Highly Conductive Stretchable All‐Plastic Electrodes Using a Novel Dipping‐Embedded Transfer Method for High‐Performance Wearable Sensors and Semitransparent Organic Solar Cells

Conducting polymer (CP) is a key component of wearable, flexible, and semitransparent electronics. As a classic CP, highly conductive PEDOT:PSS has been achieved on glass via strong acid treatments. However, it is a great challenge to realize highly conductive stretchable films of PEDOT:PSS, due to...

Full description

Saved in:
Bibliographic Details
Published inAdvanced electronic materials Vol. 3; no. 5
Main Authors Fan, Xi, Xu, Bingang, Wang, Naixiang, Wang, Jinzhao, Liu, Shenghua, Wang, Hao, Yan, Feng
Format Journal Article
LanguageEnglish
Published 01.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conducting polymer (CP) is a key component of wearable, flexible, and semitransparent electronics. As a classic CP, highly conductive PEDOT:PSS has been achieved on glass via strong acid treatments. However, it is a great challenge to realize highly conductive stretchable films of PEDOT:PSS, due to limits of strong acid treatments and poor intrinsic stretchability of as‐cast films. Herein, a highly conductive stretchable all‐plastic electrode of CP embedded into PDMS elastomers (PEDOT:PSS–PDMS) via a dipping‐embedded transfer method is reported. The method enables large‐area PEDOT:PSS films that are transferred from quartz to PDMS. The PEDOT:PSS–PDMS films have high conductivity of 2890 S cm−1 and an enhanced stretchability of 20% strain. Underlying mechanisms of high yield of the large‐area productions, high conductivity, and improved stretchability are investigated. Furthermore, two types of devices including wearable strain sensors and semitransparent organic solar cells (OSCs) are fabricated using the films. The wearable sensors show high gauge factor of ≈22 under 20% strain and the OSCs exhibit a power conversion efficiency of 3.75% and 3.46% when lights are illuminated from PDMS and indium tin oxide, respectively. Highly conductive stretchable all‐plastic electrodes are prepared via a novel dipping‐embedded transfer method with substantial advantages, including high yield large‐area production, little acid residue, and enhanced stretchability. The films induce 4‐fold sensitivity enhancement for wearable strain sensors and over 30% increase in power conversion efficiency for semitransparent organic solar cells.
AbstractList Conducting polymer (CP) is a key component of wearable, flexible, and semitransparent electronics. As a classic CP, highly conductive PEDOT:PSS has been achieved on glass via strong acid treatments. However, it is a great challenge to realize highly conductive stretchable films of PEDOT:PSS, due to limits of strong acid treatments and poor intrinsic stretchability of as‐cast films. Herein, a highly conductive stretchable all‐plastic electrode of CP embedded into PDMS elastomers (PEDOT:PSS–PDMS) via a dipping‐embedded transfer method is reported. The method enables large‐area PEDOT:PSS films that are transferred from quartz to PDMS. The PEDOT:PSS–PDMS films have high conductivity of 2890 S cm−1 and an enhanced stretchability of 20% strain. Underlying mechanisms of high yield of the large‐area productions, high conductivity, and improved stretchability are investigated. Furthermore, two types of devices including wearable strain sensors and semitransparent organic solar cells (OSCs) are fabricated using the films. The wearable sensors show high gauge factor of ≈22 under 20% strain and the OSCs exhibit a power conversion efficiency of 3.75% and 3.46% when lights are illuminated from PDMS and indium tin oxide, respectively. Highly conductive stretchable all‐plastic electrodes are prepared via a novel dipping‐embedded transfer method with substantial advantages, including high yield large‐area production, little acid residue, and enhanced stretchability. The films induce 4‐fold sensitivity enhancement for wearable strain sensors and over 30% increase in power conversion efficiency for semitransparent organic solar cells.
Conducting polymer (CP) is a key component of wearable, flexible, and semitransparent electronics. As a classic CP, highly conductive PEDOT:PSS has been achieved on glass via strong acid treatments. However, it is a great challenge to realize highly conductive stretchable films of PEDOT:PSS, due to limits of strong acid treatments and poor intrinsic stretchability of as‐cast films. Herein, a highly conductive stretchable all‐plastic electrode of CP embedded into PDMS elastomers (PEDOT:PSS–PDMS) via a dipping‐embedded transfer method is reported. The method enables large‐area PEDOT:PSS films that are transferred from quartz to PDMS. The PEDOT:PSS–PDMS films have high conductivity of 2890 S cm −1 and an enhanced stretchability of 20% strain. Underlying mechanisms of high yield of the large‐area productions, high conductivity, and improved stretchability are investigated. Furthermore, two types of devices including wearable strain sensors and semitransparent organic solar cells (OSCs) are fabricated using the films. The wearable sensors show high gauge factor of ≈22 under 20% strain and the OSCs exhibit a power conversion efficiency of 3.75% and 3.46% when lights are illuminated from PDMS and indium tin oxide, respectively.
Author Liu, Shenghua
Yan, Feng
Fan, Xi
Xu, Bingang
Wang, Jinzhao
Wang, Naixiang
Wang, Hao
Author_xml – sequence: 1
  givenname: Xi
  surname: Fan
  fullname: Fan, Xi
  organization: Hubei University
– sequence: 2
  givenname: Bingang
  surname: Xu
  fullname: Xu, Bingang
  email: tcxubg@polyu.edu.hk
  organization: The Hong Kong Polytechnic University
– sequence: 3
  givenname: Naixiang
  surname: Wang
  fullname: Wang, Naixiang
  organization: The Hong Kong Polytechnic University
– sequence: 4
  givenname: Jinzhao
  surname: Wang
  fullname: Wang, Jinzhao
  email: philo@hubu.edu.cn
  organization: Hubei University
– sequence: 5
  givenname: Shenghua
  surname: Liu
  fullname: Liu, Shenghua
  organization: The Hong Kong Polytechnic University
– sequence: 6
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  organization: Hubei University
– sequence: 7
  givenname: Feng
  surname: Yan
  fullname: Yan, Feng
  email: apafyan@polyu.edu.hk
  organization: The Hong Kong Polytechnic University
BookMark eNqFkE1u2zAQhYkiAZq_bde8gB1SoiRzabhuEsBpCthFuxNG5MhmQZEGyTjwLkfIbXKfnKRSUzRBgSCreQ-Ybx7mHZMD5x0S8omzMWcsOwe03ThjvGRMVPwDOcq4lKPe_jx4pT-Ssxh_McZ4VeaiyI_I46VZb-yezrzTtyqZHdJlCpjUBhqLdGrt0_3DNwsxGUXnFlUKXmOk36Nxawr0q9-hpZ_Ndtv7fnXeNag1aroK4GKLgV5j2nhNWx_okDWcw9C7DpxC-gMh_Elaoos-RApO97ozaeC3ENAlehPW4Pr8pbcQ6AytjafksAUb8ezvPCGrL_PV7HK0uLm4mk0XI5VLwUcNCiklFKrAasKylk2krlooMimQN-Wk0SUWyGTRMtlAqRqBldKt0GqSCZHnJ2T8fFYFH2PAtt4G00HY15zVQ_H1UHz9r_geEP8ByiRIxrv-IWPfxuQzdmcs7t8JqafzxfUL-xsRCaIo
CitedBy_id crossref_primary_10_1002_rpm_20230022
crossref_primary_10_1016_j_aca_2024_343317
crossref_primary_10_1002_adma_202408456
crossref_primary_10_1038_s41598_024_76366_1
crossref_primary_10_1080_15980316_2022_2070291
crossref_primary_10_1007_s00170_022_10287_z
crossref_primary_10_1007_s10854_020_03473_w
crossref_primary_10_1039_D1TC04569E
crossref_primary_10_1002_mame_202400041
crossref_primary_10_3390_nano11113119
crossref_primary_10_3390_s21217022
crossref_primary_10_1002_solr_202100041
crossref_primary_10_1007_s11664_022_09815_0
crossref_primary_10_1021_acsami_8b20255
crossref_primary_10_1364_OME_449830
crossref_primary_10_1002_advs_201900813
crossref_primary_10_1016_j_xcrp_2023_101335
crossref_primary_10_1002_smtd_201800070
crossref_primary_10_1016_j_compositesa_2018_10_025
crossref_primary_10_1021_acsaem_4c01493
crossref_primary_10_1021_acs_macromol_3c01349
crossref_primary_10_1039_D0TA07934K
crossref_primary_10_1021_acsami_3c09984
crossref_primary_10_1002_smll_202206309
crossref_primary_10_1063_5_0088913
crossref_primary_10_1021_acsami_8b07287
crossref_primary_10_1002_solr_202200769
crossref_primary_10_1063_1_5122249
crossref_primary_10_1002_adfm_202009399
crossref_primary_10_1002_admt_201800030
crossref_primary_10_1002_nano_202000215
crossref_primary_10_1038_s41528_023_00260_5
crossref_primary_10_1002_aelm_202001242
crossref_primary_10_1002_adma_201900904
crossref_primary_10_1039_D3TA03213B
crossref_primary_10_1021_acsami_0c18518
crossref_primary_10_1007_s40005_020_00485_w
crossref_primary_10_1039_D2MA00940D
crossref_primary_10_1021_acsanm_3c02820
crossref_primary_10_3390_s20164484
crossref_primary_10_1088_1361_6463_ab83be
crossref_primary_10_1039_C8QM00614H
crossref_primary_10_1002_solr_201900543
crossref_primary_10_1002_adma_201903649
crossref_primary_10_1002_smm2_1059
crossref_primary_10_1002_mame_202100283
crossref_primary_10_1002_pat_4989
crossref_primary_10_1002_aelm_201901360
crossref_primary_10_1002_aelm_202200512
crossref_primary_10_1039_C9TC06865A
crossref_primary_10_1002_admt_202000960
crossref_primary_10_1002_aelm_201800461
crossref_primary_10_1002_cnma_202200374
crossref_primary_10_1021_acsapm_9b00757
crossref_primary_10_1002_aenm_202201042
crossref_primary_10_1002_adma_201806133
crossref_primary_10_1039_C7QM00497D
crossref_primary_10_1039_D2CC04205C
crossref_primary_10_3390_chemosensors10030097
crossref_primary_10_1063_1_5085013
crossref_primary_10_1039_D0TA11831A
crossref_primary_10_1002_ente_202100595
crossref_primary_10_1016_j_tsf_2021_138698
crossref_primary_10_1016_j_nanoen_2020_105376
crossref_primary_10_1016_j_orgel_2022_106498
Cites_doi 10.1038/ncomms9011
10.1039/c4ta00301b
10.1002/adma.201500078
10.1021/nn204675r
10.1021/acsami.5b02830
10.1002/adfm.201500628
10.1021/am502233y
10.1002/adma.201304611
10.1021/am500769k
10.1002/adma.201201587
10.1021/acsami.5b03309
10.1002/adfm.201401758
10.1126/science.aaa7952
10.1002/adfm.201501000
10.1021/acsami.6b01389
10.1038/nnano.2010.232
10.1038/nphoton.2013.251
10.1021/acsami.5b04693
10.1039/C5NR06851G
10.1021/acsami.5b04492
10.1002/adma.201200055
10.1021/acsami.5b09337
10.1038/nmat4388
10.1002/adma.201400349
10.1002/adma.201104795
10.1021/acsami.5b08276
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
DOI 10.1002/aelm.201600471
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2199-160X
EndPage n/a
ExternalDocumentID 10_1002_aelm_201600471
AELM201600471
Genre article
GrantInformation_xml – fundername: Nature Science Foundation of Hubei Province of China
  funderid: 2015CFB354
– fundername: Hong Kong Polytechnic University
  funderid: G‐YBFC
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAFWJ
AAMMB
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AFBPY
AFPKN
AGXDD
AIACR
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
EBS
EJD
GODZA
GROUPED_DOAJ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
M~E
O9-
P2W
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
ID FETCH-LOGICAL-c3941-be4999a5c5e7802f089d7fa5294e1b68bd6e5e095f09ba6cb4e7cdf4dc824433
ISSN 2199-160X
IngestDate Tue Jul 01 00:35:13 EDT 2025
Thu Apr 24 23:01:29 EDT 2025
Wed Aug 20 07:26:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3941-be4999a5c5e7802f089d7fa5294e1b68bd6e5e095f09ba6cb4e7cdf4dc824433
PageCount 7
ParticipantIDs crossref_primary_10_1002_aelm_201600471
crossref_citationtrail_10_1002_aelm_201600471
wiley_primary_10_1002_aelm_201600471_AELM201600471
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2017
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: May 2017
PublicationDecade 2010
PublicationTitle Advanced electronic materials
PublicationYear 2017
References 2015; 25
2015; 14
2015; 6
2015; 27
2014; 2
2014; 26
2015; 349
2013; 7
2012; 6
2012; 24
2010; 5
2015; 7
2014; 6
2016; 8
e_1_2_6_10_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_26_1
References_xml – volume: 7
  start-page: 16287
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 769
  year: 2013
  publication-title: Nat. Photonics
– volume: 349
  start-page: 400
  year: 2015
  publication-title: Science
– volume: 8
  start-page: 14029
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 10930
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 14089
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 853
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 25
  start-page: 4228
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 1789
  year: 2016
  publication-title: Nanoscale
– volume: 14
  start-page: 1032
  year: 2015
  publication-title: Nat. Mater.
– volume: 24
  start-page: 5979
  year: 2012
  publication-title: Adv. Mater.
– volume: 7
  start-page: 26195
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 810
  year: 2012
  publication-title: ACS Nano
– volume: 8
  start-page: 1733
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 427
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 24
  start-page: 2874
  year: 2012
  publication-title: Adv. Mater.
– volume: 26
  start-page: 2268
  year: 2014
  publication-title: Adv. Mater.
– volume: 24
  start-page: 2436
  year: 2012
  publication-title: Adv. Mater.
– volume: 26
  start-page: 5239
  year: 2014
  publication-title: Adv. Mater.
– volume: 25
  start-page: 3114
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 6954
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 8011
  year: 2015
  publication-title: Nat. Commun.
– volume: 6
  start-page: 12380
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 18415
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 2317
  year: 2015
  publication-title: Adv. Mater.
– volume: 7
  start-page: 15214
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_6_4_1
  doi: 10.1038/ncomms9011
– ident: e_1_2_6_17_1
  doi: 10.1039/c4ta00301b
– ident: e_1_2_6_9_1
  doi: 10.1002/adma.201500078
– ident: e_1_2_6_12_1
  doi: 10.1021/nn204675r
– ident: e_1_2_6_10_1
  doi: 10.1021/acsami.5b02830
– ident: e_1_2_6_13_1
  doi: 10.1002/adfm.201500628
– ident: e_1_2_6_16_1
  doi: 10.1021/am502233y
– ident: e_1_2_6_21_1
  doi: 10.1002/adma.201304611
– ident: e_1_2_6_25_1
  doi: 10.1021/am500769k
– ident: e_1_2_6_11_1
  doi: 10.1002/adma.201201587
– ident: e_1_2_6_22_1
  doi: 10.1021/acsami.5b03309
– ident: e_1_2_6_24_1
  doi: 10.1002/adfm.201401758
– ident: e_1_2_6_1_1
  doi: 10.1126/science.aaa7952
– ident: e_1_2_6_2_1
  doi: 10.1002/adfm.201501000
– ident: e_1_2_6_26_1
  doi: 10.1021/acsami.6b01389
– ident: e_1_2_6_18_1
  doi: 10.1038/nnano.2010.232
– ident: e_1_2_6_8_1
  doi: 10.1038/nphoton.2013.251
– ident: e_1_2_6_14_1
  doi: 10.1021/acsami.5b04693
– ident: e_1_2_6_7_1
  doi: 10.1039/C5NR06851G
– ident: e_1_2_6_23_1
  doi: 10.1021/acsami.5b04492
– ident: e_1_2_6_3_1
  doi: 10.1002/adma.201200055
– ident: e_1_2_6_15_1
  doi: 10.1021/acsami.5b09337
– ident: e_1_2_6_6_1
  doi: 10.1038/nmat4388
– ident: e_1_2_6_5_1
  doi: 10.1002/adma.201400349
– ident: e_1_2_6_20_1
  doi: 10.1002/adma.201104795
– ident: e_1_2_6_19_1
  doi: 10.1021/acsami.5b08276
SSID ssj0001763453
Score 2.3164496
Snippet Conducting polymer (CP) is a key component of wearable, flexible, and semitransparent electronics. As a classic CP, highly conductive PEDOT:PSS has been...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms flexible electronics
organic solar cells
PEDOT:PSS
wearable strain sensors
Title Highly Conductive Stretchable All‐Plastic Electrodes Using a Novel Dipping‐Embedded Transfer Method for High‐Performance Wearable Sensors and Semitransparent Organic Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.201600471
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6F9MIFgQBRStEckDhEBsder-1jVAVVFY2QmkDEJfKu1xDJdRBNEOqpj8Db8D68AK_AzK69diD89WJFm_Wu7Pk8P_bMN4w9EalOKPDwyLh5HCMIL1Gx9OJQqWEc-8OioELh04k4nvGTeTTv9b53spY2a_lMXe6sK7mOVHEM5UpVsv8hWbcoDuBvlC8eUcJ4_CcZU5IG0ROvKmJtpRwg-siMcjD1UKOydKkMr9BJJmrWse16k-uLgU0WyAaT1SdNqo-IGt65E8bnUqNOyi37eaGJ7Yd6TZu0RNq3XbpTevAGnxuz9xlGx9TGxySG6vPl2nCoZ4YKypZ_qsEZRdWDI12WF10XedRkJXQ69KBbbe-ng5t9bztfNgPzjUEqNfiubbH5SmA12SRbfl7uGD9ZVpfvs1X3zQdaU5dnaBUkKtvUGwp_bm3ZjrFaw4cdIEcdU-8M4S92xPLSZroksgJczue2Ucw2YbebGf15ruUXHr88df_fYHsBxjVBn-2NXs_eztrXgqjvueFOdVfSUI36wfPtTbZcqW5oZXyj6W12qw5qYGQReof1dHWXfbXohBad0EEnIDq_XX2pcQktLsHgEjIwuIQalzi1QSQ0iASLSED0Ae1Fy7VYhAaLUGMREIvwExahxiIYLILB4j02fTGeHh17dZsQT4UpH3pSU9SeRSrSceIHhZ-keVxkUZByPZQikbnQkcZQovBTmQkluY5VXvBcJejbhuF91q9WlX7AIJZ5ECnBFZeCJ0JKUQRa5kmgeCjyNNxnXnPDF6qm0KdOLuXCkn8HCxLQwglonz118z9Y8pjfzgyM_P4ybbEFoofXOemA3WyfpUesv_640YfoV6_l4xqLPwAs4c71
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NattAEF6Cc0gvJaEpTZu0cyjktERarVaro3Ed3NY2hdht6EVof1QCilxsJ5BbHiFv0_fpk2Rm5Z_mUAq9STC7CzuanW9WM98w9l7lXlPgwcm5cYkRBNc2MzxLrI2zLIqrigqFR2M1mMpPl-k6m5BqYVp-iM2FG1lGOK_JwOlC-mzLGlr6mkrJY0WMhxgA7RK00R222_06_T7dXrSgBcnARonGmXMUv1yTN0bi7OkkT5zTn2A1eJvzffZ8BROh2-r1gO345gX7RUkZ9R30Zg2xtOI5BfRTGfed6p-gW9e_7x--IBzGQdBv-9s4v4CQFgAljGe3voYPgZLhB4r2r43Hc8dBcFiVn8Mo9JMGBLJAa9F028IC-IZWEVa6wNh3Nl9A2Th8vr5aBoZ0KitbQlvcaeGCYmbo-bpeHLLJeX_SG_BV4wVuk1zG3HiKg8rUpj7TkaginbusKlORSx8bpY1TPvUIzqooN6WyRvrMuko6qxEtJMlL1mlmjX_FIDNOpFZJK42SWhmjKuGN08LKRLk8OWJ8veGFXZGSU2-MumjplEVBCio2Cjpipxv5ny0dx18lRdDfP8SKbn842ry9_p9B79jeYDIaFsOP489v2DNBfj9kRB6zznJ-408QtSzN29V3-Qi--Oo9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1faxQxEA_Sgvgiior17zwIPoXuZrPZ3cfjekfV3lFoTw9flk0ykcJ2r9ydgm9-BL-N38dP4kz2etc-iODbLkwSyGQyM0l-vxHijamw5MRDsnOTmjIIWbrCyiJzLi2KJA2BgcKTqTme6ffzfH4Dxd_zQ2wP3Ngy4n7NBn7lw-GONLTBlpHkqWHCQ8p_9pkqj9b1_uDj7PNsd85CBqQjGSXZZiVJfH7N3Ziow9ud3PJNN2PV6GzGD8T9TZQIg16tD8Ud7B6JX_wmo_0Ow0XHJK20TQHfKdO0M_wJBm37-8fPU4qGqRGM-vI2HlcQXwVAA9PFN2zhKDIyfCHR0aVF2nY8RH8VcAmTWE4aKI4FHou72-EK4BMZRRzpjFLfxXIFTefp-_JiHQnSGVW2hh7b6eCMU2YYYtuuHovz8eh8eCw3dRekyyqdSoucBjW5y7EoExWSsvJFaHJVaUytKa03mCPFZiGpbGOc1Vg4H7R3JQULWfZE7HWLDp8KKKxXuTPaaWt0aaw1QaH1pXI6M77KDoS8nvDabTjJuTRGW_dsyqpmBdVbBR2It1v5q56N46-SKurvH2L1YHQy2f49-59Gr8Xd06NxffJu-uG5uKfY68f3kC_E3nr5FV9SzLK2rzbL8g9ha-lm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Conductive+Stretchable+All%E2%80%90Plastic+Electrodes+Using+a+Novel+Dipping%E2%80%90Embedded+Transfer+Method+for+High%E2%80%90Performance+Wearable+Sensors+and+Semitransparent+Organic+Solar+Cells&rft.jtitle=Advanced+electronic+materials&rft.au=Fan%2C+Xi&rft.au=Xu%2C+Bingang&rft.au=Wang%2C+Naixiang&rft.au=Wang%2C+Jinzhao&rft.date=2017-05-01&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=3&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faelm.201600471&rft.externalDBID=10.1002%252Faelm.201600471&rft.externalDocID=AELM201600471
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon