Unraveling Activity and Decomposition Pathways of [FeFe] Hydrogenase Mimics Covalently Bonded to Silicon Photoelectrodes
The presence of molecular monolayers on semiconductor surfaces can improve the stability of semiconductor interfaces by inhibiting the growth of native oxides and defects which affect the materials’ electronic properties. The development of catalytically active passivated interfaces on semiconductor...
Saved in:
Published in | Advanced materials interfaces Vol. 8; no. 10 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The presence of molecular monolayers on semiconductor surfaces can improve the stability of semiconductor interfaces by inhibiting the growth of native oxides and defects which affect the materials’ electronic properties. The development of catalytically active passivated interfaces on semiconductor materials presents a useful material design for value‐added product conversion. Herein, an iron‐based catalyst covalently attached to silicon (Si) is reported for the investigation of activity and electrochemical decomposition pathways of diiron hydrogenase enzyme mimics. The employed catalyst, Fe2(CO)6(µ‐S‐C6H4‐p‐OH)2 ([FeFe]), mimics the active sites of these enzymes. Surface modification using this catalyst passivates the interface, hindering the formation of native SiO2 for more than 300 h. [FeFe] modification improves the overpotential required to produce 10 mA cm–2 by 100 mV, with a hydrogen evolution rate of 2.31 × 10–5 mol h–1 cm–2 (−0.78 V versus RHE). However, structural rearrangement transpires within 1 h of electrolysis, where Fe‐S bond dissociates at the catalytic center, resulting in an aromatic linkage modified Si interface. While semiconductor−catalyst interfaces have often been reported in the literature, their decomposition pathways have received limited discussion. Herein, this Si−[FeFe] interface is used as a tool for understanding the activity and decomposition mechanisms of the attached molecular catalyst.
A derivative of the diiron hydrogenase active center, Fe2(CO)6(µ‐S‐C6H4‐p‐OH)2 ([FeFe]), is covalently bound to a silicon interface for photoelectrochemical hydrogen evolution. Using surface sensitive techniques, the organometallic catalyst is found to degrade via Fe−S bond dissociation with the aromatic linkage still intact on the silicon interface. |
---|---|
AbstractList | The presence of molecular monolayers on semiconductor surfaces can improve the stability of semiconductor interfaces by inhibiting the growth of native oxides and defects which affect the materials’ electronic properties. The development of catalytically active passivated interfaces on semiconductor materials presents a useful material design for value‐added product conversion. Herein, an iron‐based catalyst covalently attached to silicon (Si) is reported for the investigation of activity and electrochemical decomposition pathways of diiron hydrogenase enzyme mimics. The employed catalyst, Fe2(CO)6(µ‐S‐C6H4‐p‐OH)2 ([FeFe]), mimics the active sites of these enzymes. Surface modification using this catalyst passivates the interface, hindering the formation of native SiO2 for more than 300 h. [FeFe] modification improves the overpotential required to produce 10 mA cm–2 by 100 mV, with a hydrogen evolution rate of 2.31 × 10–5 mol h–1 cm–2 (−0.78 V versus RHE). However, structural rearrangement transpires within 1 h of electrolysis, where Fe‐S bond dissociates at the catalytic center, resulting in an aromatic linkage modified Si interface. While semiconductor−catalyst interfaces have often been reported in the literature, their decomposition pathways have received limited discussion. Herein, this Si−[FeFe] interface is used as a tool for understanding the activity and decomposition mechanisms of the attached molecular catalyst. The presence of molecular monolayers on semiconductor surfaces can improve the stability of semiconductor interfaces by inhibiting the growth of native oxides and defects which affect the materials’ electronic properties. The development of catalytically active passivated interfaces on semiconductor materials presents a useful material design for value‐added product conversion. Herein, an iron‐based catalyst covalently attached to silicon (Si) is reported for the investigation of activity and electrochemical decomposition pathways of diiron hydrogenase enzyme mimics. The employed catalyst, Fe 2 (CO) 6 (µ‐S‐C 6 H 4 ‐p‐OH) 2 ([FeFe]), mimics the active sites of these enzymes. Surface modification using this catalyst passivates the interface, hindering the formation of native SiO 2 for more than 300 h. [FeFe] modification improves the overpotential required to produce 10 mA cm –2 by 100 mV, with a hydrogen evolution rate of 2.31 × 10 –5 mol h –1 cm –2 (−0.78 V versus RHE). However, structural rearrangement transpires within 1 h of electrolysis, where Fe‐S bond dissociates at the catalytic center, resulting in an aromatic linkage modified Si interface. While semiconductor−catalyst interfaces have often been reported in the literature, their decomposition pathways have received limited discussion. Herein, this Si−[FeFe] interface is used as a tool for understanding the activity and decomposition mechanisms of the attached molecular catalyst. The presence of molecular monolayers on semiconductor surfaces can improve the stability of semiconductor interfaces by inhibiting the growth of native oxides and defects which affect the materials’ electronic properties. The development of catalytically active passivated interfaces on semiconductor materials presents a useful material design for value‐added product conversion. Herein, an iron‐based catalyst covalently attached to silicon (Si) is reported for the investigation of activity and electrochemical decomposition pathways of diiron hydrogenase enzyme mimics. The employed catalyst, Fe2(CO)6(µ‐S‐C6H4‐p‐OH)2 ([FeFe]), mimics the active sites of these enzymes. Surface modification using this catalyst passivates the interface, hindering the formation of native SiO2 for more than 300 h. [FeFe] modification improves the overpotential required to produce 10 mA cm–2 by 100 mV, with a hydrogen evolution rate of 2.31 × 10–5 mol h–1 cm–2 (−0.78 V versus RHE). However, structural rearrangement transpires within 1 h of electrolysis, where Fe‐S bond dissociates at the catalytic center, resulting in an aromatic linkage modified Si interface. While semiconductor−catalyst interfaces have often been reported in the literature, their decomposition pathways have received limited discussion. Herein, this Si−[FeFe] interface is used as a tool for understanding the activity and decomposition mechanisms of the attached molecular catalyst. A derivative of the diiron hydrogenase active center, Fe2(CO)6(µ‐S‐C6H4‐p‐OH)2 ([FeFe]), is covalently bound to a silicon interface for photoelectrochemical hydrogen evolution. Using surface sensitive techniques, the organometallic catalyst is found to degrade via Fe−S bond dissociation with the aromatic linkage still intact on the silicon interface. |
Author | Yamamoto, Nobuyuki Patrick, Margaret Tran, Ich C. Williams, Nicholas B. Nash, Aaron Gu, Jing |
Author_xml | – sequence: 1 givenname: Nicholas B. surname: Williams fullname: Williams, Nicholas B. organization: San Diego State University – sequence: 2 givenname: Aaron surname: Nash fullname: Nash, Aaron organization: San Diego State University – sequence: 3 givenname: Nobuyuki surname: Yamamoto fullname: Yamamoto, Nobuyuki organization: San Diego State University – sequence: 4 givenname: Margaret surname: Patrick fullname: Patrick, Margaret organization: San Diego State University – sequence: 5 givenname: Ich C. surname: Tran fullname: Tran, Ich C. organization: UC Irvine Materials Research Institute (IMRI) – sequence: 6 givenname: Jing orcidid: 0000-0002-5506-0049 surname: Gu fullname: Gu, Jing email: jgu@sdsu.edu organization: San Diego State University |
BookMark | eNqFkEtPAjEUhRujiYhsXTdxDfYxzyWCCAlEE2VlzKS0d6BkaLEt4Px7h2DUnatzF993bnKu0LmxBhC6oaRHCWF3Qm10jxFGCM0TeoZarMluymNy_ue-RB3v16SBKKMs4y30OTdO7KHSZon7Mui9DjUWRuEhSLvZWq-DtgY_i7A6iNpjW-K3EYzgHY9r5ewSjPCAZ3qjpccDuxcVmFDV-N4aBQoHi190peWxYmWDhQpkcFaBv0YXpag8dL6zjeajh9fBuDt9epwM-tOu5HlEu5wnVAFLZA5ikUqVlCQllMcLlZBI5azMSEKSWNGYpQIyyASLOPBMlnlM04jxNro99W6d_diBD8Xa7pxpXhYs5pTljR01VO9ESWe9d1AWW6c3wtUFJcVx4OI4cPEzcCPkJ-GgK6j_oYv-cDb5db8AtcmBog |
CitedBy_id | crossref_primary_10_1002_chem_202202260 crossref_primary_10_1016_j_apsusc_2023_158276 crossref_primary_10_1016_j_ccr_2021_214172 crossref_primary_10_1021_acs_organomet_2c00277 crossref_primary_10_1002_admi_202200178 crossref_primary_10_1021_acscatal_2c05175 crossref_primary_10_1021_acs_organomet_2c00549 crossref_primary_10_1080_10408347_2021_1969885 |
Cites_doi | 10.1039/C5CC07499A 10.1021/acs.jpclett.5b00897 10.1021/jp0222752 10.1021/ja071851a 10.1002/bbpc.19750791208 10.1002/cssc.201701757 10.1073/pnas.1319628110 10.1016/j.str.2011.06.008 10.1063/1.1312203 10.1021/acs.accounts.6b00001 10.1002/anie.200906262 10.1021/ja021169a 10.1002/9780470636886 10.1021/cs200458b 10.1021/jp013523h 10.1038/ncomms15257 10.1016/j.jelechem.2013.12.025 10.1021/jp309918p 10.1016/0039-6028(89)90129-5 10.1021/ja073886g 10.1021/ar900253e 10.1021/ic0610381 10.1021/om100436c 10.1021/ja407176p 10.1002/ejic.201300537 10.1016/0029-554X(80)91315-4 10.1021/ar00051a007 10.1021/ja501489h 10.1016/j.apsusc.2010.10.051 10.1002/admi.201802058 10.1016/j.solmat.2011.04.028 10.1002/pssa.201026101 10.1098/rsif.2012.0984 10.1021/jz400028z 10.1021/ja077691k 10.1021/ja954326x 10.1016/j.susc.2005.03.004 10.1021/jp063366s 10.1021/jp0102872 10.1021/ja045281f 10.1021/acsami.6b00189 10.1021/om100396j 10.1021/acscatal.7b02252 10.1021/ja904520x 10.1116/1.580099 10.1021/acs.jpcc.6b03824 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/admi.202001961 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2196-7350 |
EndPage | n/a |
ExternalDocumentID | 10_1002_admi_202001961 ADMI202001961 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation funderid: CHE‐1338173 |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG DPXWK EBS G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ M~E O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW AAYXX ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU CITATION EJD GROUPED_DOAJ HCIFZ KB. M7S PDBOC PTHSS 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3941-3361de26c9eab7cd6f070135bd604d92f806065d1527ae8e8a243e38cf9517423 |
ISSN | 2196-7350 |
IngestDate | Thu Oct 10 22:42:05 EDT 2024 Fri Dec 06 02:40:12 EST 2024 Sat Aug 24 01:03:52 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3941-3361de26c9eab7cd6f070135bd604d92f806065d1527ae8e8a243e38cf9517423 |
ORCID | 0000-0002-5506-0049 |
OpenAccessLink | https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1002/admi.202001961 |
PQID | 2531290654 |
PQPubID | 2034582 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2531290654 crossref_primary_10_1002_admi_202001961 wiley_primary_10_1002_admi_202001961_ADMI202001961 |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials interfaces |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2017; 7 2011; 257 2017; 8 2015; 6 2007; 129 2014; 716 2004; 126 2012; 100 2019; 6 2009; 42 2010 1975; 79 2006; 110 2016; 52 2007 2009; 131 1996; 14 2011; 19 2016; 120 2014; 136 1999 2010; 49 2012; 2 2011; 208 2003; 107 1989; 207 2005; 582 1995; 28 2006; 45 2013; 10 2013; 2013 2010; 29 2000; 77 2013; 117 2002; 106 2011; 64 2018 2013; 135 2013; 110 2013 2018; 11 2003; 125 2016; 49 2016; 8 2008; 130 1996; 118 1980; 168 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 Zoski C. G. (e_1_2_8_50_1) 2007 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 Taylor P. (e_1_2_8_35_1) 2011; 64 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 Werner K. (e_1_2_8_49_1) 2018 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – volume: 14 start-page: 415 year: 1996 publication-title: J. Vac. Sci. Technol., A – volume: 6 start-page: 1917 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 45 start-page: 8000 year: 2006 publication-title: Inorg. Chem. – volume: 208 start-page: 86 year: 2011 publication-title: Phys. Status Solidi A – volume: 11 start-page: 209 year: 2018 publication-title: ChemSusChem – volume: 207 start-page: 364 year: 1989 publication-title: Surf. Sci. – volume: 168 start-page: 589 year: 1980 publication-title: Nucl. Instrum. Methods – volume: 79 start-page: 1206 year: 1975 publication-title: Ber. Bunsen‐Ges. Phys. Chem. – volume: 110 year: 2006 publication-title: J. Chem. Phys. B – year: 2018 – volume: 29 start-page: 4682 year: 2010 publication-title: Organometallics – volume: 10 year: 2013 publication-title: J. R. Soc., Interface – volume: 64 start-page: 37 year: 2011 publication-title: J. Coord. Chem. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 126 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 407 year: 2012 publication-title: ACS Catal. – volume: 118 start-page: 3982 year: 1996 publication-title: J. Am. Chem. Soc. – volume: 716 start-page: 63 year: 2014 publication-title: J. Electroanal. Chem. – volume: 130 start-page: 2015 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 733 year: 2016 publication-title: Acc. Chem. Res. – volume: 29 start-page: 5330 year: 2010 publication-title: Organometallics – volume: 257 start-page: 2717 year: 2011 publication-title: Appl. Surf. Sci. – volume: 52 start-page: 457 year: 2016 publication-title: Chem. Commun. – volume: 136 start-page: 7655 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 141 year: 1995 publication-title: Acc. Chem. Res. – volume: 100 start-page: 43 year: 2012 publication-title: Sol. Energy Mater. Sol. Cells – year: 2007 – volume: 106 start-page: 2656 year: 2002 publication-title: J. Phys. Chem. B – start-page: 568 year: 2013 publication-title: J. Phys. Chem. Lett. – volume: 6 year: 2019 publication-title: Adv. Mater. Interfaces – volume: 106 start-page: 3639 year: 2002 publication-title: J. Phys. Chem. B – volume: 2013 start-page: 4466 year: 2013 publication-title: Eur. J. Inorg. Chem. – volume: 582 start-page: 42 year: 2005 publication-title: Surf. Sci. – volume: 110 year: 2013 publication-title: Proc. Natl. Acad. Sci. USA – year: 2010 – volume: 49 start-page: 1574 year: 2010 publication-title: Angew. Chem., Int. Ed. – volume: 117 start-page: 7497 year: 2013 publication-title: J. Phys. Chem. C – volume: 120 year: 2016 publication-title: J. Phys. Chem. C – volume: 125 start-page: 505 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 107 start-page: 5404 year: 2003 publication-title: J. Phys. Chem. B – volume: 77 start-page: 1988 year: 2000 publication-title: Appl. Phys. Lett. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 131 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 129 start-page: 7008 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 129 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 1995 year: 2009 publication-title: Acc. Chem. Res. – volume: 19 start-page: 1038 year: 2011 publication-title: Structure – volume: 7 start-page: 7378 year: 2017 publication-title: ACS Catal. – volume: 8 start-page: 2 year: 2017 publication-title: Nat. Commun. – year: 1999 – volume: 64 start-page: 37 year: 2011 ident: e_1_2_8_35_1 publication-title: J. Coord. Chem. contributor: fullname: Taylor P. – ident: e_1_2_8_34_1 doi: 10.1039/C5CC07499A – ident: e_1_2_8_2_1 doi: 10.1021/acs.jpclett.5b00897 – ident: e_1_2_8_14_1 doi: 10.1021/jp0222752 – ident: e_1_2_8_48_1 doi: 10.1021/ja071851a – ident: e_1_2_8_39_1 doi: 10.1002/bbpc.19750791208 – ident: e_1_2_8_7_1 doi: 10.1002/cssc.201701757 – ident: e_1_2_8_3_1 doi: 10.1073/pnas.1319628110 – ident: e_1_2_8_15_1 doi: 10.1016/j.str.2011.06.008 – ident: e_1_2_8_12_1 doi: 10.1063/1.1312203 – ident: e_1_2_8_6_1 doi: 10.1021/acs.accounts.6b00001 – ident: e_1_2_8_16_1 doi: 10.1002/anie.200906262 – ident: e_1_2_8_30_1 doi: 10.1021/ja021169a – ident: e_1_2_8_1_1 doi: 10.1002/9780470636886 – ident: e_1_2_8_17_1 doi: 10.1021/cs200458b – ident: e_1_2_8_31_1 doi: 10.1021/jp013523h – ident: e_1_2_8_40_1 doi: 10.1038/ncomms15257 – ident: e_1_2_8_43_1 doi: 10.1016/j.jelechem.2013.12.025 – ident: e_1_2_8_46_1 doi: 10.1021/jp309918p – ident: e_1_2_8_36_1 doi: 10.1016/0039-6028(89)90129-5 – ident: e_1_2_8_10_1 doi: 10.1021/ja073886g – ident: e_1_2_8_21_1 doi: 10.1021/ar900253e – ident: e_1_2_8_26_1 doi: 10.1021/ic0610381 – volume-title: Handbook of Electrochemistry year: 2007 ident: e_1_2_8_50_1 contributor: fullname: Zoski C. G. – ident: e_1_2_8_45_1 doi: 10.1021/om100436c – ident: e_1_2_8_29_1 – ident: e_1_2_8_24_1 doi: 10.1021/ja407176p – ident: e_1_2_8_9_1 doi: 10.1002/ejic.201300537 – ident: e_1_2_8_37_1 doi: 10.1016/0029-554X(80)91315-4 – ident: e_1_2_8_5_1 doi: 10.1021/ar00051a007 – ident: e_1_2_8_20_1 doi: 10.1021/ja501489h – ident: e_1_2_8_41_1 doi: 10.1016/j.apsusc.2010.10.051 – ident: e_1_2_8_38_1 doi: 10.1002/admi.201802058 – ident: e_1_2_8_32_1 doi: 10.1016/j.solmat.2011.04.028 – ident: e_1_2_8_33_1 doi: 10.1002/pssa.201026101 – ident: e_1_2_8_4_1 doi: 10.1098/rsif.2012.0984 – ident: e_1_2_8_19_1 doi: 10.1021/jz400028z – ident: e_1_2_8_23_1 doi: 10.1021/ja077691k – ident: e_1_2_8_22_1 doi: 10.1021/ja954326x – ident: e_1_2_8_42_1 doi: 10.1016/j.susc.2005.03.004 – ident: e_1_2_8_13_1 doi: 10.1021/jp063366s – ident: e_1_2_8_44_1 doi: 10.1021/jp0102872 – ident: e_1_2_8_25_1 doi: 10.1021/ja045281f – ident: e_1_2_8_18_1 doi: 10.1021/acsami.6b00189 – ident: e_1_2_8_11_1 doi: 10.1021/om100396j – ident: e_1_2_8_28_1 doi: 10.1021/acscatal.7b02252 – ident: e_1_2_8_27_1 doi: 10.1021/ja904520x – volume-title: Handbook of Silicon Wafer Cleaning Technologies year: 2018 ident: e_1_2_8_49_1 contributor: fullname: Werner K. – ident: e_1_2_8_47_1 doi: 10.1116/1.580099 – ident: e_1_2_8_8_1 doi: 10.1021/acs.jpcc.6b03824 |
SSID | ssj0001121283 |
Score | 2.3106194 |
Snippet | The presence of molecular monolayers on semiconductor surfaces can improve the stability of semiconductor interfaces by inhibiting the growth of native oxides... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Catalysts Decomposition decomposition mechanism Electrolysis Hydrogen evolution hydrogen evolution reaction Hydrogenase Interface stability Interfaces Iron molecular monolayer catalysts photoelectrochemical conversion Semiconductor materials semiconductor surface modification Silicon dioxide Surface stability |
Title | Unraveling Activity and Decomposition Pathways of [FeFe] Hydrogenase Mimics Covalently Bonded to Silicon Photoelectrodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202001961 https://www.proquest.com/docview/2531290654 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVEhcEE-RtqA9IHGoXPzYOPbRKq0CasKBGAUu1r6sRm1imjhC4cJfZ_bhrAMRr4uVWMommfm8M7P77TcIvYQMvoTCI_ZYIFOPCEE8SsqBRxjkz_BwMc7Vgv5oHA9z8m7an3Y631uspXXNTvm3vedK_sercA_8qk7J_oNnt4PCDXgN_oUreBiuf-XjfKGaB-kD5Rm3bSAMtVgxxS0dS6nwX32lG83ZGG7EsoLxIHadjGZzJdF8VsFPgtBzszlRPYYhAYV09MPsBiACn72q6sq2yhGWbtho1jbsAch5zZ_V2hPLUpG89i3nAOhUIb1yjZ7HdKVXdTK6dGyAT3ROAT-V2VVi6836euY2ulRDgWt7yEh36G0vW4SBIwmakPIrL6hN_pR6BoTZNPYGkVGmbabrpI1Kf28UMKqyVMxnp_DVWgIocPGu2eMfvy8u8svLYnI-ndxBB0pJkXTRQfYx_5y7ZboAYnsSNXKffvh6d9jddMbVKO1KR6cqkwfovq0xcGYA8xB15OIRuqu5vnz1GN062OAGNhhgg3dggxvY4KrELdhgAxvsYIMNbHBdYQsb_BNsnqD84nxyNvRs5w2PRykJvCiKAyHDmKeSsgEXcQmRIYj6TMQ-EWlYJj4Uvn2heiJTmciEhiSSUcLLVCmfh9FT1F1UC_kMYb-kAmKYDIRgJAUjQ0ZM4pJLNhAi5mEPvWoMWHwxAiuFkdIOC2XqYmvqHjpu7FvYh3BVhBBDVMeCPumhUNv8D6MU2ZvR2-27w9-PeYTuOeweo269XMvnkITW7IUFyg8HEI4R |
link.rule.ids | 314,780,784,27924,27925,50814,50923 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF2kRfQifmK16h4ET6HJZrNpjqW1tNoWwUZEkZDsbLDQJtJWtP_e2SRt7UnwmEPmMJk382aYvCHkGhl8jI2HMCJLeQYH4EbIY9fgEfJnBFckpR7o9wei4_O7Z2e5Taj_hcn1IVYDN42MLF9rgOuBdG2tGhrCZIQNHsskXrABKmPt0xyp3HjyX_z1oMXC7JzJcSI4heHajrkUbzRZbdPIZnFaM87fvDUrPO19slcwRtrIP_EB2VLJIdnONjfl7Ih8-4m-IKT_KqcNmd-CoGECtKX0unixk0UfkOl9hYsZTWP62lZt9UY7C5imGD9Yx2h_NEFrtJli4GEZGi-ovjesgM5T-jgaY7igifd0nhZnc0DNjonfvh02O0ZxTsGQtsctw7aFBYoJ6akwciWIGOFu2U4EwuTgsbhuYjfjgD50G6q6qoeM28quy9jTctbMPiGlJE3UKaFmHAImJmUBRNxjiHHP4yKWKnIBhGQVcrP0Y_CRq2YEuT4yC7THg5XHK6S6dHNQoGcWMEwMWobe4RXCMtf_YSVotPrd1dPZf166IjudYb8X9LqD-3Oyy_TqSrbXWCWl-fRTXSD3mEeXRXT9AHBA0Rk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF2kRfEifmK16h4ET8Fks9k2x9IaWrWloBFRJCQ7u1jQpLQV7b93NklbPQkec8gcZufNvFlm3xByjgxeY-MhrMRRvsUBuBVz3bB4gvwZwZVIaS70-wPRDfn1o_f44xV_oQ-xvHAzyMjztQH4GPTlSjQ0hvcR9ncsV3jB_qeKVMPhFVJtPYRP4eqexcHknKtxIjaF1XA9e6HdaLPL30Z-16YV4fxJW_O6E2yTrZIw0lZxwjtkTaW7ZD0f3JTTPfIVpmaBkHlUTluyWAVB4xRoR5lp8XIkiw6R6H3G8ynNNH0OVKBeaHcOkwzDB8sY7Y_e0RptZxh3WIXe5tSsG1ZAZxm9G71htKCJ12yWlVtzQE33SRhc3be7VrlNwZKuzx3LdYUDignpqzhpSBAa0e64XgLC5uAz3bSxmfHA7LmNVVM1Y8Zd5Tal9o2aNXMPSCXNUnVIqK1jwLykHICE-wwh7vtcaKmSBoCQrEYuFn6MxoVoRlTII7PIeDxaerxG6gs3RyV4phHDvGBU6D1eIyx3_R9Wolan31t-Hf3npzOyMewE0W1vcHNMNpkZXMmnGuukMpt8qBNkHrPktAyub0cr0EI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+Activity+and+Decomposition+Pathways+of+Hydrogenase+Mimics+Covalently+Bonded+to+Silicon+Photoelectrodes&rft.jtitle=Advanced+materials+interfaces&rft.au=Williams%2C+Nicholas+B&rft.au=Nash%2C+Aaron&rft.au=Yamamoto%2C+Nobuyuki&rft.au=Patrick%2C+Margaret&rft.date=2021-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-7350&rft.volume=8&rft.issue=10&rft_id=info:doi/10.1002%2Fadmi.202001961&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon |