Challenges in pea breeding for tolerance to drought: Status and prospects
Drought is increasingly frequent in the context of climate change and is considered a major constraint for crop yield. Water scarcity can impair growth, disturb plant water relations and reduce water use efficiency. Pea (Pisum sativum) is a temperate grain legume rich in protein, fibre, micronutrien...
Saved in:
Published in | Annals of applied biology Vol. 183; no. 2; pp. 108 - 120 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.09.2023
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Drought is increasingly frequent in the context of climate change and is considered a major constraint for crop yield. Water scarcity can impair growth, disturb plant water relations and reduce water use efficiency. Pea (Pisum sativum) is a temperate grain legume rich in protein, fibre, micronutrients and bioactive compounds that can benefit human health. In reducing pea yield because of drought, the intensity and duration of stress are critical. This review describes several drought resistance mechanisms in pea based on morphology, physiology and biochemical changes during/after the water deficit period. Drought tolerance of pea can be managed by adopting strategies such as screening, breeding and marker‐assisted selection. Therefore, various biotechnological approaches have led to the development of drought‐tolerant pea cultivars. Finally, the main objective of the current research is to point out some useful traits for drought tolerance in peas and also, mention the methods that can be useful for future studies and breeding programmes.
Major knowledge gaps identified in pea breeding for drought tolerance, available tools to address these challenges and possible solutions that will enable the increase of genomic resources available for drought tolerant pea plants. |
---|---|
AbstractList | Drought is increasingly frequent in the context of climate change and is considered a major constraint for crop yield. Water scarcity can impair growth, disturb plant water relations and reduce water use efficiency. Pea (Pisum sativum) is a temperate grain legume rich in protein, fibre, micronutrients and bioactive compounds that can benefit human health. In reducing pea yield because of drought, the intensity and duration of stress are critical. This review describes several drought resistance mechanisms in pea based on morphology, physiology and biochemical changes during/after the water deficit period. Drought tolerance of pea can be managed by adopting strategies such as screening, breeding and marker‐assisted selection. Therefore, various biotechnological approaches have led to the development of drought‐tolerant pea cultivars. Finally, the main objective of the current research is to point out some useful traits for drought tolerance in peas and also, mention the methods that can be useful for future studies and breeding programmes. Drought is increasingly frequent in the context of climate change and is considered a major constraint for crop yield. Water scarcity can impair growth, disturb plant water relations and reduce water use efficiency. Pea (Pisum sativum) is a temperate grain legume rich in protein, fibre, micronutrients and bioactive compounds that can benefit human health. In reducing pea yield because of drought, the intensity and duration of stress are critical. This review describes several drought resistance mechanisms in pea based on morphology, physiology and biochemical changes during/after the water deficit period. Drought tolerance of pea can be managed by adopting strategies such as screening, breeding and marker‐assisted selection. Therefore, various biotechnological approaches have led to the development of drought‐tolerant pea cultivars. Finally, the main objective of the current research is to point out some useful traits for drought tolerance in peas and also, mention the methods that can be useful for future studies and breeding programmes. Major knowledge gaps identified in pea breeding for drought tolerance, available tools to address these challenges and possible solutions that will enable the increase of genomic resources available for drought tolerant pea plants. Drought is increasingly frequent in the context of climate change and is considered a major constraint for crop yield. Water scarcity can impair growth, disturb plant water relations and reduce water use efficiency. Pea ( Pisum sativum ) is a temperate grain legume rich in protein, fibre, micronutrients and bioactive compounds that can benefit human health. In reducing pea yield because of drought, the intensity and duration of stress are critical. This review describes several drought resistance mechanisms in pea based on morphology, physiology and biochemical changes during/after the water deficit period. Drought tolerance of pea can be managed by adopting strategies such as screening, breeding and marker‐assisted selection. Therefore, various biotechnological approaches have led to the development of drought‐tolerant pea cultivars. Finally, the main objective of the current research is to point out some useful traits for drought tolerance in peas and also, mention the methods that can be useful for future studies and breeding programmes. |
Author | Rubiales, Diego Santos, Carla S. Vasconcelos, Marta W. Bagheri, Maryam |
Author_xml | – sequence: 1 givenname: Maryam orcidid: 0000-0002-0619-4868 surname: Bagheri fullname: Bagheri, Maryam organization: Universidade Católica Portuguesa – sequence: 2 givenname: Carla S. orcidid: 0000-0002-6708-5550 surname: Santos fullname: Santos, Carla S. organization: Universidade Católica Portuguesa – sequence: 3 givenname: Diego orcidid: 0000-0001-9644-8616 surname: Rubiales fullname: Rubiales, Diego organization: Institute for Sustainable Agriculture, CSIC – sequence: 4 givenname: Marta W. orcidid: 0000-0002-5110-7006 surname: Vasconcelos fullname: Vasconcelos, Marta W. email: mvasconcelos@ucp.pt organization: Universidade Católica Portuguesa |
BookMark | eNp9kDtPwzAQxy0EEm1h4BtYYoEhre1cnIStVDwqVWIA5shxLq2r1Al2ItRvj6FMleCWe-h3r_-YnNrWIiFXnE15sJlS5ZSLDNgJGfEUIEpjyE7JiDEWR5CCPCdj77chzVkuRmS52KimQbtGT42lHSpaOsTK2DWtW0f7tkGnrMYQ0cq1w3rT39HXXvWDp8pWtHOt71D3_oKc1arxePnrJ-T98eFt8RytXp6Wi_kq0nEOLEpkVmuJGoCrCsq8BKlZXFeAcShLBAE1A5amMlGgSl6nZVLFTAIqjihEPCE3h7lh88eAvi92xmtsGmWxHXwhsiyVgkmeBPT6CN22g7PhukAlAjKZJDJQtwdKh1e8w7ronNkpty84K75FLYKoxY-ogZ0dsdoELUxre6dM81_Hp2lw__foYj6_P3R8AUFOiOo |
CitedBy_id | crossref_primary_10_3390_nano14110959 crossref_primary_10_3390_plants13010078 crossref_primary_10_3389_fpls_2023_1320506 crossref_primary_10_3390_plants13111547 crossref_primary_10_1016_j_fcr_2025_109863 crossref_primary_10_1186_s12870_025_06158_w crossref_primary_10_1371_journal_pone_0304674 crossref_primary_10_3390_agronomy14071385 crossref_primary_10_3390_ijpb15040080 |
Cites_doi | 10.3390/ijms24032470 10.3390/plants7030072 10.3390/genes12121897 10.1038/s41588-022-01172-2 10.1007/s11738-015-1776-0 10.1007/s10722-003-6116-3 10.3390/agronomy2020074 10.1038/s41598-021-99284-y 10.3389/fmicb.2018.02525 10.1371/journal.pone.0194056 10.30848/PJB2020-2(24) 10.1016/j.plantsci.2007.09.002 10.1007/BF00197534 10.1007/978-94-011-0798-3_26 10.1080/07352689.2014.875291 10.3389/fpls.2016.00571 10.1093/jxb/ery082 10.3390/agronomy10101537 10.1038/s42003-019-0372-z 10.1080/03650340.2021.1906413 10.1007/s11356-021-12649-8 10.3389/fpls.2022.844450 10.1111/aab.12417 10.3923/ja.2016.45.57 10.1111/tpj.16034 10.1134/S1021443706030113 10.3390/ijms20102541 10.3835/plantgenome2016.07.0072 10.1007/978-981-15-2874-3_17 10.1111/j.1365-3059.2011.02537.x 10.1111/pbi.12454 10.1016/j.fcr.2008.04.004 10.3390/agriculture8010014 10.1111/tpj.15240 10.1002/9781119054450.ch23 10.15835/nbha48412054 10.1134/S1021443718040155 10.1016/j.envexpbot.2018.06.025 10.3389/fpls.2020.00623 10.3390/agronomy11040769 10.7904/2068-4738-VIII(15)-43 10.1038/hortres.2017.17 10.1007/s10681-006-4723-8 10.3389/fpls.2019.01538 10.1007/s11104-015-2674-3 10.1016/j.jplph.2020.153314 10.3389/fpls.2021.615114 10.1007/s11032-009-9258-y 10.1002/leg3.36 10.1007/s11105-015-0872-z 10.3390/plants10091873 10.3390/horticulturae7030050 10.3390/ijms23031704 10.1038/nplants.2016.22 10.3389/fgene.2021.703901 10.2135/cropsci1996.0011183X003600010021x 10.1038/s41598-018-31297-6 10.3389/fpls.2015.01037 10.2135/cropsci2016.10.0880 10.3389/fpls.2017.02125 10.1186/1471-2148-10-44 10.3389/fpls.2020.00204 10.3390/plants11172268 10.1177/0748233712462471 10.1016/j.plantsci.2017.01.018 10.1016/j.scienta.2021.110258 10.1016/j.jprot.2016.01.006 10.1111/pce.13526 10.1007/s10059-012-0098-y 10.1016/j.tibtech.2021.08.009 10.1071/FP03105 10.1038/s41588-019-0480-1 10.3390/agronomy11010036 10.3390/biology9100324 10.1016/j.soilbio.2008.11.021 10.1186/s12711-021-00647-w 10.1016/j.jplph.2019.153001 10.4141/cjps2011-274 10.1016/j.tplants.2021.03.005 10.3390/genes9110535 10.1016/j.sjbs.2019.11.018 10.1007/s00018-014-1767-0 10.1111/j.1439-0523.2006.01312.x 10.1017/S147926211000033X 10.7717/peerj.6263 10.1007/BF00384006 10.1016/j.plantsci.2009.07.009 10.1093/g3journal/jkab227 10.1007/s10681-017-2033-y 10.15252/embr.202051598 10.3390/ijms21072414 10.3389/fgene.2021.707754 10.1186/s12864-019-5920-x 10.20546/ijcmas.2020.909.428 10.1016/j.fcr.2009.07.017 10.3390/plants10020259 10.1111/j.1365-313X.2005.02511.x 10.1093/aob/mcg101 10.1071/CP16423 10.1016/j.jclepro.2021.126447 10.1007/s10658-012-0116-0 10.1038/s41598-017-06222-y 10.1111/pbr.12806 10.1007/978-3-030-47306-8_10 10.1007/s10340-017-0925-1 10.1016/B978-0-12-811050-8.00008-X |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by John Wiley & Sons Ltd on behalf of Association of Applied Biologists. 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of Association of Applied Biologists. – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7QL 7QR 7SN 7SS 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 7S9 L.6 |
DOI | 10.1111/aab.12840 |
DatabaseName | Wiley Online Library Open Access CrossRef Bacteriology Abstracts (Microbiology B) Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1744-7348 |
EndPage | 120 |
ExternalDocumentID | 10_1111_aab_12840 AAB12840 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Agencia Estatal de Investigación funderid: PID2020‐114668RB‐I00 – fundername: Horizon 2020 Framework Programme funderid: 101000622. – fundername: Fundação para a Ciência e a Tecnologia funderid: 2021.08330.BD; 2022.01903.CEECIND |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 23M 24P 31~ 33P 3EH 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 ML0 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OHT OIG OK1 OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 QF4 QM4 QN7 QO4 R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TUS UB1 UPT V8K VH1 W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZCG ZXP ZY4 ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7QL 7QR 7SN 7SS 7T7 7TM 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 M7N P64 7S9 L.6 |
ID | FETCH-LOGICAL-c3940-568fc6ec441ad4b9b46c03fd4e3c6e6e424f0407765a4ab1f7b5d3064ea1ee223 |
IEDL.DBID | DR2 |
ISSN | 0003-4746 |
IngestDate | Fri Jul 11 18:32:26 EDT 2025 Wed Aug 13 10:49:48 EDT 2025 Thu Apr 24 22:52:24 EDT 2025 Tue Jul 01 03:05:02 EDT 2025 Wed Jan 22 16:17:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3940-568fc6ec441ad4b9b46c03fd4e3c6e6e424f0407765a4ab1f7b5d3064ea1ee223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9644-8616 0000-0002-6708-5550 0000-0002-0619-4868 0000-0002-5110-7006 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Faab.12840 |
PQID | 2852486556 |
PQPubID | 866370 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2887620615 proquest_journals_2852486556 crossref_primary_10_1111_aab_12840 crossref_citationtrail_10_1111_aab_12840 wiley_primary_10_1111_aab_12840_AAB12840 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2023 2023-09-00 20230901 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
PublicationDecade | 2020 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | Annals of applied biology |
PublicationYear | 2023 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | 2010; 10 2015; 72 2019; 10 2022; 23 2008; 108 2018; 41 2020; 11 2021; 287 2020; 10 2013; 7 2009; 114 2018; 7 2018; 9 2018; 8 2018; 172 2019; 20 2007; 173 2016; 399 2019; 7 2006; 53 2019; 2 2017; 68 2009; 177 1994 2016; 15 1974; 121 2003; 30 2017; 258 2016; 14 2011; 9 2016; 7 2021; 53 2016; 2 2019; 42 2021; 256 2017; 57 2020; 27 2022; 13 2018; 91 2003; 26 2020; 21 2022; 11 2014; 30 2014; 33 2018; 13 2012; 61 2017; 7 2015; 37 2021; 26 2017; 8 2009; 41 2019; 51 2017; 4 2021; 28 2015; 33 2022; 68 1996; 36 2019; 241 2023; 24 2020; 3 2020; 2 2003; 92 2020; 52 2020; 9 2020; 48 2020; 139 2021; 40 2009; 23 2007; 126 2021; 7 2015; 6 2011 2021; 106 1994; 194 1999; 4 2018; 65 2017; 213 2005; 44 2018; 69 2018; 155 2012; 92 2021; 10 2012; 2 2021; 12 2021; 11 2017; VIII 2021 2020 2023; 113 2017; 10 2019 2005; 52 2013; 135 2016 2022; 54 2021; 297 2016; 136 2006; 147 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_29_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_102_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_59_1 e_1_2_11_113_1 Amede T. (e_1_2_11_5_1) 2003; 26 e_1_2_11_50_1 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_54_1 e_1_2_11_96_1 e_1_2_11_103_1 e_1_2_11_28_1 e_1_2_11_61_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_107_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 UNICEF (e_1_2_11_105_1) 2021 Clark W. (e_1_2_11_32_1) 2020 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_110_1 e_1_2_11_39_1 Rubiales D. (e_1_2_11_82_1) 2019 e_1_2_11_72_1 e_1_2_11_91_1 Upreti K. K. (e_1_2_11_106_1) 1999; 4 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_104_1 e_1_2_11_27_1 e_1_2_11_2_1 e_1_2_11_100_1 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_15_1 e_1_2_11_111_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_94_1 e_1_2_11_71_1 e_1_2_11_90_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_98_1 e_1_2_11_33_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 Rubiales D. (e_1_2_11_80_1) 2011 e_1_2_11_101_1 Jovanovic Z. (e_1_2_11_52_1) 2013; 7 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_18_1 e_1_2_11_37_1 e_1_2_11_112_1 |
References_xml | – volume: 44 start-page: 76 issue: 1 year: 2005 end-page: 87 article-title: Cold‐and salinity stress‐induced bipolar pea DNA helicase 47 is involved in protein synthesis and stimulated by phosphorylation with protein kinase C publication-title: The Plant Journal – volume: 23 start-page: 591 issue: 4 year: 2009 end-page: 606 article-title: Genetic engineering of chickpea ( L.) with the gene for osmoregulation with implications on drought tolerance publication-title: Molecular Breeding – volume: 69 start-page: 3267 issue: 13 year: 2018 end-page: 3277 article-title: Genetic diversity of root system architecture in response to drought stress in grain legumes publication-title: Journal of Experimental Botany – volume: 258 start-page: 122 year: 2017 end-page: 136 article-title: MicroRNA156 improves drought stress tolerance in alfalfa ( ) by silencing publication-title: Plant Science – volume: 106 start-page: 1338 issue: 5 year: 2021 end-page: 1355 article-title: Phloem exudate metabolic content reflects the response to water‐deficit stress in pea plants ( L.) publication-title: The Plant Journal – volume: 136 start-page: 202 year: 2016 end-page: 213 article-title: Evidence for a rhizobia‐induced drought stress response strategy in publication-title: Journal of Proteomics – volume: 12 start-page: 1897 issue: 12 year: 2021 article-title: Genome‐wide association mapping for heat and drought adaptive traits in pea publication-title: Genes – volume: 10 start-page: 1538 year: 2019 article-title: Genome‐wide association mapping for agronomic and seed quality traits of field pea ( L.) publication-title: Frontiers in Plant Science – volume: 114 start-page: 198 year: 2009 end-page: 203 article-title: Identification of resistance to (Pers.) Wint. in spp. germplasm publication-title: Field Crops Research – volume: 91 start-page: 205 year: 2018 end-page: 214 article-title: Identification and multi‐environment validation of resistance to pea weevil ( ) in germplasm publication-title: Journal of Pest Science – volume: 7 start-page: 571 year: 2016 article-title: Abscisic acid and abiotic stress tolerance in crop plants publication-title: Frontiers in Plant Science – volume: 27 start-page: 543 issue: 1 year: 2020 end-page: 555 article-title: Legume genomics and transcriptomics: From classic breeding to modern technologies publication-title: Saudi Journal of Biological Sciences – volume: 6 start-page: 1037 year: 2015 article-title: Genomic tools in pea breeding programs: Status and perspectives publication-title: Frontiers in Plant Science – volume: 241 year: 2019 article-title: Evaluating stress responses in cowpea under drought stress publication-title: Journal of Plant Physiology – volume: 9 start-page: 324 issue: 10 year: 2020 article-title: Exogenous abscisic acid can influence photosynthetic processes in peas through a decrease in activity of H ‐ATP‐ase in the plasma membrane publication-title: Biology – volume: 68 start-page: 915 year: 2017 end-page: 923 article-title: Assessment of field pea ( L.) grain yield, aerial biomass and flowering date stability in Mediterranean environments publication-title: Crops & Pasture Science – volume: 135 start-page: 761 year: 2013 end-page: 769 article-title: Characterization of mechanisms of resistance against in spp publication-title: European Journal of Plant Pathology – volume: 12 year: 2021 article-title: Harnessing genetic diversity in the USDA pea germplasm collection through genomic prediction publication-title: Frontiers in Genetics – volume: 7 start-page: 5919 issue: 1 year: 2017 article-title: Marker‐trait association analysis of frost tolerance of 672 worldwide pea ( L.) collections publication-title: Scientific Reports – volume: 11 start-page: 623 year: 2020 article-title: PWR/HDA9/ABI4 complex epigenetically regulates ABA dependent drought stress tolerance in arabidopsis publication-title: Frontiers in Plant Science – volume: 12 start-page: 324 year: 2021 article-title: Abscisic acid‐induced stomatal closure: An important component of plant defense against abiotic and biotic stress publication-title: Frontiers in Plant Science – volume: 65 start-page: 541 issue: 4 year: 2018 end-page: 552 article-title: The soybean gene plays a role in drought tolerance at vegetative stages publication-title: Russian Journal of Plant Physiology – volume: 7 start-page: 50 issue: 3 year: 2021 article-title: Response mechanism of plants to drought stress publication-title: Horticulturae – volume: 2 issue: 2 year: 2020 article-title: Potential and limits of exploitation of crop wild relatives for pea, lentil, and chickpea improvement publication-title: Legume Science – volume: 10 start-page: 1873 issue: 9 year: 2021 article-title: Drought stress memory at the plant cycle level: A review publication-title: Plants – volume: 8 start-page: 12839 issue: 1 year: 2018 article-title: Interaction of polyamines, abscisic acid and proline under osmotic stress in the leaves of wheat plants publication-title: Scientific Reports – start-page: 1 year: 2011 end-page: 49 – volume: 26 start-page: 940 issue: 9 year: 2021 end-page: 952 article-title: How roots and shoots communicate through stressful times publication-title: Trends in Plant Science – volume: 33 start-page: 1768 issue: 6 year: 2015 end-page: 1778 article-title: Quantitative trait loci associated to drought adaptation in pea ( L.) publication-title: Plant Molecular Biology Reporter – volume: 172 start-page: 268 issue: 3 year: 2018 end-page: 281 article-title: Identification and characterization of antixenosis and antibiosis to pea aphid ( ) in spp. germplasm publication-title: Annals of Applied Biology – volume: 41 start-page: 413 issue: 5 year: 2018 end-page: 422 article-title: Confirmation of drought tolerance of ectopically expressed AtABF3 gene in soybean publication-title: Molecules and Cells – volume: 399 start-page: 1 issue: 1 year: 2016 end-page: 12 article-title: How nitrogen fixation is modulated in response to different water availability levels and during recovery: A structural and functional study at the whole plant level publication-title: Plant and Soil – volume: 173 start-page: 603 issue: 6 year: 2007 end-page: 608 article-title: Stressful “memories” of plants: Evidence and possible mechanisms publication-title: Plant Science – volume: 53 start-page: 359 issue: 3 year: 2006 end-page: 365 article-title: ABA content in shoots and roots of pea mutants and as related to their growth and morphogenesis publication-title: Russian Journal of Plant Physiology – start-page: 575 year: 2019 end-page: 606 – volume: 11 start-page: 769 issue: 4 year: 2021 article-title: Pea breeding lines adapted to autumn sowings in broomrape prone Mediterranean environments publication-title: Agronomy – volume: 8 start-page: 2125 year: 2017 article-title: Over‐expression of gene confers drought tolerance in alfalfa ( L.) publication-title: Frontiers in Plant Science – volume: 51 start-page: 1411 issue: 9 year: 2019 end-page: 1422 article-title: A reference genome for pea provides insight into legume genome evolution publication-title: Nature Genetics – volume: 139 start-page: 821 issue: 5 year: 2020 end-page: 833 article-title: Breeding tepary bean ( ) for drought adaptation: A review publication-title: Plant Breeding – volume: 9 start-page: 2525 year: 2018 article-title: Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants publication-title: Frontiers in Microbiology – volume: 52 start-page: 355 issue: 2 year: 2020 end-page: 363 article-title: Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance publication-title: Pakistan Journal of Botany – volume: 61 start-page: 532 year: 2012 end-page: 542 article-title: A detailed evaluation method to identify sources of quantitative resistance to f. sp. race 2 within a spp. germplasm collection publication-title: Plant Pathology – volume: 11 start-page: 2268 year: 2022 article-title: Identification and characterization of novel sources of resistance to rust ( ) in spp publication-title: Plants – volume: 7 start-page: 1590 issue: 10 year: 2013 end-page: 1596 article-title: The expression of drought responsive element binding protein ('DREB2A') related gene from pea ( L.) as affected by water stress publication-title: Australian Journal of Crop Science – volume: 10 start-page: 1537 issue: 10 year: 2020 article-title: Introgression of the gene into climbing garden pea ( L.) publication-title: Agronomy – volume: 177 start-page: 460 issue: 5 year: 2009 end-page: 467 article-title: Isolation and sequence analysis of homologues in three cereal and two legume species publication-title: Plant Science – volume: 11 issue: 9 year: 2021 article-title: Genome‐wide association studies of mineral and phytic acid concentrations in pea ( L.) to evaluate biofortification potential publication-title: G3 – volume: 36 start-page: 115 issue: 1 year: 1996 end-page: 120 article-title: Interpreting yield instability in pea using genotypic and environmental covariates publication-title: Crop Science – volume: 14 start-page: 1070 issue: 4 year: 2016 end-page: 1085 article-title: Genomics of crop wild relatives: Expanding the gene pool for crop improvement publication-title: Plant Biotechnology Journal – start-page: 375 year: 2016 end-page: 392) – volume: 4 year: 2017 article-title: A community resource for exploring and utilizing genetic diversity in the USDA pea single plant plus collection publication-title: Horticulture Research – volume: 108 start-page: 133 issue: 2 year: 2008 end-page: 142 article-title: Adaptation strategy, germplasm type and adaptive traits for field pea improvement in Italy based on variety responses across climatically contrasting environments publication-title: Field Crops Research – volume: 92 start-page: 1005 issue: 6 year: 2012 end-page: 1011 article-title: Frequency of field pea in rotations impacts biological nitrogen fixation publication-title: Canadian Journal of Plant Science – volume: 37 start-page: 34 issue: 2 year: 2015 article-title: Relationships between stomatal behaviour, spectral traits and water use and productivity of green peas ( L.) in dry seasons publication-title: Acta Physiologiae Plantarum – volume: 15 start-page: 45 issue: 2 year: 2016 end-page: 57 article-title: Differential sensitivity of L. cultivars to water‐deficit stress: Changes in growth, water status, chlorophyll fluorescence and gas exchange attributes publication-title: Journal of Agronomy – volume: 54 start-page: 1553 year: 2022 end-page: 1563 article-title: Improved pea reference genome and pan‐genome highlight genomic features and evolutionary characteristics publication-title: Nature Genetics – volume: 21 start-page: 2414 issue: 7 year: 2020 article-title: Development and proof‐of‐concept application of genome‐enabled selection for pea grain yield under severe terminal drought publication-title: International Journal of Molecular Sciences – volume: 30 start-page: 1151 issue: 11 year: 2003 end-page: 1164 article-title: High temperature and water deficit may reduce seed number in field pea purely by decreasing plant growth rate publication-title: Functional Plant Biology – volume: 42 start-page: 753 issue: 3 year: 2019 end-page: 761 article-title: Stress priming, memory, and signalling in plants publication-title: Plant, Cell & Environment – volume: 7 year: 2019 article-title: Variation in wild pea ( subsp. ) seed dormancy and its relationship to the environment and seed coat traits publication-title: PeerJ – volume: 297 year: 2021 article-title: Substitution of beef with pea protein reduces the environmental footprint of meat balls whilst supporting health and climate stabilisation goals publication-title: Journal of Cleaner Production – volume: 30 start-page: 693 issue: 8 year: 2014 end-page: 700 article-title: Alterations in antioxidant enzyme activities and proline content in pea leaves under long‐term drought stress publication-title: Toxicology and Industrial Health – volume: 33 start-page: 331 issue: 4 year: 2014 end-page: 349 article-title: Drought stress in wheat during flowering and grain‐filling periods publication-title: Critical Reviews in Plant Sciences – year: 2021 – volume: 20 start-page: 2541 issue: 10 year: 2019 article-title: Research progress and perspective on drought stress in legumes: A review publication-title: International Journal of Molecular Sciences – volume: 28 start-page: 14211 issue: 12 year: 2021 end-page: 14232 article-title: Nexus on climate change: Agriculture and possible solution to cope future climate change stresses publication-title: Environmental Science and Pollution Research – volume: 10 start-page: 44 issue: 1 year: 2010 article-title: The genetic diversity and evolution of field pea ( ) studied by high throughput retrotransposon‐based insertion polymorphism (RBIP) marker analysis publication-title: BMC Evolutionary Biology – volume: 48 start-page: 2182 issue: 4 year: 2020 end-page: 2197 article-title: Root system variation of pulse crops at early vegetative stage publication-title: Notulae Botanicae Horti Agrobotanici Cluj‐Napoca – volume: 92 start-page: 1 issue: 1 year: 2003 end-page: 20 article-title: Aspects of plant intelligence publication-title: Annals of Botany – volume: 23 start-page: 1704 issue: 3 year: 2022 article-title: Changes in metabolic profiles of pea ( L.) as a result of repeated short‐term soil drought and subsequent re‐watering publication-title: International Journal of Molecular Sciences – volume: 52 start-page: 853 year: 2005 end-page: 861 article-title: Search for resistance to crenate broomrape ( ) in pea germplasm publication-title: Genetic Resources and Crop Evolution – volume: 113 start-page: 60 issue: 1 year: 2023 end-page: 74 article-title: Reversible changes in structure and function of photosynthetic apparatus of pea ( ) leaves under drought stress publication-title: The Plant Journal – volume: 2 start-page: 136 issue: 1 year: 2019 article-title: Modelling of crop wild relative species identifies areas globally for in situ conservation publication-title: Communications Biology – volume: 13 issue: 3 year: 2018 article-title: Genetic structure of wild pea ( subsp. ) populations in the northern part of the Fertile Crescent reflects moderate cross‐pollination and strong effect of geographic but not environmental distance publication-title: PLoS One – volume: 9 start-page: 535 issue: 11 year: 2018 article-title: Molecular evidence for two domestication events in the pea crop publication-title: Genes – volume: 147 start-page: 167 issue: 1 year: 2006 end-page: 186 article-title: Screening techniques and sources of resistance to abiotic stresses in cool‐season food legumes publication-title: Euphytica – volume: VIII start-page: 43 year: 2017 end-page: 49 article-title: Association of yield attributing traits in pea ( L.) germplasm publication-title: Banat's Journal of Biotechnology – volume: 72 start-page: 673 year: 2015 end-page: 689 article-title: General mechanisms of drought response and their application in drought resistance improvement in plants publication-title: Cellular and Molecular Life Sciences – volume: 3 start-page: 283 year: 2020 end-page: 341 – volume: 10 start-page: 259 issue: 2 year: 2021 article-title: Drought stress impacts on plants and different approaches to alleviate its adverse effects publication-title: Plants – volume: 9 start-page: 3449 issue: 9 year: 2020 end-page: 3454 article-title: Studies on genetic variability, heritability and genetic advance in table pea ( var. L.) publication-title: International Journal of Current Microbiology and Applied Sciences – volume: 11 start-page: 36 issue: 1 year: 2020 article-title: Development of pea breeding lines with resistance to derived from pea landraces and wild spp publication-title: Agronomy – volume: 20 start-page: 603 issue: 1 year: 2019 article-title: Pea genomic selection for Italian environments publication-title: BMC Genomics – volume: 7 start-page: 72 issue: 3 year: 2018 article-title: Physiology based approaches for breeding of next‐generation food legumes publication-title: Plants – volume: 194 start-page: 346 year: 1994 end-page: 352 article-title: Drought induces oxidative stress in pea plants publication-title: Planta – volume: 287 year: 2021 article-title: Differential variations in total flavonoid content and antioxidant enzymes activities in pea under different salt and drought stresses publication-title: Scientia Horticulturae – volume: 11 start-page: 19706 issue: 1 year: 2021 article-title: super‐early progeny in interspecific crosses L.× Sibth. et Sm publication-title: Scientific Reports – volume: 8 start-page: 14 issue: 1 year: 2018 article-title: Macro and micronutrient storage in plants and their remobilization when facing scarcity: The case of drought publication-title: Agriculture – volume: 121 start-page: 57 year: 1974 end-page: 66 article-title: Variation and metabolism of abscisic acid in pea seedlings during and after water stress publication-title: Planta – start-page: 427 year: 2020 end-page: 450 – start-page: 439 year: 1994 end-page: 456 – volume: 24 start-page: 2470 year: 2023 article-title: Genetic diversity and population structure of a wide spp. core collection publication-title: International Journal of Molecular Sciences – volume: 12 start-page: 2141 year: 2021 article-title: An overview of strategies for detecting genotype‐phenotype associations across ancestrally diverse populations publication-title: Frontiers in Genetics – volume: 26 start-page: 37 issue: 1 year: 2003 end-page: 46 article-title: Mechanisms of drought resistance in grain legumes I: Osmotic adjustment publication-title: SINET: Ethiopian Journal of Science – volume: 41 start-page: 380 issue: 2 year: 2009 end-page: 387 article-title: The influence of water stress on biomass and N accumulation, N partitioning between above and below ground parts and on N rhizodeposition during reproductive growth of pea ( L.) publication-title: Soil Biology and Biochemistry – volume: 256 year: 2021 article-title: Metabolite profiling of semi‐leafless pea ( L.) under progressive soil drought and subsequent re‐watering publication-title: Journal of Plant Physiology – volume: 68 start-page: 1601 issue: 11 year: 2022 end-page: 1618 article-title: The challenge of drought stress for grain legumes and options for improvement publication-title: Archives of Agronomy and Soil Science – volume: 4 start-page: 1 year: 1999 end-page: 5 article-title: Effect of polyamines on the changes in endogenous hormones in pea under water stress conditions publication-title: Indian Journal of Plant Physiology – volume: 40 start-page: 412 issue: 4 year: 2021 end-page: 431 article-title: Reap the crop wild relatives for breeding future crops publication-title: Trends in Biotechnology – volume: 155 start-page: 45 year: 2018 end-page: 55 article-title: The gene confers enhanced salt and drought tolerance to transgenic soybean plants by maintaining homeostasis of water, salt ions and ROS publication-title: Environmental and Experimental Botany – volume: 21 issue: 12 year: 2020 article-title: The dichotomy of yield and drought resistance: Translation challenges from basic research to crop adaptation to climate change publication-title: EMBO Reports – volume: 2 start-page: 16022 issue: 4 year: 2016 article-title: Global conservation priorities for crop wild relatives publication-title: Nature Plants – volume: 11 start-page: 204 year: 2020 article-title: Pea efficiency of post‐drought recovery relies on the strategy to fine‐tune nitrogen nutrition publication-title: Frontiers in Plant Science – volume: 13 year: 2022 article-title: Unraveling the genetic basis of key agronomic traits of wrinkled vining pea ( L.) for sustainable production publication-title: Frontiers in Plant Science – start-page: 123 year: 2019 end-page: 143 – volume: 53 start-page: 55 issue: 1 year: 2021 article-title: Predicting the accuracy of genomic predictions publication-title: Genetics Selection Evolution – year: 2020 – volume: 126 start-page: 113 year: 2007 end-page: 119 article-title: Identification and characterisation of sources of resistance to Syd. in spp publication-title: Plant Breeding – volume: 213 start-page: 245 issue: 11 year: 2017 article-title: Diversity in a pea ( ) world collection for key agronomic traits in a rain‐fed environment of southern Europe publication-title: Euphytica – volume: 10 issue: 2 year: 2017 article-title: GBS‐based genomic selection for pea grain yield under severe terminal drought publication-title: The Plant Genome – volume: 57 start-page: 1145 issue: 3 year: 2017 end-page: 1159 article-title: Drought response and genetic diversity in , a wild relative of domesticated pea publication-title: Crop Science – volume: 2 start-page: 74 issue: 2 year: 2012 end-page: 115 article-title: Pea ( L.) in the genomic era publication-title: Agronomy – volume: 9 start-page: 4 issue: 1 year: 2011 end-page: 18 article-title: Phylogeny, phylogeography and genetic diversity of the genus publication-title: Plant Genetic Resources – ident: e_1_2_11_79_1 doi: 10.3390/ijms24032470 – ident: e_1_2_11_90_1 doi: 10.3390/plants7030072 – ident: e_1_2_11_100_1 doi: 10.3390/genes12121897 – ident: e_1_2_11_110_1 doi: 10.1038/s41588-022-01172-2 – ident: e_1_2_11_71_1 doi: 10.1007/s11738-015-1776-0 – ident: e_1_2_11_83_1 doi: 10.1007/s10722-003-6116-3 – ident: e_1_2_11_93_1 doi: 10.3390/agronomy2020074 – ident: e_1_2_11_87_1 doi: 10.1038/s41598-021-99284-y – ident: e_1_2_11_31_1 doi: 10.3389/fmicb.2018.02525 – ident: e_1_2_11_95_1 doi: 10.1371/journal.pone.0194056 – ident: e_1_2_11_55_1 doi: 10.30848/PJB2020-2(24) – volume: 26 start-page: 37 issue: 1 year: 2003 ident: e_1_2_11_5_1 article-title: Mechanisms of drought resistance in grain legumes I: Osmotic adjustment publication-title: SINET: Ethiopian Journal of Science – ident: e_1_2_11_25_1 doi: 10.1016/j.plantsci.2007.09.002 – ident: e_1_2_11_65_1 doi: 10.1007/BF00197534 – ident: e_1_2_11_109_1 doi: 10.1007/978-94-011-0798-3_26 – ident: e_1_2_11_40_1 doi: 10.1080/07352689.2014.875291 – ident: e_1_2_11_86_1 doi: 10.3389/fpls.2016.00571 – ident: e_1_2_11_112_1 doi: 10.1093/jxb/ery082 – ident: e_1_2_11_30_1 doi: 10.3390/agronomy10101537 – ident: e_1_2_11_108_1 doi: 10.1038/s42003-019-0372-z – ident: e_1_2_11_104_1 doi: 10.1080/03650340.2021.1906413 – ident: e_1_2_11_89_1 doi: 10.1007/s11356-021-12649-8 – ident: e_1_2_11_4_1 doi: 10.3389/fpls.2022.844450 – ident: e_1_2_11_14_1 doi: 10.1111/aab.12417 – ident: e_1_2_11_3_1 doi: 10.3923/ja.2016.45.57 – ident: e_1_2_11_74_1 doi: 10.1111/tpj.16034 – ident: e_1_2_11_58_1 doi: 10.1134/S1021443706030113 – ident: e_1_2_11_68_1 doi: 10.3390/ijms20102541 – ident: e_1_2_11_9_1 doi: 10.3835/plantgenome2016.07.0072 – ident: e_1_2_11_92_1 doi: 10.1007/978-981-15-2874-3_17 – ident: e_1_2_11_15_1 doi: 10.1111/j.1365-3059.2011.02537.x – ident: e_1_2_11_24_1 doi: 10.1111/pbi.12454 – ident: e_1_2_11_7_1 doi: 10.1016/j.fcr.2008.04.004 – ident: e_1_2_11_37_1 doi: 10.3390/agriculture8010014 – ident: e_1_2_11_22_1 doi: 10.1111/tpj.15240 – ident: e_1_2_11_96_1 doi: 10.1002/9781119054450.ch23 – ident: e_1_2_11_29_1 doi: 10.15835/nbha48412054 – ident: e_1_2_11_61_1 doi: 10.1134/S1021443718040155 – ident: e_1_2_11_6_1 doi: 10.1016/j.envexpbot.2018.06.025 – ident: e_1_2_11_54_1 doi: 10.3389/fpls.2020.00623 – volume: 7 start-page: 1590 issue: 10 year: 2013 ident: e_1_2_11_52_1 article-title: The expression of drought responsive element binding protein ('DREB2A') related gene from pea (Pisum sativum L.) as affected by water stress publication-title: Australian Journal of Crop Science – ident: e_1_2_11_84_1 doi: 10.3390/agronomy11040769 – ident: e_1_2_11_18_1 doi: 10.7904/2068-4738-VIII(15)-43 – ident: e_1_2_11_46_1 doi: 10.1038/hortres.2017.17 – ident: e_1_2_11_98_1 doi: 10.1007/s10681-006-4723-8 – ident: e_1_2_11_42_1 doi: 10.3389/fpls.2019.01538 – ident: e_1_2_11_78_1 doi: 10.1007/s11104-015-2674-3 – ident: e_1_2_11_99_1 doi: 10.1016/j.jplph.2020.153314 – ident: e_1_2_11_19_1 doi: 10.3389/fpls.2021.615114 – volume-title: The future of food: Sustainable protein strategies around the world year: 2020 ident: e_1_2_11_32_1 – ident: e_1_2_11_20_1 doi: 10.1007/s11032-009-9258-y – ident: e_1_2_11_34_1 doi: 10.1002/leg3.36 – volume-title: The state of food security and nutrition in the world 2021 year: 2021 ident: e_1_2_11_105_1 – ident: e_1_2_11_49_1 doi: 10.1007/s11105-015-0872-z – ident: e_1_2_11_50_1 doi: 10.3390/plants10091873 – ident: e_1_2_11_111_1 doi: 10.3390/horticulturae7030050 – ident: e_1_2_11_60_1 doi: 10.3390/ijms23031704 – ident: e_1_2_11_28_1 doi: 10.1038/nplants.2016.22 – ident: e_1_2_11_91_1 doi: 10.3389/fgene.2021.703901 – ident: e_1_2_11_21_1 doi: 10.2135/cropsci1996.0011183X003600010021x – ident: e_1_2_11_73_1 doi: 10.1038/s41598-018-31297-6 – ident: e_1_2_11_101_1 doi: 10.3389/fpls.2015.01037 – ident: e_1_2_11_69_1 doi: 10.2135/cropsci2016.10.0880 – ident: e_1_2_11_114_1 doi: 10.3389/fpls.2017.02125 – ident: e_1_2_11_51_1 doi: 10.1186/1471-2148-10-44 – ident: e_1_2_11_33_1 doi: 10.3389/fpls.2020.00204 – ident: e_1_2_11_72_1 doi: 10.3390/plants11172268 – ident: e_1_2_11_53_1 doi: 10.1177/0748233712462471 – ident: e_1_2_11_12_1 doi: 10.1016/j.plantsci.2017.01.018 – ident: e_1_2_11_39_1 doi: 10.1016/j.scienta.2021.110258 – ident: e_1_2_11_97_1 doi: 10.1016/j.jprot.2016.01.006 – ident: e_1_2_11_45_1 doi: 10.1111/pce.13526 – ident: e_1_2_11_56_1 doi: 10.1007/s10059-012-0098-y – ident: e_1_2_11_23_1 doi: 10.1016/j.tibtech.2021.08.009 – ident: e_1_2_11_43_1 doi: 10.1071/FP03105 – ident: e_1_2_11_59_1 doi: 10.1038/s41588-019-0480-1 – ident: e_1_2_11_81_1 doi: 10.3390/agronomy11010036 – start-page: 575 volume-title: Achieving sustainable cultivation of vegetables year: 2019 ident: e_1_2_11_82_1 – ident: e_1_2_11_113_1 doi: 10.3390/biology9100324 – ident: e_1_2_11_64_1 doi: 10.1016/j.soilbio.2008.11.021 – ident: e_1_2_11_35_1 doi: 10.1186/s12711-021-00647-w – ident: e_1_2_11_27_1 doi: 10.1016/j.jplph.2019.153001 – ident: e_1_2_11_57_1 doi: 10.4141/cjps2011-274 – volume: 4 start-page: 1 year: 1999 ident: e_1_2_11_106_1 article-title: Effect of polyamines on the changes in endogenous hormones in pea under water stress conditions publication-title: Indian Journal of Plant Physiology – ident: e_1_2_11_62_1 doi: 10.1016/j.tplants.2021.03.005 – ident: e_1_2_11_103_1 doi: 10.3390/genes9110535 – ident: e_1_2_11_2_1 doi: 10.1016/j.sjbs.2019.11.018 – ident: e_1_2_11_38_1 doi: 10.1007/s00018-014-1767-0 – ident: e_1_2_11_41_1 doi: 10.1111/j.1439-0523.2006.01312.x – ident: e_1_2_11_94_1 doi: 10.1017/S147926211000033X – ident: e_1_2_11_47_1 doi: 10.7717/peerj.6263 – ident: e_1_2_11_36_1 doi: 10.1007/BF00384006 – ident: e_1_2_11_70_1 doi: 10.1016/j.plantsci.2009.07.009 – ident: e_1_2_11_77_1 doi: 10.1093/g3journal/jkab227 – ident: e_1_2_11_11_1 doi: 10.1007/s10681-017-2033-y – ident: e_1_2_11_66_1 doi: 10.15252/embr.202051598 – ident: e_1_2_11_8_1 doi: 10.3390/ijms21072414 – ident: e_1_2_11_16_1 doi: 10.3389/fgene.2021.707754 – ident: e_1_2_11_10_1 doi: 10.1186/s12864-019-5920-x – ident: e_1_2_11_44_1 doi: 10.20546/ijcmas.2020.909.428 – ident: e_1_2_11_17_1 doi: 10.1016/j.fcr.2009.07.017 – ident: e_1_2_11_88_1 doi: 10.3390/plants10020259 – ident: e_1_2_11_107_1 doi: 10.1111/j.1365-313X.2005.02511.x – ident: e_1_2_11_102_1 doi: 10.1093/aob/mcg101 – ident: e_1_2_11_48_1 doi: 10.1071/CP16423 – ident: e_1_2_11_85_1 doi: 10.1016/j.jclepro.2021.126447 – ident: e_1_2_11_26_1 doi: 10.1007/s10658-012-0116-0 – ident: e_1_2_11_63_1 doi: 10.1038/s41598-017-06222-y – ident: e_1_2_11_67_1 doi: 10.1111/pbr.12806 – ident: e_1_2_11_75_1 doi: 10.1007/978-3-030-47306-8_10 – start-page: 1 volume-title: Genetics, genomics and breeding of cool season grain legumes year: 2011 ident: e_1_2_11_80_1 – ident: e_1_2_11_13_1 doi: 10.1007/s10340-017-0925-1 – ident: e_1_2_11_76_1 doi: 10.1016/B978-0-12-811050-8.00008-X |
SSID | ssj0009092 |
Score | 2.4210215 |
SecondaryResourceType | review_article |
Snippet | Drought is increasingly frequent in the context of climate change and is considered a major constraint for crop yield. Water scarcity can impair growth,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108 |
SubjectTerms | Bioactive compounds biotechnological approaches Biotechnology breeding Climate change Crop yield Cultivars Drought Drought resistance drought stress drought tolerance human health Legumes marker-assisted selection Micronutrients Peas Pisum sativum Pisum species Plant breeding Water deficit Water relations Water scarcity water shortages Water use Water use efficiency |
Title | Challenges in pea breeding for tolerance to drought: Status and prospects |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Faab.12840 https://www.proquest.com/docview/2852486556 https://www.proquest.com/docview/2887620615 |
Volume | 183 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_mQPDFb3E6RxQffOnoujRt9WkOZQqKiIM9CCVpExBHN2z7oH-9ufRjUxTEt9Beab4u97vkcj-A0x6PcSb0LUcpblFObTwkjKwgdn1OlfI8ifsdd_dsNKa3E3fSgIvqLkyRH6LecEPNMOs1KjgX6ZKScy66uLiiv46xWgiIHhepowI7cCq2POpRVmYVwiie-suvtmgBMJdhqrEz1xvwXNWwCC957eaZ6EYf35I3_rMJm7Be4k8yKCbMFjRksg2rBSPl-w7cDCtylZS8JGQuOdE-szFwRMNbks2mEqk4pC6R2FD8ZOcEEWueEp7ERNfbXN5Md2F8ffU0HFkl24IVITu65TJfRUxGGh_p8ROBoCyy-yqmsq8fM0kdqrTGex5zOeWipzzhxui_SN6TUqOMPWgms0TuA_GiWGrXxhG-cKjr2Vy52hpyoVgspMYsLTir-j2MylTkyIgxDSuXRPdMaHqmBSe16LzIv_GTULsavLBUwTR0fNeheO2WteC4fq2VB09EeCJnOcqgMUBUp6tkRur3n4SDwaUpHPxd9BDWkJ6-iElrQzN7y-WRBjGZ6MCKQx86Zs5-AuXS7IM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hEKIXKKUVSym4CCQuWWW9jrOLxGF5aZfXoQKJW2onYwmBsohkVcFv4q_wn5jJY3mISr1w6M1KLMXxvD7b4_kA1lsmYU1oe9I54ymjfD4kjL1uEnSMci4Mkfc7Tk51_1wdXgQXE_BQ34Up60OMN9zYMgp_zQbOG9IvrNwY22Tv6lcplUd494cWbNn2YI-kuyHlwf7Zbt-rOAW8mDnAvUB3XKwxJhRAo7Rdq3Tst12isE2PNSqpHOl1GOrAKGNbLrRBwigdTQtRcpkDcvhTzCDOlfr3fj0Xq-r6XVnz86lQ6aqOEecNjYf6Ovo9Q9qXwLiIbAdz8FjPSZnQctUc5bYZ378pF_m_TNpnmK0gtuiVNjEPE5h-gemSdPNuAQa7NX9MJi5TcYNG2NsyhgtC8CIfXiOzjSC1RFKwGOVbgkH5KBMmTQRNVHE_NfsK5x_yH99gMh2muAgijBOk1Zu0HStVEPrGBRTwjXU6sUiwrAGbtaCjuKq2zqQf11G96iJJRIUkGrA27npTlhh5r9NyrS1R5WWySHYCqfhmsW7Az_Fr8g986GNSHI64D8c7Bq40pEI1_v6RqNfbKRpL_951FWb6ZyfH0fHg9Og7fJKEAcsUvGWYzG9H-IMwW25XClMR8Puj1ewJ1nFJ8Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSyQxEC5EcfGy-FqcXR9RVthLLz2ZdHpmwcP4GBxdxcMK3nqTTgUE6Rm2ZxB_k39yq9Ldo4KCF2-huyChUpX6Ko_6AL63jWNL6ETSexMpo2I-JMyjnku6Rnmfpsj7HReX-vRand0kN3Pw2LyFqepDzDbc2DPCes0OPnb-mZMbY3_y4hrXNyrP8eGe8rXyYHhMk7sv5eDkz9FpVFMKRDlTgEeJ7vpcY04ggAZpe1bpPO54p7BDnzUqqTyZdZrqxChj2z61iWOQjqaNKLnKAa33C3y4yPfHpLp6qvAb92RDz6dSpesyRnxtaDbUl8HvCdE-x8UhsA2W4XONSEW_MqEVmMNiFRYrjsqHNRgeNXQrpbgtxBiNoCw6hDxBgFdMRnfI5BxILeEC6c_kl2AMOy2FKZyg_sNzznIdrj9EWV9gvhgVuAEizR1SsiNt10qVpLHxCcVHY712FgnFtOBHo5gsr4uTM0fGXdYkKaTDLOiwBXsz0XFVkeM1oc1Gu1ntlGUmu4lU_BBXt2B39pvcic9ITIGjKctweGCcR0MKs_J2J1m_fxgaX98vugOfro4H2e_h5fk3WGLu-urC2ibMT_5NcYsQzsRuB8sS8PejTfk_RoIIbw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Challenges+in+pea+breeding+for+tolerance+to+drought%3A+Status+and+prospects&rft.jtitle=Annals+of+applied+biology&rft.au=Bagheri%2C+Maryam&rft.au=Santos%2C+Carla+S.&rft.au=Rubiales%2C+Diego&rft.au=Vasconcelos%2C+Marta+W.&rft.date=2023-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0003-4746&rft.eissn=1744-7348&rft.volume=183&rft.issue=2&rft.spage=108&rft.epage=120&rft_id=info:doi/10.1111%2Faab.12840&rft.externalDBID=10.1111%252Faab.12840&rft.externalDocID=AAB12840 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-4746&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-4746&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-4746&client=summon |