Composition Engineering of All‐Inorganic Perovskite Film for Efficient and Operationally Stable Solar Cells

Cesium‐based inorganic perovskites have recently attracted great research focus due to their excellent optoelectronic properties and thermal stability. However, the operational instability of all‐inorganic perovskites is still a main hindrance for the commercialization. Herein, a facile approach is...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 30; no. 28
Main Authors Tian, Jingjing, Wang, Jing, Xue, Qifan, Niu, Tianqi, Yan, Lei, Zhu, Zonglong, Li, Ning, Brabec, Christoph J., Yip, Hin‐Lap, Cao, Yong
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cesium‐based inorganic perovskites have recently attracted great research focus due to their excellent optoelectronic properties and thermal stability. However, the operational instability of all‐inorganic perovskites is still a main hindrance for the commercialization. Herein, a facile approach is reported to simultaneously enhance both the efficiency and long‐term stability for all‐inorganic CsPbI2.5Br0.5 perovskite solar cells via inducing excess lead iodide (PbI2) into the precursors. Comprehensive film and device characterizations are conducted to study the influences of excess PbI2 on the crystal quality, passivation effect, charge dynamics, and photovoltaic performance. It is found that excess PbI2 improves the crystallization process, producing high‐quality CsPbI2.5Br0.5 films with enlarged grain sizes, enhanced crystal orientation, and unchanged phase composition. The residual PbI2 at the grain boundaries also provides a passivation effect, which improves the optoelectronic properties and charge collection property in optimized devices, leading to a power conversion efficiency up to 17.1% with a high open‐circuit voltage of 1.25 V. More importantly, a remarkable long‐term operational stability is also achieved for the optimized CsPbI2.5Br0.5 solar cells, with less than 24% degradation drop at the maximum power point under continuous illumination for 420 h. Operationally stable and high‐efficiency all‐inorganic CsPbI2.5Br0.5 mixed‐halide perovskite solar cells are achieved for the first time, by introducing the different amount of PbI2 in the all‐inorganic perovskite precursor. The 1.02‐PbI2 devices maintain 76% of their initial efficiency (17.1%) after continuous power output at the maximum power point for 420 h under continuous full‐sun, AM 1.5G illumination (100 mW cm−2).
AbstractList Cesium‐based inorganic perovskites have recently attracted great research focus due to their excellent optoelectronic properties and thermal stability. However, the operational instability of all‐inorganic perovskites is still a main hindrance for the commercialization. Herein, a facile approach is reported to simultaneously enhance both the efficiency and long‐term stability for all‐inorganic CsPbI2.5Br0.5 perovskite solar cells via inducing excess lead iodide (PbI2) into the precursors. Comprehensive film and device characterizations are conducted to study the influences of excess PbI2 on the crystal quality, passivation effect, charge dynamics, and photovoltaic performance. It is found that excess PbI2 improves the crystallization process, producing high‐quality CsPbI2.5Br0.5 films with enlarged grain sizes, enhanced crystal orientation, and unchanged phase composition. The residual PbI2 at the grain boundaries also provides a passivation effect, which improves the optoelectronic properties and charge collection property in optimized devices, leading to a power conversion efficiency up to 17.1% with a high open‐circuit voltage of 1.25 V. More importantly, a remarkable long‐term operational stability is also achieved for the optimized CsPbI2.5Br0.5 solar cells, with less than 24% degradation drop at the maximum power point under continuous illumination for 420 h. Operationally stable and high‐efficiency all‐inorganic CsPbI2.5Br0.5 mixed‐halide perovskite solar cells are achieved for the first time, by introducing the different amount of PbI2 in the all‐inorganic perovskite precursor. The 1.02‐PbI2 devices maintain 76% of their initial efficiency (17.1%) after continuous power output at the maximum power point for 420 h under continuous full‐sun, AM 1.5G illumination (100 mW cm−2).
Cesium‐based inorganic perovskites have recently attracted great research focus due to their excellent optoelectronic properties and thermal stability. However, the operational instability of all‐inorganic perovskites is still a main hindrance for the commercialization. Herein, a facile approach is reported to simultaneously enhance both the efficiency and long‐term stability for all‐inorganic CsPbI2.5Br0.5 perovskite solar cells via inducing excess lead iodide (PbI2) into the precursors. Comprehensive film and device characterizations are conducted to study the influences of excess PbI2 on the crystal quality, passivation effect, charge dynamics, and photovoltaic performance. It is found that excess PbI2 improves the crystallization process, producing high‐quality CsPbI2.5Br0.5 films with enlarged grain sizes, enhanced crystal orientation, and unchanged phase composition. The residual PbI2 at the grain boundaries also provides a passivation effect, which improves the optoelectronic properties and charge collection property in optimized devices, leading to a power conversion efficiency up to 17.1% with a high open‐circuit voltage of 1.25 V. More importantly, a remarkable long‐term operational stability is also achieved for the optimized CsPbI2.5Br0.5 solar cells, with less than 24% degradation drop at the maximum power point under continuous illumination for 420 h.
Cesium‐based inorganic perovskites have recently attracted great research focus due to their excellent optoelectronic properties and thermal stability. However, the operational instability of all‐inorganic perovskites is still a main hindrance for the commercialization. Herein, a facile approach is reported to simultaneously enhance both the efficiency and long‐term stability for all‐inorganic CsPbI 2.5 Br 0.5 perovskite solar cells via inducing excess lead iodide (PbI 2 ) into the precursors. Comprehensive film and device characterizations are conducted to study the influences of excess PbI 2 on the crystal quality, passivation effect, charge dynamics, and photovoltaic performance. It is found that excess PbI 2 improves the crystallization process, producing high‐quality CsPbI 2.5 Br 0.5 films with enlarged grain sizes, enhanced crystal orientation, and unchanged phase composition. The residual PbI 2 at the grain boundaries also provides a passivation effect, which improves the optoelectronic properties and charge collection property in optimized devices, leading to a power conversion efficiency up to 17.1% with a high open‐circuit voltage of 1.25 V. More importantly, a remarkable long‐term operational stability is also achieved for the optimized CsPbI 2.5 Br 0.5 solar cells, with less than 24% degradation drop at the maximum power point under continuous illumination for 420 h.
Author Li, Ning
Yan, Lei
Niu, Tianqi
Cao, Yong
Zhu, Zonglong
Brabec, Christoph J.
Tian, Jingjing
Wang, Jing
Yip, Hin‐Lap
Xue, Qifan
Author_xml – sequence: 1
  givenname: Jingjing
  surname: Tian
  fullname: Tian, Jingjing
  organization: South China University of Technology
– sequence: 2
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  organization: City University of Hong Kong
– sequence: 3
  givenname: Qifan
  surname: Xue
  fullname: Xue, Qifan
  email: qfxue@scut.edu.cn
  organization: South China Institute of Collaborative Innovation
– sequence: 4
  givenname: Tianqi
  surname: Niu
  fullname: Niu, Tianqi
  organization: South China University of Technology
– sequence: 5
  givenname: Lei
  surname: Yan
  fullname: Yan, Lei
  organization: South China University of Technology
– sequence: 6
  givenname: Zonglong
  surname: Zhu
  fullname: Zhu, Zonglong
  organization: City University of Hong Kong
– sequence: 7
  givenname: Ning
  surname: Li
  fullname: Li, Ning
  email: ning.li@fau.de
  organization: Zhengzhou University
– sequence: 8
  givenname: Christoph J.
  surname: Brabec
  fullname: Brabec, Christoph J.
  organization: Forschungszentrum Jülich
– sequence: 9
  givenname: Hin‐Lap
  orcidid: 0000-0002-5750-9751
  surname: Yip
  fullname: Yip, Hin‐Lap
  email: msangusyip@scut.edu.cn
  organization: South China Institute of Collaborative Innovation
– sequence: 10
  givenname: Yong
  surname: Cao
  fullname: Cao, Yong
  organization: South China University of Technology
BookMark eNqFkM1KAzEURoNUsK1uXQdct-Zvppllqa0WKhWq4G7IZJKSmklqMlW68xF8Rp_EjpUKgshd3Ls45-PydUDLeacAOMeojxEil6LUVZ8gghAepOwItHGK0x5FhLcON348AZ0YVw0zoKwNqpGv1j6a2ngHx25pnFLBuCX0Gg6t_Xh7nzoflsIZCe9U8C_xydQKToytoPYBjrU20ihXQ-FKOF-rIJooYe0WLmpRWAUX3ooAR8raeAqOtbBRnX3vLniYjO9HN73Z_Ho6Gs56kmaM9biSPOEcac4LhjmnWcrKrMiKRFKNZCH0QBLJMp7QlJCUJoOiQCVJGCdFmaiUdsHFPncd_PNGxTpf-U3YfRVzwgimyW7wjmJ7SgYfY1A6l6b-er8Owtgco7wpNm-KzQ_F7rT-L20dTCXC9m8h2wuvxqrtP3Q-vJrc_rifod-O2g
CitedBy_id crossref_primary_10_1002_aenm_202102290
crossref_primary_10_1016_j_mattod_2021_11_017
crossref_primary_10_1039_D2TA02022J
crossref_primary_10_3390_inorganics12050128
crossref_primary_10_1002_aenm_202404850
crossref_primary_10_3390_mi14081601
crossref_primary_10_1021_acsaem_4c00158
crossref_primary_10_1021_acsami_4c13528
crossref_primary_10_1002_adma_202208604
crossref_primary_10_1002_ange_202216634
crossref_primary_10_1016_j_solener_2021_08_008
crossref_primary_10_1039_D0TC05010E
crossref_primary_10_1088_2752_5724_acd56c
crossref_primary_10_1002_adfm_202109321
crossref_primary_10_1002_aenm_202100784
crossref_primary_10_1002_er_8240
crossref_primary_10_1021_acssuschemeng_4c06058
crossref_primary_10_1002_adfm_202112126
crossref_primary_10_1016_j_nanoen_2021_105881
crossref_primary_10_1002_solr_202100665
crossref_primary_10_1063_5_0179194
crossref_primary_10_1002_adfm_202101287
crossref_primary_10_1002_solr_202400244
crossref_primary_10_1021_jacs_4c04508
crossref_primary_10_3390_coatings13010004
crossref_primary_10_1016_j_matt_2020_10_023
crossref_primary_10_1002_aenm_202201733
crossref_primary_10_1021_acs_jpclett_1c03522
crossref_primary_10_1007_s42247_020_00128_8
crossref_primary_10_1002_adpr_202100289
crossref_primary_10_1021_acsami_1c19323
crossref_primary_10_1002_pssa_202100310
crossref_primary_10_1016_j_cej_2021_132781
crossref_primary_10_1021_acsenergylett_0c01728
crossref_primary_10_1002_adfm_202009515
crossref_primary_10_1039_D0TC03133J
crossref_primary_10_1039_D3NR06640A
crossref_primary_10_1039_D2RA04438B
crossref_primary_10_1002_aenm_202203682
crossref_primary_10_1038_s41467_024_55376_7
crossref_primary_10_1021_acsnano_3c07942
crossref_primary_10_1016_j_solener_2021_10_074
crossref_primary_10_1021_acs_nanolett_2c02953
crossref_primary_10_1002_solr_202100112
crossref_primary_10_1002_pssr_202300350
crossref_primary_10_1088_1674_4926_42_5_050502
crossref_primary_10_1021_acsami_3c09835
crossref_primary_10_1021_jacs_1c10842
crossref_primary_10_1016_j_solener_2020_10_034
crossref_primary_10_1016_j_cej_2021_131675
crossref_primary_10_1016_j_mtelec_2024_100127
crossref_primary_10_1002_nano_202000287
crossref_primary_10_1021_acsaem_0c03243
crossref_primary_10_1039_D3TA04512A
crossref_primary_10_1002_aenm_202204347
crossref_primary_10_1002_aenm_202300738
crossref_primary_10_1039_D4TC03961K
crossref_primary_10_1021_acsaem_2c01673
crossref_primary_10_1021_acs_chemrev_1c00214
crossref_primary_10_1016_j_jmat_2022_09_005
crossref_primary_10_1016_j_nanoen_2021_106157
crossref_primary_10_1021_acsenergylett_2c01602
crossref_primary_10_1039_D1QI01553B
crossref_primary_10_1021_acs_inorgchem_3c01834
crossref_primary_10_1038_s41467_024_48768_2
crossref_primary_10_1002_adfm_202301213
crossref_primary_10_1021_acs_jpclett_1c03021
crossref_primary_10_1016_j_isci_2021_102235
crossref_primary_10_1039_D3NJ02003G
crossref_primary_10_1021_acsaem_3c00401
crossref_primary_10_1002_adom_202301052
crossref_primary_10_1039_D3TA03042C
crossref_primary_10_1088_1402_4896_abea31
crossref_primary_10_1002_anie_202216634
crossref_primary_10_1038_s41598_023_36427_3
crossref_primary_10_1016_j_jechem_2021_09_026
crossref_primary_10_1021_acsami_1c23476
crossref_primary_10_1039_D0TA10871E
crossref_primary_10_1007_s12274_021_3673_8
Cites_doi 10.1039/C5TA06398A
10.1002/aenm.201902706
10.1002/adma.201706576
10.1021/ja5033259
10.1038/s41467-019-13909-5
10.1039/C7TA11280G
10.1038/ncomms13938
10.1126/science.aai9081
10.1002/solr.201900389
10.1021/nl501838y
10.1002/adma.201703852
10.1016/j.nanoen.2019.104099
10.1002/aenm.201502104
10.1038/s41467-018-04636-4
10.1021/acs.jpclett.6b02193
10.1021/nn401267s
10.1126/sciadv.1700841
10.1038/s41467-018-05583-w
10.1038/nenergy.2016.149
10.1002/adma.201901152
10.1021/acsenergylett.7b00357
10.1002/adma.201605290
10.1016/j.nanoen.2019.01.034
10.1021/acs.chemmater.6b00779
10.1038/s41467-018-03169-0
10.1021/acsenergylett.6b00495
10.1021/jp050745x
10.1021/ic401215x
10.1016/j.joule.2018.08.011
10.1002/aenm.201502458
10.1002/adma.201902543
10.1016/j.joule.2018.05.004
10.1016/j.scib.2019.08.017
10.1021/acs.chemmater.5b04107
10.1002/solr.201700048
10.1126/science.aag2700
10.1039/C4EE01624F
10.1002/adfm.201803269
10.1039/C8EE03475C
10.1021/acs.nanolett.6b00635
10.1039/C7TA11154A
10.1038/ncomms8497
10.1063/1.2130396
10.1021/jacs.8b07927
10.1038/nphoton.2014.284
10.1021/jacs.6b06320
10.1038/s41560-017-0060-5
10.1039/c3ee43822h
10.1002/adfm.201401557
10.1038/s41467-018-07255-1
10.1016/j.isci.2019.04.025
10.1002/solr.201600001
10.1021/acsenergylett.7b00278
10.1016/j.joule.2017.07.017
10.1039/C7EE03113K
10.1039/C4SC03141E
10.1021/ja504632z
10.1039/C7NR09657G
10.1021/jz4020162
10.1021/ja411014k
10.1039/C8EE02542H
10.1021/nl400349b
10.1002/adma.201905143
10.1038/nphoton.2016.108
10.1021/acsenergylett.9b02604
10.1126/science.aaa9272
10.1021/acs.jpclett.5b02273
10.1002/anie.201910800
10.1038/s41467-018-06915-6
10.1039/C5EE02555A
10.1016/j.joule.2018.06.013
ContentType Journal Article
Copyright 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202001764
DatabaseName Wiley Online Library Open Access
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202001764
ADFM202001764
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of China
  funderid: 91733302; 51803060
– fundername: Solar Technologies go Hybrid
– fundername: Ministry of Science and Technology
  funderid: 2017YF0206600; 2019YFA0705900
– fundername: Bavarian Initiative
– fundername: Science and Technology Program of Guangdong Province, China
  funderid: 2018A030313045
– fundername: Basic and Applied Basic Research Major Program of Guangdong Province
  funderid: 2019B030302007
– fundername: DFG
  funderid: SFB 953; 182849149
– fundername: Aufbruch Bayern
– fundername: state of Bavaria
– fundername: Deutsche Forschungsgemeinschaft
  funderid: BR 4031/13‐1
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3944-8ec85880f88b41883964d9b9b5c3f0cbaf7c2c498536226357bb0d25482bd5e63
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Jul 14 10:33:51 EDT 2025
Tue Jul 01 04:12:14 EDT 2025
Thu Apr 24 22:51:40 EDT 2025
Wed Jan 22 16:34:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3944-8ec85880f88b41883964d9b9b5c3f0cbaf7c2c498536226357bb0d25482bd5e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5750-9751
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202001764
PQID 2421353531
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_2421353531
crossref_citationtrail_10_1002_adfm_202001764
crossref_primary_10_1002_adfm_202001764
wiley_primary_10_1002_adfm_202001764_ADFM202001764
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2019; 9
2018; 28
2017; 1
2015; 6
2013; 4
2017; 2
2018; 140
2017; 3
2015; 3
2019; 31
2019; 12
2019; 15
2019; 58
2016; 10
2005; 87
2014; 24
2017; 29
2020; 11
2015; 348
2013; 7
2015; 9
2016; 16
2015; 8
2017; 355
2014; 136
2018; 6
2016; 6
2018; 9
2016; 7
2020; 5
2020; 4
2018; 3
2018; 2
2016; 1
2019; 64
2013; 13
2019; 66
2013; 52
2016; 354
2014; 14
2005; 109
2018; 30
2016; 138
2016; 28
2018; 11
2014; 7
2018; 10
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 9
  start-page: 4544
  year: 2018
  publication-title: Nat. Commun.
– volume: 3
  start-page: 61
  year: 2018
  publication-title: Nat. Energy
– volume: 136
  start-page: 758
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 8094
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 550
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 355
  start-page: 722
  year: 2017
  publication-title: Science
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 4569
  year: 2013
  publication-title: ACS Nano
– volume: 11
  start-page: 177
  year: 2020
  publication-title: Nat. Commun.
– volume: 6
  start-page: 7497
  year: 2015
  publication-title: Nat. Commun.
– volume: 9
  start-page: 3301
  year: 2018
  publication-title: Nat. Commun.
– volume: 109
  start-page: 9505
  year: 2005
  publication-title: J. Phys. Chem. B
– volume: 9
  start-page: 106
  year: 2015
  publication-title: Nat. Photonics
– volume: 9
  start-page: 1076
  year: 2018
  publication-title: Nat. Commun.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 2
  start-page: 1356
  year: 2018
  publication-title: Joule
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 2
  start-page: 1177
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 521
  year: 2016
  publication-title: Nat. Photonics
– volume: 6
  start-page: 5580
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 4158
  year: 2014
  publication-title: Nano Lett.
– volume: 1
  year: 2017
  publication-title: Sol. RRL
– volume: 28
  start-page: 284
  year: 2016
  publication-title: Chem. Mater.
– volume: 13
  start-page: 1764
  year: 2013
  publication-title: Nano Lett.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 7
  start-page: 982
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 87
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 2225
  year: 2018
  publication-title: Nat. Commun.
– volume: 354
  start-page: 92
  year: 2016
  publication-title: Science
– volume: 8
  start-page: 3550
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 286
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 3623
  year: 2013
  publication-title: J. Phys. Chem. Lett.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 2
  start-page: 2065
  year: 2018
  publication-title: Joule
– volume: 28
  start-page: 3612
  year: 2016
  publication-title: Chem. Mater.
– volume: 6
  start-page: 7903
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2020
  publication-title: Sol. RRL
– volume: 24
  start-page: 7357
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 66
  year: 2019
  publication-title: Nano Energy
– volume: 1
  start-page: 371
  year: 2017
  publication-title: Joule
– volume: 5
  start-page: 271
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1507
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 2934
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 1199
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 9996
  year: 2018
  publication-title: Nanoscale
– volume: 348
  start-page: 1234
  year: 2015
  publication-title: Science
– volume: 58
  start-page: 175
  year: 2019
  publication-title: Nano Energy
– volume: 2
  start-page: 2450
  year: 2018
  publication-title: Joule
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 15
  start-page: 156
  year: 2019
  publication-title: iScience
– volume: 9
  start-page: 5265
  year: 2018
  publication-title: Nat. Commun.
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 9019
  year: 2013
  publication-title: Inorg. Chem.
– volume: 7
  start-page: 5105
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 64
  start-page: 1532
  year: 2019
  publication-title: Sci. Bull.
– volume: 6
  start-page: 613
  year: 2015
  publication-title: Chem. Sci.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 3358
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 4633
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 16
  start-page: 3563
  year: 2016
  publication-title: Nano Lett.
– ident: e_1_2_8_16_1
  doi: 10.1039/C5TA06398A
– ident: e_1_2_8_56_1
  doi: 10.1002/aenm.201902706
– ident: e_1_2_8_62_1
  doi: 10.1002/adma.201706576
– ident: e_1_2_8_4_1
  doi: 10.1021/ja5033259
– ident: e_1_2_8_10_1
  doi: 10.1038/s41467-019-13909-5
– ident: e_1_2_8_70_1
  doi: 10.1039/C7TA11280G
– ident: e_1_2_8_8_1
  doi: 10.1038/ncomms13938
– ident: e_1_2_8_53_1
  doi: 10.1126/science.aai9081
– ident: e_1_2_8_5_1
  doi: 10.1002/solr.201900389
– ident: e_1_2_8_46_1
  doi: 10.1021/nl501838y
– ident: e_1_2_8_54_1
  doi: 10.1002/adma.201703852
– ident: e_1_2_8_6_1
  doi: 10.1016/j.nanoen.2019.104099
– ident: e_1_2_8_42_1
  doi: 10.1002/aenm.201502104
– ident: e_1_2_8_15_1
  doi: 10.1038/s41467-018-04636-4
– ident: e_1_2_8_7_1
  doi: 10.1021/acs.jpclett.6b02193
– ident: e_1_2_8_65_1
  doi: 10.1021/nn401267s
– ident: e_1_2_8_32_1
  doi: 10.1126/sciadv.1700841
– ident: e_1_2_8_48_1
  doi: 10.1038/s41467-018-05583-w
– ident: e_1_2_8_45_1
  doi: 10.1038/nenergy.2016.149
– ident: e_1_2_8_68_1
  doi: 10.1002/adma.201901152
– ident: e_1_2_8_44_1
  doi: 10.1021/acsenergylett.7b00357
– ident: e_1_2_8_36_1
  doi: 10.1002/adma.201605290
– ident: e_1_2_8_19_1
  doi: 10.1016/j.nanoen.2019.01.034
– ident: e_1_2_8_51_1
  doi: 10.1021/acs.chemmater.6b00779
– ident: e_1_2_8_18_1
  doi: 10.1038/s41467-018-03169-0
– ident: e_1_2_8_38_1
  doi: 10.1021/acsenergylett.6b00495
– ident: e_1_2_8_71_1
  doi: 10.1021/jp050745x
– ident: e_1_2_8_1_1
  doi: 10.1021/ic401215x
– ident: e_1_2_8_26_1
  doi: 10.1016/j.joule.2018.08.011
– ident: e_1_2_8_12_1
  doi: 10.1002/aenm.201502458
– ident: e_1_2_8_20_1
  doi: 10.1002/adma.201902543
– ident: e_1_2_8_31_1
  doi: 10.1016/j.joule.2018.05.004
– ident: e_1_2_8_35_1
  doi: 10.1016/j.scib.2019.08.017
– ident: e_1_2_8_13_1
  doi: 10.1021/acs.chemmater.5b04107
– ident: e_1_2_8_14_1
  doi: 10.1002/solr.201700048
– ident: e_1_2_8_33_1
  doi: 10.1126/science.aag2700
– ident: e_1_2_8_59_1
  doi: 10.1039/C4EE01624F
– ident: e_1_2_8_57_1
  doi: 10.1002/adfm.201803269
– ident: e_1_2_8_41_1
  doi: 10.1039/C8EE03475C
– ident: e_1_2_8_27_1
  doi: 10.1021/acs.nanolett.6b00635
– ident: e_1_2_8_28_1
  doi: 10.1039/C7TA11154A
– ident: e_1_2_8_43_1
  doi: 10.1038/ncomms8497
– ident: e_1_2_8_64_1
  doi: 10.1063/1.2130396
– ident: e_1_2_8_24_1
  doi: 10.1021/jacs.8b07927
– ident: e_1_2_8_60_1
  doi: 10.1038/nphoton.2014.284
– ident: e_1_2_8_55_1
  doi: 10.1021/jacs.6b06320
– ident: e_1_2_8_39_1
  doi: 10.1038/s41560-017-0060-5
– ident: e_1_2_8_11_1
  doi: 10.1039/c3ee43822h
– ident: e_1_2_8_66_1
  doi: 10.1002/adfm.201401557
– ident: e_1_2_8_40_1
  doi: 10.1038/s41467-018-07255-1
– ident: e_1_2_8_29_1
  doi: 10.1016/j.isci.2019.04.025
– ident: e_1_2_8_9_1
  doi: 10.1002/solr.201600001
– ident: e_1_2_8_49_1
  doi: 10.1021/acsenergylett.7b00278
– ident: e_1_2_8_17_1
  doi: 10.1016/j.joule.2017.07.017
– ident: e_1_2_8_61_1
  doi: 10.1039/C7EE03113K
– ident: e_1_2_8_37_1
  doi: 10.1039/C4SC03141E
– ident: e_1_2_8_47_1
  doi: 10.1021/ja504632z
– ident: e_1_2_8_30_1
  doi: 10.1039/C7NR09657G
– ident: e_1_2_8_2_1
  doi: 10.1021/jz4020162
– ident: e_1_2_8_67_1
  doi: 10.1021/ja411014k
– ident: e_1_2_8_50_1
  doi: 10.1039/C8EE02542H
– ident: e_1_2_8_3_1
  doi: 10.1021/nl400349b
– ident: e_1_2_8_34_1
  doi: 10.1002/adma.201905143
– ident: e_1_2_8_63_1
  doi: 10.1038/nphoton.2016.108
– ident: e_1_2_8_21_1
  doi: 10.1021/acsenergylett.9b02604
– ident: e_1_2_8_58_1
  doi: 10.1126/science.aaa9272
– ident: e_1_2_8_69_1
  doi: 10.1021/acs.jpclett.5b02273
– ident: e_1_2_8_22_1
  doi: 10.1002/anie.201910800
– ident: e_1_2_8_25_1
  doi: 10.1038/s41467-018-06915-6
– ident: e_1_2_8_52_1
  doi: 10.1039/C5EE02555A
– ident: e_1_2_8_23_1
  doi: 10.1016/j.joule.2018.06.013
SSID ssj0017734
Score 2.581268
Snippet Cesium‐based inorganic perovskites have recently attracted great research focus due to their excellent optoelectronic properties and thermal stability....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Cesium
Circuits
Commercialization
composition engineering
Crystal structure
Crystallization
CsPbI 2.5Br 0.5
defect passivation
Energy conversion efficiency
Grain boundaries
Grain size
Materials science
Maximum power
operationally stable
Optoelectronic devices
Passivity
PbI 2
Perovskites
Phase composition
Photovoltaic cells
Solar cells
Thermal stability
Title Composition Engineering of All‐Inorganic Perovskite Film for Efficient and Operationally Stable Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202001764
https://www.proquest.com/docview/2421353531
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58XPTgW6zWsgfBU2pem8ex9IGKVVELvYV9BcQ0LW0V9ORP8Df6S9xJ0lgFEZRcErIbNjszu9_uznwDcMSoh3nfHUNqNGC4WoMNphxqxLZwTR5Ki2Unut1L77Tnnvdpfy6KP-eHKDfc0DKy8RoNnPHJySdpKJMxRpKjT5DvISEoOmwhKrop-aMs38-PlT0LHbys_oy10bRPvlb_Oit9Qs15wJrNOJ11YLO25o4mD_XHKa-Ll280jv_5mQ1YK-AoaeT6swkLKt2C1TmSwm0Y4JBRuHaRuTdkGJNGkry_vp2leW4oQa7VePg0wQ1h0rlPBkQjYtLOSCr03EZYKsnVSI2L_cfkmWioyxNFbnF9TZoqSSY70Ou075qnRpGkwRAYU2sESgRUDwJxEHDXCjTe8lwZ8pBT4cSm4Cz2hZZ7qGGBZyPzjc-5KfWyNLC5pMpzdmEpHaZqD4glQr0sZqbkJnM1zOGhikMZ2E5MfZ8yswLGTEiRKBjMMZFGEuXcy3aE3RiV3ViB47L8KOfu-LFkdSbzqLDhSYSH5Q7Vl1UBOxPeL1-JGq1Ot3za_0ulA1jB-9wfuApL0_GjOtSoZ8prsGi71zVYbrS6F7e1TM8_ALOr-6w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB615UA58NNSsVDAhyJOaRMnzs-Bw6rb1S7tFkRbaW_Bf5EQabba3YLKiUfgVXgVHoEnYSZ_3VZCSEg9VDklcSzHnvF8Ho-_AdiSIqS8775jEA04AUqwI60vnIzrwFWJ8WS5ozs6DAcnwduxGC_Bz-YsTMUP0TrcSDPK-ZoUnBzSO5esodJkdJScgoKiMKjjKvftxVdctc3eDHs4xK847-8d7w6cOrGAo-kcqBNbHQsU3CyOVeDFiBHCwCQqUUL7mauVzCKNbU3QlIWc2FoipVyDS6mYKyNs6GO9y3CH0ogTXX_vQ8tY5UVRtZEdehRS5o0bnkiX71xt71U7eAluFyFyaeP6D-BX0ztVaMvn7fO52tbfrhFH3qruewj3a8TNupWKPIIlW6zBvQUexnU4pVmxjl5jC2_YJGPdPP_9_cewqNJfafbeTidfZuTzZv1P-SlD0M_2Sh4ONN9MFoa9O7PT2sWaXzBE8yq37IhcCGzX5vnsMZzcyP9uwEoxKewTYJ5OcOUvXaNcGSCSU4nNEhNzPxNRJKTbAaeRilTXJO2UKyRPK3ppntKwpe2wdeB1W_6soif5a8nNRsjSepqapRQP4Au8vA7wUlr-UUva7fVH7d3T__noJdwdHI8O0oPh4f4zWKXnVfjzJqzMp-f2OYK8uXpRqhWDjzctiH8ARp5VSQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RKlXlgOhLDVC6h1Y9Wdhrrx8HDhHBIqXQSC1Sbu4-pUrGiRIe4sZP4Kfwm_glnbEdEw5VpUrIJ9trazU7u_PNzuw3AJ-kiKnue-gZRANehBrsSRsKz3Ed-Sozgawjuscn8eFp9HUsxitwtzgL0_BDdBtuNDPq9Zom-NS43QfSUGkcnSSnnKAkjtq0yiN7fYVO23xvOMAR_sx5fvBz_9Br6wp4mo6BeqnVqUC9dWmqoiBFiBBHJlOZEjp0vlbSJRq7mqElizmRtSRK-QY9qZQrI2wc4n-fwXOKMFISGY9GXdwiSZo4dhxQRlkwXtBE-nz3cX8fm8EHbLuMkGsTl2_AeotNWb9RplewYqvXsLbEWPgGzmj9aPO82NIbNnGsX5b3N7fDqikUpdnIziaXc9odZvnv8owhPGYHNWMFGjomK8O-T-2s3YwsrxniXlVa9oOcbbZvy3L-Fk6fRLLvYLWaVPY9sEBn6CNL3yhfRoh5VGZdZlIeOpEkQvo98BYCLHRLZ05VNcqiIWLmBQm86ATegy9d-2lD5PHXltuL8SjaCT0vKHIeCryCHvB6jP7xl6I_yI-7u83_-egjvBgN8uLb8ORoC17S4yZPeBtWz2cX9gOioXO1Uysgg19PrfF_AKv6E0c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Composition+Engineering+of+All%E2%80%90Inorganic+Perovskite+Film+for+Efficient+and+Operationally+Stable+Solar+Cells&rft.jtitle=Advanced+functional+materials&rft.au=Tian%2C+Jingjing&rft.au=Wang%2C+Jing&rft.au=Xue%2C+Qifan&rft.au=Niu%2C+Tianqi&rft.date=2020-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=28&rft_id=info:doi/10.1002%2Fadfm.202001764&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202001764
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon