Non‐Flammable Fluorinated Phosphorus(III)‐Based Electrolytes for Advanced Lithium‐Ion Battery Performance

In the quest for ever higher energy and power densities of lithium‐based batteries, numerous functional materials are being utilized, however in many cases their highly reactive nature is likely to increase the risk of danger in case of battery failures. This especially affects the aprotic non‐aqueo...

Full description

Saved in:
Bibliographic Details
Published inChemElectroChem Vol. 7; no. 6; pp. 1499 - 1508
Main Authors Aspern, Natascha, Leissing, Marco, Wölke, Christian, Diddens, Diddo, Kobayashi, Takeshi, Börner, Markus, Stubbmann‐Kazakova, Olesya, Kozel, Volodymyr, Röschenthaler, Gerd‐Volker, Smiatek, Jens, Nowak, Sascha, Winter, Martin, Cekic‐Laskovic, Isidora
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 16.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the quest for ever higher energy and power densities of lithium‐based batteries, numerous functional materials are being utilized, however in many cases their highly reactive nature is likely to increase the risk of danger in case of battery failures. This especially affects the aprotic non‐aqueous organic carbonate‐based electrolyte, still considered as the state‐of‐the‐art (SOTA) and its volatile and highly flammable components. Efforts to identify different forms of flame‐retardants or nonflammable electrolyte solvents/co‐solvents to reduce the risk of fire or explosion are inevitably followed by a trade‐off between the improved safety and deteriorated overall cycling performance of a battery. Here, we report on a smartly tailored, multifunctional nonflammable electrolyte formulation comprising 15.0 wt.% 2‐(2,2,3,3,3‐pentafluoro‐propoxy)‐4‐(trifluormethyl)‐1,3,2‐dioxaphospholane (PFPOEPi‐1CF3), significantly advancing the cycling performance of the NMC111||graphite cells by formation of an effective interphase on/at both anode and cathode and correlate its performance to the 2‐(2,2,3,3,3‐pentafluoropropoxy)‐1,3,2‐dioxaphospholane (PFPOEPi) containing electrolyte counterpart by establishing a strong structure‐reactivity‐performance‐relationship. A safer electrolyte: The state‐of‐the‐art nonaqueous aprotic electrolytes still cope with the well‐known challenges, among which high flammability and electrolyte decomposition stand for the most critical ones. Here, we report on fluorinated phosphorus‐based multifunctional electrolyte co‐solvent(s), which results in a nonflammable, organic carbonate‐based electrolyte formulation, and at the same time outperforms the state‐of‐the‐art counterpart in respect to overall electrochemical performance.
AbstractList Abstract In the quest for ever higher energy and power densities of lithium‐based batteries, numerous functional materials are being utilized, however in many cases their highly reactive nature is likely to increase the risk of danger in case of battery failures. This especially affects the aprotic non‐aqueous organic carbonate‐based electrolyte, still considered as the state‐of‐the‐art (SOTA) and its volatile and highly flammable components. Efforts to identify different forms of flame‐retardants or nonflammable electrolyte solvents/co‐solvents to reduce the risk of fire or explosion are inevitably followed by a trade‐off between the improved safety and deteriorated overall cycling performance of a battery. Here, we report on a smartly tailored, multifunctional nonflammable electrolyte formulation comprising 15.0 wt.% 2‐(2,2,3,3,3‐pentafluoro‐propoxy)‐4‐(trifluormethyl)‐1,3,2‐dioxaphospholane (PFPOEPi‐1CF 3 ), significantly advancing the cycling performance of the NMC111||graphite cells by formation of an effective interphase on/at both anode and cathode and correlate its performance to the 2‐(2,2,3,3,3‐pentafluoropropoxy)‐1,3,2‐dioxaphospholane (PFPOEPi) containing electrolyte counterpart by establishing a strong structure‐reactivity‐performance‐relationship.
In the quest for ever higher energy and power densities of lithium‐based batteries, numerous functional materials are being utilized, however in many cases their highly reactive nature is likely to increase the risk of danger in case of battery failures. This especially affects the aprotic non‐aqueous organic carbonate‐based electrolyte, still considered as the state‐of‐the‐art (SOTA) and its volatile and highly flammable components. Efforts to identify different forms of flame‐retardants or nonflammable electrolyte solvents/co‐solvents to reduce the risk of fire or explosion are inevitably followed by a trade‐off between the improved safety and deteriorated overall cycling performance of a battery. Here, we report on a smartly tailored, multifunctional nonflammable electrolyte formulation comprising 15.0 wt.% 2‐(2,2,3,3,3‐pentafluoro‐propoxy)‐4‐(trifluormethyl)‐1,3,2‐dioxaphospholane (PFPOEPi‐1CF3), significantly advancing the cycling performance of the NMC111||graphite cells by formation of an effective interphase on/at both anode and cathode and correlate its performance to the 2‐(2,2,3,3,3‐pentafluoropropoxy)‐1,3,2‐dioxaphospholane (PFPOEPi) containing electrolyte counterpart by establishing a strong structure‐reactivity‐performance‐relationship. A safer electrolyte: The state‐of‐the‐art nonaqueous aprotic electrolytes still cope with the well‐known challenges, among which high flammability and electrolyte decomposition stand for the most critical ones. Here, we report on fluorinated phosphorus‐based multifunctional electrolyte co‐solvent(s), which results in a nonflammable, organic carbonate‐based electrolyte formulation, and at the same time outperforms the state‐of‐the‐art counterpart in respect to overall electrochemical performance.
In the quest for ever higher energy and power densities of lithium‐based batteries, numerous functional materials are being utilized, however in many cases their highly reactive nature is likely to increase the risk of danger in case of battery failures. This especially affects the aprotic non‐aqueous organic carbonate‐based electrolyte, still considered as the state‐of‐the‐art (SOTA) and its volatile and highly flammable components. Efforts to identify different forms of flame‐retardants or nonflammable electrolyte solvents/co‐solvents to reduce the risk of fire or explosion are inevitably followed by a trade‐off between the improved safety and deteriorated overall cycling performance of a battery. Here, we report on a smartly tailored, multifunctional nonflammable electrolyte formulation comprising 15.0 wt.% 2‐(2,2,3,3,3‐pentafluoro‐propoxy)‐4‐(trifluormethyl)‐1,3,2‐dioxaphospholane (PFPOEPi‐1CF3), significantly advancing the cycling performance of the NMC111||graphite cells by formation of an effective interphase on/at both anode and cathode and correlate its performance to the 2‐(2,2,3,3,3‐pentafluoropropoxy)‐1,3,2‐dioxaphospholane (PFPOEPi) containing electrolyte counterpart by establishing a strong structure‐reactivity‐performance‐relationship.
Author Leissing, Marco
Winter, Martin
Börner, Markus
Kobayashi, Takeshi
Wölke, Christian
Kozel, Volodymyr
Nowak, Sascha
Smiatek, Jens
Röschenthaler, Gerd‐Volker
Diddens, Diddo
Aspern, Natascha
Cekic‐Laskovic, Isidora
Stubbmann‐Kazakova, Olesya
Author_xml – sequence: 1
  givenname: Natascha
  surname: Aspern
  fullname: Aspern, Natascha
  email: n.von.aspern@fz-juelich.de
  organization: Helmholtz-Institute Münster (IEK-12)
– sequence: 2
  givenname: Marco
  surname: Leissing
  fullname: Leissing, Marco
  organization: University of Münster
– sequence: 3
  givenname: Christian
  surname: Wölke
  fullname: Wölke, Christian
  organization: Helmholtz-Institute Münster (IEK-12)
– sequence: 4
  givenname: Diddo
  surname: Diddens
  fullname: Diddens, Diddo
  organization: Helmholtz-Institute Münster (IEK-12)
– sequence: 5
  givenname: Takeshi
  surname: Kobayashi
  fullname: Kobayashi, Takeshi
  organization: University of Stuttgart
– sequence: 6
  givenname: Markus
  surname: Börner
  fullname: Börner, Markus
  organization: University of Münster
– sequence: 7
  givenname: Olesya
  surname: Stubbmann‐Kazakova
  fullname: Stubbmann‐Kazakova, Olesya
  organization: Jacobs University Bremen
– sequence: 8
  givenname: Volodymyr
  surname: Kozel
  fullname: Kozel, Volodymyr
  organization: Jacobs University Bremen
– sequence: 9
  givenname: Gerd‐Volker
  surname: Röschenthaler
  fullname: Röschenthaler, Gerd‐Volker
  organization: Jacobs University Bremen
– sequence: 10
  givenname: Jens
  surname: Smiatek
  fullname: Smiatek, Jens
  organization: University of Stuttgart
– sequence: 11
  givenname: Sascha
  surname: Nowak
  fullname: Nowak, Sascha
  organization: University of Münster
– sequence: 12
  givenname: Martin
  surname: Winter
  fullname: Winter, Martin
  organization: University of Münster
– sequence: 13
  givenname: Isidora
  orcidid: 0000-0003-1116-1574
  surname: Cekic‐Laskovic
  fullname: Cekic‐Laskovic, Isidora
  email: i.cekic-laskovic@fz-juelich.de
  organization: Helmholtz-Institute Münster (IEK-12)
BookMark eNqF0L1OwzAUBWALFYlSujJHYoEhxT9Jmoxt1EKkCDrAHDn2jZrKiYudgLLxCDwjT4KrImBjsmV_517pnKNRq1tA6JLgGcGY3gpQYkYxxRizODpBY0qSyMeURKM_9zM0tXbnDCE4dG6M9INuP98_1oo3DS8VeGvVa1O3vAPpbbba7rfa9PY6y7Ib55bcuveVAtEZrYYOrFdp4y3kK2-F-8nrblv3jZOZbr0l7zowg7cB41RzIBfotOLKwvT7nKDn9eopvffzx7ssXeS-YEkQ-YApZ4QxgbGUFQsYcElDSgiN5qQsGcFinsQ8jIOQlKEMoxCYLAWTwJisyphN0NVx7t7olx5sV-x0b1q3sqAsDoIgjvHcqdlRCaOtNVAVe1M33AwFwcWh1-LQa_HTqwskx8BbrWD4RxfpKk9_s19aVYDv
CitedBy_id crossref_primary_10_1002_ijch_202000102
crossref_primary_10_1021_acsenergylett_3c00504
crossref_primary_10_3390_math11030543
crossref_primary_10_1002_cjoc_202200588
crossref_primary_10_1021_acsenergylett_4c01579
crossref_primary_10_1039_D2CP05272E
crossref_primary_10_1039_D1CS00450F
crossref_primary_10_1016_j_jpowsour_2020_228708
crossref_primary_10_3390_batteries9040193
crossref_primary_10_1002_admi_202102078
crossref_primary_10_1016_j_jallcom_2023_172559
crossref_primary_10_1115_1_4053968
crossref_primary_10_1002_sstr_202300179
crossref_primary_10_1016_j_recm_2022_07_005
Cites_doi 10.1093/bioinformatics/btt055
10.1021/acs.chemrev.8b00422
10.1002/aenm.201803170
10.1016/j.electacta.2012.09.065
10.1149/2.005302jes
10.1021/acsami.9b03359
10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
10.1007/s10800-013-0533-6
10.1021/acsami.7b08953
10.1016/j.electacta.2017.06.125
10.1002/anie.201901381
10.1063/1.464397
10.1021/ar50125a001
10.1016/j.jpowsour.2004.11.042
10.1038/s41560-017-0033-8
10.1007/s10008-017-3610-7
10.1021/jp0362133
10.1149/2.1031605jes
10.1016/j.jpowsour.2016.08.023
10.1021/ja9621760
10.1149/1.1397773
10.1038/s41560-018-0107-2
10.1149/1.1391630
10.1149/2.0121502jes
10.1149/1.1467946
10.1063/1.470117
10.1002/jcc.20291
10.1016/j.jpowsour.2009.11.048
10.1007/s10008-011-1386-8
10.1149/2.0011810jes
10.1021/la400764r
10.1016/S0378-7753(01)00536-5
10.1016/j.jpowsour.2005.05.034
10.1002/jcc.21224
10.1016/j.jfluchem.2017.02.005
10.1149/1.1490356
10.1016/j.progsolidstchem.2014.04.003
10.1021/ct900009a
10.1021/cr030203g
10.1063/1.2770701
10.1021/cr020731c
10.1021/la403276p
10.1016/j.electacta.2015.10.002
10.1016/j.softx.2015.06.001
10.1016/j.electacta.2011.06.095
10.1039/C4RA15899G
10.1063/1.328693
10.1063/1.2408420
10.1149/1.1390959
10.1524/zpch.2009.6086
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1002/celc.202000386
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Journals Open Access
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2196-0216
EndPage 1508
ExternalDocumentID 10_1002_celc_202000386
CELC202000386
Genre article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft (DFG)
– fundername: Ministry of Culture and Science of the State of North-Rhine Westphalia, Germany
  funderid: AZ.433
– fundername: Sonderforschungsbereich 716 (SFB 716)
GroupedDBID 0R~
1OC
24P
33P
8-1
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
DPXWK
DRFUL
DRSTM
EBS
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
TUS
WBKPD
WIN
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c3946-e02a3133c00ddf343ead252112671bb310c798a58451b5d565e3dbc3de33dfb83
IEDL.DBID 24P
ISSN 2196-0216
IngestDate Thu Oct 10 22:42:31 EDT 2024
Fri Aug 23 01:52:29 EDT 2024
Sat Aug 24 01:07:28 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3946-e02a3133c00ddf343ead252112671bb310c798a58451b5d565e3dbc3de33dfb83
ORCID 0000-0003-1116-1574
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202000386
PQID 2384448807
PQPubID 2034587
PageCount 10
ParticipantIDs proquest_journals_2384448807
crossref_primary_10_1002_celc_202000386
wiley_primary_10_1002_celc_202000386_CELC202000386
PublicationCentury 2000
PublicationDate March 16, 2020
PublicationDateYYYYMMDD 2020-03-16
PublicationDate_xml – month: 03
  year: 2020
  text: March 16, 2020
  day: 16
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemElectroChem
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2015; 162
2015; 184
2013; 29
2007; 126
2019; 9
2018; 165
2015; 1–2
2004; 104
2015; 5
2007; 127
2013; 43
1978; 11
2016; 329
2019; 11
2000; 3
2017; 21
2019; 58
2013; 101
2006; 153
1999; 146
2011; 56
2011; 15
2017; 198
2005; 26
2004; 108
2013; 160
2001; 148
2017; 9
2016; 163
2014; 42
2018; 3
2009; 30
1990
2005; 144
2018; 118
2001; 97–98
1993; 98
2019
1997; 18
2002; 149
2009; 223
2010; 195
1995; 103
2009; 5
1981; 52
2017; 246
1996; 118
e_1_2_8_28_2
e_1_2_8_24_2
e_1_2_8_26_1
e_1_2_8_47_2
e_1_2_8_3_2
e_1_2_8_5_2
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_66_2
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_43_2
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_60_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_13_2
e_1_2_8_59_2
e_1_2_8_15_1
e_1_2_8_57_1
e_1_2_8_36_2
Nagaura K. (e_1_2_8_2_2) 1990
e_1_2_8_55_2
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_11_2
e_1_2_8_32_2
e_1_2_8_51_1
e_1_2_8_30_1
Nölle R. (e_1_2_8_49_1) 2019
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_48_2
e_1_2_8_27_1
e_1_2_8_4_2
e_1_2_8_6_2
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_65_2
e_1_2_8_67_1
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_16_2
e_1_2_8_39_1
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_58_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_56_2
e_1_2_8_54_2
e_1_2_8_31_1
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 9
  start-page: 1803170
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 118
  start-page: 11433
  year: 2018
  end-page: 11456
  publication-title: Chem. Rev.
– volume: 223
  start-page: 1395
  year: 2009
  end-page: 1406
  publication-title: Z. Phys. Chem.
– volume: 3
  start-page: 267
  year: 2018
  end-page: 278
  publication-title: Nat. Energy
– volume: 246
  start-page: 1042
  year: 2017
  end-page: 1051
  publication-title: Electrochim. Acta
– volume: 26
  start-page: 1701
  year: 2005
  end-page: 1718
  publication-title: J. Comput. Chem.
– volume: 144
  start-page: 170
  year: 2005
  end-page: 175
  publication-title: J. Power Sources
– volume: 18
  start-page: 1463
  year: 1997
  end-page: 1472
  publication-title: J. Comput. Chem.
– volume: 104
  start-page: 4271
  year: 2004
  end-page: 4302
  publication-title: Chem. Rev.
– volume: 195
  start-page: 2419
  year: 2010
  end-page: 2430
  publication-title: J. Power Sources
– volume: 165
  start-page: 1935
  year: 2018
  end-page: 1942
  publication-title: J. Electrochem. Soc.
– volume: 98
  start-page: 10089
  year: 1993
  end-page: 10092
  publication-title: J. Chem. Phys.
– year: 1990
– volume: 148
  start-page: 1058
  year: 2001
  end-page: 1065
  publication-title: J. Electrochem. Soc.
– volume: 43
  start-page: 481
  year: 2013
  end-page: 496
  publication-title: J. Appl. Electrochem.
– volume: 163
  start-page: 751
  year: 2016
  end-page: 757
  publication-title: J. Electrochem. Soc.
– volume: 5
  start-page: 17566
  year: 2015
  end-page: 17571
  publication-title: RSC Adv.
– year: 2019
  publication-title: Mater. Today
– volume: 118
  start-page: 11225
  year: 1996
  end-page: 11236
  publication-title: J. Am. Chem. Soc.
– volume: 104
  start-page: 4303
  year: 2004
  end-page: 4418
  publication-title: Chem. Rev.
– volume: 29
  start-page: 845
  year: 2013
  end-page: 854
  publication-title: Bioinformatics
– volume: 11
  start-page: 16605
  year: 2019
  end-page: 16618
  publication-title: ACS Appl. Mater. Interfaces
– volume: 97–98
  start-page: 592
  year: 2001
  end-page: 594
  publication-title: J. Power Sources
– volume: 329
  start-page: 31
  year: 2016
  end-page: 40
  publication-title: J. Power Sources
– volume: 162
  start-page: 3084
  year: 2015
  end-page: 3097
  publication-title: J. Electrochem. Soc.
– volume: 52
  start-page: 7182
  year: 1981
  end-page: 7190
  publication-title: J. Appl. Phys.
– volume: 5
  start-page: 1038
  year: 2009
  end-page: 1050
  publication-title: J. Chem. Theory Comput.
– volume: 21
  start-page: 1939
  year: 2017
  end-page: 1964
  publication-title: J. Solid State Electrochem.
– volume: 149
  start-page: 622
  year: 2002
  end-page: 626
  publication-title: J. Electrochem. Soc.
– volume: 101
  start-page: 3
  year: 2013
  end-page: 10
  publication-title: Electrochim. Acta
– volume: 11
  start-page: 177
  year: 1978
  end-page: 183
  publication-title: Acc. Chem. Res.
– volume: 3
  start-page: 22
  year: 2018
  end-page: 29
  publication-title: Nat. Energy
– volume: 42
  start-page: 65
  year: 2014
  end-page: 84
  publication-title: Prog. Solid State Chem.
– volume: 58
  start-page: 2
  year: 2019
  end-page: 25
  publication-title: Angew. Chem. Int. Ed.
– volume: 56
  start-page: 7530
  year: 2011
  end-page: 7535
  publication-title: Electrochim. Acta
– volume: 146
  start-page: 470
  year: 1999
  end-page: 472
  publication-title: J. Electrochem. Soc.
– volume: 15
  start-page: 1623
  year: 2011
  end-page: 1630
  publication-title: J. Solid State Electrochem.
– volume: 1–2
  start-page: 19
  year: 2015
  end-page: 25
  publication-title: SoftwareX
– volume: 3
  start-page: 63
  year: 2000
  end-page: 65
  publication-title: Electrochem. Solid-State Lett.
– volume: 184
  start-page: 410
  year: 2015
  end-page: 416
  publication-title: Electrochim. Acta
– volume: 29
  start-page: 15813
  year: 2013
  end-page: 15821
  publication-title: Langmuir
– volume: 30
  start-page: 2157
  year: 2009
  end-page: 2164
  publication-title: J. Comput. Chem.
– volume: 160
  start-page: 117
  year: 2013
  end-page: 124
  publication-title: J. Electrochem. Soc.
– volume: 198
  start-page: 24
  year: 2017
  end-page: 33
  publication-title: J. Fluorine Chem.
– volume: 108
  start-page: 2038
  year: 2004
  end-page: 2047
  publication-title: J. Phys. Chem. B
– volume: 9
  start-page: 30686
  year: 2017
  end-page: 30695
  publication-title: ACS Appl. Mater. Interfaces
– volume: 126
  start-page: 014101
  year: 2007
  publication-title: J. Chem. Phys.
– volume: 149
  start-page: 1079
  year: 2002
  end-page: 1082
  publication-title: J. Electrochem. Soc.
– volume: 127
  start-page: 124105
  year: 2007
  publication-title: J. Chem. Phys.
– volume: 29
  start-page: 5806
  year: 2013
  end-page: 5816
  publication-title: Langmuir
– volume: 103
  start-page: 8577
  year: 1995
  end-page: 8593
  publication-title: J. Chem. Phys.
– volume: 153
  start-page: 391
  year: 2006
  end-page: 395
  publication-title: J. Power Sources
– ident: e_1_2_8_55_2
  doi: 10.1093/bioinformatics/btt055
– ident: e_1_2_8_21_2
– ident: e_1_2_8_31_1
– ident: e_1_2_8_13_2
  doi: 10.1021/acs.chemrev.8b00422
– ident: e_1_2_8_8_2
  doi: 10.1002/aenm.201803170
– ident: e_1_2_8_22_1
– ident: e_1_2_8_16_2
  doi: 10.1016/j.electacta.2012.09.065
– ident: e_1_2_8_50_1
  doi: 10.1149/2.005302jes
– ident: e_1_2_8_42_2
  doi: 10.1021/acsami.9b03359
– ident: e_1_2_8_67_1
  doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
– ident: e_1_2_8_14_2
  doi: 10.1007/s10800-013-0533-6
– ident: e_1_2_8_41_2
  doi: 10.1021/acsami.7b08953
– ident: e_1_2_8_40_1
– ident: e_1_2_8_38_2
  doi: 10.1016/j.electacta.2017.06.125
– ident: e_1_2_8_45_1
  doi: 10.1002/anie.201901381
– ident: e_1_2_8_65_2
  doi: 10.1063/1.464397
– ident: e_1_2_8_26_1
  doi: 10.1021/ar50125a001
– ident: e_1_2_8_29_2
  doi: 10.1016/j.jpowsour.2004.11.042
– ident: e_1_2_8_11_2
  doi: 10.1038/s41560-017-0033-8
– ident: e_1_2_8_7_2
  doi: 10.1007/s10008-017-3610-7
– ident: e_1_2_8_59_2
  doi: 10.1021/jp0362133
– ident: e_1_2_8_30_1
  doi: 10.1149/2.1031605jes
– volume-title: Progress in Batteries and Solar Cells, Vol. 9
  year: 1990
  ident: e_1_2_8_2_2
  contributor:
    fullname: Nagaura K.
– ident: e_1_2_8_44_2
  doi: 10.1016/j.jpowsour.2016.08.023
– ident: e_1_2_8_58_2
  doi: 10.1021/ja9621760
– ident: e_1_2_8_20_2
– ident: e_1_2_8_25_1
  doi: 10.1149/1.1397773
– ident: e_1_2_8_6_2
  doi: 10.1038/s41560-018-0107-2
– ident: e_1_2_8_19_2
  doi: 10.1149/1.1391630
– ident: e_1_2_8_12_2
  doi: 10.1149/2.0121502jes
– ident: e_1_2_8_24_2
  doi: 10.1149/1.1467946
– ident: e_1_2_8_15_1
– ident: e_1_2_8_66_2
  doi: 10.1063/1.470117
– ident: e_1_2_8_64_1
– ident: e_1_2_8_9_1
– ident: e_1_2_8_53_1
– ident: e_1_2_8_34_1
– ident: e_1_2_8_54_2
  doi: 10.1002/jcc.20291
– ident: e_1_2_8_4_2
  doi: 10.1016/j.jpowsour.2009.11.048
– ident: e_1_2_8_5_2
  doi: 10.1007/s10008-011-1386-8
– ident: e_1_2_8_32_2
  doi: 10.1149/2.0011810jes
– ident: e_1_2_8_48_2
  doi: 10.1021/la400764r
– ident: e_1_2_8_18_2
  doi: 10.1016/S0378-7753(01)00536-5
– ident: e_1_2_8_35_2
  doi: 10.1016/j.jpowsour.2005.05.034
– ident: e_1_2_8_61_1
  doi: 10.1002/jcc.21224
– ident: e_1_2_8_33_2
  doi: 10.1016/j.jfluchem.2017.02.005
– ident: e_1_2_8_28_2
  doi: 10.1149/1.1490356
– ident: e_1_2_8_36_2
  doi: 10.1016/j.progsolidstchem.2014.04.003
– ident: e_1_2_8_60_2
  doi: 10.1021/ct900009a
– ident: e_1_2_8_1_1
– ident: e_1_2_8_10_2
  doi: 10.1021/cr030203g
– ident: e_1_2_8_51_1
  doi: 10.1063/1.2770701
– ident: e_1_2_8_27_1
– ident: e_1_2_8_3_2
  doi: 10.1021/cr020731c
– ident: e_1_2_8_52_1
– ident: e_1_2_8_47_2
  doi: 10.1021/la403276p
– ident: e_1_2_8_43_2
  doi: 10.1016/j.electacta.2015.10.002
– ident: e_1_2_8_46_1
– ident: e_1_2_8_56_2
  doi: 10.1016/j.softx.2015.06.001
– year: 2019
  ident: e_1_2_8_49_1
  publication-title: Mater. Today
  contributor:
    fullname: Nölle R.
– ident: e_1_2_8_17_2
  doi: 10.1016/j.electacta.2011.06.095
– ident: e_1_2_8_39_1
  doi: 10.1039/C4RA15899G
– ident: e_1_2_8_57_1
– ident: e_1_2_8_63_1
  doi: 10.1063/1.328693
– ident: e_1_2_8_62_1
  doi: 10.1063/1.2408420
– ident: e_1_2_8_23_2
  doi: 10.1149/1.1390959
– ident: e_1_2_8_37_2
  doi: 10.1524/zpch.2009.6086
SSID ssj0001105386
Score 2.2947254
Snippet In the quest for ever higher energy and power densities of lithium‐based batteries, numerous functional materials are being utilized, however in many cases...
Abstract In the quest for ever higher energy and power densities of lithium‐based batteries, numerous functional materials are being utilized, however in many...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 1499
SubjectTerms Anode effect
cathode-electrolyte interphase
Cycles
DFT calculations
Electrolytes
Electrolytic cells
Flame retardants
Flammability
Functional materials
Lithium batteries
Lithium-ion batteries
non-flammable non-aqueous aprotic electrolytes
phospholane molecules
Product safety
solid-electrolyte interphase
Solvents
Title Non‐Flammable Fluorinated Phosphorus(III)‐Based Electrolytes for Advanced Lithium‐Ion Battery Performance
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202000386
https://www.proquest.com/docview/2384448807
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PT8IwFMcbhYNejD8jiqQHE_WwuLVd2Y5IIMwg4SCGeFnadQsksBEGB27-Cf6N_iW-buPXycTblnQ9vPb1fdq9fh9C9zLg9UgwahBbwQYFXNsAqo8MQW2TKCegblZF4a3HOwP2OrSHO7f4c32IzYGb9oxsvdYOLmT6vBUNDcKJliAk2c8tfojKwDaOnteE9benLIAPNCv3CJ6ps20tvlZuNMnzfhf7kWmLm7vQmkWd9ik6KXARN_LxPUMHYXyOjprrKm0XKOkl8c_XdxsGdqpvQeH2ZKlz6gAhFe6PknQ2SubL9NHzvCdo9wJBS-FWXvtmsgLOxECtuFFkAuDueDEaL6fQ0ktinItvrnB_e7vgEg3arfdmxyiKKBjaztwITSIobEQD01QqoozC1CEQsy3C65aUQHdB3XUEcIhtSVsB34VUyYCqkFIVSYdeoVKcxOE1wkIoztzIsZmiLKJCcAu2WzKEmG9Jx1UV9LA2oD_LtTL8XBWZ-NrU_sbUFVRd29cvfCb1AR4Y0-tJvYJIZvM_evGbrW5z83bzn49u0bF-1kllFq-i0mK-DO-AMhaylk2kGio3Pgafg1-EX82I
link.rule.ids 315,786,790,11589,27955,27956,46085,46509,50847,50956
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT8JAEMcnCge8GJ8RRd2DiXpobHfbpRyRQKgC4QDGeGm63TaQQEt4HLj5EfyMfhJn-wA5mXhss93D7M7Ob7ez_wG4Ez6vhp7JNGpJ3KCga2tI9aHmMUun0vZZLami0O3x9tB8ebfybEJ1FybVh9gcuCnPSNZr5eDqQPppqxrqBxOlQUiTv1t8H4qWEtUrQLH-NvwYbg9akCBYUvERnVMl3Bo8F2_U6dNuJ7vBaUucv7k1CTytIzjMiJHU0yE-hr0gOoFSIy_UdgpxL46-P79aOLZTdRGKtCYrlVaHFClJfxQvZqN4vlo8OI7ziO2eMW5J0kzL30zWiJoEwZXUs2QA0hkvR-PVFFs6cURS_c016W8vGJzBsNUcNNpaVkdBU6bmWqBTj-Fe1Nd1KUNmMpw9FMO2QXnVEAIBz6_WbA9RxDKEJRHxAiaFz2TAmAyFzc6hEMVRcAHE8yQ3a6FtmZKZIfM8buCOSwQY9g1h12QZ7nMDurNULsNNhZGpq0ztbkxdhkpuXzdzm4WL_GCaakmploEmNv-jF7fR7DQ2T5f_-egWSu1Bt-N2nN7rFRyo9yrHzOAVKCznq-AaoWMpbrJp9QMu39EB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PT8IwFMcbxUS9GH9GFLUHE_WwuLVdGUdEFqZIdpCE27KuWyCBjQA7cPNP8G_0L_F1YwxOJh63dD289vV92r1-H0L3IuD1yGdUI6aEDQq4tgZUH2k-NXUirYA2sioKHz3e6bO3gTnYuMWf60OsD9yUZ2TrtXLwqYyeS9HQIBwrCUKS_dziu2iPccAHpe3M3PKUBfCBZuUewTNVtq3BC-VGnTxvd7EdmUrc3ITWLOrYx-hohYu4mY_vCdoJ41N00CqqtJ2hpJfEP1_fNgzsRN2CwvY4VTl1gJASu8NkPh0ms3T-6DjOE7R7gaAlcTuvfTNeAmdioFbcXGUC4O5oMRylE2jpJDHOxTeX2C1vF5yjvt3-bHW0VREFTdmZa6FOfAob0UDXpYwoozB1CMRsg_C6IQTQXVBvWD5wiGkIUwLfhVSKgMqQUhkJi16gSpzE4SXCvi85a0SWySRlEfV9bsB2S4QQ8w1hNWQVPRQG9Ka5VoaXqyITT5naW5u6imqFfb2Vz8w9gAfG1HpSryKS2fyPXrxWu9taP13956M7tO--2l7X6b1fo0P1WuWXGbyGKotZGt4AcCzEbTanfgEEIs5b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non%E2%80%90Flammable+Fluorinated+Phosphorus%28III%29%E2%80%90Based+Electrolytes+for+Advanced+Lithium%E2%80%90Ion+Battery+Performance&rft.jtitle=ChemElectroChem&rft.au=Natascha+von+Aspern&rft.au=Leissing%2C+Marco&rft.au=W%C3%B6lke%2C+Christian&rft.au=Diddens%2C+Diddo&rft.date=2020-03-16&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-0216&rft.volume=7&rft.issue=6&rft.spage=1499&rft.epage=1508&rft_id=info:doi/10.1002%2Fcelc.202000386&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon