabetic actions in vitro in primary human white adipocytes and in vivo in high-fat diet (HFD) obese mice. Primary human white preadipocytes were differentiated in the presence of glibenclamide, glimepiride and PPARγ ligands rosiglitazone and SR1664 to compare PPARγ Ser-273 phosphorylation, glucose uptake and adipokine expression. Transcriptional activity at PPARγ was determined by luciferase assays, quantification of PPARγ Ser-273 phosphorylation was determined by Western blotting and CDK5 kinase assays. In silico modelling was performed to gain insight into the binding characteristics of SUs to PPARγ. HFD mice were administered SUs and rosiglitazone for 6 days. PPARγ Ser-273 phosphorylation in white adipose tissue (WAT), body composition, glucose tolerance, adipocyte morphology and expression levels of genes involved in PPARγ activity in WAT and brown adipose tissue (BAT) were evaluated. SUs inhibit phosphorylation of PPARγ at Ser-273 in primary human white adipocytes and exhibit a positive antidiabetic expression profile, which is characterized by up regulation of insulin-sensitizing and down regulation of insulin resistance-inducing adipokines. We demonstrate that SUs directly bind to PPARγ by in silico modelling and inhibit phosphorylation in kinase assays to a similar extend as rosiglitazone and SR1664. In HFD mice SUs reduce PPARγ phosphorylation in WAT and have comparable effects on gene expression to rosiglitazone. In BAT SUs increase UCP1 expression and reduce lipid droplets sizes. Our findings indicate that a part of SUs extra-pancreatic effects on adipocytes in vitro and in vivo is probably mediated via their interference with PPARγ phosphorylation rather than via classical agonistic activity at clinical concentrations. •Sulfonylureas (SUs) inhibit PPARγ serine 273 phosphorylation in primary human adipocytes and in adipose tissue of obese mice.•SUs exhibit a positive antidiabetic expression profile in primary human adipocytes and obese mice.•A new MoA of SUs is proposed which is mediated by inhibition of PPARγ phosphorylation rather than classical PPARγ agonism.
AbstractList Sulfonylureas (SUs) are still among the mostly prescribed antidiabetic drugs with an established mode of action: release of insulin from pancreatic β-cells. In addition, effects of SUs on adipocytes by activation of the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) have been described, which might explain their insulin-sensitizing potential observed in patients. However, there is a discrepancy between the impact of SUs on antidiabetic action and their rather moderate in vitro effect on PPARγ transcriptional activity. Recent studies have shown that some PPARγ ligands can improve insulin sensitivity by blocking PPARγ Ser-273 phosphorylation without having full agonist activity. It is unknown if SUs elicit their antidiabetic effects on adipocytes by inhibition of PPARγ phosphorylation. Here, we investigated if binding of SUs to PPARγ can interfere with PPARγ Ser-273 phosphorylation and determined their antidiabetic actions in vitro in primary human white adipocytes and in vivo in high-fat diet (HFD) obese mice.OBJECTIVESulfonylureas (SUs) are still among the mostly prescribed antidiabetic drugs with an established mode of action: release of insulin from pancreatic β-cells. In addition, effects of SUs on adipocytes by activation of the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) have been described, which might explain their insulin-sensitizing potential observed in patients. However, there is a discrepancy between the impact of SUs on antidiabetic action and their rather moderate in vitro effect on PPARγ transcriptional activity. Recent studies have shown that some PPARγ ligands can improve insulin sensitivity by blocking PPARγ Ser-273 phosphorylation without having full agonist activity. It is unknown if SUs elicit their antidiabetic effects on adipocytes by inhibition of PPARγ phosphorylation. Here, we investigated if binding of SUs to PPARγ can interfere with PPARγ Ser-273 phosphorylation and determined their antidiabetic actions in vitro in primary human white adipocytes and in vivo in high-fat diet (HFD) obese mice.Primary human white preadipocytes were differentiated in the presence of glibenclamide, glimepiride and PPARγ ligands rosiglitazone and SR1664 to compare PPARγ Ser-273 phosphorylation, glucose uptake and adipokine expression. Transcriptional activity at PPARγ was determined by luciferase assays, quantification of PPARγ Ser-273 phosphorylation was determined by Western blotting and CDK5 kinase assays. In silico modelling was performed to gain insight into the binding characteristics of SUs to PPARγ. HFD mice were administered SUs and rosiglitazone for 6 days. PPARγ Ser-273 phosphorylation in white adipose tissue (WAT), body composition, glucose tolerance, adipocyte morphology and expression levels of genes involved in PPARγ activity in WAT and brown adipose tissue (BAT) were evaluated.METHODSPrimary human white preadipocytes were differentiated in the presence of glibenclamide, glimepiride and PPARγ ligands rosiglitazone and SR1664 to compare PPARγ Ser-273 phosphorylation, glucose uptake and adipokine expression. Transcriptional activity at PPARγ was determined by luciferase assays, quantification of PPARγ Ser-273 phosphorylation was determined by Western blotting and CDK5 kinase assays. In silico modelling was performed to gain insight into the binding characteristics of SUs to PPARγ. HFD mice were administered SUs and rosiglitazone for 6 days. PPARγ Ser-273 phosphorylation in white adipose tissue (WAT), body composition, glucose tolerance, adipocyte morphology and expression levels of genes involved in PPARγ activity in WAT and brown adipose tissue (BAT) were evaluated.SUs inhibit phosphorylation of PPARγ at Ser-273 in primary human white adipocytes and exhibit a positive antidiabetic expression profile, which is characterized by up regulation of insulin-sensitizing and down regulation of insulin resistance-inducing adipokines. We demonstrate that SUs directly bind to PPARγ by in silico modelling and inhibit phosphorylation in kinase assays to a similar extend as rosiglitazone and SR1664. In HFD mice SUs reduce PPARγ phosphorylation in WAT and have comparable effects on gene expression to rosiglitazone. In BAT SUs increase UCP1 expression and reduce lipid droplets sizes.RESULTSSUs inhibit phosphorylation of PPARγ at Ser-273 in primary human white adipocytes and exhibit a positive antidiabetic expression profile, which is characterized by up regulation of insulin-sensitizing and down regulation of insulin resistance-inducing adipokines. We demonstrate that SUs directly bind to PPARγ by in silico modelling and inhibit phosphorylation in kinase assays to a similar extend as rosiglitazone and SR1664. In HFD mice SUs reduce PPARγ phosphorylation in WAT and have comparable effects on gene expression to rosiglitazone. In BAT SUs increase UCP1 expression and reduce lipid droplets sizes.Our findings indicate that a part of SUs extra-pancreatic effects on adipocytes in vitro and in vivo is probably mediated via their interference with PPARγ phosphorylation rather than via classical agonistic activity at clinical concentrations.CONCLUSIONSOur findings indicate that a part of SUs extra-pancreatic effects on adipocytes in vitro and in vivo is probably mediated via their interference with PPARγ phosphorylation rather than via classical agonistic activity at clinical concentrations.
Sulfonylureas (SUs) are still among the mostly prescribed antidiabetic drugs with an established mode of action: release of insulin from pancreatic β-cells. In addition, effects of SUs on adipocytes by activation of the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) have been described, which might explain their insulin-sensitizing potential observed in patients. However, there is a discrepancy between the impact of SUs on antidiabetic action and their rather moderate in vitro effect on PPARγ transcriptional activity. Recent studies have shown that some PPARγ ligands can improve insulin sensitivity by blocking PPARγ Ser-273 phosphorylation without having full agonist activity. It is unknown if SUs elicit their antidiabetic effects on adipocytes by inhibition of PPARγ phosphorylation. Here, we investigated if binding of SUs to PPARγ can interfere with PPARγ Ser-273 phosphorylation and determined their antidiabetic actions in vitro in primary human white adipocytes and in vivo in high-fat diet (HFD) obese mice. Primary human white preadipocytes were differentiated in the presence of glibenclamide, glimepiride and PPARγ ligands rosiglitazone and SR1664 to compare PPARγ Ser-273 phosphorylation, glucose uptake and adipokine expression. Transcriptional activity at PPARγ was determined by luciferase assays, quantification of PPARγ Ser-273 phosphorylation was determined by Western blotting and CDK5 kinase assays. In silico modelling was performed to gain insight into the binding characteristics of SUs to PPARγ. HFD mice were administered SUs and rosiglitazone for 6 days. PPARγ Ser-273 phosphorylation in white adipose tissue (WAT), body composition, glucose tolerance, adipocyte morphology and expression levels of genes involved in PPARγ activity in WAT and brown adipose tissue (BAT) were evaluated. SUs inhibit phosphorylation of PPARγ at Ser-273 in primary human white adipocytes and exhibit a positive antidiabetic expression profile, which is characterized by up regulation of insulin-sensitizing and down regulation of insulin resistance-inducing adipokines. We demonstrate that SUs directly bind to PPARγ by in silico modelling and inhibit phosphorylation in kinase assays to a similar extend as rosiglitazone and SR1664. In HFD mice SUs reduce PPARγ phosphorylation in WAT and have comparable effects on gene expression to rosiglitazone. In BAT SUs increase UCP1 expression and reduce lipid droplets sizes. Our findings indicate that a part of SUs extra-pancreatic effects on adipocytes in vitro and in vivo is probably mediated via their interference with PPARγ phosphorylation rather than via classical agonistic activity at clinical concentrations.
Sulfonylureas (SUs) are still among the mostly prescribed antidiabetic drugs with an established mode of action: release of insulin from pancreatic β-cells. In addition, effects of SUs on adipocytes by activation of the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) have been described, which might explain their insulin-sensitizing potential observed in patients. However, there is a discrepancy between the impact of SUs on antidiabetic action and their rather moderate in vitro effect on PPARγ transcriptional activity. Recent studies have shown that some PPARγ ligands can improve insulin sensitivity by blocking PPARγ Ser-273 phosphorylation without having full agonist activity. It is unknown if SUs elicit their antidiabetic effects on adipocytes by inhibition of PPARγ phosphorylation. Here, we investigated if binding of SUs to PPARγ can interfere with PPARγ Ser-273 phosphorylation and determined their antidiabetic actions in vitro in primary human white adipocytes and in vivo in high-fat diet (HFD) obese mice. Primary human white preadipocytes were differentiated in the presence of glibenclamide, glimepiride and PPARγ ligands rosiglitazone and SR1664 to compare PPARγ Ser-273 phosphorylation, glucose uptake and adipokine expression. Transcriptional activity at PPARγ was determined by luciferase assays, quantification of PPARγ Ser-273 phosphorylation was determined by Western blotting and CDK5 kinase assays. In silico modelling was performed to gain insight into the binding characteristics of SUs to PPARγ. HFD mice were administered SUs and rosiglitazone for 6 days. PPARγ Ser-273 phosphorylation in white adipose tissue (WAT), body composition, glucose tolerance, adipocyte morphology and expression levels of genes involved in PPARγ activity in WAT and brown adipose tissue (BAT) were evaluated. SUs inhibit phosphorylation of PPARγ at Ser-273 in primary human white adipocytes and exhibit a positive antidiabetic expression profile, which is characterized by up regulation of insulin-sensitizing and down regulation of insulin resistance-inducing adipokines. We demonstrate that SUs directly bind to PPARγ by in silico modelling and inhibit phosphorylation in kinase assays to a similar extend as rosiglitazone and SR1664. In HFD mice SUs reduce PPARγ phosphorylation in WAT and have comparable effects on gene expression to rosiglitazone. In BAT SUs increase UCP1 expression and reduce lipid droplets sizes. Our findings indicate that a part of SUs extra-pancreatic effects on adipocytes in vitro and in vivo is probably mediated via their interference with PPARγ phosphorylation rather than via classical agonistic activity at clinical concentrations. •Sulfonylureas (SUs) inhibit PPARγ serine 273 phosphorylation in primary human adipocytes and in adipose tissue of obese mice.•SUs exhibit a positive antidiabetic expression profile in primary human adipocytes and obese mice.•A new MoA of SUs is proposed which is mediated by inhibition of PPARγ phosphorylation rather than classical PPARγ agonism.
Objective: Sulfonylureas (SUs) are still among the mostly prescribed antidiabetic drugs with an established mode of action: release of insulin from pancreatic β-cells. In addition, effects of SUs on adipocytes by activation of the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) have been described, which might explain their insulin-sensitizing potential observed in patients. However, there is a discrepancy between the impact of SUs on antidiabetic action and their rather moderate in vitro effect on PPARγ transcriptional activity. Recent studies have shown that some PPARγ ligands can improve insulin sensitivity by blocking PPARγ Ser-273 phosphorylation without having full agonist activity. It is unknown if SUs elicit their antidiabetic effects on adipocytes by inhibition of PPARγ phosphorylation. Here, we investigated if binding of SUs to PPARγ can interfere with PPARγ Ser-273 phosphorylation and determined their antidiabetic actions in vitro in primary human white adipocytes and in vivo in high-fat diet (HFD) obese mice. Methods: Primary human white preadipocytes were differentiated in the presence of glibenclamide, glimepiride and PPARγ ligands rosiglitazone and SR1664 to compare PPARγ Ser-273 phosphorylation, glucose uptake and adipokine expression. Transcriptional activity at PPARγ was determined by luciferase assays, quantification of PPARγ Ser-273 phosphorylation was determined by Western blotting and CDK5 kinase assays. In silico modelling was performed to gain insight into the binding characteristics of SUs to PPARγ. HFD mice were administered SUs and rosiglitazone for 6 days. PPARγ Ser-273 phosphorylation in white adipose tissue (WAT), body composition, glucose tolerance, adipocyte morphology and expression levels of genes involved in PPARγ activity in WAT and brown adipose tissue (BAT) were evaluated. Results: SUs inhibit phosphorylation of PPARγ at Ser-273 in primary human white adipocytes and exhibit a positive antidiabetic expression profile, which is characterized by up regulation of insulin-sensitizing and down regulation of insulin resistance-inducing adipokines. We demonstrate that SUs directly bind to PPARγ by in silico modelling and inhibit phosphorylation in kinase assays to a similar extend as rosiglitazone and SR1664. In HFD mice SUs reduce PPARγ phosphorylation in WAT and have comparable effects on gene expression to rosiglitazone. In BAT SUs increase UCP1 expression and reduce lipid droplets sizes. Conclusions: Our findings indicate that a part of SUs extra-pancreatic effects on adipocytes in vitro and in vivo is probably mediated via their interference with PPARγ phosphorylation rather than via classical agonistic activity at clinical concentrations.
• Sulfonylureas (SUs) inhibit PPARγ serine 273 phosphorylation in primary human adipocytes and in adipose tissue of obese mice. • SUs exhibit a positive antidiabetic expression profile in primary human adipocytes and obese mice. • A new MoA of SUs is proposed which is mediated by inhibition of PPARγ phosphorylation rather than classical PPARγ agonism.
ArticleNumber 101956
Author Hass, Moritz David Sebastian
Vogel, Matthias
Voltz, Alexander
Pfeifer, Alexander
Walther, Julia
Biswas, Arijit
Haas, Bodo
Hass, Daniela
Author_xml – sequence: 1
  givenname: Bodo
  orcidid: 0000-0002-1213-3527
  surname: Haas
  fullname: Haas, Bodo
  email: bodo.haas@bfarm.de
  organization: Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
– sequence: 2
  givenname: Moritz David Sebastian
  surname: Hass
  fullname: Hass, Moritz David Sebastian
  organization: Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
– sequence: 3
  givenname: Alexander
  surname: Voltz
  fullname: Voltz, Alexander
  organization: Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
– sequence: 4
  givenname: Matthias
  surname: Vogel
  fullname: Vogel, Matthias
  organization: Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
– sequence: 5
  givenname: Julia
  surname: Walther
  fullname: Walther, Julia
  organization: Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
– sequence: 6
  givenname: Arijit
  surname: Biswas
  fullname: Biswas, Arijit
  organization: Institute of Experimental Hematology and Transfusion Medicine, University Hospital, University of Bonn, Bonn, Germany
– sequence: 7
  givenname: Daniela
  surname: Hass
  fullname: Hass, Daniela
  organization: Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
– sequence: 8
  givenname: Alexander
  surname: Pfeifer
  fullname: Pfeifer, Alexander
  organization: Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38735390$$D View this record in MEDLINE/PubMed
BookMark eNp9Udtu1DAQjVARLaV_gFAeednFdycvoKriUqkSFZdnyxlPul5l7cXOVuS7-A--CYeUqn1hZMvWzJlz7DnPq6MQA1bVS0rWlFD1ZrvexWGH45oRJuZUK9WT6oQxylaN1s3Rg_txdZbzlpRolFKSPquOeaO55C05qTZfD0MfwzQcEtpc409MY23D6J23HY4eagujj6Euyzq_jzCNmOtuqn3Y-M4vtb6-vj7_8vtXnTH5gDXTvN5vYi47TYOdQS-qp70dMp7dnafV9w_vv118Wl19_nh5cX61At4KteqRdAASZOuEbkVvKWoiJDROEtaqTkKrkSIBSjtoRauFQOqkw4Yha9Dy0-py4XXRbs0--Z1Nk4nWm7-JmG6MTeVfAxrkoHqw2nWaC6pcJ1kvtWJUMaA9tIXr3cK1P3Q7dIBhTHZ4RPq4EvzG3MRbQ0swRVlheH3HkOKPA-bR7HwGHAYbMB6y4UQKwblQs5hYoJBizgn7ex1KzGy62ZrFdDObbhbTS9urh2-8b_pncQG8XQBYpn7rMZkMHgOg8wlhLGPx_1f4A8HDxAA
Cites_doi 10.1101/gad.249367.114
10.1074/jbc.270.22.12953
10.1016/j.diabres.2021.109119
10.1055/s-2007-979839
10.1016/j.biopha.2007.12.007
10.1016/S0149-2918(04)90006-9
10.1016/j.bmcl.2004.10.068
10.1016/j.cmet.2020.08.016
10.1016/j.metop.2022.100221
10.1016/0092-8674(95)90193-0
10.3389/fphar.2021.807548
10.1016/j.cmet.2012.01.019
10.1016/j.cell.2012.06.027
10.1074/jbc.M114.566794
10.1016/j.bbrc.2004.12.190
10.1016/j.jbc.2021.101030
10.1111/j.1463-1326.2011.01409.x
10.1111/dom.13843
10.1371/journal.pone.0154310
10.1055/s-2007-979838
10.4093/dmj.2011.35.4.340
10.2337/dc23-S009
10.1038/nature09291
10.1101/gad.8.10.1224
10.1016/j.metabol.2021.154892
10.1096/fj.12-221580
10.1124/mol.106.024596
10.2337/dbi23-0005
10.3390/cells9020343
10.1016/j.molmet.2021.101363
10.1111/j.1463-1326.2008.00870.x
10.1172/JCI98709
10.3389/fendo.2020.561256
10.1111/j.1365-2125.1990.tb03688.x
10.1146/annurev.biochem.77.061307.091829
10.1038/nature13887
10.1038/ncomms2742
10.1016/j.isci.2020.101446
10.1016/j.bmcl.2006.08.003
10.1073/pnas.95.8.4333
10.1038/nature10383
10.1038/s41586-022-05041-0
10.2165/00003495-199855040-00007
10.1371/journal.pmed.0050206
10.1016/j.jbc.2023.103059
10.1111/bph.14553
10.1007/s13300-019-0651-1
10.1074/jbc.M412113200
10.1126/scisignal.2000511
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier GmbH.. All rights reserved.
2024 The Author(s) 2024
Copyright_xml – notice: 2024 The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier GmbH.. All rights reserved.
– notice: 2024 The Author(s) 2024
DBID 6I.
AAFTH
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.molmet.2024.101956
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed



Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2212-8778
ExternalDocumentID oai_doaj_org_article_e3c6fca7db73416db52f5762162c1fc9
10_1016_j_molmet_2024_101956
38735390
S2212877824000875
Genre Journal Article
GroupedDBID -IN
.1-
.FO
0R~
0SF
1P~
457
4G.
53G
5VS
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEVXI
AEXQZ
AFCTW
AFRHN
AFTJW
AGHFR
AITUG
AJUYK
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
NCXOZ
O-L
O9-
OB0
OK1
ON-
RIG
ROL
RPM
SSZ
Z5R
ADVLN
AFJKZ
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c3946-fe0bcc5c59d4794fa1e7045c8d50296b5c97e1e0c11bc949744e1d5de82e28ea3
IEDL.DBID RPM
ISSN 2212-8778
IngestDate Sun Sep 29 07:15:10 EDT 2024
Tue Sep 17 21:28:24 EDT 2024
Fri Jul 12 19:43:28 EDT 2024
Thu Sep 26 21:41:51 EDT 2024
Wed Oct 16 00:11:48 EDT 2024
Sat Jun 29 15:30:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Brown adipose tissue
White adipose tissue
PPARγ
Sulfonylureas
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Author(s). Published by Elsevier GmbH.. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3946-fe0bcc5c59d4794fa1e7045c8d50296b5c97e1e0c11bc949744e1d5de82e28ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Bodo Haas and Moritz David Sebastian Hass contributed equally to this work.
ORCID 0000-0002-1213-3527
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11112612/
PMID 38735390
PQID 3054433469
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_e3c6fca7db73416db52f5762162c1fc9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11112612
proquest_miscellaneous_3054433469
crossref_primary_10_1016_j_molmet_2024_101956
pubmed_primary_38735390
elsevier_sciencedirect_doi_10_1016_j_molmet_2024_101956
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Molecular metabolism (Germany)
PublicationTitleAlternate Mol Metab
PublicationYear 2024
Publisher Elsevier GmbH
Elsevier
Publisher_xml – name: Elsevier GmbH
– name: Elsevier
References Koshiba, Nomura, Nakaya, Ito (bib6) 2006; 53
Choi, Choi, Kim, Jedrychowski, Yang, Jang (bib22) 2014; 28
Zhou, Zhang, Zou, Shen, Xie, Xu (bib48) 2019; 176
Inukai, Watanabe, Nakashima, Takata, Isoyama, Sawa (bib9) 2005; 328
Kim, Wright, Wright, Spiegelman (bib32) 1998; 95
Mastrototaro, Roden (bib18) 2021; 125
Mitschke, Hoffmann, Gnad, Scholz, Kruithoff, Mayer (bib29) 2013; 27
Remedi, Nichols (bib36) 2008; 5
Tontonoz, Hu, Graves, Budavari, Spiegelman (bib33) 1994; 8
Yu, Hu, Sheng, Gao, Guo, Zhang (bib41) 2023; 299
Hopkins, O'Neil S, Laufersweiler, Wang, Pokross, Mekel (bib44) 2006; 16
Dias, Batista, Tittanegro, de Oliveira, Le Maire, Torres (bib23) 2020; 11
Sun, Saeedi, Karuranga, Pinkepank, Ogurtsova, Duncan (bib1) 2022; 183
Arrault, Rocchi, Picard, Maurois, Pirotte, Vamecq (bib15) 2009; 63
Langtry, Balfour (bib46) 1998; 55
Chen, Siegel, Kipschull, Haas, Frohlich, Meister (bib31) 2013; 4
Muller, Geisen (bib11) 1996; 28
Tontonoz, Spiegelman (bib14) 2008; 77
Lehmann, Moore, Smith-Oliver, Wilkison, Willson, Kliewer (bib17) 1995; 270
Gilani, Stoll, Homan, Lo (bib34) 2024; 73
Coppack, Lant, McIntosh, Rodgers (bib47) 1990; 29
Choi, Banks, Estall, Kajimura, Bostrom, Laznik (bib19) 2010; 466
Coelho, de Lima, Royer, Silva, Oliveira, Christ (bib39) 2016; 11
Kalra, Das, Baruah, Unnikrishnan, Dasgupta, Shah (bib51) 2019; 10
ElSayed, Aleppo, Aroda, Bannuru, Brown, Bruemmer (bib2) 2022; 46
Fukuen, Iwaki, Yasui, Makishima, Matsuda, Shimomura (bib8) 2005; 280
Qiu, Yang, Wei, Liu, Feng, Zeng (bib37) 2020; 23
Ohno, Shinoda, Spiegelman, Kajimura (bib43) 2012; 15
Huan, Pan, Peng, Jia, Sun, Bai (bib40) 2019; 21
Acton, Black, Jones, Moller, Colwell, Doebber (bib26) 2005; 15
Kabadi, Kabadi (bib5) 2004; 26
Haas, Mayer, Jennissen, Scholz, Berriel Diaz, Bloch (bib30) 2009; 2
Hall, Ramachandran, Roh, DiSpirito, Belchior, Zushin (bib24) 2020; 32
Dahlén, Dashi, Maslov, Attwood, Jonsson, Trukhan (bib3) 2022; 12
Scarsi, Podvinec, Roth, Hug, Kersten, Albrecht (bib12) 2007; 71
Lee, Ku, Kim, Ahn, Chung, Park (bib13) 2011; 35
Khim, Choi, Jang, Lee, Lee, Hyun (bib25) 2020; 9
Niedowicz, Ozcan, Nelson (bib35) 2018; 2018
Kramer, Muller, Geisen (bib4) 1996; 28
Frkic, Richter, Bruning (bib45) 2021; 297
Wu, Eeda, Undi, Mann, Stout, Lim (bib42) 2021; 54
Kraakman, Liu, Postigo-Fernandez, Ji, Kon, Larrea (bib50) 2018; 128
Banks, McAllister, Camporez, Zushin, Jurczak, Laznik-Bogoslavski (bib21) 2015; 517
Forman, Tontonoz, Chen, Brun, Spiegelman, Evans (bib16) 1995; 83
Niemann, Haufs-Brusberg, Puetz, Feickert, Jaeckstein, Hoffmann (bib28) 2022; 609
Mori, Hirabara, Hirata, Okamoto, Machado (bib7) 2008; 10
Qiang, Wang, Kon, Zhao, Lee, Zhang (bib49) 2012; 150
Terra, Garcia-Arevalo, Avelino, Degaki, Malospirito, de Carvalho (bib38) 2023; 17
Mayer, Haas, Celner, Enzmann, Pfeifer (bib10) 2011; 13
Choi, Banks, Kamenecka, Busby, Chalmers, Kumar (bib20) 2011; 477
Choi, Kim, Koh, Lee, Lim, Yang (bib27) 2014; 289
Dias (10.1016/j.molmet.2024.101956_bib23) 2020; 11
Lehmann (10.1016/j.molmet.2024.101956_bib17) 1995; 270
Niemann (10.1016/j.molmet.2024.101956_bib28) 2022; 609
Kramer (10.1016/j.molmet.2024.101956_bib4) 1996; 28
Mori (10.1016/j.molmet.2024.101956_bib7) 2008; 10
Wu (10.1016/j.molmet.2024.101956_bib42) 2021; 54
Huan (10.1016/j.molmet.2024.101956_bib40) 2019; 21
Mitschke (10.1016/j.molmet.2024.101956_bib29) 2013; 27
Dahlén (10.1016/j.molmet.2024.101956_bib3) 2022; 12
Qiu (10.1016/j.molmet.2024.101956_bib37) 2020; 23
Arrault (10.1016/j.molmet.2024.101956_bib15) 2009; 63
Kabadi (10.1016/j.molmet.2024.101956_bib5) 2004; 26
Lee (10.1016/j.molmet.2024.101956_bib13) 2011; 35
Choi (10.1016/j.molmet.2024.101956_bib20) 2011; 477
Hopkins (10.1016/j.molmet.2024.101956_bib44) 2006; 16
Banks (10.1016/j.molmet.2024.101956_bib21) 2015; 517
Muller (10.1016/j.molmet.2024.101956_bib11) 1996; 28
Scarsi (10.1016/j.molmet.2024.101956_bib12) 2007; 71
ElSayed (10.1016/j.molmet.2024.101956_bib2) 2022; 46
Chen (10.1016/j.molmet.2024.101956_bib31) 2013; 4
Mayer (10.1016/j.molmet.2024.101956_bib10) 2011; 13
Kalra (10.1016/j.molmet.2024.101956_bib51) 2019; 10
Hall (10.1016/j.molmet.2024.101956_bib24) 2020; 32
Mastrototaro (10.1016/j.molmet.2024.101956_bib18) 2021; 125
Tontonoz (10.1016/j.molmet.2024.101956_bib14) 2008; 77
Tontonoz (10.1016/j.molmet.2024.101956_bib33) 1994; 8
Remedi (10.1016/j.molmet.2024.101956_bib36) 2008; 5
Choi (10.1016/j.molmet.2024.101956_bib27) 2014; 289
Terra (10.1016/j.molmet.2024.101956_bib38) 2023; 17
Inukai (10.1016/j.molmet.2024.101956_bib9) 2005; 328
Forman (10.1016/j.molmet.2024.101956_bib16) 1995; 83
Coppack (10.1016/j.molmet.2024.101956_bib47) 1990; 29
Qiang (10.1016/j.molmet.2024.101956_bib49) 2012; 150
Haas (10.1016/j.molmet.2024.101956_bib30) 2009; 2
Kraakman (10.1016/j.molmet.2024.101956_bib50) 2018; 128
Frkic (10.1016/j.molmet.2024.101956_bib45) 2021; 297
Khim (10.1016/j.molmet.2024.101956_bib25) 2020; 9
Acton (10.1016/j.molmet.2024.101956_bib26) 2005; 15
Langtry (10.1016/j.molmet.2024.101956_bib46) 1998; 55
Yu (10.1016/j.molmet.2024.101956_bib41) 2023; 299
Coelho (10.1016/j.molmet.2024.101956_bib39) 2016; 11
Sun (10.1016/j.molmet.2024.101956_bib1) 2022; 183
Choi (10.1016/j.molmet.2024.101956_bib22) 2014; 28
Ohno (10.1016/j.molmet.2024.101956_bib43) 2012; 15
Zhou (10.1016/j.molmet.2024.101956_bib48) 2019; 176
Choi (10.1016/j.molmet.2024.101956_bib19) 2010; 466
Kim (10.1016/j.molmet.2024.101956_bib32) 1998; 95
Niedowicz (10.1016/j.molmet.2024.101956_bib35) 2018; 2018
Koshiba (10.1016/j.molmet.2024.101956_bib6) 2006; 53
Gilani (10.1016/j.molmet.2024.101956_bib34) 2024; 73
Fukuen (10.1016/j.molmet.2024.101956_bib8) 2005; 280
References_xml – volume: 466
  start-page: 451
  year: 2010
  end-page: 456
  ident: bib19
  article-title: Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5
  publication-title: Nature
  contributor:
    fullname: Laznik
– volume: 28
  start-page: 469
  year: 1996
  end-page: 487
  ident: bib11
  article-title: Characterization of the molecular mode of action of the sulfonylurea, glimepiride, at adipocytes
  publication-title: Horm Metab Res
  contributor:
    fullname: Geisen
– volume: 270
  start-page: 12953
  year: 1995
  end-page: 12956
  ident: bib17
  article-title: An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma)
  publication-title: J Biol Chem
  contributor:
    fullname: Kliewer
– volume: 289
  start-page: 26618
  year: 2014
  end-page: 26629
  ident: bib27
  article-title: A novel non-agonist peroxisome proliferator-activated receptor gamma (PPARgamma) ligand UHC1 blocks PPARgamma phosphorylation by cyclin-dependent kinase 5 (CDK5) and improves insulin sensitivity
  publication-title: J Biol Chem
  contributor:
    fullname: Yang
– volume: 17
  year: 2023
  ident: bib38
  article-title: AM-879, a PPARy non-agonist and Ser273 phosphorylation blocker, promotes insulin sensitivity without adverse effects in mice
  publication-title: Metabol Open
  contributor:
    fullname: de Carvalho
– volume: 4
  start-page: 1769
  year: 2013
  ident: bib31
  article-title: miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit
  publication-title: Nat Commun
  contributor:
    fullname: Meister
– volume: 12
  year: 2022
  ident: bib3
  article-title: Trends in antidiabetic drug discovery: FDA approved drugs, new drugs in clinical trials and global sales
  publication-title: Front Pharmacol
  contributor:
    fullname: Trukhan
– volume: 73
  start-page: 169
  year: 2024
  end-page: 177
  ident: bib34
  article-title: Adipose signals regulating distal organ health and disease
  publication-title: Diabetes
  contributor:
    fullname: Lo
– volume: 299
  year: 2023
  ident: bib41
  article-title: Selective PPARgamma modulator diosmin improves insulin sensitivity and promotes browning of white fat
  publication-title: J Biol Chem
  contributor:
    fullname: Zhang
– volume: 16
  start-page: 5659
  year: 2006
  end-page: 5663
  ident: bib44
  article-title: Design and synthesis of novel N-sulfonyl-2-indole carboxamides as potent PPAR-gamma binding agents with potential application to the treatment of osteoporosis
  publication-title: Bioorg Med Chem Lett
  contributor:
    fullname: Mekel
– volume: 128
  start-page: 2600
  year: 2018
  end-page: 2612
  ident: bib50
  article-title: PPARgamma deacetylation dissociates thiazolidinedione's metabolic benefits from its adverse effects
  publication-title: J Clin Invest
  contributor:
    fullname: Larrea
– volume: 609
  start-page: 361
  year: 2022
  end-page: 368
  ident: bib28
  article-title: Apoptotic brown adipocytes enhance energy expenditure via extracellular inosine
  publication-title: Nature
  contributor:
    fullname: Hoffmann
– volume: 13
  start-page: 791
  year: 2011
  end-page: 799
  ident: bib10
  article-title: Glitazone-like action of glimepiride and glibenclamide in primary human adipocytes
  publication-title: Diabetes Obes Metabol
  contributor:
    fullname: Pfeifer
– volume: 10
  start-page: 1577
  year: 2019
  end-page: 1593
  ident: bib51
  article-title: Glucocrinology of modern sulfonylureas: clinical evidence and practice-based opinion from an international expert group
  publication-title: Diabetes Ther
  contributor:
    fullname: Shah
– volume: 53
  start-page: 87
  year: 2006
  end-page: 94
  ident: bib6
  article-title: Efficacy of glimepiride on insulin resistance, adipocytokines, and atherosclerosis
  publication-title: J Med Invest
  contributor:
    fullname: Ito
– volume: 183
  year: 2022
  ident: bib1
  article-title: IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045
  publication-title: Diabetes Res Clin Pract
  contributor:
    fullname: Duncan
– volume: 46
  start-page: S140
  year: 2022
  end-page: S157
  ident: bib2
  article-title: 9. Pharmacologic approaches to glycemic treatment: standards of care in diabetes—2023
  publication-title: Diabetes Care
  contributor:
    fullname: Bruemmer
– volume: 54
  year: 2021
  ident: bib42
  article-title: A novel peroxisome proliferator-activated receptor gamma ligand improves insulin sensitivity and promotes browning of white adipose tissue in obese mice
  publication-title: Mol Metabol
  contributor:
    fullname: Lim
– volume: 29
  start-page: 673
  year: 1990
  end-page: 684
  ident: bib47
  article-title: Pharmacokinetic and pharmacodynamic studies of glibenclamide in non-insulin dependent diabetes mellitus
  publication-title: Br J Clin Pharmacol
  contributor:
    fullname: Rodgers
– volume: 83
  start-page: 803
  year: 1995
  end-page: 812
  ident: bib16
  article-title: 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma
  publication-title: Cell
  contributor:
    fullname: Evans
– volume: 26
  start-page: 63
  year: 2004
  end-page: 69
  ident: bib5
  article-title: Effects of glimepiride on insulin secretion and sensitivity in patients with recently diagnosed type 2 diabetes mellitus
  publication-title: Clin Therapeut
  contributor:
    fullname: Kabadi
– volume: 35
  start-page: 340
  year: 2011
  end-page: 347
  ident: bib13
  article-title: Effects of sulfonylureas on peroxisome proliferator-activated receptor gamma activity and on glucose uptake by thiazolidinediones
  publication-title: Diabetes Metab J
  contributor:
    fullname: Park
– volume: 297
  year: 2021
  ident: bib45
  article-title: The therapeutic potential of inhibiting PPARgamma phosphorylation to treat type 2 diabetes
  publication-title: J Biol Chem
  contributor:
    fullname: Bruning
– volume: 63
  start-page: 56
  year: 2009
  end-page: 62
  ident: bib15
  article-title: A short series of antidiabetic sulfonylureas exhibit multiple ligand PPARgamma-binding patterns
  publication-title: Biomed Pharmacother
  contributor:
    fullname: Vamecq
– volume: 11
  year: 2016
  ident: bib39
  article-title: GQ-16, a TZD-derived partial PPARgamma agonist, induces the expression of thermogenesis-related genes in Brown fat and visceral white fat and decreases visceral adiposity in obese and hyperglycemic mice
  publication-title: PLoS One
  contributor:
    fullname: Christ
– volume: 477
  start-page: 477
  year: 2011
  end-page: 481
  ident: bib20
  article-title: Antidiabetic actions of a non-agonist PPARgamma ligand blocking Cdk5-mediated phosphorylation
  publication-title: Nature
  contributor:
    fullname: Kumar
– volume: 11
  year: 2020
  ident: bib23
  article-title: PPARgamma S273 phosphorylation modifies the dynamics of coregulator proteins recruitment
  publication-title: Front Endocrinol
  contributor:
    fullname: Torres
– volume: 21
  start-page: 2553
  year: 2019
  end-page: 2563
  ident: bib40
  article-title: A novel specific peroxisome proliferator-activated receptor gamma (PPARgamma) modulator YR4-42 ameliorates hyperglycaemia and dyslipidaemia and hepatic steatosis in diet-induced obese mice
  publication-title: Diabetes Obes Metabol
  contributor:
    fullname: Bai
– volume: 71
  start-page: 398
  year: 2007
  end-page: 406
  ident: bib12
  article-title: Sulfonylureas and glinides exhibit peroxisome proliferator-activated receptor gamma activity: a combined virtual screening and biological assay approach
  publication-title: Mol Pharmacol
  contributor:
    fullname: Albrecht
– volume: 10
  start-page: 596
  year: 2008
  end-page: 600
  ident: bib7
  article-title: Glimepiride as insulin sensitizer: increased liver and muscle responses to insulin
  publication-title: Diabetes Obes Metabol
  contributor:
    fullname: Machado
– volume: 2
  start-page: ra78
  year: 2009
  ident: bib30
  article-title: Protein kinase G controls brown fat cell differentiation and mitochondrial biogenesis
  publication-title: Sci Signal
  contributor:
    fullname: Bloch
– volume: 23
  year: 2020
  ident: bib37
  article-title: Glyburide regulates UCP1 expression in adipocytes independent of K(ATP) channel blockade
  publication-title: iScience
  contributor:
    fullname: Zeng
– volume: 176
  start-page: 478
  year: 2019
  end-page: 490
  ident: bib48
  article-title: Hypoglycaemic effects of glimepiride in sulfonylurea receptor 1 deficient rat
  publication-title: Br J Pharmacol
  contributor:
    fullname: Xu
– volume: 328
  start-page: 484
  year: 2005
  end-page: 490
  ident: bib9
  article-title: Glimepiride enhances intrinsic peroxisome proliferator-activated receptor-gamma activity in 3T3-L1 adipocytes
  publication-title: Biochem Biophys Res Commun
  contributor:
    fullname: Sawa
– volume: 27
  start-page: 1621
  year: 2013
  end-page: 1630
  ident: bib29
  article-title: Increased cGMP promotes healthy expansion and browning of white adipose tissue
  publication-title: Faseb J
  contributor:
    fullname: Mayer
– volume: 8
  start-page: 1224
  year: 1994
  end-page: 1234
  ident: bib33
  article-title: mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer
  publication-title: Genes Dev
  contributor:
    fullname: Spiegelman
– volume: 95
  start-page: 4333
  year: 1998
  end-page: 4337
  ident: bib32
  article-title: ADD1/SREBP1 activates PPARgamma through the production of endogenous ligand
  publication-title: Proc Natl Acad Sci U S A
  contributor:
    fullname: Spiegelman
– volume: 5
  year: 2008
  ident: bib36
  article-title: Chronic antidiabetic sulfonylureas in vivo: reversible effects on mouse pancreatic beta-cells
  publication-title: PLoS Med
  contributor:
    fullname: Nichols
– volume: 28
  start-page: 464
  year: 1996
  end-page: 468
  ident: bib4
  article-title: Characterization of the molecular mode of action of the sulfonylurea, glimepiride, at beta-cells
  publication-title: Horm Metab Res
  contributor:
    fullname: Geisen
– volume: 9
  year: 2020
  ident: bib25
  article-title: PPM1A controls diabetic gene programming through directly dephosphorylating PPARgamma at Ser273
  publication-title: Cells
  contributor:
    fullname: Hyun
– volume: 55
  start-page: 563
  year: 1998
  end-page: 584
  ident: bib46
  article-title: Glimepiride. A review of its use in the management of type 2 diabetes mellitus
  publication-title: Drugs
  contributor:
    fullname: Balfour
– volume: 517
  start-page: 391
  year: 2015
  end-page: 395
  ident: bib21
  article-title: An ERK/Cdk5 axis controls the diabetogenic actions of PPARgamma
  publication-title: Nature
  contributor:
    fullname: Laznik-Bogoslavski
– volume: 125
  year: 2021
  ident: bib18
  article-title: Insulin resistance and insulin sensitizing agents
  publication-title: Metabolism
  contributor:
    fullname: Roden
– volume: 77
  start-page: 289
  year: 2008
  end-page: 312
  ident: bib14
  article-title: Fat and beyond: the diverse biology of PPARgamma
  publication-title: Annu Rev Biochem
  contributor:
    fullname: Spiegelman
– volume: 32
  start-page: 665
  year: 2020
  end-page: 675 e666
  ident: bib24
  article-title: Obesity-linked PPARgamma S273 phosphorylation promotes insulin resistance through growth differentiation factor 3
  publication-title: Cell Metabol
  contributor:
    fullname: Zushin
– volume: 28
  start-page: 2361
  year: 2014
  end-page: 2369
  ident: bib22
  article-title: Thrap3 docks on phosphoserine 273 of PPARgamma and controls diabetic gene programming
  publication-title: Genes Dev
  contributor:
    fullname: Jang
– volume: 280
  start-page: 23653
  year: 2005
  end-page: 23659
  ident: bib8
  article-title: Sulfonylurea agents exhibit peroxisome proliferator-activated receptor gamma agonistic activity
  publication-title: J Biol Chem
  contributor:
    fullname: Shimomura
– volume: 15
  start-page: 357
  year: 2005
  end-page: 362
  ident: bib26
  article-title: Benzoyl 2-methyl indoles as selective PPARgamma modulators
  publication-title: Bioorg Med Chem Lett
  contributor:
    fullname: Doebber
– volume: 2018
  year: 2018
  ident: bib35
  article-title: Glimepiride administered in chow reversibly impairs glucose tolerance in mice
  publication-title: J Diabetes Res
  contributor:
    fullname: Nelson
– volume: 15
  start-page: 395
  year: 2012
  end-page: 404
  ident: bib43
  article-title: PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein
  publication-title: Cell Metabol
  contributor:
    fullname: Kajimura
– volume: 150
  start-page: 620
  year: 2012
  end-page: 632
  ident: bib49
  article-title: Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma
  publication-title: Cell
  contributor:
    fullname: Zhang
– volume: 28
  start-page: 2361
  issue: 21
  year: 2014
  ident: 10.1016/j.molmet.2024.101956_bib22
  article-title: Thrap3 docks on phosphoserine 273 of PPARgamma and controls diabetic gene programming
  publication-title: Genes Dev
  doi: 10.1101/gad.249367.114
  contributor:
    fullname: Choi
– volume: 270
  start-page: 12953
  issue: 22
  year: 1995
  ident: 10.1016/j.molmet.2024.101956_bib17
  article-title: An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma)
  publication-title: J Biol Chem
  doi: 10.1074/jbc.270.22.12953
  contributor:
    fullname: Lehmann
– volume: 183
  year: 2022
  ident: 10.1016/j.molmet.2024.101956_bib1
  article-title: IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045
  publication-title: Diabetes Res Clin Pract
  doi: 10.1016/j.diabres.2021.109119
  contributor:
    fullname: Sun
– volume: 53
  start-page: 87
  issue: 1–2
  year: 2006
  ident: 10.1016/j.molmet.2024.101956_bib6
  article-title: Efficacy of glimepiride on insulin resistance, adipocytokines, and atherosclerosis
  publication-title: J Med Invest
  contributor:
    fullname: Koshiba
– volume: 28
  start-page: 469
  issue: 9
  year: 1996
  ident: 10.1016/j.molmet.2024.101956_bib11
  article-title: Characterization of the molecular mode of action of the sulfonylurea, glimepiride, at adipocytes
  publication-title: Horm Metab Res
  doi: 10.1055/s-2007-979839
  contributor:
    fullname: Muller
– volume: 63
  start-page: 56
  issue: 1
  year: 2009
  ident: 10.1016/j.molmet.2024.101956_bib15
  article-title: A short series of antidiabetic sulfonylureas exhibit multiple ligand PPARgamma-binding patterns
  publication-title: Biomed Pharmacother
  doi: 10.1016/j.biopha.2007.12.007
  contributor:
    fullname: Arrault
– volume: 26
  start-page: 63
  issue: 1
  year: 2004
  ident: 10.1016/j.molmet.2024.101956_bib5
  article-title: Effects of glimepiride on insulin secretion and sensitivity in patients with recently diagnosed type 2 diabetes mellitus
  publication-title: Clin Therapeut
  doi: 10.1016/S0149-2918(04)90006-9
  contributor:
    fullname: Kabadi
– volume: 2018
  year: 2018
  ident: 10.1016/j.molmet.2024.101956_bib35
  article-title: Glimepiride administered in chow reversibly impairs glucose tolerance in mice
  publication-title: J Diabetes Res
  contributor:
    fullname: Niedowicz
– volume: 15
  start-page: 357
  issue: 2
  year: 2005
  ident: 10.1016/j.molmet.2024.101956_bib26
  article-title: Benzoyl 2-methyl indoles as selective PPARgamma modulators
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2004.10.068
  contributor:
    fullname: Acton
– volume: 32
  start-page: 665
  issue: 4
  year: 2020
  ident: 10.1016/j.molmet.2024.101956_bib24
  article-title: Obesity-linked PPARgamma S273 phosphorylation promotes insulin resistance through growth differentiation factor 3
  publication-title: Cell Metabol
  doi: 10.1016/j.cmet.2020.08.016
  contributor:
    fullname: Hall
– volume: 17
  year: 2023
  ident: 10.1016/j.molmet.2024.101956_bib38
  article-title: AM-879, a PPARy non-agonist and Ser273 phosphorylation blocker, promotes insulin sensitivity without adverse effects in mice
  publication-title: Metabol Open
  doi: 10.1016/j.metop.2022.100221
  contributor:
    fullname: Terra
– volume: 83
  start-page: 803
  issue: 5
  year: 1995
  ident: 10.1016/j.molmet.2024.101956_bib16
  article-title: 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90193-0
  contributor:
    fullname: Forman
– volume: 12
  year: 2022
  ident: 10.1016/j.molmet.2024.101956_bib3
  article-title: Trends in antidiabetic drug discovery: FDA approved drugs, new drugs in clinical trials and global sales
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2021.807548
  contributor:
    fullname: Dahlén
– volume: 15
  start-page: 395
  issue: 3
  year: 2012
  ident: 10.1016/j.molmet.2024.101956_bib43
  article-title: PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein
  publication-title: Cell Metabol
  doi: 10.1016/j.cmet.2012.01.019
  contributor:
    fullname: Ohno
– volume: 150
  start-page: 620
  issue: 3
  year: 2012
  ident: 10.1016/j.molmet.2024.101956_bib49
  article-title: Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma
  publication-title: Cell
  doi: 10.1016/j.cell.2012.06.027
  contributor:
    fullname: Qiang
– volume: 289
  start-page: 26618
  issue: 38
  year: 2014
  ident: 10.1016/j.molmet.2024.101956_bib27
  article-title: A novel non-agonist peroxisome proliferator-activated receptor gamma (PPARgamma) ligand UHC1 blocks PPARgamma phosphorylation by cyclin-dependent kinase 5 (CDK5) and improves insulin sensitivity
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M114.566794
  contributor:
    fullname: Choi
– volume: 328
  start-page: 484
  issue: 2
  year: 2005
  ident: 10.1016/j.molmet.2024.101956_bib9
  article-title: Glimepiride enhances intrinsic peroxisome proliferator-activated receptor-gamma activity in 3T3-L1 adipocytes
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2004.12.190
  contributor:
    fullname: Inukai
– volume: 297
  issue: 3
  year: 2021
  ident: 10.1016/j.molmet.2024.101956_bib45
  article-title: The therapeutic potential of inhibiting PPARgamma phosphorylation to treat type 2 diabetes
  publication-title: J Biol Chem
  doi: 10.1016/j.jbc.2021.101030
  contributor:
    fullname: Frkic
– volume: 13
  start-page: 791
  issue: 9
  year: 2011
  ident: 10.1016/j.molmet.2024.101956_bib10
  article-title: Glitazone-like action of glimepiride and glibenclamide in primary human adipocytes
  publication-title: Diabetes Obes Metabol
  doi: 10.1111/j.1463-1326.2011.01409.x
  contributor:
    fullname: Mayer
– volume: 21
  start-page: 2553
  issue: 11
  year: 2019
  ident: 10.1016/j.molmet.2024.101956_bib40
  article-title: A novel specific peroxisome proliferator-activated receptor gamma (PPARgamma) modulator YR4-42 ameliorates hyperglycaemia and dyslipidaemia and hepatic steatosis in diet-induced obese mice
  publication-title: Diabetes Obes Metabol
  doi: 10.1111/dom.13843
  contributor:
    fullname: Huan
– volume: 11
  issue: 5
  year: 2016
  ident: 10.1016/j.molmet.2024.101956_bib39
  article-title: GQ-16, a TZD-derived partial PPARgamma agonist, induces the expression of thermogenesis-related genes in Brown fat and visceral white fat and decreases visceral adiposity in obese and hyperglycemic mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0154310
  contributor:
    fullname: Coelho
– volume: 28
  start-page: 464
  issue: 9
  year: 1996
  ident: 10.1016/j.molmet.2024.101956_bib4
  article-title: Characterization of the molecular mode of action of the sulfonylurea, glimepiride, at beta-cells
  publication-title: Horm Metab Res
  doi: 10.1055/s-2007-979838
  contributor:
    fullname: Kramer
– volume: 35
  start-page: 340
  issue: 4
  year: 2011
  ident: 10.1016/j.molmet.2024.101956_bib13
  article-title: Effects of sulfonylureas on peroxisome proliferator-activated receptor gamma activity and on glucose uptake by thiazolidinediones
  publication-title: Diabetes Metab J
  doi: 10.4093/dmj.2011.35.4.340
  contributor:
    fullname: Lee
– volume: 46
  start-page: S140
  issue: Supplement_1
  year: 2022
  ident: 10.1016/j.molmet.2024.101956_bib2
  article-title: 9. Pharmacologic approaches to glycemic treatment: standards of care in diabetes—2023
  publication-title: Diabetes Care
  doi: 10.2337/dc23-S009
  contributor:
    fullname: ElSayed
– volume: 466
  start-page: 451
  issue: 7305
  year: 2010
  ident: 10.1016/j.molmet.2024.101956_bib19
  article-title: Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5
  publication-title: Nature
  doi: 10.1038/nature09291
  contributor:
    fullname: Choi
– volume: 8
  start-page: 1224
  issue: 10
  year: 1994
  ident: 10.1016/j.molmet.2024.101956_bib33
  article-title: mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer
  publication-title: Genes Dev
  doi: 10.1101/gad.8.10.1224
  contributor:
    fullname: Tontonoz
– volume: 125
  year: 2021
  ident: 10.1016/j.molmet.2024.101956_bib18
  article-title: Insulin resistance and insulin sensitizing agents
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2021.154892
  contributor:
    fullname: Mastrototaro
– volume: 27
  start-page: 1621
  issue: 4
  year: 2013
  ident: 10.1016/j.molmet.2024.101956_bib29
  article-title: Increased cGMP promotes healthy expansion and browning of white adipose tissue
  publication-title: Faseb J
  doi: 10.1096/fj.12-221580
  contributor:
    fullname: Mitschke
– volume: 71
  start-page: 398
  issue: 2
  year: 2007
  ident: 10.1016/j.molmet.2024.101956_bib12
  article-title: Sulfonylureas and glinides exhibit peroxisome proliferator-activated receptor gamma activity: a combined virtual screening and biological assay approach
  publication-title: Mol Pharmacol
  doi: 10.1124/mol.106.024596
  contributor:
    fullname: Scarsi
– volume: 73
  start-page: 169
  issue: 2
  year: 2024
  ident: 10.1016/j.molmet.2024.101956_bib34
  article-title: Adipose signals regulating distal organ health and disease
  publication-title: Diabetes
  doi: 10.2337/dbi23-0005
  contributor:
    fullname: Gilani
– volume: 9
  issue: 2
  year: 2020
  ident: 10.1016/j.molmet.2024.101956_bib25
  article-title: PPM1A controls diabetic gene programming through directly dephosphorylating PPARgamma at Ser273
  publication-title: Cells
  doi: 10.3390/cells9020343
  contributor:
    fullname: Khim
– volume: 54
  year: 2021
  ident: 10.1016/j.molmet.2024.101956_bib42
  article-title: A novel peroxisome proliferator-activated receptor gamma ligand improves insulin sensitivity and promotes browning of white adipose tissue in obese mice
  publication-title: Mol Metabol
  doi: 10.1016/j.molmet.2021.101363
  contributor:
    fullname: Wu
– volume: 10
  start-page: 596
  issue: 7
  year: 2008
  ident: 10.1016/j.molmet.2024.101956_bib7
  article-title: Glimepiride as insulin sensitizer: increased liver and muscle responses to insulin
  publication-title: Diabetes Obes Metabol
  doi: 10.1111/j.1463-1326.2008.00870.x
  contributor:
    fullname: Mori
– volume: 128
  start-page: 2600
  issue: 6
  year: 2018
  ident: 10.1016/j.molmet.2024.101956_bib50
  article-title: PPARgamma deacetylation dissociates thiazolidinedione's metabolic benefits from its adverse effects
  publication-title: J Clin Invest
  doi: 10.1172/JCI98709
  contributor:
    fullname: Kraakman
– volume: 11
  year: 2020
  ident: 10.1016/j.molmet.2024.101956_bib23
  article-title: PPARgamma S273 phosphorylation modifies the dynamics of coregulator proteins recruitment
  publication-title: Front Endocrinol
  doi: 10.3389/fendo.2020.561256
  contributor:
    fullname: Dias
– volume: 29
  start-page: 673
  issue: 6
  year: 1990
  ident: 10.1016/j.molmet.2024.101956_bib47
  article-title: Pharmacokinetic and pharmacodynamic studies of glibenclamide in non-insulin dependent diabetes mellitus
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/j.1365-2125.1990.tb03688.x
  contributor:
    fullname: Coppack
– volume: 77
  start-page: 289
  year: 2008
  ident: 10.1016/j.molmet.2024.101956_bib14
  article-title: Fat and beyond: the diverse biology of PPARgamma
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.77.061307.091829
  contributor:
    fullname: Tontonoz
– volume: 517
  start-page: 391
  issue: 7534
  year: 2015
  ident: 10.1016/j.molmet.2024.101956_bib21
  article-title: An ERK/Cdk5 axis controls the diabetogenic actions of PPARgamma
  publication-title: Nature
  doi: 10.1038/nature13887
  contributor:
    fullname: Banks
– volume: 4
  start-page: 1769
  year: 2013
  ident: 10.1016/j.molmet.2024.101956_bib31
  article-title: miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit
  publication-title: Nat Commun
  doi: 10.1038/ncomms2742
  contributor:
    fullname: Chen
– volume: 23
  issue: 9
  year: 2020
  ident: 10.1016/j.molmet.2024.101956_bib37
  article-title: Glyburide regulates UCP1 expression in adipocytes independent of K(ATP) channel blockade
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101446
  contributor:
    fullname: Qiu
– volume: 16
  start-page: 5659
  issue: 21
  year: 2006
  ident: 10.1016/j.molmet.2024.101956_bib44
  article-title: Design and synthesis of novel N-sulfonyl-2-indole carboxamides as potent PPAR-gamma binding agents with potential application to the treatment of osteoporosis
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2006.08.003
  contributor:
    fullname: Hopkins
– volume: 95
  start-page: 4333
  issue: 8
  year: 1998
  ident: 10.1016/j.molmet.2024.101956_bib32
  article-title: ADD1/SREBP1 activates PPARgamma through the production of endogenous ligand
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.95.8.4333
  contributor:
    fullname: Kim
– volume: 477
  start-page: 477
  issue: 7365
  year: 2011
  ident: 10.1016/j.molmet.2024.101956_bib20
  article-title: Antidiabetic actions of a non-agonist PPARgamma ligand blocking Cdk5-mediated phosphorylation
  publication-title: Nature
  doi: 10.1038/nature10383
  contributor:
    fullname: Choi
– volume: 609
  start-page: 361
  issue: 7926
  year: 2022
  ident: 10.1016/j.molmet.2024.101956_bib28
  article-title: Apoptotic brown adipocytes enhance energy expenditure via extracellular inosine
  publication-title: Nature
  doi: 10.1038/s41586-022-05041-0
  contributor:
    fullname: Niemann
– volume: 55
  start-page: 563
  issue: 4
  year: 1998
  ident: 10.1016/j.molmet.2024.101956_bib46
  article-title: Glimepiride. A review of its use in the management of type 2 diabetes mellitus
  publication-title: Drugs
  doi: 10.2165/00003495-199855040-00007
  contributor:
    fullname: Langtry
– volume: 5
  issue: 10
  year: 2008
  ident: 10.1016/j.molmet.2024.101956_bib36
  article-title: Chronic antidiabetic sulfonylureas in vivo: reversible effects on mouse pancreatic beta-cells
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.0050206
  contributor:
    fullname: Remedi
– volume: 299
  issue: 4
  year: 2023
  ident: 10.1016/j.molmet.2024.101956_bib41
  article-title: Selective PPARgamma modulator diosmin improves insulin sensitivity and promotes browning of white fat
  publication-title: J Biol Chem
  doi: 10.1016/j.jbc.2023.103059
  contributor:
    fullname: Yu
– volume: 176
  start-page: 478
  issue: 3
  year: 2019
  ident: 10.1016/j.molmet.2024.101956_bib48
  article-title: Hypoglycaemic effects of glimepiride in sulfonylurea receptor 1 deficient rat
  publication-title: Br J Pharmacol
  doi: 10.1111/bph.14553
  contributor:
    fullname: Zhou
– volume: 10
  start-page: 1577
  issue: 5
  year: 2019
  ident: 10.1016/j.molmet.2024.101956_bib51
  article-title: Glucocrinology of modern sulfonylureas: clinical evidence and practice-based opinion from an international expert group
  publication-title: Diabetes Ther
  doi: 10.1007/s13300-019-0651-1
  contributor:
    fullname: Kalra
– volume: 280
  start-page: 23653
  issue: 25
  year: 2005
  ident: 10.1016/j.molmet.2024.101956_bib8
  article-title: Sulfonylurea agents exhibit peroxisome proliferator-activated receptor gamma agonistic activity
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M412113200
  contributor:
    fullname: Fukuen
– volume: 2
  start-page: ra78
  issue: 99
  year: 2009
  ident: 10.1016/j.molmet.2024.101956_bib30
  article-title: Protein kinase G controls brown fat cell differentiation and mitochondrial biogenesis
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2000511
  contributor:
    fullname: Haas
SSID ssj0000866651
Score 2.3759768
Snippet Sulfonylureas (SUs) are still among the mostly prescribed antidiabetic drugs with an established mode of action: release of insulin from pancreatic β-cells. In...
• Sulfonylureas (SUs) inhibit PPARγ serine 273 phosphorylation in primary human adipocytes and in adipose tissue of obese mice. • SUs exhibit a positive...
Objective: Sulfonylureas (SUs) are still among the mostly prescribed antidiabetic drugs with an established mode of action: release of insulin from pancreatic...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 101956
SubjectTerms Brown adipose tissue
Original
PPARγ
Sulfonylureas
White adipose tissue
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBYhUMilNE3abNMWBXI1tawf28dt6RIKCUuShdyEJY1Yl9a7ZHcP-1x9jz5TR5a9eJtDLgH7IhlZmpE0n-xvZgi5RKtRZJznCfNgE1EKSExgEQrHueHSpF4Ff-frG3U1Ez8e5MMg1VfghMXwwFFwX4Bb5W2VO5PjhquckZlHjJwxlVnmbXTdY3JwmGr34AJhuWS9r1xL6PodOP6BPpmJUFSGnNUDW9SG7N8zSU8h5__MyYEpmrwhrzsMScex78fkAJq35FXMKrk9IfO7zS-_I5zTkFRpTVGAdfzOWlsanRkoXpWrlwu7RbxJzZbWzbw2dazzdDod3_79Q1etgyBFAEKX88UK78dtJNCdktnk-_23q6RLqJBYXgqVeEiNtdLK0oXA8r5ikCOks4WTaVYqI22ZA4PUMmZsKfCoIYA56aDIICug4u_IYbNo4IxQw1yFEnYFODzAWW5k5ZVxLAePWwJXI5L0otXLGDdD94SynzqqQgdV6KiKEfka5L97NkS9bgtwLuhuLujn5sKI5L32dAcgIjDApupnXn_RK1vj-go_TaoGFpuVxv1QCM6FwtbfR-XvOsmLnEtepiNS7E2LvVHs1zT1vI3hHSxViN724SXGfU6Owlgii_gjOVw_buATYqW1-dwui3_ZLBWk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhEOiltOlr0wcq9GrWsh62j0loCIWW0DSwN2G9uiqtvezjsL-r_6O_qTOWvcTtoVCwD5ZkWZ6RZ0byNzOEvAOtURWclxkL3maiFj4ziCIUjnPDpcmDQn_nj5_U9Z34sJCLI3I5-sIgrHKQ_Umm99J6KJkP1JyvYpzfFiB1qxI0nMj7uOwghzG2JzrxLS4O-yxgsivVZ2HE9hneMHrQ9TCvH4j8R1BlIbCoxkzW9zRUH8h_oqj-NkT_xFPeU1BXj8jDwbKk52nwj8mRb0_JSco1uX9Clre77-EAQ6eYamlLgawx7b5GS5OLA4WjcXHV2T1YodTsaWyX0cRUF-jNzfnnXz_ppncbpGCW0NWy28C53idY3VNyd_X-y-V1NqRZyCyvhcqCz4210sraYbj50DBfgqFnKyfzolZG2rr0zOeWMWNrAQsQ4ZmTzleFLyrf8GfkuO1a_4JQw1wD1HaVd7Css9zIJijjWOkDCAquZiQbSatXKZqGHmFm33RihUZW6MSKGblA-h_aYizsvqBbf9XDZNCeWxVsUzpTgkpWzsgiwCqqYKqwLNh6RsqRe3oytaCr-I_Hvx2ZreGrw18pTeu73UaDlBSCc6Gg9-eJ-YdB8qrkktf5jFSTaTF5i2lNG5d9ZG_UXxjT7ey_h_ySPMCrBCh-RY63651_DWbT1rzpv4vfnMMYNw
  priority: 102
  providerName: Elsevier
– databaseName: Scholars Portal Journals: Open Access(OpenAccess)
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bi9QwFD6sK8q-iHfHGxF8rUyubR9EVnFZhJVFHdi30NycytqOcwH7u_wf_iZPmnbcURehfUnaND3nJOdL--UcgOfoNQrGeZ7R4G0mSuEzE1mEwnFuuDTToOJ-55P36ngm3p3Jsz0Yc7YOAlz9c2kX80nNlucvvn_rXuGAf_mbq_U10vcjM5KJWISY_wpcZYKLaPMnA-Dv5-YC4bqk4x66S24-gOu8yLnkcaa-4K76qP47XutvVPonufKCtzq6CTcGmEkOk13cgj3f3IZrKfFkdwfmHzfnYctJJzHv0pqgjOv0Kba2JO13IHhUrl60tkNISkxH6mZemzrVBXJ6evjh5w-y6vcQEsQoZDFvV3guu8Sxuwuzo7ef3hxnQ86FzPJSqCz4qbFWWlm6GHs-VNTniPps4eSUlcpIW-ae-qml1NhS4GpEeOqk8wXzrPAVvwf7Tdv4B0AMdRUK2xXe4RrPciOroIyjuQ84a3A1gWwUrV6k0Bp65Jx90UkrOmpFJ61M4HWU__baGBi7L2iXn_UwzrTnVgVb5c7k6J-VM5IFXFIxqpilwZYTyEft6QFjJOyATdX_efyzUdkah2D8r1I1vt2sNE6ZQnA0Nmz9flL-tpOjHU2g2DGLnbfYrWnqeR_mOzqzGODt4aWNPoKD2MHEHn4M--vlxj9BjLQ2T3uz_wWgShFt
  priority: 102
  providerName: Scholars Portal
Title Sulfonylureas exert antidiabetic action on adipocytes by inhibition of PPARγ serine 273 phosphorylation
URI https://dx.doi.org/10.1016/j.molmet.2024.101956
https://www.ncbi.nlm.nih.gov/pubmed/38735390
https://www.proquest.com/docview/3054433469/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC11112612
https://doaj.org/article/e3c6fca7db73416db52f5762162c1fc9
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZtx2AvY_dll6DBXt1Y1sX2YxtWukG6sK0Q9iKsW-PR2CGXh_yu_o_-ph1JcUi2h8HA1oNky5KOpPNJ_s4RQh9BaxQZpXlCnNUJK5lNlGcRMkOpolylTnh759GVuLxmXyZ8coREZwsTSPta1afN7ey0qaeBWzmf6UHHExuMR0M_zL3rq8ExOs4p3Vujh_m3AEjOSWcnF8hcM8_v99TJjPmo0p9XvaeHgrv-A3X0N9z8kzW5p4YunqDHW_yIz2I5n6Ij2zxDD-OJkpvnaPp9fet2ZHPsD1RaYWi8Ou6x1hpHQwYMV2Xqeas3gDWx2uC6mdaqjmkOj8dn3-7v8DIYB2IAH3g-bZdwLzaRPPcCXV98-jG8TLaHKSSalkwkzqZKa655abxTeVcRmwOc04XhaVYKxXWZW2JTTYjSJYNlBrPEcGOLzGaFrehLdNK0jX2NsCKmghY2hTWweNNU8coJZUhuHUwHVPRQ0jWtnEefGbIjk_2SURTSi0JGUfTQuW__3bPe43WIaBc3cit3aakWTle5UTkoXmEUzxyslTIiMk2cLnso76Qnt-AhggLIqv7H5z90wpYwtvwPk6qx7XopYS5kjFImIPdXUfi7QtIip5yWaQ8VB93ioBaHKdCdg__urvu--f9X36JHvgaRN_wOnawWa_se0NFK9cOuAoSfJ-cQjljRRw-uhpOvP_thmPwG4XYYtw
link.rule.ids 230,315,733,786,790,870,891,2115,3525,24346,27955,27956,45907,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEaIXxLvL00hco43jR5JjW1Et0FYVbaW9WfGLNaLJah-H_V39H_1NHcfJqoEDElJysWPHmbFnxs43Mwh9Bq1RZJTmCXFWJ6xkNlEBRcgMpYpylToR_J1Pz8Tkin2b8ukOOup9YQKsspP9Uaa30rorGXfUHM-9H19kIHWLHDQcS9u47A_QQ8Zhrxe8-KaH24MWsNmFaNMwhgZJaNG70LU4r-sA_Q-oyoyFojKksr6notpI_gNN9bcl-ieg8p6GOn6KnnSmJT6Io3-Gdmz9HD2KySY3L9DsYv3bbXHoOORaWmGgq4_Hr17j6OOA4aqMnzd6A2YoVhvs65lXPtY5fH5-8OP2Bi9bv0EMdgmez5ol3ItNxNW9RFfHXy6PJkmXZyHRtGQicTZVWnPNSxPizbuK2BwsPV0YnmalUFyXuSU21YQoXTLYgTBLDDe2yGxW2Iq-Qrt1U9t9hBUxFVDbFNbAvk5TxSsnlCG5dSApqBihpCetnMdwGrLHmf2SkRUysEJGVozQYaD_9tkQDLstaBY_ZTcbpKVaOF3lRuWgk4VRPHOwjcqIyDRxuhyhvOeeHMwt6Mr_4_WfemZLWHbhX0pV22a9lCAmGaOUCej9dWT-dpC0yCmnZTpCxWBaDL5iWFP7WRvaOyiwENTtzX8P-SN6PLk8PZEnX8--v0V7oSaii9-h3dVibd-DDbVSH9o1cge-hBtc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLagCMSFfRlWI3HNTBwvSY6lMCpLqxFQqRIHK96YtJ0kmuUw_C3-B7-J5zgZzZQDUqXkYjtOnPfs9zn53nsIvQWrkSWUphFxVkcsZzZSnkXIDKWKchU74f2dj47F4Qn7dMpPO1bloqNVVlqVw-piNqzKacutbGZ61PPERpOjAz_NfeirUWPc6Dq6AZM2Sbd26u0qnAEw56T3lmspXTPP8vcEyoT5otxnrd6yRm3Q_h2j9C_ovMyd3DJG47voRz-MwEE5H66Waqh_XYrweLVx3kN3OoyK90Ob--iarR6gmyFr5fohmn5bXbgNoR37pE1LDAIqw3fcUuPgLIHhKEzZ1HoNeBarNS6raanKUOfwZLL_9c9vvGgdEDEAHNxM6wWc83Ug6D1CJ-MP3w8Ooy5hQ6RpzkTkbKy05prnxgeudwWxKUBGnRkeJ7lQXOepJTbWhCidM9jKMEsMNzZLbJLZgj5Ge1Vd2acIK2IKkJ_JrIENoqaKF04oQ1LrYMmhYoCiXnCyCXE5ZE9YO5NB0NILWgZBD9A7L91NWx9Vuy2o5z9l986lpVo4XaRGpWDchVE8cbAfS4hINHE6H6C01w3ZAZQAPKCr8j-3f9OrkoT563_KFJWtVwsJ6y1jlDIBvT8JqrV5SJqllNM8HqBsR-l2RrFbA6rUxgjvVefZ1S99jW5N3o_ll4_Hn5-j234wgab8Au0t5yv7EsDYUr1qZ91fTCo4xQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sulfonylureas+exert+antidiabetic+action+on+adipocytes+by+inhibition+of+PPAR%CE%B3+serine+273+phosphorylation&rft.jtitle=Molecular+metabolism+%28Germany%29&rft.au=Haas%2C+Bodo&rft.au=Hass%2C+Moritz+David+Sebastian&rft.au=Voltz%2C+Alexander&rft.au=Vogel%2C+Matthias&rft.date=2024-07-01&rft.eissn=2212-8778&rft.volume=85&rft.spage=101956&rft_id=info:doi/10.1016%2Fj.molmet.2024.101956&rft_id=info%3Apmid%2F38735390&rft.externalDocID=38735390
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-8778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-8778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-8778&client=summon