A simple and effective remedial learning system with a fuzzy expert system

This study aims at implementing a simple and effective remedial learning system. Based on fuzzy inference, a remedial learning material selection system is proposed for a digital logic course. Two learning concepts of the course have been used in the proposed system: number systems and combinational...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer assisted learning Vol. 32; no. 6; pp. 647 - 662
Main Authors Lin, C.-C., Guo, K.-H., Lin, Y.-C.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.12.2016
Wiley-Blackwell
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0266-4909
1365-2729
DOI10.1111/jcal.12160

Cover

Abstract This study aims at implementing a simple and effective remedial learning system. Based on fuzzy inference, a remedial learning material selection system is proposed for a digital logic course. Two learning concepts of the course have been used in the proposed system: number systems and combinational logic. We conducted an experiment to validate the success of the proposed system where 88 students who studied a computer‐related program at a vocational high school in Taiwan participated in the experiment. The participating students came from three different types of classes. The fuzzy expert system determined the numbers of the remedial material units according to the scores of the pre‐test. Based on the results of the fuzzy expert system, each student then received personalized remedial learning materials by randomly selecting problem‐based learning units from a learning material repository. After reading the remedial learning materials, the students took the post‐test. The experimental results reveal that the students made significant progresses after studying the remedial learning materials. Both of high‐achieving students and low‐achieving students made significant progresses. Moreover, all of the three types of students made significant progresses. Lay description What is currently known about the subject matter: Remedial learning systems are helpful. Some systems are good for only low‐achieving students. The remedial systems are complicated. What their paper adds to this: A fuzzy expert system has been added to produce remedial materials. Automatically select the remedial learning units according to the pre‐test. The implications of study findings for practitioners: Our remedial system is good for both high‐achieving and low‐achieving students. Our remedial system is good for different types of students. Our remedial system is simple and easy‐to‐implement.
AbstractList This study aims at implementing a simple and effective remedial learning system. Based on fuzzy inference, a remedial learning material selection system is proposed for a digital logic course. Two learning concepts of the course have been used in the proposed system: number systems and combinational logic. We conducted an experiment to validate the success of the proposed system where 88 students who studied a computer-related program at a vocational high school in Taiwan participated in the experiment. The participating students came from three different types of classes. The fuzzy expert system determined the numbers of the remedial material units according to the scores of the pre-test. Based on the results of the fuzzy expert system, each student then received personalized remedial learning materials by randomly selecting problem-based learning units from a learning material repository. After reading the remedial learning materials, the students took the post-test. The experimental results reveal that the students made significant progresses after studying the remedial learning materials. Both of high-achieving students and low-achieving students made significant progresses. Moreover, all of the three types of students made significant progresses.
This study aims at implementing a simple and effective remedial learning system. Based on fuzzy inference, a remedial learning material selection system is proposed for a digital logic course. Two learning concepts of the course have been used in the proposed system: number systems and combinational logic. We conducted an experiment to validate the success of the proposed system where 88 students who studied a computer-related program at a vocational high school in Taiwan participated in the experiment. The participating students came from three different types of classes. The fuzzy expert system determined the numbers of the remedial material units according to the scores of the pre-test. Based on the results of the fuzzy expert system, each student then received personalized remedial learning materials by randomly selecting problem-based learning units from a learning material repository. After reading the remedial learning materials, the students took the post-test. The experimental results reveal that the students made significant progresses after studying the remedial learning materials. Both of high-achieving students and low-achieving students made significant progresses. Moreover, all of the three types of students made significant progresses. Lay description What is currently known about the subject matter: Remedial learning systems are helpful. Some systems are good for only low-achieving students. The remedial systems are complicated. What their paper adds to this: A fuzzy expert system has been added to produce remedial materials. Automatically select the remedial learning units according to the pre-test. The implications of study findings for practitioners: Our remedial system is good for both high-achieving and low-achieving students. Our remedial system is good for different types of students. Our remedial system is simple and easy-to-implement.
This study aims at implementing a simple and effective remedial learning system. Based on fuzzy inference, a remedial learning material selection system is proposed for a digital logic course. Two learning concepts of the course have been used in the proposed system: number systems and combinational logic. We conducted an experiment to validate the success of the proposed system where 88 students who studied a computer‐related program at a vocational high school in Taiwan participated in the experiment. The participating students came from three different types of classes. The fuzzy expert system determined the numbers of the remedial material units according to the scores of the pre‐test. Based on the results of the fuzzy expert system, each student then received personalized remedial learning materials by randomly selecting problem‐based learning units from a learning material repository. After reading the remedial learning materials, the students took the post‐test. The experimental results reveal that the students made significant progresses after studying the remedial learning materials. Both of high‐achieving students and low‐achieving students made significant progresses. Moreover, all of the three types of students made significant progresses. Lay description What is currently known about the subject matter: Remedial learning systems are helpful. Some systems are good for only low‐achieving students. The remedial systems are complicated. What their paper adds to this: A fuzzy expert system has been added to produce remedial materials. Automatically select the remedial learning units according to the pre‐test. The implications of study findings for practitioners: Our remedial system is good for both high‐achieving and low‐achieving students. Our remedial system is good for different types of students. Our remedial system is simple and easy‐to‐implement.
Audience High Schools
Secondary Education
Author Guo, K.-H.
Lin, Y.-C.
Lin, C.-C.
Author_xml – sequence: 1
  givenname: C.-C.
  surname: Lin
  fullname: Lin, C.-C.
  email: cclin@nknu.edu.tw, cclin@nknu.edu.tw
  organization: Department of Software Engineering and Management, National Kaohsiung Normal University, Kaohsiung, Taiwan, R.O.C
– sequence: 2
  givenname: K.-H.
  surname: Guo
  fullname: Guo, K.-H.
  organization: Department of Industrial Technology Education, National Kaohsiung Normal University, Kaohsiung, Taiwan, R.O.C
– sequence: 3
  givenname: Y.-C.
  surname: Lin
  fullname: Lin, Y.-C.
  organization: Department of Business Management, National Kaohsiung Normal University, Kaohsiung, Taiwan, R.O.C
BackLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1119381$$DView record in ERIC
BookMark eNp9kE1P3DAQhi0EEgvl0juSpV5QpVB_xbGPgPjarlpVIPVoGWcC3jrJ1s4Cy6_H2wAHVDGXObzPOxo9O2iz6ztA6DMlhzTPt7mz4ZAyKskGmlAuy4JVTG-iCWFSFkITvY12UpoTQiot1QRNj3Dy7SIAtl2NoWnADf4ecIQWam8DDmBj57tbnFZpgBY_-OEOW9wsn55WGB4XEIeX6BPaamxIsPeyd9H12en1yUUx-3l-eXI0KxzXghSMqZpZCoxbKlQlFGNalsBt1RBRUV0K52jJOBONbGpihSX0RtcVEUzlkO-ig_HsIvZ_l5AG0_rkIATbQb9MhiopSkFUWWb0yzt03i9jl5_LFJeaMyVopvZHCqJ3ZhF9a-PKnE6zT83VOidj7mKfUoTGOD_YwffdEK0PhhKzdm_W7s0_97ny9V3l9ex_YTrCDz7A6gPSTLPF104xdnw2__jWsfGPkRWvSvP7x7k5lrOrXxfT7-aYPwO17KIl
CitedBy_id crossref_primary_10_1007_s40593_023_00332_7
crossref_primary_10_1016_j_caeai_2023_100171
crossref_primary_10_1016_j_eswa_2024_124167
crossref_primary_10_1016_j_ece_2018_04_001
crossref_primary_10_1109_TE_2018_2876663
crossref_primary_10_1007_s11423_017_9542_1
crossref_primary_10_1108_BIJ_04_2019_0178
crossref_primary_10_3390_systems11010031
crossref_primary_10_1177_07356331221094249
crossref_primary_10_1007_s10639_024_13290_x
crossref_primary_10_1088_1757_899X_434_1_012304
crossref_primary_10_1088_1742_6596_1402_6_066031
Cites_doi 10.1016/j.knosys.2016.01.026
10.1016/S0019-9958(65)90241-X
10.1016/j.procs.2015.02.095
10.1016/j.ins.2004.02.026
10.1080/14703297.2012.746514
10.1016/j.fss.2014.08.001
10.1016/j.dsp.2016.01.010
10.1016/j.eswa.2010.03.032
10.1016/j.compedu.2005.04.016
10.1016/j.geoderma.2014.09.021
10.1016/j.asoc.2014.01.020
10.1016/j.compedu.2010.07.015
10.1016/j.asoc.2015.06.051
10.1016/j.cviu.2015.10.002
10.1016/j.resconrec.2015.01.001
10.1016/j.ssci.2015.10.004
10.1016/j.eswa.2015.04.025
10.1016/j.sbspro.2015.11.378
10.1016/j.neucom.2014.11.071
10.1016/j.eswa.2012.01.115
10.1111/j.1365-2729.2004.00097.x
10.1016/j.energy.2014.11.074
10.1016/j.sbspro.2014.01.325
10.1016/j.eswa.2014.06.042
10.1016/j.aci.2014.07.001
10.1016/j.sbspro.2012.11.009
10.1016/j.eswa.2015.11.014
10.1016/j.eswa.2014.11.023
10.1016/j.ifacol.2015.12.068
10.1016/j.jbusres.2015.10.123
10.1016/j.ins.2014.09.040
10.1016/S0360-1315(02)00121-5
10.1016/j.eswa.2015.08.045
10.1016/j.ssci.2015.06.020
10.1016/j.compedu.2011.11.002
10.1016/j.asoc.2015.05.057
10.1016/j.sbspro.2015.10.104
10.1016/j.infsof.2015.08.008
10.1016/j.apergo.2015.12.006
10.1016/j.asoc.2015.12.003
10.1016/j.eswa.2014.09.041
10.1016/j.asoc.2010.07.013
10.1016/j.ijepes.2014.07.031
10.1016/j.ins.2014.07.012
ContentType Journal Article
Copyright 2016 John Wiley & Sons Ltd
Copyright_xml – notice: 2016 John Wiley & Sons Ltd
DBID BSCLL
AAYXX
CITATION
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
7SC
8FD
AHOVV
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/jcal.12160
DatabaseName Istex
CrossRef
ERIC
ERIC (Ovid)
ERIC
ERIC
ERIC (Legacy Platform)
ERIC( SilverPlatter )
ERIC
ERIC PlusText (Legacy Platform)
Education Resources Information Center (ERIC)
ERIC
Computer and Information Systems Abstracts
Technology Research Database
Education Research Index
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
ERIC
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList ERIC
Computer and Information Systems Abstracts
Technology Research Database

Database_xml – sequence: 1
  dbid: ERI
  name: ERIC
  url: https://eric.ed.gov/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Education
EISSN 1365-2729
ERIC EJ1119381
EndPage 662
ExternalDocumentID 4241781381
EJ1119381
10_1111_jcal_12160
JCAL12160
ark_67375_WNG_B6LSQHJK_B
Genre article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID .3N
.DC
.GA
.GO
.Y3
05W
07C
0R~
10A
1OB
1OC
29K
31~
33P
3EH
4.4
50Y
50Z
51W
51Y
52M
52O
52Q
52S
52T
52U
52W
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A04
AABNI
AAESR
AAHHS
AAHSB
AAONW
AAOUF
AASGY
AAWTL
AAXRX
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABJNI
ABLJU
ABPVW
ABSOO
ACAHQ
ACBKW
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACHQT
ACPOU
ACSCC
ACXQS
ADBBV
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFKFF
AFPWT
AFZJQ
AHBTC
AHEFC
AIAGR
AIFKG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-C
D-D
D-I
DCZOG
DPXWK
DR2
DRFUL
DRMBU
DRSSH
DU5
EBS
EJD
ESX
F00
F01
FEDTE
FZ0
G-S
G.N
G50
GODZA
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSSH
MSFUL
MSSSH
MXFUL
MXSSH
N04
N06
N9A
NF~
O66
O9-
OHT
OIG
P2P
P2W
P2Y
P4C
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TWZ
UB1
V8K
W8V
W99
WBKPD
WGMDG
WH7
WIH
WII
WOHZO
WQZ
WRC
WSUWO
WXSBR
XG1
ZZTAW
~IA
~WP
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
7SC
8FD
AHOVV
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c3940-228d2a1e23a14874822965e3a7f0471954cc152324f6fd0a4a01b9d704289543
IEDL.DBID DR2
ISSN 0266-4909
IngestDate Fri Sep 05 08:11:24 EDT 2025
Wed Aug 13 07:11:36 EDT 2025
Tue Sep 02 19:21:00 EDT 2025
Tue Jul 01 01:56:52 EDT 2025
Thu Apr 24 22:54:19 EDT 2025
Wed Aug 20 07:25:53 EDT 2025
Wed Oct 30 09:54:49 EDT 2024
IsDoiOpenAccess false
IsOpenAccess false
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3940-228d2a1e23a14874822965e3a7f0471954cc152324f6fd0a4a01b9d704289543
Notes istex:4779DAF76CE2D07B5F6B0E2EB470B2A65DBBDFC4
ark:/67375/WNG-B6LSQHJK-B
ArticleID:JCAL12160
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1836932841
PQPubID 37794
PageCount 16
ParticipantIDs proquest_miscellaneous_1864540855
proquest_journals_1836932841
eric_primary_EJ1119381
crossref_citationtrail_10_1111_jcal_12160
crossref_primary_10_1111_jcal_12160
wiley_primary_10_1111_jcal_12160_JCAL12160
istex_primary_ark_67375_WNG_B6LSQHJK_B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12
December 2016
2016-12-00
20161201
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of computer assisted learning
PublicationTitleAlternate Journal of Computer Assisted Learning
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
– name: Wiley Subscription Services, Inc
References Rudnik, K., & Deptula, A. M. (2015). System with probabilistic fuzzy knowledge base and parametric inference operators in risk assessment of innovative projects. Expert Systems with Applications, 42, 6365-6379.
Berbegal-Mirabent, J., & Llopis-Albert, C. (2016). Applications of fuzzy logic for determining the driving force in collaborative research contract. Journal of Business Research, 69, 1446-1451.
Huang, C.-J., Liu, M.-C., Chu, S.-S., & Cheng, C.-L. (2007). An intelligent learning diagnosis system for web-based thematic learning platform. Computers & Education, 48, 658-679.
Martinez-Soto, R., Castillo, O., & Aguilar, L. T. (2014). Type-1 and Type-2 fuzzy logic controller design using a Hybrid PSO-GA optimization method. Information Sciences, 285, 35-49.
Kao, Y.-T., Lin, Y.-S., & Chu, C.-P. (2012). A multi-factor fuzzy inference and concept map approach for developing diagnostic and adaptive remedial learning system. Procedia - Social and Behavioral Sciences, 64, 65-74.
Petrovic, D. V., Tanasijevic, M., Milic, V., Lillc, N., Stojadinovic, S., & Svrkota, I. (2014). Risk assessment model of mining equipment failure based on fuzzy logic. Expert System with Applications, 41, 8157-8164.
Yen, J., & Langari, R. (1999). Fuzzy logic: Intelligence, control, and information (pp. 21-87). New Jersey, USA: Prentice-Hall, Inc.
Budak, A., & Ustundag, A. (2015). Fuzzy decision making model for selection of real time location systems. Applied Soft Computing, 36, 177-184.
Hwang, G.-J. (2003). A conceptual map for developing intelligent tutoring systems. Computers & Education, 40, 217-235.
Warendorf, K., & Tsao, S. J. (1997). Application of fuzzy logic techniques in the BSS1 tutoring system. Journal of Artificial Intelligence in Education, 8, 113-146.
Danisman, T., Bilasco, I. M., & Martinet, J. (2015). Boosting gender recognition performance with a fuzzy inference system. Expert Systems with Applications, 42, 2772-2784.
Castillo, O., Lizarraga, E., Soria, J., Melin, P., & Valdez, F. (2015). New approach using ant colony optimization with ant set partition for fuzzy control design applied to the ball beam. Information Sciences, 294, 203-215.
Panjaburee, P., Triampo, W., Hwang, G.-J., Chuedoung, M., & Triampo, D. (2013). Development of a diagnostic and remedial learning system based on an enhanced concept-effect model. Innovation in Education and Teaching International, 50, 72-84.
Azim, T., Jaffar, M. A., & Mirza, A. M. (2014). Fully automated real time fatigue detection of drivers through fuzzy expert systems. Applied Soft Computing, 18, 25-38.
Chen, L.-H. (2011). Enhancement of student learning performance using personalized diagnosis and remedial learning system. Computers & Education, 56, 289-299.
Ghanei, S., & Faez, K. (2016). Localizing scene texts by fuzzy inference systems and low rank matrix recovery model. Computer Vision and Image Understanding, 142, 94-110.
Hettiarachchi, C., Do, H., & Choi, B. (2016). Risk-based test case prioritization using a fuzzy expert system. Information and Software Technology, 69, 1-15.
Skorupski, J., & Uchronski, P. (2015). Fuzzy inference system for the efficiency assessment of hold baggage security control at the airport. Safety Science, 79, 314-323.
Oussalah, M., Alakhras, M., & Hussein, M. I. (2015). Multivariable fuzzy inference system for fingerprinting indoor. Fuzzy Sets and Systems, 269, 65-89.
Rubell, M. L. G., & Jessy, J. C. (2016). A multiple fuzzy inference systems framework for daily stock trading with application to NASDAQ stock exchange. Expert Systems with Applications, 44, 13-21.
Mazlum, M., & Guneri, A. F. (2015). CPM, PERT and project management with fuzzy logic technique and implement on a business. Procedia - Social and Behavioral Sciences, 210, 348-357.
Verdu, E., Verdu, M. J., Regueras, L. M., Castro, J. P., & Carcia, R. (2012). A generic fuzzy expert system for automatic question classification in a competitive learning environment. Expert Systems with Applications, 39, 7471-7478.
Nadimi, N., Behbahani, H., & Shahbazi, H. (2016). Calibration and validation of a new time-based surrogate safety measure using fuzzy inference system. Journal of traffic and Transportation Engineering, 3(1), 51-58.
Khanna, K., & Rajpal, N. (2015). Reconstruction of curves from point clouds using fuzzy logic and ant colony optimization. Neurocomputing, 161, 72-80.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(1965), 338-353.
Skorupski, J., & Uchronski, P. (2016). Managing the process of passenger security control at an airport using the fuzzy inference system. Expert Systems with Applications, 54, 284-293.
Kolus, A., Imbeau, D., Dube, P.-A., & Dubeau, D. (2016). Classifying work rate from heart rate measurements using an adaptive neuro-fuzzy inference system. Applied Ergonomics, 54, 158-168.
Camastra, F., Ciaramella, A., Giovanneli, V., Lener, M., Rastelli, V., Staiano, A., ... Starace, A. (2015). A fuzzy decision system for genetically modified plant environmental risk assessment using Mamdani inference. Expert Systems with Applications, 42, 1710-1716.
Duman, S., Yorukeren, N., & Altas, I. H. (2015). A novel modified hybrid PSOGSA based on fuzzy logic for non-convex economic dispatch problem with valve-point effect. Electrical Power and Energy Systems., 64, 121-135.
Aparajeeta, J., Nanda, P. K., & Das, N. (2016). Modified possibilistic fuzzy C-means algorithms for segmentation of magnetic resonance image. Applied Soft Computing, 41, 104-119.
Folorunso, O., & Mustapha, O. A. (2015). A fuzzy expert system to trust-based access control in crowdsourcing. Applied Computing and Informatics, 11, 116-129.
Hsieh, T.-C., Lee, M.-C., & Su, C.-Y. (2013). Design and implementing a personalized remedial learning system for enhancing the programming learning. Educational Technology & Society, 16, 32-46.
Akumu, C. E., Johnson, J. A., Etheridge, D., Uhlig, P., Woods, M., Pitt, D. G., & Mcmurray, S. (2015). GIS-fuzzy logic based approach in modeling soil texture: Using parts of the clay belt and hornepayne region in Ontario Canada as a case study. Geoderma, 239-240, 13-24.
Aguilar, R., Munoz, V., Gonzalez, E. J., Noda, M., Bruno, A., & Moreno, L. (2011). Fuzzy and multiagent instructional planner for an intelligent tutorial system. Applied Soft Computing, 11, 2142-2150.
Kalali, N. S. (2015). A fuzzy inference system for supporting the retention strategies of human capital. Procedia - Social and Behavioral Sciences, 207, 344-353.
Jagadeesh, B., Kumar, P. R., & Reddy, P. C. (2015). Fuzzy inference system based robust digital image watermarking technique using discrete cosine transform. Procedia - Computer Science, 46, 1618-1625.
Jong, B., Lin, T., Wu, Y., & Chan, T. (2004). Diagnostic and remedial learning strategy based on conceptual graphs. Journal of Computer Assisted Learning, 20, 377-386.
Stathacopoulou, R., Magoulas, G. D., Grigoriadou, M., & Samarakou, M. (2005). Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis. Information Science, 170, 273-307.
Strusnik, D., & Avsec, J. (2015). Artificial neural networking and fuzzy logic exergy controlling model of combined heat and power system in thermal power plant. Energy, 80, 318-330.
Ezzabadi, J. H., Saryazdi, M. D., & Mostafaeipour, A. (2015). Implementation fuzzy logic and AHP into the EFQM model for performance improvement: A case study. Applied Soft Computing, 36, 165-176.
Zhang, D., Yan, X., Zhang, J., Yang, Z., & Wang, J. (2016). Use of fuzzy rule-based evidential reasoning approach in the navigational risk assessment of inland waterway transportation systems. Safety Science, 82, 352-360.
Srisawasdi, N., & Panjaburee, P. (2014). Technolog-enhanced learning in science, technology, and mathematics education: Results on supporting student learning. Procedia - Social and Behavioral Sciences, 116, 946-950.
Rajaby, E., Ahadi, S. M., & Aghaeinia, H. (2016). Robust color image segmentation using fuzzy c-means with weighted hue and intensity. Digital Signal Processing, 51, 170-183.
Muriana, C., Piazza, T., & Vizzini, G. (2016). An expert system for financial performance assessment of health care structures based on fuzzy sets and KPIs. Knowledge-Based Systems, 97, 1-10.
Hogo, M. A. (2010). Evaluation of e-learning system based on fuzzy clustering models and statistical tools. Expert Systems with Applications, 37, 6891-6903.
Mangla, S. K., Kumar, P., & Barua, M. K. (2015). Risk analysis in green supply chain using fuzzy AHP approach: A case study. Resource, Conservation and Recycling, 104, 375-390.
Van Seters, J. R., Ossevoort, M. A., Tramper, J., & Goedhart, M. J. (2012). The influence of student characteristics on the use of adaptive e-learning material. Computer & Education, 58, 942-952.
2015; 79
2014; 116
2005; 170
2015; 36
2004; 20
2015; 161
2010; 37
2015; 104
2015; 269
2015; 11
2015; 239–240
2016; 54
2016; 97
2011; 11
2016; 51
2011; 56
2015; 207
2012; 39
2015; 80
2014; 41
2012; 58
2016; 142
1997; 8
1999
2015; 46
2015; 294
2013; 16
2016; 3
1965; 8
2015; 42
2015; 64
2015; 210
2013; 50
2016; 41
2015
2016; 82
2014; 18
2003; 40
2014; 285
2016; 69
2012; 64
2007; 48
2016; 44
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
Hsieh T.‐C. (e_1_2_8_19_1) 2013; 16
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_13_1
e_1_2_8_36_1
Zadeh L. A. (e_1_2_8_48_1) 1965; 8
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Nadimi N. (e_1_2_8_32_1) 2016; 3
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
Warendorf K. (e_1_2_8_46_1) 1997; 8
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
Yen J. (e_1_2_8_47_1) 1999
References_xml – reference: Nadimi, N., Behbahani, H., & Shahbazi, H. (2016). Calibration and validation of a new time-based surrogate safety measure using fuzzy inference system. Journal of traffic and Transportation Engineering, 3(1), 51-58.
– reference: Warendorf, K., & Tsao, S. J. (1997). Application of fuzzy logic techniques in the BSS1 tutoring system. Journal of Artificial Intelligence in Education, 8, 113-146.
– reference: Danisman, T., Bilasco, I. M., & Martinet, J. (2015). Boosting gender recognition performance with a fuzzy inference system. Expert Systems with Applications, 42, 2772-2784.
– reference: Jong, B., Lin, T., Wu, Y., & Chan, T. (2004). Diagnostic and remedial learning strategy based on conceptual graphs. Journal of Computer Assisted Learning, 20, 377-386.
– reference: Yen, J., & Langari, R. (1999). Fuzzy logic: Intelligence, control, and information (pp. 21-87). New Jersey, USA: Prentice-Hall, Inc.
– reference: Petrovic, D. V., Tanasijevic, M., Milic, V., Lillc, N., Stojadinovic, S., & Svrkota, I. (2014). Risk assessment model of mining equipment failure based on fuzzy logic. Expert System with Applications, 41, 8157-8164.
– reference: Martinez-Soto, R., Castillo, O., & Aguilar, L. T. (2014). Type-1 and Type-2 fuzzy logic controller design using a Hybrid PSO-GA optimization method. Information Sciences, 285, 35-49.
– reference: Hettiarachchi, C., Do, H., & Choi, B. (2016). Risk-based test case prioritization using a fuzzy expert system. Information and Software Technology, 69, 1-15.
– reference: Akumu, C. E., Johnson, J. A., Etheridge, D., Uhlig, P., Woods, M., Pitt, D. G., & Mcmurray, S. (2015). GIS-fuzzy logic based approach in modeling soil texture: Using parts of the clay belt and hornepayne region in Ontario Canada as a case study. Geoderma, 239-240, 13-24.
– reference: Budak, A., & Ustundag, A. (2015). Fuzzy decision making model for selection of real time location systems. Applied Soft Computing, 36, 177-184.
– reference: Kolus, A., Imbeau, D., Dube, P.-A., & Dubeau, D. (2016). Classifying work rate from heart rate measurements using an adaptive neuro-fuzzy inference system. Applied Ergonomics, 54, 158-168.
– reference: Stathacopoulou, R., Magoulas, G. D., Grigoriadou, M., & Samarakou, M. (2005). Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis. Information Science, 170, 273-307.
– reference: Van Seters, J. R., Ossevoort, M. A., Tramper, J., & Goedhart, M. J. (2012). The influence of student characteristics on the use of adaptive e-learning material. Computer & Education, 58, 942-952.
– reference: Berbegal-Mirabent, J., & Llopis-Albert, C. (2016). Applications of fuzzy logic for determining the driving force in collaborative research contract. Journal of Business Research, 69, 1446-1451.
– reference: Skorupski, J., & Uchronski, P. (2015). Fuzzy inference system for the efficiency assessment of hold baggage security control at the airport. Safety Science, 79, 314-323.
– reference: Strusnik, D., & Avsec, J. (2015). Artificial neural networking and fuzzy logic exergy controlling model of combined heat and power system in thermal power plant. Energy, 80, 318-330.
– reference: Mangla, S. K., Kumar, P., & Barua, M. K. (2015). Risk analysis in green supply chain using fuzzy AHP approach: A case study. Resource, Conservation and Recycling, 104, 375-390.
– reference: Rubell, M. L. G., & Jessy, J. C. (2016). A multiple fuzzy inference systems framework for daily stock trading with application to NASDAQ stock exchange. Expert Systems with Applications, 44, 13-21.
– reference: Srisawasdi, N., & Panjaburee, P. (2014). Technolog-enhanced learning in science, technology, and mathematics education: Results on supporting student learning. Procedia - Social and Behavioral Sciences, 116, 946-950.
– reference: Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(1965), 338-353.
– reference: Kalali, N. S. (2015). A fuzzy inference system for supporting the retention strategies of human capital. Procedia - Social and Behavioral Sciences, 207, 344-353.
– reference: Panjaburee, P., Triampo, W., Hwang, G.-J., Chuedoung, M., & Triampo, D. (2013). Development of a diagnostic and remedial learning system based on an enhanced concept-effect model. Innovation in Education and Teaching International, 50, 72-84.
– reference: Azim, T., Jaffar, M. A., & Mirza, A. M. (2014). Fully automated real time fatigue detection of drivers through fuzzy expert systems. Applied Soft Computing, 18, 25-38.
– reference: Khanna, K., & Rajpal, N. (2015). Reconstruction of curves from point clouds using fuzzy logic and ant colony optimization. Neurocomputing, 161, 72-80.
– reference: Skorupski, J., & Uchronski, P. (2016). Managing the process of passenger security control at an airport using the fuzzy inference system. Expert Systems with Applications, 54, 284-293.
– reference: Aparajeeta, J., Nanda, P. K., & Das, N. (2016). Modified possibilistic fuzzy C-means algorithms for segmentation of magnetic resonance image. Applied Soft Computing, 41, 104-119.
– reference: Rajaby, E., Ahadi, S. M., & Aghaeinia, H. (2016). Robust color image segmentation using fuzzy c-means with weighted hue and intensity. Digital Signal Processing, 51, 170-183.
– reference: Camastra, F., Ciaramella, A., Giovanneli, V., Lener, M., Rastelli, V., Staiano, A., ... Starace, A. (2015). A fuzzy decision system for genetically modified plant environmental risk assessment using Mamdani inference. Expert Systems with Applications, 42, 1710-1716.
– reference: Aguilar, R., Munoz, V., Gonzalez, E. J., Noda, M., Bruno, A., & Moreno, L. (2011). Fuzzy and multiagent instructional planner for an intelligent tutorial system. Applied Soft Computing, 11, 2142-2150.
– reference: Duman, S., Yorukeren, N., & Altas, I. H. (2015). A novel modified hybrid PSOGSA based on fuzzy logic for non-convex economic dispatch problem with valve-point effect. Electrical Power and Energy Systems., 64, 121-135.
– reference: Kao, Y.-T., Lin, Y.-S., & Chu, C.-P. (2012). A multi-factor fuzzy inference and concept map approach for developing diagnostic and adaptive remedial learning system. Procedia - Social and Behavioral Sciences, 64, 65-74.
– reference: Hwang, G.-J. (2003). A conceptual map for developing intelligent tutoring systems. Computers & Education, 40, 217-235.
– reference: Jagadeesh, B., Kumar, P. R., & Reddy, P. C. (2015). Fuzzy inference system based robust digital image watermarking technique using discrete cosine transform. Procedia - Computer Science, 46, 1618-1625.
– reference: Ezzabadi, J. H., Saryazdi, M. D., & Mostafaeipour, A. (2015). Implementation fuzzy logic and AHP into the EFQM model for performance improvement: A case study. Applied Soft Computing, 36, 165-176.
– reference: Muriana, C., Piazza, T., & Vizzini, G. (2016). An expert system for financial performance assessment of health care structures based on fuzzy sets and KPIs. Knowledge-Based Systems, 97, 1-10.
– reference: Verdu, E., Verdu, M. J., Regueras, L. M., Castro, J. P., & Carcia, R. (2012). A generic fuzzy expert system for automatic question classification in a competitive learning environment. Expert Systems with Applications, 39, 7471-7478.
– reference: Castillo, O., Lizarraga, E., Soria, J., Melin, P., & Valdez, F. (2015). New approach using ant colony optimization with ant set partition for fuzzy control design applied to the ball beam. Information Sciences, 294, 203-215.
– reference: Chen, L.-H. (2011). Enhancement of student learning performance using personalized diagnosis and remedial learning system. Computers & Education, 56, 289-299.
– reference: Ghanei, S., & Faez, K. (2016). Localizing scene texts by fuzzy inference systems and low rank matrix recovery model. Computer Vision and Image Understanding, 142, 94-110.
– reference: Hsieh, T.-C., Lee, M.-C., & Su, C.-Y. (2013). Design and implementing a personalized remedial learning system for enhancing the programming learning. Educational Technology & Society, 16, 32-46.
– reference: Huang, C.-J., Liu, M.-C., Chu, S.-S., & Cheng, C.-L. (2007). An intelligent learning diagnosis system for web-based thematic learning platform. Computers & Education, 48, 658-679.
– reference: Zhang, D., Yan, X., Zhang, J., Yang, Z., & Wang, J. (2016). Use of fuzzy rule-based evidential reasoning approach in the navigational risk assessment of inland waterway transportation systems. Safety Science, 82, 352-360.
– reference: Hogo, M. A. (2010). Evaluation of e-learning system based on fuzzy clustering models and statistical tools. Expert Systems with Applications, 37, 6891-6903.
– reference: Folorunso, O., & Mustapha, O. A. (2015). A fuzzy expert system to trust-based access control in crowdsourcing. Applied Computing and Informatics, 11, 116-129.
– reference: Oussalah, M., Alakhras, M., & Hussein, M. I. (2015). Multivariable fuzzy inference system for fingerprinting indoor. Fuzzy Sets and Systems, 269, 65-89.
– reference: Rudnik, K., & Deptula, A. M. (2015). System with probabilistic fuzzy knowledge base and parametric inference operators in risk assessment of innovative projects. Expert Systems with Applications, 42, 6365-6379.
– reference: Mazlum, M., & Guneri, A. F. (2015). CPM, PERT and project management with fuzzy logic technique and implement on a business. Procedia - Social and Behavioral Sciences, 210, 348-357.
– volume: 36
  start-page: 177
  year: 2015
  end-page: 184
  article-title: Fuzzy decision making model for selection of real time location systems
  publication-title: Applied Soft Computing
– volume: 294
  start-page: 203
  year: 2015
  end-page: 215
  article-title: New approach using ant colony optimization with ant set partition for fuzzy control design applied to the ball beam
  publication-title: Information Sciences
– volume: 79
  start-page: 314
  year: 2015
  end-page: 323
  article-title: Fuzzy inference system for the efficiency assessment of hold baggage security control at the airport
  publication-title: Safety Science
– volume: 285
  start-page: 35
  year: 2014
  end-page: 49
  article-title: Type‐1 and Type‐2 fuzzy logic controller design using a Hybrid PSO‐GA optimization method
  publication-title: Information Sciences
– volume: 161
  start-page: 72
  year: 2015
  end-page: 80
  article-title: Reconstruction of curves from point clouds using fuzzy logic and ant colony optimization
  publication-title: Neurocomputing
– volume: 41
  start-page: 104
  year: 2016
  end-page: 119
  article-title: Modified possibilistic fuzzy C‐means algorithms for segmentation of magnetic resonance image
  publication-title: Applied Soft Computing
– volume: 42
  start-page: 6365
  year: 2015
  end-page: 6379
  article-title: System with probabilistic fuzzy knowledge base and parametric inference operators in risk assessment of innovative projects
  publication-title: Expert Systems with Applications
– volume: 56
  start-page: 289
  year: 2011
  end-page: 299
  article-title: Enhancement of student learning performance using personalized diagnosis and remedial learning system
  publication-title: Computers & Education
– volume: 51
  start-page: 170
  year: 2016
  end-page: 183
  article-title: Robust color image segmentation using fuzzy c‐means with weighted hue and intensity
  publication-title: Digital Signal Processing
– volume: 20
  start-page: 377
  year: 2004
  end-page: 386
  article-title: Diagnostic and remedial learning strategy based on conceptual graphs
  publication-title: Journal of Computer Assisted Learning
– volume: 54
  start-page: 284
  year: 2016
  end-page: 293
  article-title: Managing the process of passenger security control at an airport using the fuzzy inference system
  publication-title: Expert Systems with Applications
– volume: 46
  start-page: 1618
  year: 2015
  end-page: 1625
  article-title: Fuzzy inference system based robust digital image watermarking technique using discrete cosine transform
  publication-title: Procedia – Computer Science
– volume: 11
  start-page: 2142
  year: 2011
  end-page: 2150
  article-title: Fuzzy and multiagent instructional planner for an intelligent tutorial system
  publication-title: Applied Soft Computing
– volume: 16
  start-page: 32
  year: 2013
  end-page: 46
  article-title: Design and implementing a personalized remedial learning system for enhancing the programming learning
  publication-title: Educational Technology & Society
– volume: 69
  start-page: 1
  year: 2016
  end-page: 15
  article-title: Risk‐based test case prioritization using a fuzzy expert system
  publication-title: Information and Software Technology
– volume: 3
  start-page: 51
  issue: 1
  year: 2016
  end-page: 58
  article-title: Calibration and validation of a new time‐based surrogate safety measure using fuzzy inference system
  publication-title: Journal of traffic and Transportation Engineering
– volume: 48
  start-page: 658
  year: 2007
  end-page: 679
  article-title: An intelligent learning diagnosis system for web‐based thematic learning platform
  publication-title: Computers & Education
– start-page: 21
  year: 1999
  end-page: 87
– volume: 69
  start-page: 1446
  year: 2016
  end-page: 1451
  article-title: Applications of fuzzy logic for determining the driving force in collaborative research contract
  publication-title: Journal of Business Research
– volume: 170
  start-page: 273
  year: 2005
  end-page: 307
  article-title: Neuro‐fuzzy knowledge processing in intelligent learning environments for improved student diagnosis
  publication-title: Information Science
– volume: 40
  start-page: 217
  year: 2003
  end-page: 235
  article-title: A conceptual map for developing intelligent tutoring systems
  publication-title: Computers & Education
– volume: 97
  start-page: 1
  year: 2016
  end-page: 10
  article-title: An expert system for financial performance assessment of health care structures based on fuzzy sets and KPIs
  publication-title: Knowledge‐Based Systems
– volume: 18
  start-page: 25
  year: 2014
  end-page: 38
  article-title: Fully automated real time fatigue detection of drivers through fuzzy expert systems
  publication-title: Applied Soft Computing
– volume: 239–240
  start-page: 13
  year: 2015
  end-page: 24
  article-title: GIS‐fuzzy logic based approach in modeling soil texture: Using parts of the clay belt and hornepayne region in Ontario Canada as a case study
  publication-title: Geoderma
– volume: 64
  start-page: 121
  year: 2015
  end-page: 135
  article-title: A novel modified hybrid PSOGSA based on fuzzy logic for non‐convex economic dispatch problem with valve‐point effect
  publication-title: Electrical Power and Energy Systems.
– volume: 269
  start-page: 65
  year: 2015
  end-page: 89
  article-title: Multivariable fuzzy inference system for fingerprinting indoor
  publication-title: Fuzzy Sets and Systems
– volume: 42
  start-page: 2772
  year: 2015
  end-page: 2784
  article-title: Boosting gender recognition performance with a fuzzy inference system
  publication-title: Expert Systems with Applications
– volume: 44
  start-page: 13
  year: 2016
  end-page: 21
  article-title: A multiple fuzzy inference systems framework for daily stock trading with application to NASDAQ stock exchange
  publication-title: Expert Systems with Applications
– volume: 210
  start-page: 348
  year: 2015
  end-page: 357
  article-title: CPM, PERT and project management with fuzzy logic technique and implement on a business
  publication-title: Procedia – Social and Behavioral Sciences
– volume: 116
  start-page: 946
  year: 2014
  end-page: 950
  article-title: Technolog‐enhanced learning in science, technology, and mathematics education: Results on supporting student learning
  publication-title: Procedia – Social and Behavioral Sciences
– volume: 80
  start-page: 318
  year: 2015
  end-page: 330
  article-title: Artificial neural networking and fuzzy logic exergy controlling model of combined heat and power system in thermal power plant
  publication-title: Energy
– volume: 8
  start-page: 338
  issue: 1965
  year: 1965
  end-page: 353
  article-title: Fuzzy sets
  publication-title: Information and Control
– volume: 82
  start-page: 352
  year: 2016
  end-page: 360
  article-title: Use of fuzzy rule‐based evidential reasoning approach in the navigational risk assessment of inland waterway transportation systems
  publication-title: Safety Science
– volume: 64
  start-page: 65
  year: 2012
  end-page: 74
  article-title: A multi‐factor fuzzy inference and concept map approach for developing diagnostic and adaptive remedial learning system
  publication-title: Procedia – Social and Behavioral Sciences
– volume: 39
  start-page: 7471
  year: 2012
  end-page: 7478
  article-title: A generic fuzzy expert system for automatic question classification in a competitive learning environment
  publication-title: Expert Systems with Applications
– volume: 58
  start-page: 942
  year: 2012
  end-page: 952
  article-title: The influence of student characteristics on the use of adaptive e‐learning material
  publication-title: Computer & Education
– volume: 54
  start-page: 158
  year: 2016
  end-page: 168
  article-title: Classifying work rate from heart rate measurements using an adaptive neuro‐fuzzy inference system
  publication-title: Applied Ergonomics
– volume: 142
  start-page: 94
  year: 2016
  end-page: 110
  article-title: Localizing scene texts by fuzzy inference systems and low rank matrix recovery model
  publication-title: Computer Vision and Image Understanding
– volume: 41
  start-page: 8157
  year: 2014
  end-page: 8164
  article-title: Risk assessment model of mining equipment failure based on fuzzy logic
  publication-title: Expert System with Applications
– volume: 42
  start-page: 1710
  year: 2015
  end-page: 1716
  article-title: A fuzzy decision system for genetically modified plant environmental risk assessment using Mamdani inference
  publication-title: Expert Systems with Applications
– volume: 36
  start-page: 165
  year: 2015
  end-page: 176
  article-title: Implementation fuzzy logic and AHP into the EFQM model for performance improvement: A case study
  publication-title: Applied Soft Computing
– volume: 11
  start-page: 116
  year: 2015
  end-page: 129
  article-title: A fuzzy expert system to trust‐based access control in crowdsourcing
  publication-title: Applied Computing and Informatics
– volume: 37
  start-page: 6891
  year: 2010
  end-page: 6903
  article-title: Evaluation of e‐learning system based on fuzzy clustering models and statistical tools
  publication-title: Expert Systems with Applications
– year: 2015
– volume: 207
  start-page: 344
  year: 2015
  end-page: 353
  article-title: A fuzzy inference system for supporting the retention strategies of human capital
  publication-title: Procedia – Social and Behavioral Sciences
– volume: 8
  start-page: 113
  year: 1997
  end-page: 146
  article-title: Application of fuzzy logic techniques in the BSS1 tutoring system
  publication-title: Journal of Artificial Intelligence in Education
– volume: 104
  start-page: 375
  year: 2015
  end-page: 390
  article-title: Risk analysis in green supply chain using fuzzy AHP approach: A case study
  publication-title: Resource, Conservation and Recycling
– volume: 50
  start-page: 72
  year: 2013
  end-page: 84
  article-title: Development of a diagnostic and remedial learning system based on an enhanced concept‐effect model
  publication-title: Innovation in Education and Teaching International
– ident: e_1_2_8_31_1
  doi: 10.1016/j.knosys.2016.01.026
– volume: 8
  start-page: 338
  issue: 1965
  year: 1965
  ident: e_1_2_8_48_1
  article-title: Fuzzy sets
  publication-title: Information and Control
  doi: 10.1016/S0019-9958(65)90241-X
– ident: e_1_2_8_22_1
  doi: 10.1016/j.procs.2015.02.095
– ident: e_1_2_8_42_1
  doi: 10.1016/j.ins.2004.02.026
– ident: e_1_2_8_34_1
  doi: 10.1080/14703297.2012.746514
– ident: e_1_2_8_33_1
  doi: 10.1016/j.fss.2014.08.001
– volume: 3
  start-page: 51
  issue: 1
  year: 2016
  ident: e_1_2_8_32_1
  article-title: Calibration and validation of a new time‐based surrogate safety measure using fuzzy inference system
  publication-title: Journal of traffic and Transportation Engineering
– ident: e_1_2_8_36_1
  doi: 10.1016/j.dsp.2016.01.010
– ident: e_1_2_8_18_1
  doi: 10.1016/j.eswa.2010.03.032
– ident: e_1_2_8_20_1
  doi: 10.1016/j.compedu.2005.04.016
– ident: e_1_2_8_3_1
  doi: 10.1016/j.geoderma.2014.09.021
– ident: e_1_2_8_5_1
  doi: 10.1016/j.asoc.2014.01.020
– ident: e_1_2_8_11_1
  doi: 10.1016/j.compedu.2010.07.015
– ident: e_1_2_8_14_1
  doi: 10.1016/j.asoc.2015.06.051
– ident: e_1_2_8_16_1
  doi: 10.1016/j.cviu.2015.10.002
– ident: e_1_2_8_28_1
  doi: 10.1016/j.resconrec.2015.01.001
– volume: 8
  start-page: 113
  year: 1997
  ident: e_1_2_8_46_1
  article-title: Application of fuzzy logic techniques in the BSS1 tutoring system
  publication-title: Journal of Artificial Intelligence in Education
– ident: e_1_2_8_49_1
  doi: 10.1016/j.ssci.2015.10.004
– ident: e_1_2_8_38_1
  doi: 10.1016/j.eswa.2015.04.025
– ident: e_1_2_8_30_1
  doi: 10.1016/j.sbspro.2015.11.378
– ident: e_1_2_8_26_1
  doi: 10.1016/j.neucom.2014.11.071
– ident: e_1_2_8_45_1
  doi: 10.1016/j.eswa.2012.01.115
– ident: e_1_2_8_23_1
  doi: 10.1111/j.1365-2729.2004.00097.x
– ident: e_1_2_8_43_1
  doi: 10.1016/j.energy.2014.11.074
– start-page: 21
  volume-title: Fuzzy logic: Intelligence, control, and information
  year: 1999
  ident: e_1_2_8_47_1
– ident: e_1_2_8_41_1
  doi: 10.1016/j.sbspro.2014.01.325
– ident: e_1_2_8_35_1
  doi: 10.1016/j.eswa.2014.06.042
– ident: e_1_2_8_15_1
  doi: 10.1016/j.aci.2014.07.001
– ident: e_1_2_8_24_1
  doi: 10.1016/j.sbspro.2012.11.009
– ident: e_1_2_8_39_1
  doi: 10.1016/j.eswa.2015.11.014
– ident: e_1_2_8_12_1
  doi: 10.1016/j.eswa.2014.11.023
– ident: e_1_2_8_6_1
  doi: 10.1016/j.ifacol.2015.12.068
– ident: e_1_2_8_7_1
  doi: 10.1016/j.jbusres.2015.10.123
– ident: e_1_2_8_10_1
  doi: 10.1016/j.ins.2014.09.040
– ident: e_1_2_8_21_1
  doi: 10.1016/S0360-1315(02)00121-5
– ident: e_1_2_8_37_1
  doi: 10.1016/j.eswa.2015.08.045
– ident: e_1_2_8_40_1
  doi: 10.1016/j.ssci.2015.06.020
– ident: e_1_2_8_44_1
  doi: 10.1016/j.compedu.2011.11.002
– ident: e_1_2_8_8_1
  doi: 10.1016/j.asoc.2015.05.057
– ident: e_1_2_8_25_1
  doi: 10.1016/j.sbspro.2015.10.104
– ident: e_1_2_8_17_1
  doi: 10.1016/j.infsof.2015.08.008
– ident: e_1_2_8_27_1
  doi: 10.1016/j.apergo.2015.12.006
– ident: e_1_2_8_4_1
  doi: 10.1016/j.asoc.2015.12.003
– ident: e_1_2_8_9_1
  doi: 10.1016/j.eswa.2014.09.041
– ident: e_1_2_8_2_1
  doi: 10.1016/j.asoc.2010.07.013
– ident: e_1_2_8_13_1
  doi: 10.1016/j.ijepes.2014.07.031
– ident: e_1_2_8_29_1
  doi: 10.1016/j.ins.2014.07.012
– volume: 16
  start-page: 32
  year: 2013
  ident: e_1_2_8_19_1
  article-title: Design and implementing a personalized remedial learning system for enhancing the programming learning
  publication-title: Educational Technology & Society
SSID ssj0007968
Score 2.236955
Snippet This study aims at implementing a simple and effective remedial learning system. Based on fuzzy inference, a remedial learning material selection system is...
SourceID proquest
eric
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 647
SubjectTerms Academic underachievement
Artificial Intelligence
combinational logic
Decision support systems
digital logic
Educational technology
Electronic Learning
Expert systems
Foreign Countries
fuzzy expert systems
Fuzzy logic
Fuzzy systems
High Achievement
High School Students
Instructional Effectiveness
Instructional Materials
Intelligent Tutoring Systems
Learning
Logic
Logical Thinking
Low Achievement
Materials selection
Media Selection
Number Systems
Pretests Posttests
Problem Based Learning
Remedial education
Remedial Instruction
remedial learning materials
Students
System effectiveness
Taiwan
Teaching Methods
Vocational High Schools
Title A simple and effective remedial learning system with a fuzzy expert system
URI https://api.istex.fr/ark:/67375/WNG-B6LSQHJK-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjcal.12160
http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1119381
https://www.proquest.com/docview/1836932841
https://www.proquest.com/docview/1864540855
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED5K9rKXdesP5q4rGh2DFhxsR5Yi2EvbtQveKLRNaV6KkWWrjAxnNAls-et3JyteMsZgezPc2dg6ne5O_vQdwNvYJqrAtTGMtLEhL3QcahvHoY1EKSQ3UlqHtrgUg1uejdLRBrxfnoVp-CHaDTfyDLdek4PrYrrq5PgNxI0gqGCPe4KI8z9c_-KOksqdg8MaQ4RcRcpzkzoYT3vrWjTygOcnNL7f1zLO1bzVBZ6LTbhfvnKDNxl357Oiaxa_sTn-7zc9h2c-I2UnzRR6ARtVvUXNnD3wYxuyEzb9QiTCTNclawAguEYy2lmkYyfMd554YA0tNKO9XaaZnS8WP5hrITDzoh0YXpwPzwahb8EQGmqZHiZJv0x0XCU9jXWT5EQPL9Kqp9GEGNZUyo3BDACzMitsGWmuo7hQpaRKDIW9XejUk7p6CcwU_UhblRppFcZAwmBZnpbS8DJKjS4DOFpaIjeenpy6ZHzN2zKFYrsbnAAOW91vDSnHH7V2yaCtxnmGcoUZSgDvnIlbiX4cE75Npvnd5cf8VHy-uRpkn_LTAPaXcyD3rj3NcQ0UmPT2OT7nTStGp6Q_LbquJnPSIaI0ggAGcOwM_pf3zDMcb3e19y_Kr-ApJm-igdbsQ2f2OK9eY4I0Kw6cIxy4rYCfs00Juw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcQfYAX2PgQ4WPzBEIaUlCSOnb9WDaghFIJ1mm8WY4TIwQKiLbS6F-_O8eED6FJ21uku1aJnfP9zvn5d4TsxDaROayNYaSNDVmu41DbOA5txAsumBHCOrbFgPd-suwyvfTcHDwLU-tDNBtuGBluvcYAxw3pl1EOD4HiCBwq9hYDpIG11_eLZ_UoId1JOKgyeMhkJL06qSPyNL99lY885bmFI_z7FeZ8iVxd6jlarPurjpxiITJObvYn43zfTN_oOf73U30gCx6U0m79Fn0kM2W1hP2cPfdjmWRdOrpGHWGqq4LWHBBYJiluLuLJE-qbT1zRWhma4vYu1dROptNH6roIjL1phQyPDoffeqHvwhAa7JoeJkmnSHRcJm0NpZNgqBDP07KtYRYhs8mUGQMgAICZ5baINNNRnMtCYDEGxvYqma3uqnKNUJN3Im1laoSVkAaRhmVZWgjDiig1ugjI16epUMYrlGOjjFvVVCqY3t3gBGS78b2vdTne9VrFGW08DjOwSwApAdl1c9xY9MMNUtxEqn4NjtUB7_8472Wn6iAgm08vgfLRPVKwDHLAvR0G__OlMUNc4scWXZV3E_RBrTRkAQZkz834X-5TZTDe7mr9X5w_k7ne8Kyv-ieD0w0yD1iO10ybTTI7fpiUW4CXxvknFxV_AA9KDNk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3faxQxEB5KC-KLtmpxba0RRVDYsruXTS7gS6s9z205_FGxLyVkk41Iy7a0d1Dvr3cmm1tbEUHfFia37GZ2Mt_kvnwD8Dz3hapxbUwzY33Ka5Onxud56jPhhORWSh_YFhMx_sKro_JoCV4vzsJ0-hD9hhtFRlivKcDPnb8e5PgOpI0gsGBf4QKhBEGiT7_Eo6QKB-GwyBApV5mK4qSBx9P_9kY6ioznFZrgqxuQ8zpwDZlndBeOF8_cEU5OtmfTetvOf5Nz_N-XWoU7EZKyne4bWoOlpr1H3Zwj8-M-VDvs8jupCDPTOtYxQHCRZLS1SOdOWGw98Y11utCMNneZYX42n_9goYfANJoewOFo7_DNOI09GFJLPdPTohi6wuRNMTBYOElO-vCibAYGfYh5TZXcWoQACMu88C4z3GR5rZykUgyNg3VYbs_a5iEwWw8z41VppVeYBImE5XnppOUuK61xCbxceELbqE9ObTJOdV-nUHIPk5PAs37seafK8cdR6-TQfsRehXaFECWBF8HFvcVcnBDBTZb66-Sd3hUHnz-Oq329m8Dm4hvQMbYvNS6CAlHvkON9nvZmjEr6q8W0zdmMxpBSGnEAE3gVHP6X59QVzne4evQvg5_ArQ9vR_rg_WR_A24jkBMdzWYTlqcXs-YxgqVpvRVi4ifb8AuI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+and+effective+remedial+learning+system+with+a+fuzzy+expert+system&rft.jtitle=Journal+of+computer+assisted+learning&rft.au=Lin%2C+C.%E2%80%90C.&rft.au=Guo%2C+K.%E2%80%90H.&rft.au=Lin%2C+Y.%E2%80%90C.&rft.date=2016-12-01&rft.issn=0266-4909&rft.eissn=1365-2729&rft.volume=32&rft.issue=6&rft.spage=647&rft.epage=662&rft_id=info:doi/10.1111%2Fjcal.12160&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_jcal_12160
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4909&client=summon