Melatonin suppression by light involves different retinal photoreceptors in young and older adults
Age‐related sleep and circadian rhythm disturbances may be due to altered nonvisual photoreception. Here, we investigated the temporal dynamics of light‐induced melatonin suppression in young and older individuals. In a within‐subject design study, young and older participants were exposed for 60 mi...
Saved in:
Published in | Journal of pineal research Vol. 76; no. 1; pp. e12930 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0742-3098 1600-079X 1600-079X |
DOI | 10.1111/jpi.12930 |
Cover
Loading…
Abstract | Age‐related sleep and circadian rhythm disturbances may be due to altered nonvisual photoreception. Here, we investigated the temporal dynamics of light‐induced melatonin suppression in young and older individuals. In a within‐subject design study, young and older participants were exposed for 60 min (0030‐0130 at night) to nine narrow‐band lights (range: 420−620 nm). Plasma melatonin suppression was calculated at 15, 30, 45, and 60 min time intervals. Individual spectral sensitivity of melatonin suppression and photoreceptor contribution were predicted for each interval and age group. In young participants, melanopsin solely drove melatonin suppression at all time intervals, with a peak sensitivity at 485.3 nm established only after 15 min of light exposure. Conversely, in older participants, spectral light‐driven melatonin suppression was best explained by a more complex model combining melanopsin, S‐cone, and M‐cone functions, with a stable peak (~500 nm) at 30, 45, and 60 min of light exposure. Aging is associated with a distinct photoreceptor contribution to melatonin suppression by light. While in young adults melanopsin‐only photoreception is a reliable predictor of melatonin suppression, in older individuals this process is jointly driven by melanopsin, S‐cone, and M‐cone functions. These findings offer new prospects for customizing light therapy for older individuals. |
---|---|
AbstractList | Age-related sleep and circadian rhythm disturbances may be due to altered nonvisual photoreception. Here, we investigated the temporal dynamics of light-induced melatonin suppression in young and older individuals. In a within-subject design study, young and older participants were exposed for 60 min (0030-0130 at night) to nine narrow-band lights (range: 420-620 nm). Plasma melatonin suppression was calculated at 15, 30, 45, and 60 min time intervals. Individual spectral sensitivity of melatonin suppression and photoreceptor contribution were predicted for each interval and age group. In young participants, melanopsin solely drove melatonin suppression at all time intervals, with a peak sensitivity at 485.3 nm established only after 15 min of light exposure. Conversely, in older participants, spectral light-driven melatonin suppression was best explained by a more complex model combining melanopsin, S-cone, and M-cone functions, with a stable peak (~500 nm) at 30, 45, and 60 min of light exposure. Aging is associated with a distinct photoreceptor contribution to melatonin suppression by light. While in young adults melanopsin-only photoreception is a reliable predictor of melatonin suppression, in older individuals this process is jointly driven by melanopsin, S-cone, and M-cone functions. These findings offer new prospects for customizing light therapy for older individuals. Abstract Age‐related sleep and circadian rhythm disturbances may be due to altered nonvisual photoreception. Here, we investigated the temporal dynamics of light‐induced melatonin suppression in young and older individuals. In a within‐subject design study, young and older participants were exposed for 60 min (0030‐0130 at night) to nine narrow‐band lights (range: 420−620 nm). Plasma melatonin suppression was calculated at 15, 30, 45, and 60 min time intervals. Individual spectral sensitivity of melatonin suppression and photoreceptor contribution were predicted for each interval and age group. In young participants, melanopsin solely drove melatonin suppression at all time intervals, with a peak sensitivity at 485.3 nm established only after 15 min of light exposure. Conversely, in older participants, spectral light‐driven melatonin suppression was best explained by a more complex model combining melanopsin, S‐cone, and M‐cone functions, with a stable peak (~500 nm) at 30, 45, and 60 min of light exposure. Aging is associated with a distinct photoreceptor contribution to melatonin suppression by light. While in young adults melanopsin‐only photoreception is a reliable predictor of melatonin suppression, in older individuals this process is jointly driven by melanopsin, S‐cone, and M‐cone functions. These findings offer new prospects for customizing light therapy for older individuals. Age-related sleep and circadian rhythm disturbances may be due to altered nonvisual photoreception. Here, we investigated the temporal dynamics of light-induced melatonin suppression in young and older individuals. In a within-subject design study, young and older participants were exposed for 60 min (0030-0130 at night) to nine narrow-band lights (range: 420-620 nm). Plasma melatonin suppression was calculated at 15, 30, 45, and 60 min time intervals. Individual spectral sensitivity of melatonin suppression and photoreceptor contribution were predicted for each interval and age group. In young participants, melanopsin solely drove melatonin suppression at all time intervals, with a peak sensitivity at 485.3 nm established only after 15 min of light exposure. Conversely, in older participants, spectral light-driven melatonin suppression was best explained by a more complex model combining melanopsin, S-cone, and M-cone functions, with a stable peak (~500 nm) at 30, 45, and 60 min of light exposure. Aging is associated with a distinct photoreceptor contribution to melatonin suppression by light. While in young adults melanopsin-only photoreception is a reliable predictor of melatonin suppression, in older individuals this process is jointly driven by melanopsin, S-cone, and M-cone functions. These findings offer new prospects for customizing light therapy for older individuals.Age-related sleep and circadian rhythm disturbances may be due to altered nonvisual photoreception. Here, we investigated the temporal dynamics of light-induced melatonin suppression in young and older individuals. In a within-subject design study, young and older participants were exposed for 60 min (0030-0130 at night) to nine narrow-band lights (range: 420-620 nm). Plasma melatonin suppression was calculated at 15, 30, 45, and 60 min time intervals. Individual spectral sensitivity of melatonin suppression and photoreceptor contribution were predicted for each interval and age group. In young participants, melanopsin solely drove melatonin suppression at all time intervals, with a peak sensitivity at 485.3 nm established only after 15 min of light exposure. Conversely, in older participants, spectral light-driven melatonin suppression was best explained by a more complex model combining melanopsin, S-cone, and M-cone functions, with a stable peak (~500 nm) at 30, 45, and 60 min of light exposure. Aging is associated with a distinct photoreceptor contribution to melatonin suppression by light. While in young adults melanopsin-only photoreception is a reliable predictor of melatonin suppression, in older individuals this process is jointly driven by melanopsin, S-cone, and M-cone functions. These findings offer new prospects for customizing light therapy for older individuals. Age‐related sleep and circadian rhythm disturbances may be due to altered nonvisual photoreception. Here, we investigated the temporal dynamics of light‐induced melatonin suppression in young and older individuals. In a within‐subject design study, young and older participants were exposed for 60 min (0030‐0130 at night) to nine narrow‐band lights (range: 420−620 nm). Plasma melatonin suppression was calculated at 15, 30, 45, and 60 min time intervals. Individual spectral sensitivity of melatonin suppression and photoreceptor contribution were predicted for each interval and age group. In young participants, melanopsin solely drove melatonin suppression at all time intervals, with a peak sensitivity at 485.3 nm established only after 15 min of light exposure. Conversely, in older participants, spectral light‐driven melatonin suppression was best explained by a more complex model combining melanopsin, S‐cone, and M‐cone functions, with a stable peak (~500 nm) at 30, 45, and 60 min of light exposure. Aging is associated with a distinct photoreceptor contribution to melatonin suppression by light. While in young adults melanopsin‐only photoreception is a reliable predictor of melatonin suppression, in older individuals this process is jointly driven by melanopsin, S‐cone, and M‐cone functions. These findings offer new prospects for customizing light therapy for older individuals. |
Author | Najjar, Raymond P. Gronfier, Claude Prayag, Abhishek S. |
Author_xml | – sequence: 1 givenname: Raymond P. orcidid: 0000-0002-3770-2300 surname: Najjar fullname: Najjar, Raymond P. email: rpnajjar@nus.edu.sg organization: National University of Singapore – sequence: 2 givenname: Abhishek S. orcidid: 0000-0002-9396-9448 surname: Prayag fullname: Prayag, Abhishek S. organization: Université de Lyon – sequence: 3 givenname: Claude surname: Gronfier fullname: Gronfier, Claude email: claude.gronfier@inserm.fr organization: Université de Lyon |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38241677$$D View this record in MEDLINE/PubMed https://hal.science/hal-04434589$$DView record in HAL |
BookMark | eNp1kUFv1DAQhS1URLeFA38A-QiHtOPY2cTHqgLaahEcQOJm2cmk68prB9tZtP8eb3dbLjCXJ42-eTOad0ZOfPBIyFsGF6zU5cNkL1gtObwgC7YEqKCVP0_IAlpRVxxkd0rOUnoAgK7rlq_IKe9qwZZtuyDmCzqdg7eepnmaIqZkg6dmR529X2dq_Ta4LSY62HHEiD7TiNl67ei0DjlE7HEqkgpJd2H291T7gQY3YKR6mF1Or8nLUbuEb456Tn58-vj9-qZaff18e321qnouBVRcS4MtMDDG9JoJpmUn69IYZDMOKIzmTIoWGy6MWAKO_YBSwtjUpjE9A35OPhx819qpKdqNjjsVtFU3Vyu174EQXDSd3LLCvj-wUwy_ZkxZbWzq0TntMcxJ1ZK1TdnE9ui7IzqbDQ7Pzk8_LMDlAehjSCniqHqbdS5vzFFbpxiofUqqpKQeU_p76fPEk-m_2KP7b-tw939Q3X27PUz8AW3ZodY |
CitedBy_id | crossref_primary_10_1177_14771535241246060 crossref_primary_10_1038_s44328_024_00015_w |
Cites_doi | 10.1038/nn768 10.1080/07420520500545813 10.1007/s007020050022 10.1111/jpi.12786 10.1016/j.neuroscience.2011.01.031 10.1002/cne.20970 10.1016/S0893-133X(99)00069-X 10.1111/jpi.12655 10.1113/JP275501 10.1093/sleep/27.7.1255 10.1093/sleep/27.8.1535 10.1016/j.neurobiolaging.2006.03.005 10.1126/scitranslmed.3000741 10.1016/j.neubiorev.2006.06.004 10.1016/j.cub.2019.11.031 10.1081/CBI-100101049 10.1210/jc.77.5.1398 10.1016/S0925-4927(98)00013-4 10.1167/19.9.5 10.1038/nature03387 10.1523/JNEUROSCI.3580-11.2011 10.1126/science.1067262 10.1073/pnas.2205301119 10.3109/07420528.2014.893242 10.1167/iovs.06-1228 10.1073/pnas.1716281115 10.1016/0304-3940(94)91059-6 10.1016/j.neuron.2017.02.004 10.1002/cne.23555 10.1073/pnas.1400942111 10.1111/j.1600-079X.1993.tb00514.x 10.3390/clockssleep1030024 10.1016/j.jsmc.2015.08.002 10.1016/j.smrv.2004.08.001 10.1016/j.exger.2004.12.001 10.1371/journal.pone.0085837 10.1098/rspb.1983.0091 10.1167/15.1.27 10.1111/jpi.12562 10.1016/j.exger.2008.05.007 10.1364/JOSAA.24.001842 10.1016/j.arr.2005.07.001 10.1007/978-0-387-87458-6 10.1111/j.1460-9568.2005.04268.x 10.1177/074873049701200608 10.1111/j.1460-9568.2006.04613.x 10.1016/j.neuron.2009.12.009 10.1152/ajpendo.00268.2001 10.1167/iovs.15-18642 10.1016/0042-6989(74)90222-3 10.1017/S0952523800174036 10.1080/07420520500482090 10.1364/JOSAA.29.002469 10.1016/j.smrv.2015.05.011 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by John Wiley & Sons Ltd. 2023 The Authors. Journal of Pineal Research published by John Wiley & Sons Ltd. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd. – notice: 2023 The Authors. Journal of Pineal Research published by John Wiley & Sons Ltd. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 24P AAYXX CITATION NPM 7X8 1XC VOOES |
DOI | 10.1111/jpi.12930 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1600-079X |
EndPage | n/a |
ExternalDocumentID | oai_HAL_hal_04434589v1 38241677 10_1111_jpi_12930 JPI12930 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Agence Nationale de la Recherche funderid: 12‐TECS‐0013‐01; 16 IDEX‐0005 – fundername: ASPIRE‐NUS Startup funderid: NUHSRO/2022/038/Startup/08 – fundername: French Ministry of High Education and Research – fundername: EU‐FP7 (EUCLOCK) – fundername: ASPIRE-NUS Startup grantid: NUHSRO/2022/038/Startup/08 – fundername: Agence Nationale de la Recherche grantid: 16 IDEX-0005 – fundername: EU-FP7 (EUCLOCK) – fundername: Agence Nationale de la Recherche grantid: 12-TECS-0013-01 |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 186 1OB 1OC 24P 29L 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAKAS AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BQCPF BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EBC EBD EBS EBX EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 V8K W8V W99 WBKPD WIH WIJ WIK WNSPC WOHZO WOW WQJ WXI WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION NPM 7X8 1XC VOOES |
ID | FETCH-LOGICAL-c3940-3a9be7010bbbca141a9892701d95fde4ba31947e534b460efcde990f52b5bc103 |
IEDL.DBID | 24P |
ISSN | 0742-3098 1600-079X |
IngestDate | Tue Jun 17 06:50:40 EDT 2025 Fri Jul 11 09:26:41 EDT 2025 Thu Apr 03 07:06:45 EDT 2025 Tue Jul 01 01:05:25 EDT 2025 Thu Apr 24 22:57:17 EDT 2025 Sun Jul 06 04:45:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | melanopsin sleep circadian mathematical modeling photoreception aging melatonin aging circadian mathematical modeling melanopsin melatonin photoreception sleep |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2023 The Authors. Journal of Pineal Research published by John Wiley & Sons Ltd. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3940-3a9be7010bbbca141a9892701d95fde4ba31947e534b460efcde990f52b5bc103 |
Notes | Raymond P. Najjar and Abhishek S. Prayag contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3770-2300 0000-0002-9396-9448 0000-0002-6549-799X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjpi.12930 |
PMID | 38241677 |
PQID | 2917553411 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | hal_primary_oai_HAL_hal_04434589v1 proquest_miscellaneous_2917553411 pubmed_primary_38241677 crossref_citationtrail_10_1111_jpi_12930 crossref_primary_10_1111_jpi_12930 wiley_primary_10_1111_jpi_12930_JPI12930 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of pineal research |
PublicationTitleAlternate | J Pineal Res |
PublicationYear | 2024 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2009; 44 1974; 14 2006; 30 2022; 72 2004; 27 2019; 19 1998; 82 2006; 497 2005; 22 2007; 28 2010; 65 1983; 220 2000; 17 2006; 23 2019; 66 1993; 77 1997; 12 2019; 29 2012; 29 1984; 19 2014; 9 2010; 2 2007; 24 2014; 522 2015; 15 2012 2002; 295 2019; 1 2005; 433 2015; 10 2005; 40 2009 2011; 31 2006; 5 1999; 21 2022; 119 2014; 111 2011; 178 2016; 57 1994; 167 1993; 15 2017; 94 2002; 282 2001; 4 2005; 9 2000; 107 2018; 596 2018; 115 2020; 69 2016; 28 2007; 48 2014; 31 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Claustrat B (e_1_2_10_40_1) 1984; 19 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 Field A (e_1_2_10_47_1) 2012 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 |
References_xml | – year: 2009 – volume: 27 start-page: 1535 year: 2004 end-page: 1541 article-title: Circadian and homeostatic modulation of sleep in older adults during a 90‐minute day study publication-title: Sleep – volume: 29 start-page: 2469 year: 2012 article-title: Refined flicker photometry technique to measure ocular lens density publication-title: J Optical Soc Am A – volume: 497 start-page: 326 year: 2006 end-page: 349 article-title: Central projections of melanopsin‐expressing retinal ganglion cells in the mouse publication-title: J Comp Neurol – volume: 115 start-page: 792 year: 2018 end-page: 797 article-title: Melanopsin‐ and L‐cone–induced pupil constriction is inhibited by S‐ and M‐cones in humans publication-title: Proc Natl Acad Sci – volume: 111 start-page: 15568 year: 2014 end-page: 15572 article-title: Opponent melanopsin and S‐cone signals in the human pupillary light response publication-title: Proc Natl Acad Sci – volume: 27 start-page: 1255 year: 2004 end-page: 1273 article-title: Meta‐analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan publication-title: Sleep – volume: 66 year: 2019 article-title: Melatonin suppression is exquisitely sensitive to light and primarily driven by melanopsin in humans publication-title: J Pineal Res – volume: 77 start-page: 1398 year: 1993 end-page: 1401 article-title: Pupil size regulation of threshold of light‐induced melatonin suppression publication-title: J Clin Endocrinol Metab – volume: 30 start-page: 775 year: 2006 end-page: 790 article-title: Neuromodulation of associative and organizational plasticity across the life span: empirical evidence and neurocomputational modeling publication-title: Neurosci Biobehav Rev – volume: 28 start-page: 96 year: 2016 end-page: 107 article-title: Modelling changes in sleep timing and duration across the lifespan: changes in circadian rhythmicity or sleep homeostasis? publication-title: Sleep Med Rev – volume: 17 start-page: 285 year: 2000 end-page: 311 article-title: Contribution of circadian physiology and sleep homeostasis to age‐related changes in human sleep publication-title: Chronobiol Int – volume: 167 start-page: 191 year: 1994 end-page: 194 article-title: Posture influences melatonin concentrations in plasma and saliva in humans publication-title: Neurosci Lett – volume: 48 start-page: 2824 year: 2007 article-title: Cellular reorganization in the human retina during normal aging publication-title: Investig Opthalmol Visual Sci – volume: 295 start-page: 1070 year: 2002 end-page: 1073 article-title: Phototransduction by retinal ganglion cells that set the circadian clock publication-title: Science – volume: 5 start-page: 33 year: 2006 end-page: 51 article-title: Living by the clock: the circadian pacemaker in older people publication-title: Ageing Res Rev – volume: 23 start-page: 1082 year: 2006 end-page: 1086 article-title: Evening exposure to blue light stimulates the expression of the clock gene in humans publication-title: Eur J Neurosci – volume: 21 start-page: 765 year: 1999 end-page: 772 article-title: A new concept for melatonin deficit on pineal calcification and melatonin excretion publication-title: Neuropsychopharmacology – volume: 40 start-page: 237 year: 2005 end-page: 242 article-title: Light‐induced melatonin suppression: age‐related reduction in response to short wavelength light publication-title: Exp Geront – volume: 31 start-page: 690 year: 2014 end-page: 697 article-title: Effects of a chronic reduction of short‐wavelength light input on melatonin and sleep patterns in humans: evidence for adaptation publication-title: Chronobiol Int – volume: 19 start-page: 1215 year: 1984 end-page: 1228 article-title: A chronobiological study of melatonin and cortisol secretion in depressed subjects: plasma melatonin, a biochemical marker in major depression publication-title: Biol Psychiatry – volume: 10 start-page: 423 year: 2015 end-page: 434 article-title: Aging and circadian rhythms publication-title: Sleep Med Clin – volume: 220 start-page: 115 year: 1983 end-page: 130 article-title: Human visual pigments: microspectrophotometric results from the eyes of seven persons publication-title: Proc R Soc Lond [Biol] – volume: 69 year: 2020 article-title: Melanopic illuminance defines the magnitude of human circadian light responses under a wide range of conditions publication-title: J Pineal Res [Internet] – volume: 1 start-page: 280 year: 2019 end-page: 289 article-title: How to report light exposure in human chronobiology and sleep research experiments publication-title: Clocks Sleep – volume: 9 year: 2014 article-title: Aging of non‐visual spectral sensitivity to light in humans: compensatory mechanisms? publication-title: PLoS ONE – volume: 57 start-page: 1063 year: 2016 article-title: Heterochromatic flicker photometry for objective lens density quantification publication-title: Investig Opthalmol Visual Sci – volume: 31 start-page: 16033 year: 2011 end-page: 16044 article-title: Age‐related alterations in neurons of the mouse retina publication-title: J Neurosci – volume: 72 year: 2022 article-title: Predicting melatonin suppression by light in humans: unifying photoreceptor‐based equivalent daylight illuminances, spectral composition, timing and duration of light exposure publication-title: J Pineal Res – volume: 65 start-page: 150 year: 2010 end-page: 164 article-title: Eye smarter than scientists believed: neural computations in circuits of the retina publication-title: Neuron – volume: 9 start-page: 11 year: 2005 end-page: 24 article-title: The basic physiology and pathophysiology of melatonin publication-title: Sleep Med Rev – volume: 23 start-page: 461 year: 2006 end-page: 474 article-title: Age‐related changes in the circadian and homeostatic regulation of human sleep publication-title: Chronobiol Int – volume: 522 start-page: 2231 year: 2014 end-page: 2248 article-title: Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey publication-title: J Comp Neurol – volume: 22 start-page: 902 year: 2005 end-page: 910 article-title: Arginine‐vasopressin and vasointestinal polypeptide rhythms in the suprachiasmatic nucleus of the mouse lemur reveal aging‐related alterations of circadian pacemaker neurons in a non‐human primate publication-title: Eur J Neurosci – volume: 107 start-page: 271 year: 2000 end-page: 279 article-title: The effect of gender on the melatonin suppression by light: a dose response relationship publication-title: J Neural Transm – volume: 119 year: 2022 article-title: The spectral sensitivity of human circadian phase resetting and melatonin suppression to light changes dynamically with light duration publication-title: Proce Natl Acad Sci – volume: 433 start-page: 749 year: 2005 end-page: 754 article-title: Melanopsin‐expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN publication-title: Nature – volume: 15 start-page: 88 year: 1993 end-page: 103 article-title: New sensitive serum melatonin radioimmunoassay employing the Kennaway G280 antibody: Syrian hamster morning adrenergic response publication-title: J Pineal Res – volume: 2 start-page: 31ra33 year: 2010 article-title: Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light publication-title: Sci Transl Med – year: 2012 – volume: 15 start-page: 27 year: 2015 article-title: A five‐primary photostimulator suitable for studying intrinsically photosensitive retinal ganglion cell functions in humans publication-title: J Vis – volume: 23 start-page: 451 year: 2006 end-page: 460 article-title: Age‐related effects on the biological clock and its behavioral output in a primate publication-title: Chronobiol Int – volume: 44 start-page: 51 year: 2009 end-page: 56 article-title: Aging in the circadian system: considerations for health, disease prevention and longevity publication-title: Exp Geront – volume: 19 start-page: 5 year: 2019 article-title: Photoreceptor inputs to pupil control publication-title: J Vis – volume: 596 start-page: 2147 year: 2018 end-page: 2157 article-title: Functional decoupling of melatonin suppression and circadian phase resetting in humans publication-title: J Physiol – volume: 29 start-page: R1297 year: 2019 end-page: R1298 article-title: No evidence for an S cone contribution to acute neuroendocrine and alerting responses to light publication-title: Curr Biol – volume: 94 start-page: 19 year: 2017 end-page: 36 article-title: Sleep and human aging publication-title: Neuron – volume: 82 start-page: 187 year: 1998 end-page: 191 article-title: On pineal calcification and its relation to subjective sleep perception: a hypothesis‐driven pilot study publication-title: Psychiatr Res: Neuroimag – volume: 28 start-page: 799 year: 2007 end-page: 807 article-title: Decreased sensitivity to phase‐delaying effects of moderate intensity light in older subjects publication-title: Neurobiol Aging – volume: 4 start-page: 1165 year: 2001 article-title: Melanopsin in cells of origin of the retinohypothalamic tract publication-title: Nature Neurosci – volume: 282 start-page: E297 year: 2002 end-page: E303 article-title: Peak of circadian melatonin rhythm occurs later within the sleep of older subjects publication-title: Am J Physiol‐Endocrinol Metabolism – volume: 178 start-page: 82 year: 2011 end-page: 88 article-title: Age‐related loss of orexin/hypocretin neurons publication-title: Neuroscience – volume: 12 start-page: 537 year: 1997 end-page: 546 article-title: Photic regulation of melatonin in humans: ocular and neural signal transduction publication-title: J Biol Rhythms – volume: 24 start-page: 1842 year: 2007 article-title: Optical density of the aging human ocular media in the visible and the UV publication-title: J Optical Soc Am A – volume: 14 start-page: 1237 year: 1974 end-page: 1244 article-title: Spectral transmission of the human ocular media publication-title: Vis Res – volume: 17 start-page: 509 year: 2000 end-page: 528 article-title: In search of the visual pigment template publication-title: Visual Neurosci – ident: e_1_2_10_6_1 doi: 10.1038/nn768 – ident: e_1_2_10_16_1 doi: 10.1080/07420520500545813 – ident: e_1_2_10_57_1 doi: 10.1007/s007020050022 – ident: e_1_2_10_15_1 doi: 10.1111/jpi.12786 – ident: e_1_2_10_34_1 doi: 10.1016/j.neuroscience.2011.01.031 – ident: e_1_2_10_8_1 doi: 10.1002/cne.20970 – ident: e_1_2_10_35_1 doi: 10.1016/S0893-133X(99)00069-X – ident: e_1_2_10_13_1 doi: 10.1111/jpi.12655 – ident: e_1_2_10_58_1 doi: 10.1113/JP275501 – ident: e_1_2_10_22_1 doi: 10.1093/sleep/27.7.1255 – ident: e_1_2_10_25_1 doi: 10.1093/sleep/27.8.1535 – ident: e_1_2_10_37_1 doi: 10.1016/j.neurobiolaging.2006.03.005 – ident: e_1_2_10_55_1 doi: 10.1126/scitranslmed.3000741 – ident: e_1_2_10_20_1 doi: 10.1016/j.neubiorev.2006.06.004 – ident: e_1_2_10_11_1 doi: 10.1016/j.cub.2019.11.031 – ident: e_1_2_10_17_1 doi: 10.1081/CBI-100101049 – ident: e_1_2_10_43_1 doi: 10.1210/jc.77.5.1398 – ident: e_1_2_10_36_1 doi: 10.1016/S0925-4927(98)00013-4 – ident: e_1_2_10_48_1 doi: 10.1167/19.9.5 – ident: e_1_2_10_3_1 doi: 10.1038/nature03387 – ident: e_1_2_10_54_1 doi: 10.1523/JNEUROSCI.3580-11.2011 – ident: e_1_2_10_2_1 doi: 10.1126/science.1067262 – ident: e_1_2_10_56_1 doi: 10.1073/pnas.2205301119 – ident: e_1_2_10_50_1 doi: 10.3109/07420528.2014.893242 – ident: e_1_2_10_49_1 doi: 10.1167/iovs.06-1228 – volume: 19 start-page: 1215 year: 1984 ident: e_1_2_10_40_1 article-title: A chronobiological study of melatonin and cortisol secretion in depressed subjects: plasma melatonin, a biochemical marker in major depression publication-title: Biol Psychiatry – volume-title: Discovering Statistics using R year: 2012 ident: e_1_2_10_47_1 – ident: e_1_2_10_12_1 doi: 10.1073/pnas.1716281115 – ident: e_1_2_10_39_1 doi: 10.1016/0304-3940(94)91059-6 – ident: e_1_2_10_21_1 doi: 10.1016/j.neuron.2017.02.004 – ident: e_1_2_10_45_1 – ident: e_1_2_10_7_1 doi: 10.1002/cne.23555 – ident: e_1_2_10_10_1 doi: 10.1073/pnas.1400942111 – ident: e_1_2_10_41_1 doi: 10.1111/j.1600-079X.1993.tb00514.x – ident: e_1_2_10_5_1 doi: 10.3390/clockssleep1030024 – ident: e_1_2_10_19_1 doi: 10.1016/j.jsmc.2015.08.002 – ident: e_1_2_10_33_1 doi: 10.1016/j.smrv.2004.08.001 – ident: e_1_2_10_38_1 doi: 10.1016/j.exger.2004.12.001 – ident: e_1_2_10_26_1 doi: 10.1371/journal.pone.0085837 – ident: e_1_2_10_4_1 doi: 10.1098/rspb.1983.0091 – ident: e_1_2_10_9_1 doi: 10.1167/15.1.27 – ident: e_1_2_10_14_1 doi: 10.1111/jpi.12562 – ident: e_1_2_10_31_1 doi: 10.1016/j.exger.2008.05.007 – ident: e_1_2_10_51_1 doi: 10.1364/JOSAA.24.001842 – ident: e_1_2_10_32_1 doi: 10.1016/j.arr.2005.07.001 – ident: e_1_2_10_46_1 doi: 10.1007/978-0-387-87458-6 – ident: e_1_2_10_30_1 doi: 10.1111/j.1460-9568.2005.04268.x – ident: e_1_2_10_42_1 doi: 10.1177/074873049701200608 – ident: e_1_2_10_24_1 doi: 10.1111/j.1460-9568.2006.04613.x – ident: e_1_2_10_53_1 doi: 10.1016/j.neuron.2009.12.009 – ident: e_1_2_10_18_1 doi: 10.1152/ajpendo.00268.2001 – ident: e_1_2_10_27_1 doi: 10.1167/iovs.15-18642 – ident: e_1_2_10_52_1 doi: 10.1016/0042-6989(74)90222-3 – ident: e_1_2_10_44_1 doi: 10.1017/S0952523800174036 – ident: e_1_2_10_29_1 doi: 10.1080/07420520500482090 – ident: e_1_2_10_28_1 doi: 10.1364/JOSAA.29.002469 – ident: e_1_2_10_23_1 doi: 10.1016/j.smrv.2015.05.011 |
SSID | ssj0008886 |
Score | 2.4340205 |
Snippet | Age‐related sleep and circadian rhythm disturbances may be due to altered nonvisual photoreception. Here, we investigated the temporal dynamics of... Age-related sleep and circadian rhythm disturbances may be due to altered nonvisual photoreception. Here, we investigated the temporal dynamics of... Abstract Age‐related sleep and circadian rhythm disturbances may be due to altered nonvisual photoreception. Here, we investigated the temporal dynamics of... |
SourceID | hal proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e12930 |
SubjectTerms | aging circadian Life Sciences mathematical modeling melanopsin melatonin photoreception sleep |
Title | Melatonin suppression by light involves different retinal photoreceptors in young and older adults |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjpi.12930 https://www.ncbi.nlm.nih.gov/pubmed/38241677 https://www.proquest.com/docview/2917553411 https://hal.science/hal-04434589 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8QwDC96vvgifnt-UUXEl8nWdbcbPh3qcYqKiIJvo-k6PNBtuDvh_nuT7gNFBV_G6LKta5omvyxNGDsKExEoN0WYKj3tSBUmjkpE5KRKaJzO2k3BBsje9UZP8vo5eJ5jZ81emCo_ROtwI8mw6zUJuILyq5AX41NSVojXF2hrLU1yIe_bZRihXa_KwSkc3436dVohG8bT3PpNGc2_UCjkTzvzu9lq9c5wmS3VBiMfVBxeYXMmW2VrgwzB8tuMH3Mbwml942sMbim0jRysvJwWdYhrxmHGXwmD83GGi9GHKXlTFmXCaRMjPb94yRF9Gwpyyd9LpOQzWge4yhKeUyVvbjN1lOvsaXj5eD5y6iIKjqai546vIjAhoi4A0MqTnor6kcCGJArSxEhQKIQyNIEvQfZck-rEoIZKAwEBaM_1N1gnyzOzxTiabggwEpG6EErpu0qh-Sc0QAjIY_C77KQZzVjXGcap0MVr3CKNYhzbge-yw5a0qNJq_EqELGmvUyLs0eAmpjYX3y-DfvThddlBw7EYJYN-d6jM5NMyFohEA_wsD2k2K1a2z_L7aLn0whC7bHn7dyfi6_sre7L9f9IdtijQ9qk8NbusM3mfmj20XSawb-coHi8exCdSKeru |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEF_0-lBfRGtbz69uSyl9SUk2m-wFfDnE47Sn-KDgW9jZbPBAk2DuhPvvndl8oLSCbyGZJJudnY_fZHaGsZ8qE5H2c4SpMjCe1CrzdCYSL9fC4HI2fg4uQfYynt7I89vodo0dd3thmvoQfcCNJMPpaxJwCki_lPJq_oesFQL2DzIWiho3CHnV62HEdnFThFN4oZ-M2rpCLo-nu_WVNVq_o1zIfx3N136rMzyTLbbZeox83LB4m63Z4hPbGReIlh9W_Bd3OZwuOL7D4IJy2yjCyutl1ea4FhxW_J5AOJ8XqI2ebM27vigLTrsY6fnVXYnw21KWS_lYIyVfkSLgush4Sa28uSvVUX9mN5PT65Op13ZR8Ax1PfdCnYBVCLsAwOhABjoZJThbQZZEeWYlaJRCqWwUSpCxb3OTWTRReSQgAhP44Rc2KMrC7jKOvhsijEzkPigpQ19r9P-EAVCATIZwyH53s5matsQ4dbq4T3uoUc1TN_FD9qMnrZq6Gv8lQpb016kS9nQ8S-mcj--X0Sh5Cobse8exFEWD_nfowpbLOhUIRSP8rABpvjas7J8VjtB1iZXCITvevj2I9PzqzB3svZ_0G_s4vb6YpbOzy7_7bEOgI9SEbQ7YYPG4tIfoyCzgyK3XZ3oy7XE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELegSBMvE-NrHWyYCSFeMiWO0zTiqdqoWmCoD0PiLfLZjqjEkoi0SP3vuXM-BGJIe4ucS-L4fOf7nc93jJ3ERkTKzxCmykB7UsXGU0YkXqaExums_QxcgOzNYHIrL--iuzV23p6FqfNDdA43kgynr0nAS5O9FPJy_oMWK8TrG7TZR9NbyFmnhhHaDeocnMIL_WTYpBVyYTzto68Wo_V7CoV8a2e-NlvdujPeYh8bg5GPag5_Yms232Y7oxzB8t8VP-UuhNP5xncY_KbQNnKw8mpZNiGuOYcVfyAMzuc5KqMnW_G2LMqC0yFGen95XyD6thTkUjxWSMlXpAe4yg0vqJI3d5k6ql12O77483PiNUUUPE1Fz71QJWBjRF0AoFUgA5UME4ENJokyYyUoFEIZ2yiUIAe-zbSxuEJlkYAIdOCHe6yXF7n9zDiabggwjMh8iKUMfaXQ_BMaIAbkMYR9dtaOZqqbDONU6OIh7ZBGOU_dwPfZ9460rNNq_JMIWdLdp0TYk9F1Sm0-fh-ZnjwFfXbccixFyaDtDpXbYlmlApFohL8VIM1-zcruXeEQLZdBHGOXHW_f70R6OZu6iy__T3rEPsx-jdPr6c3VAdsUaAbVTptD1ls8Lu1XNGMW8M1N12coiuyj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Melatonin+suppression+by+light+involves+different+retinal+photoreceptors+in+young+and+older+adults&rft.jtitle=Journal+of+pineal+research&rft.au=Najjar%2C+Raymond+P&rft.au=Prayag%2C+Abhishek+S&rft.au=Gronfier%2C+Claude&rft.date=2024-01-01&rft.issn=1600-079X&rft.eissn=1600-079X&rft.volume=76&rft.issue=1&rft.spage=e12930&rft_id=info:doi/10.1111%2Fjpi.12930&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0742-3098&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0742-3098&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0742-3098&client=summon |