Highly Conductive Stretchable All‐Plastic Electrodes Using a Novel Dipping‐Embedded Transfer Method for High‐Performance Wearable Sensors and Semitransparent Organic Solar Cells
Conducting polymer (CP) is a key component of wearable, flexible, and semitransparent electronics. As a classic CP, highly conductive PEDOT:PSS has been achieved on glass via strong acid treatments. However, it is a great challenge to realize highly conductive stretchable films of PEDOT:PSS, due to...
Saved in:
Published in | Advanced electronic materials Vol. 3; no. 5 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conducting polymer (CP) is a key component of wearable, flexible, and semitransparent electronics. As a classic CP, highly conductive PEDOT:PSS has been achieved on glass via strong acid treatments. However, it is a great challenge to realize highly conductive stretchable films of PEDOT:PSS, due to limits of strong acid treatments and poor intrinsic stretchability of as‐cast films. Herein, a highly conductive stretchable all‐plastic electrode of CP embedded into PDMS elastomers (PEDOT:PSS–PDMS) via a dipping‐embedded transfer method is reported. The method enables large‐area PEDOT:PSS films that are transferred from quartz to PDMS. The PEDOT:PSS–PDMS films have high conductivity of 2890 S cm−1 and an enhanced stretchability of 20% strain. Underlying mechanisms of high yield of the large‐area productions, high conductivity, and improved stretchability are investigated. Furthermore, two types of devices including wearable strain sensors and semitransparent organic solar cells (OSCs) are fabricated using the films. The wearable sensors show high gauge factor of ≈22 under 20% strain and the OSCs exhibit a power conversion efficiency of 3.75% and 3.46% when lights are illuminated from PDMS and indium tin oxide, respectively.
Highly conductive stretchable all‐plastic electrodes are prepared via a novel dipping‐embedded transfer method with substantial advantages, including high yield large‐area production, little acid residue, and enhanced stretchability. The films induce 4‐fold sensitivity enhancement for wearable strain sensors and over 30% increase in power conversion efficiency for semitransparent organic solar cells. |
---|---|
AbstractList | Conducting polymer (CP) is a key component of wearable, flexible, and semitransparent electronics. As a classic CP, highly conductive PEDOT:PSS has been achieved on glass via strong acid treatments. However, it is a great challenge to realize highly conductive stretchable films of PEDOT:PSS, due to limits of strong acid treatments and poor intrinsic stretchability of as‐cast films. Herein, a highly conductive stretchable all‐plastic electrode of CP embedded into PDMS elastomers (PEDOT:PSS–PDMS) via a dipping‐embedded transfer method is reported. The method enables large‐area PEDOT:PSS films that are transferred from quartz to PDMS. The PEDOT:PSS–PDMS films have high conductivity of 2890 S cm−1 and an enhanced stretchability of 20% strain. Underlying mechanisms of high yield of the large‐area productions, high conductivity, and improved stretchability are investigated. Furthermore, two types of devices including wearable strain sensors and semitransparent organic solar cells (OSCs) are fabricated using the films. The wearable sensors show high gauge factor of ≈22 under 20% strain and the OSCs exhibit a power conversion efficiency of 3.75% and 3.46% when lights are illuminated from PDMS and indium tin oxide, respectively.
Highly conductive stretchable all‐plastic electrodes are prepared via a novel dipping‐embedded transfer method with substantial advantages, including high yield large‐area production, little acid residue, and enhanced stretchability. The films induce 4‐fold sensitivity enhancement for wearable strain sensors and over 30% increase in power conversion efficiency for semitransparent organic solar cells. Conducting polymer (CP) is a key component of wearable, flexible, and semitransparent electronics. As a classic CP, highly conductive PEDOT:PSS has been achieved on glass via strong acid treatments. However, it is a great challenge to realize highly conductive stretchable films of PEDOT:PSS, due to limits of strong acid treatments and poor intrinsic stretchability of as‐cast films. Herein, a highly conductive stretchable all‐plastic electrode of CP embedded into PDMS elastomers (PEDOT:PSS–PDMS) via a dipping‐embedded transfer method is reported. The method enables large‐area PEDOT:PSS films that are transferred from quartz to PDMS. The PEDOT:PSS–PDMS films have high conductivity of 2890 S cm −1 and an enhanced stretchability of 20% strain. Underlying mechanisms of high yield of the large‐area productions, high conductivity, and improved stretchability are investigated. Furthermore, two types of devices including wearable strain sensors and semitransparent organic solar cells (OSCs) are fabricated using the films. The wearable sensors show high gauge factor of ≈22 under 20% strain and the OSCs exhibit a power conversion efficiency of 3.75% and 3.46% when lights are illuminated from PDMS and indium tin oxide, respectively. |
Author | Liu, Shenghua Yan, Feng Fan, Xi Xu, Bingang Wang, Jinzhao Wang, Naixiang Wang, Hao |
Author_xml | – sequence: 1 givenname: Xi surname: Fan fullname: Fan, Xi organization: Hubei University – sequence: 2 givenname: Bingang surname: Xu fullname: Xu, Bingang email: tcxubg@polyu.edu.hk organization: The Hong Kong Polytechnic University – sequence: 3 givenname: Naixiang surname: Wang fullname: Wang, Naixiang organization: The Hong Kong Polytechnic University – sequence: 4 givenname: Jinzhao surname: Wang fullname: Wang, Jinzhao email: philo@hubu.edu.cn organization: Hubei University – sequence: 5 givenname: Shenghua surname: Liu fullname: Liu, Shenghua organization: The Hong Kong Polytechnic University – sequence: 6 givenname: Hao surname: Wang fullname: Wang, Hao organization: Hubei University – sequence: 7 givenname: Feng surname: Yan fullname: Yan, Feng email: apafyan@polyu.edu.hk organization: The Hong Kong Polytechnic University |
BookMark | eNqFkE1u2zAQhYkiAZq_bde8gB1SoiRzabhuEsBpCthFuxNG5MhmQZEGyTjwLkfIbXKfnKRSUzRBgSCreQ-Ybx7mHZMD5x0S8omzMWcsOwe03ThjvGRMVPwDOcq4lKPe_jx4pT-Ssxh_McZ4VeaiyI_I46VZb-yezrzTtyqZHdJlCpjUBhqLdGrt0_3DNwsxGUXnFlUKXmOk36Nxawr0q9-hpZ_Ndtv7fnXeNag1aroK4GKLgV5j2nhNWx_okDWcw9C7DpxC-gMh_Elaoos-RApO97ozaeC3ENAlehPW4Pr8pbcQ6AytjafksAUb8ezvPCGrL_PV7HK0uLm4mk0XI5VLwUcNCiklFKrAasKylk2krlooMimQN-Wk0SUWyGTRMtlAqRqBldKt0GqSCZHnJ2T8fFYFH2PAtt4G00HY15zVQ_H1UHz9r_geEP8ByiRIxrv-IWPfxuQzdmcs7t8JqafzxfUL-xsRCaIo |
CitedBy_id | crossref_primary_10_1002_rpm_20230022 crossref_primary_10_1016_j_aca_2024_343317 crossref_primary_10_1002_adma_202408456 crossref_primary_10_1038_s41598_024_76366_1 crossref_primary_10_1080_15980316_2022_2070291 crossref_primary_10_1007_s00170_022_10287_z crossref_primary_10_1007_s10854_020_03473_w crossref_primary_10_1039_D1TC04569E crossref_primary_10_1002_mame_202400041 crossref_primary_10_3390_nano11113119 crossref_primary_10_3390_s21217022 crossref_primary_10_1002_solr_202100041 crossref_primary_10_1007_s11664_022_09815_0 crossref_primary_10_1021_acsami_8b20255 crossref_primary_10_1364_OME_449830 crossref_primary_10_1002_advs_201900813 crossref_primary_10_1016_j_xcrp_2023_101335 crossref_primary_10_1002_smtd_201800070 crossref_primary_10_1016_j_compositesa_2018_10_025 crossref_primary_10_1021_acsaem_4c01493 crossref_primary_10_1021_acs_macromol_3c01349 crossref_primary_10_1039_D0TA07934K crossref_primary_10_1021_acsami_3c09984 crossref_primary_10_1002_smll_202206309 crossref_primary_10_1063_5_0088913 crossref_primary_10_1021_acsami_8b07287 crossref_primary_10_1002_solr_202200769 crossref_primary_10_1063_1_5122249 crossref_primary_10_1002_adfm_202009399 crossref_primary_10_1002_admt_201800030 crossref_primary_10_1002_nano_202000215 crossref_primary_10_1038_s41528_023_00260_5 crossref_primary_10_1002_aelm_202001242 crossref_primary_10_1002_adma_201900904 crossref_primary_10_1039_D3TA03213B crossref_primary_10_1021_acsami_0c18518 crossref_primary_10_1007_s40005_020_00485_w crossref_primary_10_1039_D2MA00940D crossref_primary_10_1021_acsanm_3c02820 crossref_primary_10_3390_s20164484 crossref_primary_10_1088_1361_6463_ab83be crossref_primary_10_1039_C8QM00614H crossref_primary_10_1002_solr_201900543 crossref_primary_10_1002_adma_201903649 crossref_primary_10_1002_smm2_1059 crossref_primary_10_1002_mame_202100283 crossref_primary_10_1002_pat_4989 crossref_primary_10_1002_aelm_201901360 crossref_primary_10_1002_aelm_202200512 crossref_primary_10_1039_C9TC06865A crossref_primary_10_1002_admt_202000960 crossref_primary_10_1002_aelm_201800461 crossref_primary_10_1002_cnma_202200374 crossref_primary_10_1021_acsapm_9b00757 crossref_primary_10_1002_aenm_202201042 crossref_primary_10_1002_adma_201806133 crossref_primary_10_1039_C7QM00497D crossref_primary_10_1039_D2CC04205C crossref_primary_10_3390_chemosensors10030097 crossref_primary_10_1063_1_5085013 crossref_primary_10_1039_D0TA11831A crossref_primary_10_1002_ente_202100595 crossref_primary_10_1016_j_tsf_2021_138698 crossref_primary_10_1016_j_nanoen_2020_105376 crossref_primary_10_1016_j_orgel_2022_106498 |
Cites_doi | 10.1038/ncomms9011 10.1039/c4ta00301b 10.1002/adma.201500078 10.1021/nn204675r 10.1021/acsami.5b02830 10.1002/adfm.201500628 10.1021/am502233y 10.1002/adma.201304611 10.1021/am500769k 10.1002/adma.201201587 10.1021/acsami.5b03309 10.1002/adfm.201401758 10.1126/science.aaa7952 10.1002/adfm.201501000 10.1021/acsami.6b01389 10.1038/nnano.2010.232 10.1038/nphoton.2013.251 10.1021/acsami.5b04693 10.1039/C5NR06851G 10.1021/acsami.5b04492 10.1002/adma.201200055 10.1021/acsami.5b09337 10.1038/nmat4388 10.1002/adma.201400349 10.1002/adma.201104795 10.1021/acsami.5b08276 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION |
DOI | 10.1002/aelm.201600471 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2199-160X |
EndPage | n/a |
ExternalDocumentID | 10_1002_aelm_201600471 AELM201600471 |
Genre | article |
GrantInformation_xml | – fundername: Nature Science Foundation of Hubei Province of China funderid: 2015CFB354 – fundername: Hong Kong Polytechnic University funderid: G‐YBFC |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAFWJ AAMMB AAXRX AAZKR ABCUV ABJNI ACAHQ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN AEFGJ AENEX AFBPY AFPKN AGXDD AIACR AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG EBS EJD GODZA GROUPED_DOAJ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI M~E O9- P2W ROL SUPJJ WBKPD WOHZO WXSBR ZZTAW AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION |
ID | FETCH-LOGICAL-c3941-be4999a5c5e7802f089d7fa5294e1b68bd6e5e095f09ba6cb4e7cdf4dc824433 |
ISSN | 2199-160X |
IngestDate | Tue Jul 01 00:35:13 EDT 2025 Thu Apr 24 23:01:29 EDT 2025 Wed Aug 20 07:26:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3941-be4999a5c5e7802f089d7fa5294e1b68bd6e5e095f09ba6cb4e7cdf4dc824433 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1002_aelm_201600471 crossref_citationtrail_10_1002_aelm_201600471 wiley_primary_10_1002_aelm_201600471_AELM201600471 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2017 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: May 2017 |
PublicationDecade | 2010 |
PublicationTitle | Advanced electronic materials |
PublicationYear | 2017 |
References | 2015; 25 2015; 14 2015; 6 2015; 27 2014; 2 2014; 26 2015; 349 2013; 7 2012; 6 2012; 24 2010; 5 2015; 7 2014; 6 2016; 8 e_1_2_6_10_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_26_1 |
References_xml | – volume: 7 start-page: 16287 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 769 year: 2013 publication-title: Nat. Photonics – volume: 349 start-page: 400 year: 2015 publication-title: Science – volume: 8 start-page: 14029 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 10930 year: 2014 publication-title: J. Mater. Chem. A – volume: 7 start-page: 14089 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 853 year: 2010 publication-title: Nat. Nanotechnol. – volume: 25 start-page: 4228 year: 2015 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 1789 year: 2016 publication-title: Nanoscale – volume: 14 start-page: 1032 year: 2015 publication-title: Nat. Mater. – volume: 24 start-page: 5979 year: 2012 publication-title: Adv. Mater. – volume: 7 start-page: 26195 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 810 year: 2012 publication-title: ACS Nano – volume: 8 start-page: 1733 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 427 year: 2015 publication-title: Adv. Funct. Mater. – volume: 24 start-page: 2874 year: 2012 publication-title: Adv. Mater. – volume: 26 start-page: 2268 year: 2014 publication-title: Adv. Mater. – volume: 24 start-page: 2436 year: 2012 publication-title: Adv. Mater. – volume: 26 start-page: 5239 year: 2014 publication-title: Adv. Mater. – volume: 25 start-page: 3114 year: 2015 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 6954 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 8011 year: 2015 publication-title: Nat. Commun. – volume: 6 start-page: 12380 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 18415 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 2317 year: 2015 publication-title: Adv. Mater. – volume: 7 start-page: 15214 year: 2015 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_6_4_1 doi: 10.1038/ncomms9011 – ident: e_1_2_6_17_1 doi: 10.1039/c4ta00301b – ident: e_1_2_6_9_1 doi: 10.1002/adma.201500078 – ident: e_1_2_6_12_1 doi: 10.1021/nn204675r – ident: e_1_2_6_10_1 doi: 10.1021/acsami.5b02830 – ident: e_1_2_6_13_1 doi: 10.1002/adfm.201500628 – ident: e_1_2_6_16_1 doi: 10.1021/am502233y – ident: e_1_2_6_21_1 doi: 10.1002/adma.201304611 – ident: e_1_2_6_25_1 doi: 10.1021/am500769k – ident: e_1_2_6_11_1 doi: 10.1002/adma.201201587 – ident: e_1_2_6_22_1 doi: 10.1021/acsami.5b03309 – ident: e_1_2_6_24_1 doi: 10.1002/adfm.201401758 – ident: e_1_2_6_1_1 doi: 10.1126/science.aaa7952 – ident: e_1_2_6_2_1 doi: 10.1002/adfm.201501000 – ident: e_1_2_6_26_1 doi: 10.1021/acsami.6b01389 – ident: e_1_2_6_18_1 doi: 10.1038/nnano.2010.232 – ident: e_1_2_6_8_1 doi: 10.1038/nphoton.2013.251 – ident: e_1_2_6_14_1 doi: 10.1021/acsami.5b04693 – ident: e_1_2_6_7_1 doi: 10.1039/C5NR06851G – ident: e_1_2_6_23_1 doi: 10.1021/acsami.5b04492 – ident: e_1_2_6_3_1 doi: 10.1002/adma.201200055 – ident: e_1_2_6_15_1 doi: 10.1021/acsami.5b09337 – ident: e_1_2_6_6_1 doi: 10.1038/nmat4388 – ident: e_1_2_6_5_1 doi: 10.1002/adma.201400349 – ident: e_1_2_6_20_1 doi: 10.1002/adma.201104795 – ident: e_1_2_6_19_1 doi: 10.1021/acsami.5b08276 |
SSID | ssj0001763453 |
Score | 2.3164496 |
Snippet | Conducting polymer (CP) is a key component of wearable, flexible, and semitransparent electronics. As a classic CP, highly conductive PEDOT:PSS has been... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | flexible electronics organic solar cells PEDOT:PSS wearable strain sensors |
Title | Highly Conductive Stretchable All‐Plastic Electrodes Using a Novel Dipping‐Embedded Transfer Method for High‐Performance Wearable Sensors and Semitransparent Organic Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.201600471 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6F9MIFgQBRStEckDhEBsder-1jVAVVFY2QmkDEJfKu1xDJdRBNEOqpj8Db8D68AK_AzK69diD89WJFm_Wu7Pk8P_bMN4w9EalOKPDwyLh5HCMIL1Gx9OJQqWEc-8OioELh04k4nvGTeTTv9b53spY2a_lMXe6sK7mOVHEM5UpVsv8hWbcoDuBvlC8eUcJ4_CcZU5IG0ROvKmJtpRwg-siMcjD1UKOydKkMr9BJJmrWse16k-uLgU0WyAaT1SdNqo-IGt65E8bnUqNOyi37eaGJ7Yd6TZu0RNq3XbpTevAGnxuz9xlGx9TGxySG6vPl2nCoZ4YKypZ_qsEZRdWDI12WF10XedRkJXQ69KBbbe-ng5t9bztfNgPzjUEqNfiubbH5SmA12SRbfl7uGD9ZVpfvs1X3zQdaU5dnaBUkKtvUGwp_bm3ZjrFaw4cdIEcdU-8M4S92xPLSZroksgJczue2Ucw2YbebGf15ruUXHr88df_fYHsBxjVBn-2NXs_eztrXgqjvueFOdVfSUI36wfPtTbZcqW5oZXyj6W12qw5qYGQReof1dHWXfbXohBad0EEnIDq_XX2pcQktLsHgEjIwuIQalzi1QSQ0iASLSED0Ae1Fy7VYhAaLUGMREIvwExahxiIYLILB4j02fTGeHh17dZsQT4UpH3pSU9SeRSrSceIHhZ-keVxkUZByPZQikbnQkcZQovBTmQkluY5VXvBcJejbhuF91q9WlX7AIJZ5ECnBFZeCJ0JKUQRa5kmgeCjyNNxnXnPDF6qm0KdOLuXCkn8HCxLQwglonz118z9Y8pjfzgyM_P4ybbEFoofXOemA3WyfpUesv_640YfoV6_l4xqLPwAs4c71 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NattAEF6Cc0gvJaEpTZu0cyjktERarVaro3Ed3NY2hdht6EVof1QCilxsJ5BbHiFv0_fpk2Rm5Z_mUAq9STC7CzuanW9WM98w9l7lXlPgwcm5cYkRBNc2MzxLrI2zLIqrigqFR2M1mMpPl-k6m5BqYVp-iM2FG1lGOK_JwOlC-mzLGlr6mkrJY0WMhxgA7RK00R222_06_T7dXrSgBcnARonGmXMUv1yTN0bi7OkkT5zTn2A1eJvzffZ8BROh2-r1gO345gX7RUkZ9R30Zg2xtOI5BfRTGfed6p-gW9e_7x--IBzGQdBv-9s4v4CQFgAljGe3voYPgZLhB4r2r43Hc8dBcFiVn8Mo9JMGBLJAa9F028IC-IZWEVa6wNh3Nl9A2Th8vr5aBoZ0KitbQlvcaeGCYmbo-bpeHLLJeX_SG_BV4wVuk1zG3HiKg8rUpj7TkaginbusKlORSx8bpY1TPvUIzqooN6WyRvrMuko6qxEtJMlL1mlmjX_FIDNOpFZJK42SWhmjKuGN08LKRLk8OWJ8veGFXZGSU2-MumjplEVBCio2Cjpipxv5ny0dx18lRdDfP8SKbn842ry9_p9B79jeYDIaFsOP489v2DNBfj9kRB6zznJ-408QtSzN29V3-Qi--Oo9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1faxQxEA_Sgvgiior17zwIPoXuZrPZ3cfjekfV3lFoTw9flk0ykcJ2r9ydgm9-BL-N38dP4kz2etc-iODbLkwSyGQyM0l-vxHijamw5MRDsnOTmjIIWbrCyiJzLi2KJA2BgcKTqTme6ffzfH4Dxd_zQ2wP3Ngy4n7NBn7lw-GONLTBlpHkqWHCQ8p_9pkqj9b1_uDj7PNsd85CBqQjGSXZZiVJfH7N3Ziow9ud3PJNN2PV6GzGD8T9TZQIg16tD8Ud7B6JX_wmo_0Ow0XHJK20TQHfKdO0M_wJBm37-8fPU4qGqRGM-vI2HlcQXwVAA9PFN2zhKDIyfCHR0aVF2nY8RH8VcAmTWE4aKI4FHou72-EK4BMZRRzpjFLfxXIFTefp-_JiHQnSGVW2hh7b6eCMU2YYYtuuHovz8eh8eCw3dRekyyqdSoucBjW5y7EoExWSsvJFaHJVaUytKa03mCPFZiGpbGOc1Vg4H7R3JQULWfZE7HWLDp8KKKxXuTPaaWt0aaw1QaH1pXI6M77KDoS8nvDabTjJuTRGW_dsyqpmBdVbBR2It1v5q56N46-SKurvH2L1YHQy2f49-59Gr8Xd06NxffJu-uG5uKfY68f3kC_E3nr5FV9SzLK2rzbL8g9ha-lm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Conductive+Stretchable+All%E2%80%90Plastic+Electrodes+Using+a+Novel+Dipping%E2%80%90Embedded+Transfer+Method+for+High%E2%80%90Performance+Wearable+Sensors+and+Semitransparent+Organic+Solar+Cells&rft.jtitle=Advanced+electronic+materials&rft.au=Fan%2C+Xi&rft.au=Xu%2C+Bingang&rft.au=Wang%2C+Naixiang&rft.au=Wang%2C+Jinzhao&rft.date=2017-05-01&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=3&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.201600471&rft.externalDBID=10.1002%252Faelm.201600471&rft.externalDocID=AELM201600471 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon |