Unraveling Activity and Decomposition Pathways of [FeFe] Hydrogenase Mimics Covalently Bonded to Silicon Photoelectrodes

The presence of molecular monolayers on semiconductor surfaces can improve the stability of semiconductor interfaces by inhibiting the growth of native oxides and defects which affect the materials’ electronic properties. The development of catalytically active passivated interfaces on semiconductor...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials interfaces Vol. 8; no. 10
Main Authors Williams, Nicholas B., Nash, Aaron, Yamamoto, Nobuyuki, Patrick, Margaret, Tran, Ich C., Gu, Jing
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The presence of molecular monolayers on semiconductor surfaces can improve the stability of semiconductor interfaces by inhibiting the growth of native oxides and defects which affect the materials’ electronic properties. The development of catalytically active passivated interfaces on semiconductor materials presents a useful material design for value‐added product conversion. Herein, an iron‐based catalyst covalently attached to silicon (Si) is reported for the investigation of activity and electrochemical decomposition pathways of diiron hydrogenase enzyme mimics. The employed catalyst, Fe2(CO)6(µ‐S‐C6H4‐p‐OH)2 ([FeFe]), mimics the active sites of these enzymes. Surface modification using this catalyst passivates the interface, hindering the formation of native SiO2 for more than 300 h. [FeFe] modification improves the overpotential required to produce 10 mA cm–2 by 100 mV, with a hydrogen evolution rate of 2.31 × 10–5 mol h–1 cm–2 (−0.78 V versus RHE). However, structural rearrangement transpires within 1 h of electrolysis, where Fe‐S bond dissociates at the catalytic center, resulting in an aromatic linkage modified Si interface. While semiconductor−catalyst interfaces have often been reported in the literature, their decomposition pathways have received limited discussion. Herein, this Si−[FeFe] interface is used as a tool for understanding the activity and decomposition mechanisms of the attached molecular catalyst. A derivative of the diiron hydrogenase active center, Fe2(CO)6(µ‐S‐C6H4‐p‐OH)2 ([FeFe]), is covalently bound to a silicon interface for photoelectrochemical hydrogen evolution. Using surface sensitive techniques, the organometallic catalyst is found to degrade via Fe−S bond dissociation with the aromatic linkage still intact on the silicon interface.
AbstractList The presence of molecular monolayers on semiconductor surfaces can improve the stability of semiconductor interfaces by inhibiting the growth of native oxides and defects which affect the materials’ electronic properties. The development of catalytically active passivated interfaces on semiconductor materials presents a useful material design for value‐added product conversion. Herein, an iron‐based catalyst covalently attached to silicon (Si) is reported for the investigation of activity and electrochemical decomposition pathways of diiron hydrogenase enzyme mimics. The employed catalyst, Fe2(CO)6(µ‐S‐C6H4‐p‐OH)2 ([FeFe]), mimics the active sites of these enzymes. Surface modification using this catalyst passivates the interface, hindering the formation of native SiO2 for more than 300 h. [FeFe] modification improves the overpotential required to produce 10 mA cm–2 by 100 mV, with a hydrogen evolution rate of 2.31 × 10–5 mol h–1 cm–2 (−0.78 V versus RHE). However, structural rearrangement transpires within 1 h of electrolysis, where Fe‐S bond dissociates at the catalytic center, resulting in an aromatic linkage modified Si interface. While semiconductor−catalyst interfaces have often been reported in the literature, their decomposition pathways have received limited discussion. Herein, this Si−[FeFe] interface is used as a tool for understanding the activity and decomposition mechanisms of the attached molecular catalyst.
The presence of molecular monolayers on semiconductor surfaces can improve the stability of semiconductor interfaces by inhibiting the growth of native oxides and defects which affect the materials’ electronic properties. The development of catalytically active passivated interfaces on semiconductor materials presents a useful material design for value‐added product conversion. Herein, an iron‐based catalyst covalently attached to silicon (Si) is reported for the investigation of activity and electrochemical decomposition pathways of diiron hydrogenase enzyme mimics. The employed catalyst, Fe 2 (CO) 6 (µ‐S‐C 6 H 4 ‐p‐OH) 2 ([FeFe]), mimics the active sites of these enzymes. Surface modification using this catalyst passivates the interface, hindering the formation of native SiO 2 for more than 300 h. [FeFe] modification improves the overpotential required to produce 10 mA cm –2 by 100 mV, with a hydrogen evolution rate of 2.31 × 10 –5  mol h –1  cm –2  (−0.78 V versus RHE). However, structural rearrangement transpires within 1 h of electrolysis, where Fe‐S bond dissociates at the catalytic center, resulting in an aromatic linkage modified Si interface. While semiconductor−catalyst interfaces have often been reported in the literature, their decomposition pathways have received limited discussion. Herein, this Si−[FeFe] interface is used as a tool for understanding the activity and decomposition mechanisms of the attached molecular catalyst.
The presence of molecular monolayers on semiconductor surfaces can improve the stability of semiconductor interfaces by inhibiting the growth of native oxides and defects which affect the materials’ electronic properties. The development of catalytically active passivated interfaces on semiconductor materials presents a useful material design for value‐added product conversion. Herein, an iron‐based catalyst covalently attached to silicon (Si) is reported for the investigation of activity and electrochemical decomposition pathways of diiron hydrogenase enzyme mimics. The employed catalyst, Fe2(CO)6(µ‐S‐C6H4‐p‐OH)2 ([FeFe]), mimics the active sites of these enzymes. Surface modification using this catalyst passivates the interface, hindering the formation of native SiO2 for more than 300 h. [FeFe] modification improves the overpotential required to produce 10 mA cm–2 by 100 mV, with a hydrogen evolution rate of 2.31 × 10–5 mol h–1 cm–2 (−0.78 V versus RHE). However, structural rearrangement transpires within 1 h of electrolysis, where Fe‐S bond dissociates at the catalytic center, resulting in an aromatic linkage modified Si interface. While semiconductor−catalyst interfaces have often been reported in the literature, their decomposition pathways have received limited discussion. Herein, this Si−[FeFe] interface is used as a tool for understanding the activity and decomposition mechanisms of the attached molecular catalyst. A derivative of the diiron hydrogenase active center, Fe2(CO)6(µ‐S‐C6H4‐p‐OH)2 ([FeFe]), is covalently bound to a silicon interface for photoelectrochemical hydrogen evolution. Using surface sensitive techniques, the organometallic catalyst is found to degrade via Fe−S bond dissociation with the aromatic linkage still intact on the silicon interface.
Author Yamamoto, Nobuyuki
Patrick, Margaret
Tran, Ich C.
Williams, Nicholas B.
Nash, Aaron
Gu, Jing
Author_xml – sequence: 1
  givenname: Nicholas B.
  surname: Williams
  fullname: Williams, Nicholas B.
  organization: San Diego State University
– sequence: 2
  givenname: Aaron
  surname: Nash
  fullname: Nash, Aaron
  organization: San Diego State University
– sequence: 3
  givenname: Nobuyuki
  surname: Yamamoto
  fullname: Yamamoto, Nobuyuki
  organization: San Diego State University
– sequence: 4
  givenname: Margaret
  surname: Patrick
  fullname: Patrick, Margaret
  organization: San Diego State University
– sequence: 5
  givenname: Ich C.
  surname: Tran
  fullname: Tran, Ich C.
  organization: UC Irvine Materials Research Institute (IMRI)
– sequence: 6
  givenname: Jing
  orcidid: 0000-0002-5506-0049
  surname: Gu
  fullname: Gu, Jing
  email: jgu@sdsu.edu
  organization: San Diego State University
BookMark eNqFkEtPAjEUhRujiYhsXTdxDfYxzyWCCAlEE2VlzKS0d6BkaLEt4Px7h2DUnatzF993bnKu0LmxBhC6oaRHCWF3Qm10jxFGCM0TeoZarMluymNy_ue-RB3v16SBKKMs4y30OTdO7KHSZon7Mui9DjUWRuEhSLvZWq-DtgY_i7A6iNpjW-K3EYzgHY9r5ewSjPCAZ3qjpccDuxcVmFDV-N4aBQoHi190peWxYmWDhQpkcFaBv0YXpag8dL6zjeajh9fBuDt9epwM-tOu5HlEu5wnVAFLZA5ikUqVlCQllMcLlZBI5azMSEKSWNGYpQIyyASLOPBMlnlM04jxNro99W6d_diBD8Xa7pxpXhYs5pTljR01VO9ESWe9d1AWW6c3wtUFJcVx4OI4cPEzcCPkJ-GgK6j_oYv-cDb5db8AtcmBog
CitedBy_id crossref_primary_10_1002_chem_202202260
crossref_primary_10_1016_j_apsusc_2023_158276
crossref_primary_10_1016_j_ccr_2021_214172
crossref_primary_10_1021_acs_organomet_2c00277
crossref_primary_10_1002_admi_202200178
crossref_primary_10_1021_acscatal_2c05175
crossref_primary_10_1021_acs_organomet_2c00549
crossref_primary_10_1080_10408347_2021_1969885
Cites_doi 10.1039/C5CC07499A
10.1021/acs.jpclett.5b00897
10.1021/jp0222752
10.1021/ja071851a
10.1002/bbpc.19750791208
10.1002/cssc.201701757
10.1073/pnas.1319628110
10.1016/j.str.2011.06.008
10.1063/1.1312203
10.1021/acs.accounts.6b00001
10.1002/anie.200906262
10.1021/ja021169a
10.1002/9780470636886
10.1021/cs200458b
10.1021/jp013523h
10.1038/ncomms15257
10.1016/j.jelechem.2013.12.025
10.1021/jp309918p
10.1016/0039-6028(89)90129-5
10.1021/ja073886g
10.1021/ar900253e
10.1021/ic0610381
10.1021/om100436c
10.1021/ja407176p
10.1002/ejic.201300537
10.1016/0029-554X(80)91315-4
10.1021/ar00051a007
10.1021/ja501489h
10.1016/j.apsusc.2010.10.051
10.1002/admi.201802058
10.1016/j.solmat.2011.04.028
10.1002/pssa.201026101
10.1098/rsif.2012.0984
10.1021/jz400028z
10.1021/ja077691k
10.1021/ja954326x
10.1016/j.susc.2005.03.004
10.1021/jp063366s
10.1021/jp0102872
10.1021/ja045281f
10.1021/acsami.6b00189
10.1021/om100396j
10.1021/acscatal.7b02252
10.1021/ja904520x
10.1116/1.580099
10.1021/acs.jpcc.6b03824
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/admi.202001961
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID 10_1002_admi_202001961
ADMI202001961
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: CHE‐1338173
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
DPXWK
EBS
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
M~E
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EJD
GROUPED_DOAJ
HCIFZ
KB.
M7S
PDBOC
PTHSS
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3941-3361de26c9eab7cd6f070135bd604d92f806065d1527ae8e8a243e38cf9517423
ISSN 2196-7350
IngestDate Thu Oct 10 22:42:05 EDT 2024
Fri Dec 06 02:40:12 EST 2024
Sat Aug 24 01:03:52 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3941-3361de26c9eab7cd6f070135bd604d92f806065d1527ae8e8a243e38cf9517423
ORCID 0000-0002-5506-0049
OpenAccessLink https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1002/admi.202001961
PQID 2531290654
PQPubID 2034582
PageCount 8
ParticipantIDs proquest_journals_2531290654
crossref_primary_10_1002_admi_202001961
wiley_primary_10_1002_admi_202001961_ADMI202001961
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 7
2011; 257
2017; 8
2015; 6
2007; 129
2014; 716
2004; 126
2012; 100
2019; 6
2009; 42
2010
1975; 79
2006; 110
2016; 52
2007
2009; 131
1996; 14
2011; 19
2016; 120
2014; 136
1999
2010; 49
2012; 2
2011; 208
2003; 107
1989; 207
2005; 582
1995; 28
2006; 45
2013; 10
2013; 2013
2010; 29
2000; 77
2013; 117
2002; 106
2011; 64
2018
2013; 135
2013; 110
2013
2018; 11
2003; 125
2016; 49
2016; 8
2008; 130
1996; 118
1980; 168
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
Zoski C. G. (e_1_2_8_50_1) 2007
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
Taylor P. (e_1_2_8_35_1) 2011; 64
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
Werner K. (e_1_2_8_49_1) 2018
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 14
  start-page: 415
  year: 1996
  publication-title: J. Vac. Sci. Technol., A
– volume: 6
  start-page: 1917
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 45
  start-page: 8000
  year: 2006
  publication-title: Inorg. Chem.
– volume: 208
  start-page: 86
  year: 2011
  publication-title: Phys. Status Solidi A
– volume: 11
  start-page: 209
  year: 2018
  publication-title: ChemSusChem
– volume: 207
  start-page: 364
  year: 1989
  publication-title: Surf. Sci.
– volume: 168
  start-page: 589
  year: 1980
  publication-title: Nucl. Instrum. Methods
– volume: 79
  start-page: 1206
  year: 1975
  publication-title: Ber. Bunsen‐Ges. Phys. Chem.
– volume: 110
  year: 2006
  publication-title: J. Chem. Phys. B
– year: 2018
– volume: 29
  start-page: 4682
  year: 2010
  publication-title: Organometallics
– volume: 10
  year: 2013
  publication-title: J. R. Soc., Interface
– volume: 64
  start-page: 37
  year: 2011
  publication-title: J. Coord. Chem.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 126
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 407
  year: 2012
  publication-title: ACS Catal.
– volume: 118
  start-page: 3982
  year: 1996
  publication-title: J. Am. Chem. Soc.
– volume: 716
  start-page: 63
  year: 2014
  publication-title: J. Electroanal. Chem.
– volume: 130
  start-page: 2015
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 733
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 29
  start-page: 5330
  year: 2010
  publication-title: Organometallics
– volume: 257
  start-page: 2717
  year: 2011
  publication-title: Appl. Surf. Sci.
– volume: 52
  start-page: 457
  year: 2016
  publication-title: Chem. Commun.
– volume: 136
  start-page: 7655
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 141
  year: 1995
  publication-title: Acc. Chem. Res.
– volume: 100
  start-page: 43
  year: 2012
  publication-title: Sol. Energy Mater. Sol. Cells
– year: 2007
– volume: 106
  start-page: 2656
  year: 2002
  publication-title: J. Phys. Chem. B
– start-page: 568
  year: 2013
  publication-title: J. Phys. Chem. Lett.
– volume: 6
  year: 2019
  publication-title: Adv. Mater. Interfaces
– volume: 106
  start-page: 3639
  year: 2002
  publication-title: J. Phys. Chem. B
– volume: 2013
  start-page: 4466
  year: 2013
  publication-title: Eur. J. Inorg. Chem.
– volume: 582
  start-page: 42
  year: 2005
  publication-title: Surf. Sci.
– volume: 110
  year: 2013
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2010
– volume: 49
  start-page: 1574
  year: 2010
  publication-title: Angew. Chem., Int. Ed.
– volume: 117
  start-page: 7497
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 120
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 125
  start-page: 505
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 107
  start-page: 5404
  year: 2003
  publication-title: J. Phys. Chem. B
– volume: 77
  start-page: 1988
  year: 2000
  publication-title: Appl. Phys. Lett.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 131
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 129
  start-page: 7008
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 129
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 1995
  year: 2009
  publication-title: Acc. Chem. Res.
– volume: 19
  start-page: 1038
  year: 2011
  publication-title: Structure
– volume: 7
  start-page: 7378
  year: 2017
  publication-title: ACS Catal.
– volume: 8
  start-page: 2
  year: 2017
  publication-title: Nat. Commun.
– year: 1999
– volume: 64
  start-page: 37
  year: 2011
  ident: e_1_2_8_35_1
  publication-title: J. Coord. Chem.
  contributor:
    fullname: Taylor P.
– ident: e_1_2_8_34_1
  doi: 10.1039/C5CC07499A
– ident: e_1_2_8_2_1
  doi: 10.1021/acs.jpclett.5b00897
– ident: e_1_2_8_14_1
  doi: 10.1021/jp0222752
– ident: e_1_2_8_48_1
  doi: 10.1021/ja071851a
– ident: e_1_2_8_39_1
  doi: 10.1002/bbpc.19750791208
– ident: e_1_2_8_7_1
  doi: 10.1002/cssc.201701757
– ident: e_1_2_8_3_1
  doi: 10.1073/pnas.1319628110
– ident: e_1_2_8_15_1
  doi: 10.1016/j.str.2011.06.008
– ident: e_1_2_8_12_1
  doi: 10.1063/1.1312203
– ident: e_1_2_8_6_1
  doi: 10.1021/acs.accounts.6b00001
– ident: e_1_2_8_16_1
  doi: 10.1002/anie.200906262
– ident: e_1_2_8_30_1
  doi: 10.1021/ja021169a
– ident: e_1_2_8_1_1
  doi: 10.1002/9780470636886
– ident: e_1_2_8_17_1
  doi: 10.1021/cs200458b
– ident: e_1_2_8_31_1
  doi: 10.1021/jp013523h
– ident: e_1_2_8_40_1
  doi: 10.1038/ncomms15257
– ident: e_1_2_8_43_1
  doi: 10.1016/j.jelechem.2013.12.025
– ident: e_1_2_8_46_1
  doi: 10.1021/jp309918p
– ident: e_1_2_8_36_1
  doi: 10.1016/0039-6028(89)90129-5
– ident: e_1_2_8_10_1
  doi: 10.1021/ja073886g
– ident: e_1_2_8_21_1
  doi: 10.1021/ar900253e
– ident: e_1_2_8_26_1
  doi: 10.1021/ic0610381
– volume-title: Handbook of Electrochemistry
  year: 2007
  ident: e_1_2_8_50_1
  contributor:
    fullname: Zoski C. G.
– ident: e_1_2_8_45_1
  doi: 10.1021/om100436c
– ident: e_1_2_8_29_1
– ident: e_1_2_8_24_1
  doi: 10.1021/ja407176p
– ident: e_1_2_8_9_1
  doi: 10.1002/ejic.201300537
– ident: e_1_2_8_37_1
  doi: 10.1016/0029-554X(80)91315-4
– ident: e_1_2_8_5_1
  doi: 10.1021/ar00051a007
– ident: e_1_2_8_20_1
  doi: 10.1021/ja501489h
– ident: e_1_2_8_41_1
  doi: 10.1016/j.apsusc.2010.10.051
– ident: e_1_2_8_38_1
  doi: 10.1002/admi.201802058
– ident: e_1_2_8_32_1
  doi: 10.1016/j.solmat.2011.04.028
– ident: e_1_2_8_33_1
  doi: 10.1002/pssa.201026101
– ident: e_1_2_8_4_1
  doi: 10.1098/rsif.2012.0984
– ident: e_1_2_8_19_1
  doi: 10.1021/jz400028z
– ident: e_1_2_8_23_1
  doi: 10.1021/ja077691k
– ident: e_1_2_8_22_1
  doi: 10.1021/ja954326x
– ident: e_1_2_8_42_1
  doi: 10.1016/j.susc.2005.03.004
– ident: e_1_2_8_13_1
  doi: 10.1021/jp063366s
– ident: e_1_2_8_44_1
  doi: 10.1021/jp0102872
– ident: e_1_2_8_25_1
  doi: 10.1021/ja045281f
– ident: e_1_2_8_18_1
  doi: 10.1021/acsami.6b00189
– ident: e_1_2_8_11_1
  doi: 10.1021/om100396j
– ident: e_1_2_8_28_1
  doi: 10.1021/acscatal.7b02252
– ident: e_1_2_8_27_1
  doi: 10.1021/ja904520x
– volume-title: Handbook of Silicon Wafer Cleaning Technologies
  year: 2018
  ident: e_1_2_8_49_1
  contributor:
    fullname: Werner K.
– ident: e_1_2_8_47_1
  doi: 10.1116/1.580099
– ident: e_1_2_8_8_1
  doi: 10.1021/acs.jpcc.6b03824
SSID ssj0001121283
Score 2.3106194
Snippet The presence of molecular monolayers on semiconductor surfaces can improve the stability of semiconductor interfaces by inhibiting the growth of native oxides...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Catalysts
Decomposition
decomposition mechanism
Electrolysis
Hydrogen evolution
hydrogen evolution reaction
Hydrogenase
Interface stability
Interfaces
Iron
molecular monolayer catalysts
photoelectrochemical conversion
Semiconductor materials
semiconductor surface modification
Silicon dioxide
Surface stability
Title Unraveling Activity and Decomposition Pathways of [FeFe] Hydrogenase Mimics Covalently Bonded to Silicon Photoelectrodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202001961
https://www.proquest.com/docview/2531290654
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVEhcEE-RtqA9IHGoXPzYOPbRKq0CasKBGAUu1r6sRm1imjhC4cJfZ_bhrAMRr4uVWMommfm8M7P77TcIvYQMvoTCI_ZYIFOPCEE8SsqBRxjkz_BwMc7Vgv5oHA9z8m7an3Y631uspXXNTvm3vedK_sercA_8qk7J_oNnt4PCDXgN_oUreBiuf-XjfKGaB-kD5Rm3bSAMtVgxxS0dS6nwX32lG83ZGG7EsoLxIHadjGZzJdF8VsFPgtBzszlRPYYhAYV09MPsBiACn72q6sq2yhGWbtho1jbsAch5zZ_V2hPLUpG89i3nAOhUIb1yjZ7HdKVXdTK6dGyAT3ROAT-V2VVi6836euY2ulRDgWt7yEh36G0vW4SBIwmakPIrL6hN_pR6BoTZNPYGkVGmbabrpI1Kf28UMKqyVMxnp_DVWgIocPGu2eMfvy8u8svLYnI-ndxBB0pJkXTRQfYx_5y7ZboAYnsSNXKffvh6d9jddMbVKO1KR6cqkwfovq0xcGYA8xB15OIRuqu5vnz1GN062OAGNhhgg3dggxvY4KrELdhgAxvsYIMNbHBdYQsb_BNsnqD84nxyNvRs5w2PRykJvCiKAyHDmKeSsgEXcQmRIYj6TMQ-EWlYJj4Uvn2heiJTmciEhiSSUcLLVCmfh9FT1F1UC_kMYb-kAmKYDIRgJAUjQ0ZM4pJLNhAi5mEPvWoMWHwxAiuFkdIOC2XqYmvqHjpu7FvYh3BVhBBDVMeCPumhUNv8D6MU2ZvR2-27w9-PeYTuOeweo269XMvnkITW7IUFyg8HEI4R
link.rule.ids 314,780,784,27924,27925,50814,50923
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF2kRfQifmK16h4ET6HJZrNpjqW1tNoWwUZEkZDsbLDQJtJWtP_e2SRt7UnwmEPmMJk382aYvCHkGhl8jI2HMCJLeQYH4EbIY9fgEfJnBFckpR7o9wei4_O7Z2e5Taj_hcn1IVYDN42MLF9rgOuBdG2tGhrCZIQNHsskXrABKmPt0xyp3HjyX_z1oMXC7JzJcSI4heHajrkUbzRZbdPIZnFaM87fvDUrPO19slcwRtrIP_EB2VLJIdnONjfl7Ih8-4m-IKT_KqcNmd-CoGECtKX0unixk0UfkOl9hYsZTWP62lZt9UY7C5imGD9Yx2h_NEFrtJli4GEZGi-ovjesgM5T-jgaY7igifd0nhZnc0DNjonfvh02O0ZxTsGQtsctw7aFBYoJ6akwciWIGOFu2U4EwuTgsbhuYjfjgD50G6q6qoeM28quy9jTctbMPiGlJE3UKaFmHAImJmUBRNxjiHHP4yKWKnIBhGQVcrP0Y_CRq2YEuT4yC7THg5XHK6S6dHNQoGcWMEwMWobe4RXCMtf_YSVotPrd1dPZf166IjudYb8X9LqD-3Oyy_TqSrbXWCWl-fRTXSD3mEeXRXT9AHBA0Rk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF2kRfEifmK16h4ET8Fks9k2x9IaWrWloBFRJCQ7u1jQpLQV7b93NklbPQkec8gcZufNvFlm3xByjgxeY-MhrMRRvsUBuBVz3bB4gvwZwZVIaS70-wPRDfn1o_f44xV_oQ-xvHAzyMjztQH4GPTlSjQ0hvcR9ncsV3jB_qeKVMPhFVJtPYRP4eqexcHknKtxIjaF1XA9e6HdaLPL30Z-16YV4fxJW_O6E2yTrZIw0lZxwjtkTaW7ZD0f3JTTPfIVpmaBkHlUTluyWAVB4xRoR5lp8XIkiw6R6H3G8ynNNH0OVKBeaHcOkwzDB8sY7Y_e0RptZxh3WIXe5tSsG1ZAZxm9G71htKCJ12yWlVtzQE33SRhc3be7VrlNwZKuzx3LdYUDignpqzhpSBAa0e64XgLC5uAz3bSxmfHA7LmNVVM1Y8Zd5Tal9o2aNXMPSCXNUnVIqK1jwLykHICE-wwh7vtcaKmSBoCQrEYuFn6MxoVoRlTII7PIeDxaerxG6gs3RyV4phHDvGBU6D1eIyx3_R9Wolan31t-Hf3npzOyMewE0W1vcHNMNpkZXMmnGuukMpt8qBNkHrPktAyub0cr0EI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+Activity+and+Decomposition+Pathways+of+Hydrogenase+Mimics+Covalently+Bonded+to+Silicon+Photoelectrodes&rft.jtitle=Advanced+materials+interfaces&rft.au=Williams%2C+Nicholas+B&rft.au=Nash%2C+Aaron&rft.au=Yamamoto%2C+Nobuyuki&rft.au=Patrick%2C+Margaret&rft.date=2021-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-7350&rft.volume=8&rft.issue=10&rft_id=info:doi/10.1002%2Fadmi.202001961&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon