Composition Engineering of All‐Inorganic Perovskite Film for Efficient and Operationally Stable Solar Cells
Cesium‐based inorganic perovskites have recently attracted great research focus due to their excellent optoelectronic properties and thermal stability. However, the operational instability of all‐inorganic perovskites is still a main hindrance for the commercialization. Herein, a facile approach is...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 28 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cesium‐based inorganic perovskites have recently attracted great research focus due to their excellent optoelectronic properties and thermal stability. However, the operational instability of all‐inorganic perovskites is still a main hindrance for the commercialization. Herein, a facile approach is reported to simultaneously enhance both the efficiency and long‐term stability for all‐inorganic CsPbI2.5Br0.5 perovskite solar cells via inducing excess lead iodide (PbI2) into the precursors. Comprehensive film and device characterizations are conducted to study the influences of excess PbI2 on the crystal quality, passivation effect, charge dynamics, and photovoltaic performance. It is found that excess PbI2 improves the crystallization process, producing high‐quality CsPbI2.5Br0.5 films with enlarged grain sizes, enhanced crystal orientation, and unchanged phase composition. The residual PbI2 at the grain boundaries also provides a passivation effect, which improves the optoelectronic properties and charge collection property in optimized devices, leading to a power conversion efficiency up to 17.1% with a high open‐circuit voltage of 1.25 V. More importantly, a remarkable long‐term operational stability is also achieved for the optimized CsPbI2.5Br0.5 solar cells, with less than 24% degradation drop at the maximum power point under continuous illumination for 420 h.
Operationally stable and high‐efficiency all‐inorganic CsPbI2.5Br0.5 mixed‐halide perovskite solar cells are achieved for the first time, by introducing the different amount of PbI2 in the all‐inorganic perovskite precursor. The 1.02‐PbI2 devices maintain 76% of their initial efficiency (17.1%) after continuous power output at the maximum power point for 420 h under continuous full‐sun, AM 1.5G illumination (100 mW cm−2). |
---|---|
AbstractList | Cesium‐based inorganic perovskites have recently attracted great research focus due to their excellent optoelectronic properties and thermal stability. However, the operational instability of all‐inorganic perovskites is still a main hindrance for the commercialization. Herein, a facile approach is reported to simultaneously enhance both the efficiency and long‐term stability for all‐inorganic CsPbI2.5Br0.5 perovskite solar cells via inducing excess lead iodide (PbI2) into the precursors. Comprehensive film and device characterizations are conducted to study the influences of excess PbI2 on the crystal quality, passivation effect, charge dynamics, and photovoltaic performance. It is found that excess PbI2 improves the crystallization process, producing high‐quality CsPbI2.5Br0.5 films with enlarged grain sizes, enhanced crystal orientation, and unchanged phase composition. The residual PbI2 at the grain boundaries also provides a passivation effect, which improves the optoelectronic properties and charge collection property in optimized devices, leading to a power conversion efficiency up to 17.1% with a high open‐circuit voltage of 1.25 V. More importantly, a remarkable long‐term operational stability is also achieved for the optimized CsPbI2.5Br0.5 solar cells, with less than 24% degradation drop at the maximum power point under continuous illumination for 420 h.
Operationally stable and high‐efficiency all‐inorganic CsPbI2.5Br0.5 mixed‐halide perovskite solar cells are achieved for the first time, by introducing the different amount of PbI2 in the all‐inorganic perovskite precursor. The 1.02‐PbI2 devices maintain 76% of their initial efficiency (17.1%) after continuous power output at the maximum power point for 420 h under continuous full‐sun, AM 1.5G illumination (100 mW cm−2). Cesium‐based inorganic perovskites have recently attracted great research focus due to their excellent optoelectronic properties and thermal stability. However, the operational instability of all‐inorganic perovskites is still a main hindrance for the commercialization. Herein, a facile approach is reported to simultaneously enhance both the efficiency and long‐term stability for all‐inorganic CsPbI2.5Br0.5 perovskite solar cells via inducing excess lead iodide (PbI2) into the precursors. Comprehensive film and device characterizations are conducted to study the influences of excess PbI2 on the crystal quality, passivation effect, charge dynamics, and photovoltaic performance. It is found that excess PbI2 improves the crystallization process, producing high‐quality CsPbI2.5Br0.5 films with enlarged grain sizes, enhanced crystal orientation, and unchanged phase composition. The residual PbI2 at the grain boundaries also provides a passivation effect, which improves the optoelectronic properties and charge collection property in optimized devices, leading to a power conversion efficiency up to 17.1% with a high open‐circuit voltage of 1.25 V. More importantly, a remarkable long‐term operational stability is also achieved for the optimized CsPbI2.5Br0.5 solar cells, with less than 24% degradation drop at the maximum power point under continuous illumination for 420 h. Cesium‐based inorganic perovskites have recently attracted great research focus due to their excellent optoelectronic properties and thermal stability. However, the operational instability of all‐inorganic perovskites is still a main hindrance for the commercialization. Herein, a facile approach is reported to simultaneously enhance both the efficiency and long‐term stability for all‐inorganic CsPbI 2.5 Br 0.5 perovskite solar cells via inducing excess lead iodide (PbI 2 ) into the precursors. Comprehensive film and device characterizations are conducted to study the influences of excess PbI 2 on the crystal quality, passivation effect, charge dynamics, and photovoltaic performance. It is found that excess PbI 2 improves the crystallization process, producing high‐quality CsPbI 2.5 Br 0.5 films with enlarged grain sizes, enhanced crystal orientation, and unchanged phase composition. The residual PbI 2 at the grain boundaries also provides a passivation effect, which improves the optoelectronic properties and charge collection property in optimized devices, leading to a power conversion efficiency up to 17.1% with a high open‐circuit voltage of 1.25 V. More importantly, a remarkable long‐term operational stability is also achieved for the optimized CsPbI 2.5 Br 0.5 solar cells, with less than 24% degradation drop at the maximum power point under continuous illumination for 420 h. |
Author | Li, Ning Yan, Lei Niu, Tianqi Cao, Yong Zhu, Zonglong Brabec, Christoph J. Tian, Jingjing Wang, Jing Yip, Hin‐Lap Xue, Qifan |
Author_xml | – sequence: 1 givenname: Jingjing surname: Tian fullname: Tian, Jingjing organization: South China University of Technology – sequence: 2 givenname: Jing surname: Wang fullname: Wang, Jing organization: City University of Hong Kong – sequence: 3 givenname: Qifan surname: Xue fullname: Xue, Qifan email: qfxue@scut.edu.cn organization: South China Institute of Collaborative Innovation – sequence: 4 givenname: Tianqi surname: Niu fullname: Niu, Tianqi organization: South China University of Technology – sequence: 5 givenname: Lei surname: Yan fullname: Yan, Lei organization: South China University of Technology – sequence: 6 givenname: Zonglong surname: Zhu fullname: Zhu, Zonglong organization: City University of Hong Kong – sequence: 7 givenname: Ning surname: Li fullname: Li, Ning email: ning.li@fau.de organization: Zhengzhou University – sequence: 8 givenname: Christoph J. surname: Brabec fullname: Brabec, Christoph J. organization: Forschungszentrum Jülich – sequence: 9 givenname: Hin‐Lap orcidid: 0000-0002-5750-9751 surname: Yip fullname: Yip, Hin‐Lap email: msangusyip@scut.edu.cn organization: South China Institute of Collaborative Innovation – sequence: 10 givenname: Yong surname: Cao fullname: Cao, Yong organization: South China University of Technology |
BookMark | eNqFkM1KAzEURoNUsK1uXQdct-Zvppllqa0WKhWq4G7IZJKSmklqMlW68xF8Rp_EjpUKgshd3Ls45-PydUDLeacAOMeojxEil6LUVZ8gghAepOwItHGK0x5FhLcON348AZ0YVw0zoKwNqpGv1j6a2ngHx25pnFLBuCX0Gg6t_Xh7nzoflsIZCe9U8C_xydQKToytoPYBjrU20ihXQ-FKOF-rIJooYe0WLmpRWAUX3ooAR8raeAqOtbBRnX3vLniYjO9HN73Z_Ho6Gs56kmaM9biSPOEcac4LhjmnWcrKrMiKRFKNZCH0QBLJMp7QlJCUJoOiQCVJGCdFmaiUdsHFPncd_PNGxTpf-U3YfRVzwgimyW7wjmJ7SgYfY1A6l6b-er8Owtgco7wpNm-KzQ_F7rT-L20dTCXC9m8h2wuvxqrtP3Q-vJrc_rifod-O2g |
CitedBy_id | crossref_primary_10_1002_aenm_202102290 crossref_primary_10_1016_j_mattod_2021_11_017 crossref_primary_10_1039_D2TA02022J crossref_primary_10_3390_inorganics12050128 crossref_primary_10_1002_aenm_202404850 crossref_primary_10_3390_mi14081601 crossref_primary_10_1021_acsaem_4c00158 crossref_primary_10_1021_acsami_4c13528 crossref_primary_10_1002_adma_202208604 crossref_primary_10_1002_ange_202216634 crossref_primary_10_1016_j_solener_2021_08_008 crossref_primary_10_1039_D0TC05010E crossref_primary_10_1088_2752_5724_acd56c crossref_primary_10_1002_adfm_202109321 crossref_primary_10_1002_aenm_202100784 crossref_primary_10_1002_er_8240 crossref_primary_10_1021_acssuschemeng_4c06058 crossref_primary_10_1002_adfm_202112126 crossref_primary_10_1016_j_nanoen_2021_105881 crossref_primary_10_1002_solr_202100665 crossref_primary_10_1063_5_0179194 crossref_primary_10_1002_adfm_202101287 crossref_primary_10_1002_solr_202400244 crossref_primary_10_1021_jacs_4c04508 crossref_primary_10_3390_coatings13010004 crossref_primary_10_1016_j_matt_2020_10_023 crossref_primary_10_1002_aenm_202201733 crossref_primary_10_1021_acs_jpclett_1c03522 crossref_primary_10_1007_s42247_020_00128_8 crossref_primary_10_1002_adpr_202100289 crossref_primary_10_1021_acsami_1c19323 crossref_primary_10_1002_pssa_202100310 crossref_primary_10_1016_j_cej_2021_132781 crossref_primary_10_1021_acsenergylett_0c01728 crossref_primary_10_1002_adfm_202009515 crossref_primary_10_1039_D0TC03133J crossref_primary_10_1039_D3NR06640A crossref_primary_10_1039_D2RA04438B crossref_primary_10_1002_aenm_202203682 crossref_primary_10_1038_s41467_024_55376_7 crossref_primary_10_1021_acsnano_3c07942 crossref_primary_10_1016_j_solener_2021_10_074 crossref_primary_10_1021_acs_nanolett_2c02953 crossref_primary_10_1002_solr_202100112 crossref_primary_10_1002_pssr_202300350 crossref_primary_10_1088_1674_4926_42_5_050502 crossref_primary_10_1021_acsami_3c09835 crossref_primary_10_1021_jacs_1c10842 crossref_primary_10_1016_j_solener_2020_10_034 crossref_primary_10_1016_j_cej_2021_131675 crossref_primary_10_1016_j_mtelec_2024_100127 crossref_primary_10_1002_nano_202000287 crossref_primary_10_1021_acsaem_0c03243 crossref_primary_10_1039_D3TA04512A crossref_primary_10_1002_aenm_202204347 crossref_primary_10_1002_aenm_202300738 crossref_primary_10_1039_D4TC03961K crossref_primary_10_1021_acsaem_2c01673 crossref_primary_10_1021_acs_chemrev_1c00214 crossref_primary_10_1016_j_jmat_2022_09_005 crossref_primary_10_1016_j_nanoen_2021_106157 crossref_primary_10_1021_acsenergylett_2c01602 crossref_primary_10_1039_D1QI01553B crossref_primary_10_1021_acs_inorgchem_3c01834 crossref_primary_10_1038_s41467_024_48768_2 crossref_primary_10_1002_adfm_202301213 crossref_primary_10_1021_acs_jpclett_1c03021 crossref_primary_10_1016_j_isci_2021_102235 crossref_primary_10_1039_D3NJ02003G crossref_primary_10_1021_acsaem_3c00401 crossref_primary_10_1002_adom_202301052 crossref_primary_10_1039_D3TA03042C crossref_primary_10_1088_1402_4896_abea31 crossref_primary_10_1002_anie_202216634 crossref_primary_10_1038_s41598_023_36427_3 crossref_primary_10_1016_j_jechem_2021_09_026 crossref_primary_10_1021_acsami_1c23476 crossref_primary_10_1039_D0TA10871E crossref_primary_10_1007_s12274_021_3673_8 |
Cites_doi | 10.1039/C5TA06398A 10.1002/aenm.201902706 10.1002/adma.201706576 10.1021/ja5033259 10.1038/s41467-019-13909-5 10.1039/C7TA11280G 10.1038/ncomms13938 10.1126/science.aai9081 10.1002/solr.201900389 10.1021/nl501838y 10.1002/adma.201703852 10.1016/j.nanoen.2019.104099 10.1002/aenm.201502104 10.1038/s41467-018-04636-4 10.1021/acs.jpclett.6b02193 10.1021/nn401267s 10.1126/sciadv.1700841 10.1038/s41467-018-05583-w 10.1038/nenergy.2016.149 10.1002/adma.201901152 10.1021/acsenergylett.7b00357 10.1002/adma.201605290 10.1016/j.nanoen.2019.01.034 10.1021/acs.chemmater.6b00779 10.1038/s41467-018-03169-0 10.1021/acsenergylett.6b00495 10.1021/jp050745x 10.1021/ic401215x 10.1016/j.joule.2018.08.011 10.1002/aenm.201502458 10.1002/adma.201902543 10.1016/j.joule.2018.05.004 10.1016/j.scib.2019.08.017 10.1021/acs.chemmater.5b04107 10.1002/solr.201700048 10.1126/science.aag2700 10.1039/C4EE01624F 10.1002/adfm.201803269 10.1039/C8EE03475C 10.1021/acs.nanolett.6b00635 10.1039/C7TA11154A 10.1038/ncomms8497 10.1063/1.2130396 10.1021/jacs.8b07927 10.1038/nphoton.2014.284 10.1021/jacs.6b06320 10.1038/s41560-017-0060-5 10.1039/c3ee43822h 10.1002/adfm.201401557 10.1038/s41467-018-07255-1 10.1016/j.isci.2019.04.025 10.1002/solr.201600001 10.1021/acsenergylett.7b00278 10.1016/j.joule.2017.07.017 10.1039/C7EE03113K 10.1039/C4SC03141E 10.1021/ja504632z 10.1039/C7NR09657G 10.1021/jz4020162 10.1021/ja411014k 10.1039/C8EE02542H 10.1021/nl400349b 10.1002/adma.201905143 10.1038/nphoton.2016.108 10.1021/acsenergylett.9b02604 10.1126/science.aaa9272 10.1021/acs.jpclett.5b02273 10.1002/anie.201910800 10.1038/s41467-018-06915-6 10.1039/C5EE02555A 10.1016/j.joule.2018.06.013 |
ContentType | Journal Article |
Copyright | 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202001764 |
DatabaseName | Wiley Online Library Open Access CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202001764 ADFM202001764 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of China funderid: 91733302; 51803060 – fundername: Solar Technologies go Hybrid – fundername: Ministry of Science and Technology funderid: 2017YF0206600; 2019YFA0705900 – fundername: Bavarian Initiative – fundername: Science and Technology Program of Guangdong Province, China funderid: 2018A030313045 – fundername: Basic and Applied Basic Research Major Program of Guangdong Province funderid: 2019B030302007 – fundername: DFG funderid: SFB 953; 182849149 – fundername: Aufbruch Bayern – fundername: state of Bavaria – fundername: Deutsche Forschungsgemeinschaft funderid: BR 4031/13‐1 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3944-8ec85880f88b41883964d9b9b5c3f0cbaf7c2c498536226357bb0d25482bd5e63 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Jul 14 10:33:51 EDT 2025 Tue Jul 01 04:12:14 EDT 2025 Thu Apr 24 22:51:40 EDT 2025 Wed Jan 22 16:34:41 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3944-8ec85880f88b41883964d9b9b5c3f0cbaf7c2c498536226357bb0d25482bd5e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5750-9751 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202001764 |
PQID | 2421353531 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2421353531 crossref_citationtrail_10_1002_adfm_202001764 crossref_primary_10_1002_adfm_202001764 wiley_primary_10_1002_adfm_202001764_ADFM202001764 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2019; 9 2018; 28 2017; 1 2015; 6 2013; 4 2017; 2 2018; 140 2017; 3 2015; 3 2019; 31 2019; 12 2019; 15 2019; 58 2016; 10 2005; 87 2014; 24 2017; 29 2020; 11 2015; 348 2013; 7 2015; 9 2016; 16 2015; 8 2017; 355 2014; 136 2018; 6 2016; 6 2018; 9 2016; 7 2020; 5 2020; 4 2018; 3 2018; 2 2016; 1 2019; 64 2013; 13 2019; 66 2013; 52 2016; 354 2014; 14 2005; 109 2018; 30 2016; 138 2016; 28 2018; 11 2014; 7 2018; 10 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 9 start-page: 4544 year: 2018 publication-title: Nat. Commun. – volume: 3 start-page: 61 year: 2018 publication-title: Nat. Energy – volume: 136 start-page: 758 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 8094 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 550 year: 2019 publication-title: Energy Environ. Sci. – volume: 355 start-page: 722 year: 2017 publication-title: Science – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 4569 year: 2013 publication-title: ACS Nano – volume: 11 start-page: 177 year: 2020 publication-title: Nat. Commun. – volume: 6 start-page: 7497 year: 2015 publication-title: Nat. Commun. – volume: 9 start-page: 3301 year: 2018 publication-title: Nat. Commun. – volume: 109 start-page: 9505 year: 2005 publication-title: J. Phys. Chem. B – volume: 9 start-page: 106 year: 2015 publication-title: Nat. Photonics – volume: 9 start-page: 1076 year: 2018 publication-title: Nat. Commun. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 2 start-page: 1356 year: 2018 publication-title: Joule – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 2 start-page: 1177 year: 2017 publication-title: ACS Energy Lett. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 521 year: 2016 publication-title: Nat. Photonics – volume: 6 start-page: 5580 year: 2018 publication-title: J. Mater. Chem. A – volume: 14 start-page: 4158 year: 2014 publication-title: Nano Lett. – volume: 1 year: 2017 publication-title: Sol. RRL – volume: 28 start-page: 284 year: 2016 publication-title: Chem. Mater. – volume: 13 start-page: 1764 year: 2013 publication-title: Nano Lett. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 7 start-page: 982 year: 2014 publication-title: Energy Environ. Sci. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 87 year: 2005 publication-title: Appl. Phys. Lett. – volume: 9 start-page: 2225 year: 2018 publication-title: Nat. Commun. – volume: 354 start-page: 92 year: 2016 publication-title: Science – volume: 8 start-page: 3550 year: 2015 publication-title: Energy Environ. Sci. – volume: 11 start-page: 286 year: 2018 publication-title: Energy Environ. Sci. – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 4 start-page: 3623 year: 2013 publication-title: J. Phys. Chem. Lett. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 2 start-page: 2065 year: 2018 publication-title: Joule – volume: 28 start-page: 3612 year: 2016 publication-title: Chem. Mater. – volume: 6 start-page: 7903 year: 2018 publication-title: J. Mater. Chem. A – volume: 4 year: 2020 publication-title: Sol. RRL – volume: 24 start-page: 7357 year: 2014 publication-title: Adv. Funct. Mater. – volume: 66 year: 2019 publication-title: Nano Energy – volume: 1 start-page: 371 year: 2017 publication-title: Joule – volume: 5 start-page: 271 year: 2020 publication-title: ACS Energy Lett. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 2 start-page: 1507 year: 2017 publication-title: ACS Energy Lett. – volume: 7 start-page: 2934 year: 2014 publication-title: Energy Environ. Sci. – volume: 1 start-page: 1199 year: 2016 publication-title: ACS Energy Lett. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 10 start-page: 9996 year: 2018 publication-title: Nanoscale – volume: 348 start-page: 1234 year: 2015 publication-title: Science – volume: 58 start-page: 175 year: 2019 publication-title: Nano Energy – volume: 2 start-page: 2450 year: 2018 publication-title: Joule – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 15 start-page: 156 year: 2019 publication-title: iScience – volume: 9 start-page: 5265 year: 2018 publication-title: Nat. Commun. – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 9019 year: 2013 publication-title: Inorg. Chem. – volume: 7 start-page: 5105 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 64 start-page: 1532 year: 2019 publication-title: Sci. Bull. – volume: 6 start-page: 613 year: 2015 publication-title: Chem. Sci. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 3358 year: 2018 publication-title: Energy Environ. Sci. – volume: 6 start-page: 4633 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 16 start-page: 3563 year: 2016 publication-title: Nano Lett. – ident: e_1_2_8_16_1 doi: 10.1039/C5TA06398A – ident: e_1_2_8_56_1 doi: 10.1002/aenm.201902706 – ident: e_1_2_8_62_1 doi: 10.1002/adma.201706576 – ident: e_1_2_8_4_1 doi: 10.1021/ja5033259 – ident: e_1_2_8_10_1 doi: 10.1038/s41467-019-13909-5 – ident: e_1_2_8_70_1 doi: 10.1039/C7TA11280G – ident: e_1_2_8_8_1 doi: 10.1038/ncomms13938 – ident: e_1_2_8_53_1 doi: 10.1126/science.aai9081 – ident: e_1_2_8_5_1 doi: 10.1002/solr.201900389 – ident: e_1_2_8_46_1 doi: 10.1021/nl501838y – ident: e_1_2_8_54_1 doi: 10.1002/adma.201703852 – ident: e_1_2_8_6_1 doi: 10.1016/j.nanoen.2019.104099 – ident: e_1_2_8_42_1 doi: 10.1002/aenm.201502104 – ident: e_1_2_8_15_1 doi: 10.1038/s41467-018-04636-4 – ident: e_1_2_8_7_1 doi: 10.1021/acs.jpclett.6b02193 – ident: e_1_2_8_65_1 doi: 10.1021/nn401267s – ident: e_1_2_8_32_1 doi: 10.1126/sciadv.1700841 – ident: e_1_2_8_48_1 doi: 10.1038/s41467-018-05583-w – ident: e_1_2_8_45_1 doi: 10.1038/nenergy.2016.149 – ident: e_1_2_8_68_1 doi: 10.1002/adma.201901152 – ident: e_1_2_8_44_1 doi: 10.1021/acsenergylett.7b00357 – ident: e_1_2_8_36_1 doi: 10.1002/adma.201605290 – ident: e_1_2_8_19_1 doi: 10.1016/j.nanoen.2019.01.034 – ident: e_1_2_8_51_1 doi: 10.1021/acs.chemmater.6b00779 – ident: e_1_2_8_18_1 doi: 10.1038/s41467-018-03169-0 – ident: e_1_2_8_38_1 doi: 10.1021/acsenergylett.6b00495 – ident: e_1_2_8_71_1 doi: 10.1021/jp050745x – ident: e_1_2_8_1_1 doi: 10.1021/ic401215x – ident: e_1_2_8_26_1 doi: 10.1016/j.joule.2018.08.011 – ident: e_1_2_8_12_1 doi: 10.1002/aenm.201502458 – ident: e_1_2_8_20_1 doi: 10.1002/adma.201902543 – ident: e_1_2_8_31_1 doi: 10.1016/j.joule.2018.05.004 – ident: e_1_2_8_35_1 doi: 10.1016/j.scib.2019.08.017 – ident: e_1_2_8_13_1 doi: 10.1021/acs.chemmater.5b04107 – ident: e_1_2_8_14_1 doi: 10.1002/solr.201700048 – ident: e_1_2_8_33_1 doi: 10.1126/science.aag2700 – ident: e_1_2_8_59_1 doi: 10.1039/C4EE01624F – ident: e_1_2_8_57_1 doi: 10.1002/adfm.201803269 – ident: e_1_2_8_41_1 doi: 10.1039/C8EE03475C – ident: e_1_2_8_27_1 doi: 10.1021/acs.nanolett.6b00635 – ident: e_1_2_8_28_1 doi: 10.1039/C7TA11154A – ident: e_1_2_8_43_1 doi: 10.1038/ncomms8497 – ident: e_1_2_8_64_1 doi: 10.1063/1.2130396 – ident: e_1_2_8_24_1 doi: 10.1021/jacs.8b07927 – ident: e_1_2_8_60_1 doi: 10.1038/nphoton.2014.284 – ident: e_1_2_8_55_1 doi: 10.1021/jacs.6b06320 – ident: e_1_2_8_39_1 doi: 10.1038/s41560-017-0060-5 – ident: e_1_2_8_11_1 doi: 10.1039/c3ee43822h – ident: e_1_2_8_66_1 doi: 10.1002/adfm.201401557 – ident: e_1_2_8_40_1 doi: 10.1038/s41467-018-07255-1 – ident: e_1_2_8_29_1 doi: 10.1016/j.isci.2019.04.025 – ident: e_1_2_8_9_1 doi: 10.1002/solr.201600001 – ident: e_1_2_8_49_1 doi: 10.1021/acsenergylett.7b00278 – ident: e_1_2_8_17_1 doi: 10.1016/j.joule.2017.07.017 – ident: e_1_2_8_61_1 doi: 10.1039/C7EE03113K – ident: e_1_2_8_37_1 doi: 10.1039/C4SC03141E – ident: e_1_2_8_47_1 doi: 10.1021/ja504632z – ident: e_1_2_8_30_1 doi: 10.1039/C7NR09657G – ident: e_1_2_8_2_1 doi: 10.1021/jz4020162 – ident: e_1_2_8_67_1 doi: 10.1021/ja411014k – ident: e_1_2_8_50_1 doi: 10.1039/C8EE02542H – ident: e_1_2_8_3_1 doi: 10.1021/nl400349b – ident: e_1_2_8_34_1 doi: 10.1002/adma.201905143 – ident: e_1_2_8_63_1 doi: 10.1038/nphoton.2016.108 – ident: e_1_2_8_21_1 doi: 10.1021/acsenergylett.9b02604 – ident: e_1_2_8_58_1 doi: 10.1126/science.aaa9272 – ident: e_1_2_8_69_1 doi: 10.1021/acs.jpclett.5b02273 – ident: e_1_2_8_22_1 doi: 10.1002/anie.201910800 – ident: e_1_2_8_25_1 doi: 10.1038/s41467-018-06915-6 – ident: e_1_2_8_52_1 doi: 10.1039/C5EE02555A – ident: e_1_2_8_23_1 doi: 10.1016/j.joule.2018.06.013 |
SSID | ssj0017734 |
Score | 2.581268 |
Snippet | Cesium‐based inorganic perovskites have recently attracted great research focus due to their excellent optoelectronic properties and thermal stability.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Cesium Circuits Commercialization composition engineering Crystal structure Crystallization CsPbI 2.5Br 0.5 defect passivation Energy conversion efficiency Grain boundaries Grain size Materials science Maximum power operationally stable Optoelectronic devices Passivity PbI 2 Perovskites Phase composition Photovoltaic cells Solar cells Thermal stability |
Title | Composition Engineering of All‐Inorganic Perovskite Film for Efficient and Operationally Stable Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202001764 https://www.proquest.com/docview/2421353531 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58XPTgW6zWsgfBU2pem8ex9IGKVVELvYV9BcQ0LW0V9ORP8Df6S9xJ0lgFEZRcErIbNjszu9_uznwDcMSoh3nfHUNqNGC4WoMNphxqxLZwTR5Ki2Unut1L77Tnnvdpfy6KP-eHKDfc0DKy8RoNnPHJySdpKJMxRpKjT5DvISEoOmwhKrop-aMs38-PlT0LHbys_oy10bRPvlb_Oit9Qs15wJrNOJ11YLO25o4mD_XHKa-Ll280jv_5mQ1YK-AoaeT6swkLKt2C1TmSwm0Y4JBRuHaRuTdkGJNGkry_vp2leW4oQa7VePg0wQ1h0rlPBkQjYtLOSCr03EZYKsnVSI2L_cfkmWioyxNFbnF9TZoqSSY70Ou075qnRpGkwRAYU2sESgRUDwJxEHDXCjTe8lwZ8pBT4cSm4Cz2hZZ7qGGBZyPzjc-5KfWyNLC5pMpzdmEpHaZqD4glQr0sZqbkJnM1zOGhikMZ2E5MfZ8yswLGTEiRKBjMMZFGEuXcy3aE3RiV3ViB47L8KOfu-LFkdSbzqLDhSYSH5Q7Vl1UBOxPeL1-JGq1Ot3za_0ulA1jB-9wfuApL0_GjOtSoZ8prsGi71zVYbrS6F7e1TM8_ALOr-6w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB615UA58NNSsVDAhyJOaRMnzs-Bw6rb1S7tFkRbaW_Bf5EQabba3YLKiUfgVXgVHoEnYSZ_3VZCSEg9VDklcSzHnvF8Ho-_AdiSIqS8775jEA04AUqwI60vnIzrwFWJ8WS5ozs6DAcnwduxGC_Bz-YsTMUP0TrcSDPK-ZoUnBzSO5esodJkdJScgoKiMKjjKvftxVdctc3eDHs4xK847-8d7w6cOrGAo-kcqBNbHQsU3CyOVeDFiBHCwCQqUUL7mauVzCKNbU3QlIWc2FoipVyDS6mYKyNs6GO9y3CH0ogTXX_vQ8tY5UVRtZEdehRS5o0bnkiX71xt71U7eAluFyFyaeP6D-BX0ztVaMvn7fO52tbfrhFH3qruewj3a8TNupWKPIIlW6zBvQUexnU4pVmxjl5jC2_YJGPdPP_9_cewqNJfafbeTidfZuTzZv1P-SlD0M_2Sh4ONN9MFoa9O7PT2sWaXzBE8yq37IhcCGzX5vnsMZzcyP9uwEoxKewTYJ5OcOUvXaNcGSCSU4nNEhNzPxNRJKTbAaeRilTXJO2UKyRPK3ppntKwpe2wdeB1W_6soif5a8nNRsjSepqapRQP4Au8vA7wUlr-UUva7fVH7d3T__noJdwdHI8O0oPh4f4zWKXnVfjzJqzMp-f2OYK8uXpRqhWDjzctiH8ARp5VSQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RKlXlgOhLDVC6h1Y9Wdhrrx8HDhHBIqXQSC1Sbu4-pUrGiRIe4sZP4Kfwm_glnbEdEw5VpUrIJ9trazU7u_PNzuw3AJ-kiKnue-gZRANehBrsSRsKz3Ed-Sozgawjuscn8eFp9HUsxitwtzgL0_BDdBtuNDPq9Zom-NS43QfSUGkcnSSnnKAkjtq0yiN7fYVO23xvOMAR_sx5fvBz_9Br6wp4mo6BeqnVqUC9dWmqoiBFiBBHJlOZEjp0vlbSJRq7mqElizmRtSRK-QY9qZQrI2wc4n-fwXOKMFISGY9GXdwiSZo4dhxQRlkwXtBE-nz3cX8fm8EHbLuMkGsTl2_AeotNWb9RplewYqvXsLbEWPgGzmj9aPO82NIbNnGsX5b3N7fDqikUpdnIziaXc9odZvnv8owhPGYHNWMFGjomK8O-T-2s3YwsrxniXlVa9oOcbbZvy3L-Fk6fRLLvYLWaVPY9sEBn6CNL3yhfRoh5VGZdZlIeOpEkQvo98BYCLHRLZ05VNcqiIWLmBQm86ATegy9d-2lD5PHXltuL8SjaCT0vKHIeCryCHvB6jP7xl6I_yI-7u83_-egjvBgN8uLb8ORoC17S4yZPeBtWz2cX9gOioXO1Uysgg19PrfF_AKv6E0c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Composition+Engineering+of+All%E2%80%90Inorganic+Perovskite+Film+for+Efficient+and+Operationally+Stable+Solar+Cells&rft.jtitle=Advanced+functional+materials&rft.au=Tian%2C+Jingjing&rft.au=Wang%2C+Jing&rft.au=Xue%2C+Qifan&rft.au=Niu%2C+Tianqi&rft.date=2020-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=28&rft_id=info:doi/10.1002%2Fadfm.202001764&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202001764 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |