Melatonin suppression by light involves different retinal photoreceptors in young and older adults

Age‐related sleep and circadian rhythm disturbances may be due to altered nonvisual photoreception. Here, we investigated the temporal dynamics of light‐induced melatonin suppression in young and older individuals. In a within‐subject design study, young and older participants were exposed for 60 mi...

Full description

Saved in:
Bibliographic Details
Published inJournal of pineal research Vol. 76; no. 1; pp. e12930 - n/a
Main Authors Najjar, Raymond P., Prayag, Abhishek S., Gronfier, Claude
Format Journal Article
LanguageEnglish
Published England Wiley 01.01.2024
Subjects
Online AccessGet full text
ISSN0742-3098
1600-079X
1600-079X
DOI10.1111/jpi.12930

Cover

Loading…
Abstract Age‐related sleep and circadian rhythm disturbances may be due to altered nonvisual photoreception. Here, we investigated the temporal dynamics of light‐induced melatonin suppression in young and older individuals. In a within‐subject design study, young and older participants were exposed for 60 min (0030‐0130 at night) to nine narrow‐band lights (range: 420−620 nm). Plasma melatonin suppression was calculated at 15, 30, 45, and 60 min time intervals. Individual spectral sensitivity of melatonin suppression and photoreceptor contribution were predicted for each interval and age group. In young participants, melanopsin solely drove melatonin suppression at all time intervals, with a peak sensitivity at 485.3 nm established only after 15 min of light exposure. Conversely, in older participants, spectral light‐driven melatonin suppression was best explained by a more complex model combining melanopsin, S‐cone, and M‐cone functions, with a stable peak (~500 nm) at 30, 45, and 60 min of light exposure. Aging is associated with a distinct photoreceptor contribution to melatonin suppression by light. While in young adults melanopsin‐only photoreception is a reliable predictor of melatonin suppression, in older individuals this process is jointly driven by melanopsin, S‐cone, and M‐cone functions. These findings offer new prospects for customizing light therapy for older individuals.
AbstractList Age-related sleep and circadian rhythm disturbances may be due to altered nonvisual photoreception. Here, we investigated the temporal dynamics of light-induced melatonin suppression in young and older individuals. In a within-subject design study, young and older participants were exposed for 60 min (0030-0130 at night) to nine narrow-band lights (range: 420-620 nm). Plasma melatonin suppression was calculated at 15, 30, 45, and 60 min time intervals. Individual spectral sensitivity of melatonin suppression and photoreceptor contribution were predicted for each interval and age group. In young participants, melanopsin solely drove melatonin suppression at all time intervals, with a peak sensitivity at 485.3 nm established only after 15 min of light exposure. Conversely, in older participants, spectral light-driven melatonin suppression was best explained by a more complex model combining melanopsin, S-cone, and M-cone functions, with a stable peak (~500 nm) at 30, 45, and 60 min of light exposure. Aging is associated with a distinct photoreceptor contribution to melatonin suppression by light. While in young adults melanopsin-only photoreception is a reliable predictor of melatonin suppression, in older individuals this process is jointly driven by melanopsin, S-cone, and M-cone functions. These findings offer new prospects for customizing light therapy for older individuals.
Abstract Age‐related sleep and circadian rhythm disturbances may be due to altered nonvisual photoreception. Here, we investigated the temporal dynamics of light‐induced melatonin suppression in young and older individuals. In a within‐subject design study, young and older participants were exposed for 60 min (0030‐0130 at night) to nine narrow‐band lights (range: 420−620 nm). Plasma melatonin suppression was calculated at 15, 30, 45, and 60 min time intervals. Individual spectral sensitivity of melatonin suppression and photoreceptor contribution were predicted for each interval and age group. In young participants, melanopsin solely drove melatonin suppression at all time intervals, with a peak sensitivity at 485.3 nm established only after 15 min of light exposure. Conversely, in older participants, spectral light‐driven melatonin suppression was best explained by a more complex model combining melanopsin, S‐cone, and M‐cone functions, with a stable peak (~500 nm) at 30, 45, and 60 min of light exposure. Aging is associated with a distinct photoreceptor contribution to melatonin suppression by light. While in young adults melanopsin‐only photoreception is a reliable predictor of melatonin suppression, in older individuals this process is jointly driven by melanopsin, S‐cone, and M‐cone functions. These findings offer new prospects for customizing light therapy for older individuals.
Age-related sleep and circadian rhythm disturbances may be due to altered nonvisual photoreception. Here, we investigated the temporal dynamics of light-induced melatonin suppression in young and older individuals. In a within-subject design study, young and older participants were exposed for 60 min (0030-0130 at night) to nine narrow-band lights (range: 420-620 nm). Plasma melatonin suppression was calculated at 15, 30, 45, and 60 min time intervals. Individual spectral sensitivity of melatonin suppression and photoreceptor contribution were predicted for each interval and age group. In young participants, melanopsin solely drove melatonin suppression at all time intervals, with a peak sensitivity at 485.3 nm established only after 15 min of light exposure. Conversely, in older participants, spectral light-driven melatonin suppression was best explained by a more complex model combining melanopsin, S-cone, and M-cone functions, with a stable peak (~500 nm) at 30, 45, and 60 min of light exposure. Aging is associated with a distinct photoreceptor contribution to melatonin suppression by light. While in young adults melanopsin-only photoreception is a reliable predictor of melatonin suppression, in older individuals this process is jointly driven by melanopsin, S-cone, and M-cone functions. These findings offer new prospects for customizing light therapy for older individuals.Age-related sleep and circadian rhythm disturbances may be due to altered nonvisual photoreception. Here, we investigated the temporal dynamics of light-induced melatonin suppression in young and older individuals. In a within-subject design study, young and older participants were exposed for 60 min (0030-0130 at night) to nine narrow-band lights (range: 420-620 nm). Plasma melatonin suppression was calculated at 15, 30, 45, and 60 min time intervals. Individual spectral sensitivity of melatonin suppression and photoreceptor contribution were predicted for each interval and age group. In young participants, melanopsin solely drove melatonin suppression at all time intervals, with a peak sensitivity at 485.3 nm established only after 15 min of light exposure. Conversely, in older participants, spectral light-driven melatonin suppression was best explained by a more complex model combining melanopsin, S-cone, and M-cone functions, with a stable peak (~500 nm) at 30, 45, and 60 min of light exposure. Aging is associated with a distinct photoreceptor contribution to melatonin suppression by light. While in young adults melanopsin-only photoreception is a reliable predictor of melatonin suppression, in older individuals this process is jointly driven by melanopsin, S-cone, and M-cone functions. These findings offer new prospects for customizing light therapy for older individuals.
Age‐related sleep and circadian rhythm disturbances may be due to altered nonvisual photoreception. Here, we investigated the temporal dynamics of light‐induced melatonin suppression in young and older individuals. In a within‐subject design study, young and older participants were exposed for 60 min (0030‐0130 at night) to nine narrow‐band lights (range: 420−620 nm). Plasma melatonin suppression was calculated at 15, 30, 45, and 60 min time intervals. Individual spectral sensitivity of melatonin suppression and photoreceptor contribution were predicted for each interval and age group. In young participants, melanopsin solely drove melatonin suppression at all time intervals, with a peak sensitivity at 485.3 nm established only after 15 min of light exposure. Conversely, in older participants, spectral light‐driven melatonin suppression was best explained by a more complex model combining melanopsin, S‐cone, and M‐cone functions, with a stable peak (~500 nm) at 30, 45, and 60 min of light exposure. Aging is associated with a distinct photoreceptor contribution to melatonin suppression by light. While in young adults melanopsin‐only photoreception is a reliable predictor of melatonin suppression, in older individuals this process is jointly driven by melanopsin, S‐cone, and M‐cone functions. These findings offer new prospects for customizing light therapy for older individuals.
Author Najjar, Raymond P.
Gronfier, Claude
Prayag, Abhishek S.
Author_xml – sequence: 1
  givenname: Raymond P.
  orcidid: 0000-0002-3770-2300
  surname: Najjar
  fullname: Najjar, Raymond P.
  email: rpnajjar@nus.edu.sg
  organization: National University of Singapore
– sequence: 2
  givenname: Abhishek S.
  orcidid: 0000-0002-9396-9448
  surname: Prayag
  fullname: Prayag, Abhishek S.
  organization: Université de Lyon
– sequence: 3
  givenname: Claude
  surname: Gronfier
  fullname: Gronfier, Claude
  email: claude.gronfier@inserm.fr
  organization: Université de Lyon
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38241677$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04434589$$DView record in HAL
BookMark eNp1kUFv1DAQhS1URLeFA38A-QiHtOPY2cTHqgLaahEcQOJm2cmk68prB9tZtP8eb3dbLjCXJ42-eTOad0ZOfPBIyFsGF6zU5cNkL1gtObwgC7YEqKCVP0_IAlpRVxxkd0rOUnoAgK7rlq_IKe9qwZZtuyDmCzqdg7eepnmaIqZkg6dmR529X2dq_Ta4LSY62HHEiD7TiNl67ei0DjlE7HEqkgpJd2H291T7gQY3YKR6mF1Or8nLUbuEb456Tn58-vj9-qZaff18e321qnouBVRcS4MtMDDG9JoJpmUn69IYZDMOKIzmTIoWGy6MWAKO_YBSwtjUpjE9A35OPhx819qpKdqNjjsVtFU3Vyu174EQXDSd3LLCvj-wUwy_ZkxZbWzq0TntMcxJ1ZK1TdnE9ui7IzqbDQ7Pzk8_LMDlAehjSCniqHqbdS5vzFFbpxiofUqqpKQeU_p76fPEk-m_2KP7b-tw939Q3X27PUz8AW3ZodY
CitedBy_id crossref_primary_10_1177_14771535241246060
crossref_primary_10_1038_s44328_024_00015_w
Cites_doi 10.1038/nn768
10.1080/07420520500545813
10.1007/s007020050022
10.1111/jpi.12786
10.1016/j.neuroscience.2011.01.031
10.1002/cne.20970
10.1016/S0893-133X(99)00069-X
10.1111/jpi.12655
10.1113/JP275501
10.1093/sleep/27.7.1255
10.1093/sleep/27.8.1535
10.1016/j.neurobiolaging.2006.03.005
10.1126/scitranslmed.3000741
10.1016/j.neubiorev.2006.06.004
10.1016/j.cub.2019.11.031
10.1081/CBI-100101049
10.1210/jc.77.5.1398
10.1016/S0925-4927(98)00013-4
10.1167/19.9.5
10.1038/nature03387
10.1523/JNEUROSCI.3580-11.2011
10.1126/science.1067262
10.1073/pnas.2205301119
10.3109/07420528.2014.893242
10.1167/iovs.06-1228
10.1073/pnas.1716281115
10.1016/0304-3940(94)91059-6
10.1016/j.neuron.2017.02.004
10.1002/cne.23555
10.1073/pnas.1400942111
10.1111/j.1600-079X.1993.tb00514.x
10.3390/clockssleep1030024
10.1016/j.jsmc.2015.08.002
10.1016/j.smrv.2004.08.001
10.1016/j.exger.2004.12.001
10.1371/journal.pone.0085837
10.1098/rspb.1983.0091
10.1167/15.1.27
10.1111/jpi.12562
10.1016/j.exger.2008.05.007
10.1364/JOSAA.24.001842
10.1016/j.arr.2005.07.001
10.1007/978-0-387-87458-6
10.1111/j.1460-9568.2005.04268.x
10.1177/074873049701200608
10.1111/j.1460-9568.2006.04613.x
10.1016/j.neuron.2009.12.009
10.1152/ajpendo.00268.2001
10.1167/iovs.15-18642
10.1016/0042-6989(74)90222-3
10.1017/S0952523800174036
10.1080/07420520500482090
10.1364/JOSAA.29.002469
10.1016/j.smrv.2015.05.011
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd.
2023 The Authors. Journal of Pineal Research published by John Wiley & Sons Ltd.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd.
– notice: 2023 The Authors. Journal of Pineal Research published by John Wiley & Sons Ltd.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 24P
AAYXX
CITATION
NPM
7X8
1XC
VOOES
DOI 10.1111/jpi.12930
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1600-079X
EndPage n/a
ExternalDocumentID oai_HAL_hal_04434589v1
38241677
10_1111_jpi_12930
JPI12930
Genre article
Journal Article
GrantInformation_xml – fundername: Agence Nationale de la Recherche
  funderid: 12‐TECS‐0013‐01; 16 IDEX‐0005
– fundername: ASPIRE‐NUS Startup
  funderid: NUHSRO/2022/038/Startup/08
– fundername: French Ministry of High Education and Research
– fundername: EU‐FP7 (EUCLOCK)
– fundername: ASPIRE-NUS Startup
  grantid: NUHSRO/2022/038/Startup/08
– fundername: Agence Nationale de la Recherche
  grantid: 16 IDEX-0005
– fundername: EU-FP7 (EUCLOCK)
– fundername: Agence Nationale de la Recherche
  grantid: 12-TECS-0013-01
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
186
1OB
1OC
24P
29L
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAKAS
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BQCPF
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WXI
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
NPM
7X8
1XC
VOOES
ID FETCH-LOGICAL-c3940-3a9be7010bbbca141a9892701d95fde4ba31947e534b460efcde990f52b5bc103
IEDL.DBID 24P
ISSN 0742-3098
1600-079X
IngestDate Tue Jun 17 06:50:40 EDT 2025
Fri Jul 11 09:26:41 EDT 2025
Thu Apr 03 07:06:45 EDT 2025
Tue Jul 01 01:05:25 EDT 2025
Thu Apr 24 22:57:17 EDT 2025
Sun Jul 06 04:45:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords melanopsin
sleep
circadian
mathematical modeling
photoreception
aging
melatonin
aging circadian mathematical modeling melanopsin melatonin photoreception sleep
Language English
License Attribution-NonCommercial-NoDerivs
2023 The Authors. Journal of Pineal Research published by John Wiley & Sons Ltd.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3940-3a9be7010bbbca141a9892701d95fde4ba31947e534b460efcde990f52b5bc103
Notes Raymond P. Najjar and Abhishek S. Prayag contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3770-2300
0000-0002-9396-9448
0000-0002-6549-799X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjpi.12930
PMID 38241677
PQID 2917553411
PQPubID 23479
PageCount 13
ParticipantIDs hal_primary_oai_HAL_hal_04434589v1
proquest_miscellaneous_2917553411
pubmed_primary_38241677
crossref_citationtrail_10_1111_jpi_12930
crossref_primary_10_1111_jpi_12930
wiley_primary_10_1111_jpi_12930_JPI12930
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of pineal research
PublicationTitleAlternate J Pineal Res
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2009; 44
1974; 14
2006; 30
2022; 72
2004; 27
2019; 19
1998; 82
2006; 497
2005; 22
2007; 28
2010; 65
1983; 220
2000; 17
2006; 23
2019; 66
1993; 77
1997; 12
2019; 29
2012; 29
1984; 19
2014; 9
2010; 2
2007; 24
2014; 522
2015; 15
2012
2002; 295
2019; 1
2005; 433
2015; 10
2005; 40
2009
2011; 31
2006; 5
1999; 21
2022; 119
2014; 111
2011; 178
2016; 57
1994; 167
1993; 15
2017; 94
2002; 282
2001; 4
2005; 9
2000; 107
2018; 596
2018; 115
2020; 69
2016; 28
2007; 48
2014; 31
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Claustrat B (e_1_2_10_40_1) 1984; 19
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
Field A (e_1_2_10_47_1) 2012
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
References_xml – year: 2009
– volume: 27
  start-page: 1535
  year: 2004
  end-page: 1541
  article-title: Circadian and homeostatic modulation of sleep in older adults during a 90‐minute day study
  publication-title: Sleep
– volume: 29
  start-page: 2469
  year: 2012
  article-title: Refined flicker photometry technique to measure ocular lens density
  publication-title: J Optical Soc Am A
– volume: 497
  start-page: 326
  year: 2006
  end-page: 349
  article-title: Central projections of melanopsin‐expressing retinal ganglion cells in the mouse
  publication-title: J Comp Neurol
– volume: 115
  start-page: 792
  year: 2018
  end-page: 797
  article-title: Melanopsin‐ and L‐cone–induced pupil constriction is inhibited by S‐ and M‐cones in humans
  publication-title: Proc Natl Acad Sci
– volume: 111
  start-page: 15568
  year: 2014
  end-page: 15572
  article-title: Opponent melanopsin and S‐cone signals in the human pupillary light response
  publication-title: Proc Natl Acad Sci
– volume: 27
  start-page: 1255
  year: 2004
  end-page: 1273
  article-title: Meta‐analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan
  publication-title: Sleep
– volume: 66
  year: 2019
  article-title: Melatonin suppression is exquisitely sensitive to light and primarily driven by melanopsin in humans
  publication-title: J Pineal Res
– volume: 77
  start-page: 1398
  year: 1993
  end-page: 1401
  article-title: Pupil size regulation of threshold of light‐induced melatonin suppression
  publication-title: J Clin Endocrinol Metab
– volume: 30
  start-page: 775
  year: 2006
  end-page: 790
  article-title: Neuromodulation of associative and organizational plasticity across the life span: empirical evidence and neurocomputational modeling
  publication-title: Neurosci Biobehav Rev
– volume: 28
  start-page: 96
  year: 2016
  end-page: 107
  article-title: Modelling changes in sleep timing and duration across the lifespan: changes in circadian rhythmicity or sleep homeostasis?
  publication-title: Sleep Med Rev
– volume: 17
  start-page: 285
  year: 2000
  end-page: 311
  article-title: Contribution of circadian physiology and sleep homeostasis to age‐related changes in human sleep
  publication-title: Chronobiol Int
– volume: 167
  start-page: 191
  year: 1994
  end-page: 194
  article-title: Posture influences melatonin concentrations in plasma and saliva in humans
  publication-title: Neurosci Lett
– volume: 48
  start-page: 2824
  year: 2007
  article-title: Cellular reorganization in the human retina during normal aging
  publication-title: Investig Opthalmol Visual Sci
– volume: 295
  start-page: 1070
  year: 2002
  end-page: 1073
  article-title: Phototransduction by retinal ganglion cells that set the circadian clock
  publication-title: Science
– volume: 5
  start-page: 33
  year: 2006
  end-page: 51
  article-title: Living by the clock: the circadian pacemaker in older people
  publication-title: Ageing Res Rev
– volume: 23
  start-page: 1082
  year: 2006
  end-page: 1086
  article-title: Evening exposure to blue light stimulates the expression of the clock gene in humans
  publication-title: Eur J Neurosci
– volume: 21
  start-page: 765
  year: 1999
  end-page: 772
  article-title: A new concept for melatonin deficit on pineal calcification and melatonin excretion
  publication-title: Neuropsychopharmacology
– volume: 40
  start-page: 237
  year: 2005
  end-page: 242
  article-title: Light‐induced melatonin suppression: age‐related reduction in response to short wavelength light
  publication-title: Exp Geront
– volume: 31
  start-page: 690
  year: 2014
  end-page: 697
  article-title: Effects of a chronic reduction of short‐wavelength light input on melatonin and sleep patterns in humans: evidence for adaptation
  publication-title: Chronobiol Int
– volume: 19
  start-page: 1215
  year: 1984
  end-page: 1228
  article-title: A chronobiological study of melatonin and cortisol secretion in depressed subjects: plasma melatonin, a biochemical marker in major depression
  publication-title: Biol Psychiatry
– volume: 10
  start-page: 423
  year: 2015
  end-page: 434
  article-title: Aging and circadian rhythms
  publication-title: Sleep Med Clin
– volume: 220
  start-page: 115
  year: 1983
  end-page: 130
  article-title: Human visual pigments: microspectrophotometric results from the eyes of seven persons
  publication-title: Proc R Soc Lond [Biol]
– volume: 69
  year: 2020
  article-title: Melanopic illuminance defines the magnitude of human circadian light responses under a wide range of conditions
  publication-title: J Pineal Res [Internet]
– volume: 1
  start-page: 280
  year: 2019
  end-page: 289
  article-title: How to report light exposure in human chronobiology and sleep research experiments
  publication-title: Clocks Sleep
– volume: 9
  year: 2014
  article-title: Aging of non‐visual spectral sensitivity to light in humans: compensatory mechanisms?
  publication-title: PLoS ONE
– volume: 57
  start-page: 1063
  year: 2016
  article-title: Heterochromatic flicker photometry for objective lens density quantification
  publication-title: Investig Opthalmol Visual Sci
– volume: 31
  start-page: 16033
  year: 2011
  end-page: 16044
  article-title: Age‐related alterations in neurons of the mouse retina
  publication-title: J Neurosci
– volume: 72
  year: 2022
  article-title: Predicting melatonin suppression by light in humans: unifying photoreceptor‐based equivalent daylight illuminances, spectral composition, timing and duration of light exposure
  publication-title: J Pineal Res
– volume: 65
  start-page: 150
  year: 2010
  end-page: 164
  article-title: Eye smarter than scientists believed: neural computations in circuits of the retina
  publication-title: Neuron
– volume: 9
  start-page: 11
  year: 2005
  end-page: 24
  article-title: The basic physiology and pathophysiology of melatonin
  publication-title: Sleep Med Rev
– volume: 23
  start-page: 461
  year: 2006
  end-page: 474
  article-title: Age‐related changes in the circadian and homeostatic regulation of human sleep
  publication-title: Chronobiol Int
– volume: 522
  start-page: 2231
  year: 2014
  end-page: 2248
  article-title: Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey
  publication-title: J Comp Neurol
– volume: 22
  start-page: 902
  year: 2005
  end-page: 910
  article-title: Arginine‐vasopressin and vasointestinal polypeptide rhythms in the suprachiasmatic nucleus of the mouse lemur reveal aging‐related alterations of circadian pacemaker neurons in a non‐human primate
  publication-title: Eur J Neurosci
– volume: 107
  start-page: 271
  year: 2000
  end-page: 279
  article-title: The effect of gender on the melatonin suppression by light: a dose response relationship
  publication-title: J Neural Transm
– volume: 119
  year: 2022
  article-title: The spectral sensitivity of human circadian phase resetting and melatonin suppression to light changes dynamically with light duration
  publication-title: Proce Natl Acad Sci
– volume: 433
  start-page: 749
  year: 2005
  end-page: 754
  article-title: Melanopsin‐expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN
  publication-title: Nature
– volume: 15
  start-page: 88
  year: 1993
  end-page: 103
  article-title: New sensitive serum melatonin radioimmunoassay employing the Kennaway G280 antibody: Syrian hamster morning adrenergic response
  publication-title: J Pineal Res
– volume: 2
  start-page: 31ra33
  year: 2010
  article-title: Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light
  publication-title: Sci Transl Med
– year: 2012
– volume: 15
  start-page: 27
  year: 2015
  article-title: A five‐primary photostimulator suitable for studying intrinsically photosensitive retinal ganglion cell functions in humans
  publication-title: J Vis
– volume: 23
  start-page: 451
  year: 2006
  end-page: 460
  article-title: Age‐related effects on the biological clock and its behavioral output in a primate
  publication-title: Chronobiol Int
– volume: 44
  start-page: 51
  year: 2009
  end-page: 56
  article-title: Aging in the circadian system: considerations for health, disease prevention and longevity
  publication-title: Exp Geront
– volume: 19
  start-page: 5
  year: 2019
  article-title: Photoreceptor inputs to pupil control
  publication-title: J Vis
– volume: 596
  start-page: 2147
  year: 2018
  end-page: 2157
  article-title: Functional decoupling of melatonin suppression and circadian phase resetting in humans
  publication-title: J Physiol
– volume: 29
  start-page: R1297
  year: 2019
  end-page: R1298
  article-title: No evidence for an S cone contribution to acute neuroendocrine and alerting responses to light
  publication-title: Curr Biol
– volume: 94
  start-page: 19
  year: 2017
  end-page: 36
  article-title: Sleep and human aging
  publication-title: Neuron
– volume: 82
  start-page: 187
  year: 1998
  end-page: 191
  article-title: On pineal calcification and its relation to subjective sleep perception: a hypothesis‐driven pilot study
  publication-title: Psychiatr Res: Neuroimag
– volume: 28
  start-page: 799
  year: 2007
  end-page: 807
  article-title: Decreased sensitivity to phase‐delaying effects of moderate intensity light in older subjects
  publication-title: Neurobiol Aging
– volume: 4
  start-page: 1165
  year: 2001
  article-title: Melanopsin in cells of origin of the retinohypothalamic tract
  publication-title: Nature Neurosci
– volume: 282
  start-page: E297
  year: 2002
  end-page: E303
  article-title: Peak of circadian melatonin rhythm occurs later within the sleep of older subjects
  publication-title: Am J Physiol‐Endocrinol Metabolism
– volume: 178
  start-page: 82
  year: 2011
  end-page: 88
  article-title: Age‐related loss of orexin/hypocretin neurons
  publication-title: Neuroscience
– volume: 12
  start-page: 537
  year: 1997
  end-page: 546
  article-title: Photic regulation of melatonin in humans: ocular and neural signal transduction
  publication-title: J Biol Rhythms
– volume: 24
  start-page: 1842
  year: 2007
  article-title: Optical density of the aging human ocular media in the visible and the UV
  publication-title: J Optical Soc Am A
– volume: 14
  start-page: 1237
  year: 1974
  end-page: 1244
  article-title: Spectral transmission of the human ocular media
  publication-title: Vis Res
– volume: 17
  start-page: 509
  year: 2000
  end-page: 528
  article-title: In search of the visual pigment template
  publication-title: Visual Neurosci
– ident: e_1_2_10_6_1
  doi: 10.1038/nn768
– ident: e_1_2_10_16_1
  doi: 10.1080/07420520500545813
– ident: e_1_2_10_57_1
  doi: 10.1007/s007020050022
– ident: e_1_2_10_15_1
  doi: 10.1111/jpi.12786
– ident: e_1_2_10_34_1
  doi: 10.1016/j.neuroscience.2011.01.031
– ident: e_1_2_10_8_1
  doi: 10.1002/cne.20970
– ident: e_1_2_10_35_1
  doi: 10.1016/S0893-133X(99)00069-X
– ident: e_1_2_10_13_1
  doi: 10.1111/jpi.12655
– ident: e_1_2_10_58_1
  doi: 10.1113/JP275501
– ident: e_1_2_10_22_1
  doi: 10.1093/sleep/27.7.1255
– ident: e_1_2_10_25_1
  doi: 10.1093/sleep/27.8.1535
– ident: e_1_2_10_37_1
  doi: 10.1016/j.neurobiolaging.2006.03.005
– ident: e_1_2_10_55_1
  doi: 10.1126/scitranslmed.3000741
– ident: e_1_2_10_20_1
  doi: 10.1016/j.neubiorev.2006.06.004
– ident: e_1_2_10_11_1
  doi: 10.1016/j.cub.2019.11.031
– ident: e_1_2_10_17_1
  doi: 10.1081/CBI-100101049
– ident: e_1_2_10_43_1
  doi: 10.1210/jc.77.5.1398
– ident: e_1_2_10_36_1
  doi: 10.1016/S0925-4927(98)00013-4
– ident: e_1_2_10_48_1
  doi: 10.1167/19.9.5
– ident: e_1_2_10_3_1
  doi: 10.1038/nature03387
– ident: e_1_2_10_54_1
  doi: 10.1523/JNEUROSCI.3580-11.2011
– ident: e_1_2_10_2_1
  doi: 10.1126/science.1067262
– ident: e_1_2_10_56_1
  doi: 10.1073/pnas.2205301119
– ident: e_1_2_10_50_1
  doi: 10.3109/07420528.2014.893242
– ident: e_1_2_10_49_1
  doi: 10.1167/iovs.06-1228
– volume: 19
  start-page: 1215
  year: 1984
  ident: e_1_2_10_40_1
  article-title: A chronobiological study of melatonin and cortisol secretion in depressed subjects: plasma melatonin, a biochemical marker in major depression
  publication-title: Biol Psychiatry
– volume-title: Discovering Statistics using R
  year: 2012
  ident: e_1_2_10_47_1
– ident: e_1_2_10_12_1
  doi: 10.1073/pnas.1716281115
– ident: e_1_2_10_39_1
  doi: 10.1016/0304-3940(94)91059-6
– ident: e_1_2_10_21_1
  doi: 10.1016/j.neuron.2017.02.004
– ident: e_1_2_10_45_1
– ident: e_1_2_10_7_1
  doi: 10.1002/cne.23555
– ident: e_1_2_10_10_1
  doi: 10.1073/pnas.1400942111
– ident: e_1_2_10_41_1
  doi: 10.1111/j.1600-079X.1993.tb00514.x
– ident: e_1_2_10_5_1
  doi: 10.3390/clockssleep1030024
– ident: e_1_2_10_19_1
  doi: 10.1016/j.jsmc.2015.08.002
– ident: e_1_2_10_33_1
  doi: 10.1016/j.smrv.2004.08.001
– ident: e_1_2_10_38_1
  doi: 10.1016/j.exger.2004.12.001
– ident: e_1_2_10_26_1
  doi: 10.1371/journal.pone.0085837
– ident: e_1_2_10_4_1
  doi: 10.1098/rspb.1983.0091
– ident: e_1_2_10_9_1
  doi: 10.1167/15.1.27
– ident: e_1_2_10_14_1
  doi: 10.1111/jpi.12562
– ident: e_1_2_10_31_1
  doi: 10.1016/j.exger.2008.05.007
– ident: e_1_2_10_51_1
  doi: 10.1364/JOSAA.24.001842
– ident: e_1_2_10_32_1
  doi: 10.1016/j.arr.2005.07.001
– ident: e_1_2_10_46_1
  doi: 10.1007/978-0-387-87458-6
– ident: e_1_2_10_30_1
  doi: 10.1111/j.1460-9568.2005.04268.x
– ident: e_1_2_10_42_1
  doi: 10.1177/074873049701200608
– ident: e_1_2_10_24_1
  doi: 10.1111/j.1460-9568.2006.04613.x
– ident: e_1_2_10_53_1
  doi: 10.1016/j.neuron.2009.12.009
– ident: e_1_2_10_18_1
  doi: 10.1152/ajpendo.00268.2001
– ident: e_1_2_10_27_1
  doi: 10.1167/iovs.15-18642
– ident: e_1_2_10_52_1
  doi: 10.1016/0042-6989(74)90222-3
– ident: e_1_2_10_44_1
  doi: 10.1017/S0952523800174036
– ident: e_1_2_10_29_1
  doi: 10.1080/07420520500482090
– ident: e_1_2_10_28_1
  doi: 10.1364/JOSAA.29.002469
– ident: e_1_2_10_23_1
  doi: 10.1016/j.smrv.2015.05.011
SSID ssj0008886
Score 2.4340205
Snippet Age‐related sleep and circadian rhythm disturbances may be due to altered nonvisual photoreception. Here, we investigated the temporal dynamics of...
Age-related sleep and circadian rhythm disturbances may be due to altered nonvisual photoreception. Here, we investigated the temporal dynamics of...
Abstract Age‐related sleep and circadian rhythm disturbances may be due to altered nonvisual photoreception. Here, we investigated the temporal dynamics of...
SourceID hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e12930
SubjectTerms aging
circadian
Life Sciences
mathematical modeling
melanopsin
melatonin
photoreception
sleep
Title Melatonin suppression by light involves different retinal photoreceptors in young and older adults
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjpi.12930
https://www.ncbi.nlm.nih.gov/pubmed/38241677
https://www.proquest.com/docview/2917553411
https://hal.science/hal-04434589
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8QwDC96vvgifnt-UUXEl8nWdbcbPh3qcYqKiIJvo-k6PNBtuDvh_nuT7gNFBV_G6LKta5omvyxNGDsKExEoN0WYKj3tSBUmjkpE5KRKaJzO2k3BBsje9UZP8vo5eJ5jZ81emCo_ROtwI8mw6zUJuILyq5AX41NSVojXF2hrLU1yIe_bZRihXa_KwSkc3436dVohG8bT3PpNGc2_UCjkTzvzu9lq9c5wmS3VBiMfVBxeYXMmW2VrgwzB8tuMH3Mbwml942sMbim0jRysvJwWdYhrxmHGXwmD83GGi9GHKXlTFmXCaRMjPb94yRF9Gwpyyd9LpOQzWge4yhKeUyVvbjN1lOvsaXj5eD5y6iIKjqai546vIjAhoi4A0MqTnor6kcCGJArSxEhQKIQyNIEvQfZck-rEoIZKAwEBaM_1N1gnyzOzxTiabggwEpG6EErpu0qh-Sc0QAjIY_C77KQZzVjXGcap0MVr3CKNYhzbge-yw5a0qNJq_EqELGmvUyLs0eAmpjYX3y-DfvThddlBw7EYJYN-d6jM5NMyFohEA_wsD2k2K1a2z_L7aLn0whC7bHn7dyfi6_sre7L9f9IdtijQ9qk8NbusM3mfmj20XSawb-coHi8exCdSKeru
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEF_0-lBfRGtbz69uSyl9SUk2m-wFfDnE47Sn-KDgW9jZbPBAk2DuhPvvndl8oLSCbyGZJJudnY_fZHaGsZ8qE5H2c4SpMjCe1CrzdCYSL9fC4HI2fg4uQfYynt7I89vodo0dd3thmvoQfcCNJMPpaxJwCki_lPJq_oesFQL2DzIWiho3CHnV62HEdnFThFN4oZ-M2rpCLo-nu_WVNVq_o1zIfx3N136rMzyTLbbZeox83LB4m63Z4hPbGReIlh9W_Bd3OZwuOL7D4IJy2yjCyutl1ea4FhxW_J5AOJ8XqI2ebM27vigLTrsY6fnVXYnw21KWS_lYIyVfkSLgush4Sa28uSvVUX9mN5PT65Op13ZR8Ax1PfdCnYBVCLsAwOhABjoZJThbQZZEeWYlaJRCqWwUSpCxb3OTWTRReSQgAhP44Rc2KMrC7jKOvhsijEzkPigpQ19r9P-EAVCATIZwyH53s5matsQ4dbq4T3uoUc1TN_FD9qMnrZq6Gv8lQpb016kS9nQ8S-mcj--X0Sh5Cobse8exFEWD_nfowpbLOhUIRSP8rABpvjas7J8VjtB1iZXCITvevj2I9PzqzB3svZ_0G_s4vb6YpbOzy7_7bEOgI9SEbQ7YYPG4tIfoyCzgyK3XZ3oy7XE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELegSBMvE-NrHWyYCSFeMiWO0zTiqdqoWmCoD0PiLfLZjqjEkoi0SP3vuXM-BGJIe4ucS-L4fOf7nc93jJ3ERkTKzxCmykB7UsXGU0YkXqaExums_QxcgOzNYHIrL--iuzV23p6FqfNDdA43kgynr0nAS5O9FPJy_oMWK8TrG7TZR9NbyFmnhhHaDeocnMIL_WTYpBVyYTzto68Wo_V7CoV8a2e-NlvdujPeYh8bg5GPag5_Yms232Y7oxzB8t8VP-UuhNP5xncY_KbQNnKw8mpZNiGuOYcVfyAMzuc5KqMnW_G2LMqC0yFGen95XyD6thTkUjxWSMlXpAe4yg0vqJI3d5k6ql12O77483PiNUUUPE1Fz71QJWBjRF0AoFUgA5UME4ENJokyYyUoFEIZ2yiUIAe-zbSxuEJlkYAIdOCHe6yXF7n9zDiabggwjMh8iKUMfaXQ_BMaIAbkMYR9dtaOZqqbDONU6OIh7ZBGOU_dwPfZ9460rNNq_JMIWdLdp0TYk9F1Sm0-fh-ZnjwFfXbccixFyaDtDpXbYlmlApFohL8VIM1-zcruXeEQLZdBHGOXHW_f70R6OZu6iy__T3rEPsx-jdPr6c3VAdsUaAbVTptD1ls8Lu1XNGMW8M1N12coiuyj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Melatonin+suppression+by+light+involves+different+retinal+photoreceptors+in+young+and+older+adults&rft.jtitle=Journal+of+pineal+research&rft.au=Najjar%2C+Raymond+P&rft.au=Prayag%2C+Abhishek+S&rft.au=Gronfier%2C+Claude&rft.date=2024-01-01&rft.issn=1600-079X&rft.eissn=1600-079X&rft.volume=76&rft.issue=1&rft.spage=e12930&rft_id=info:doi/10.1111%2Fjpi.12930&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0742-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0742-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0742-3098&client=summon