High-strain-rate deformation of granular silicon carbide
Silicon carbide powders with three particle size distributions (average sizes of 0.4, 3 and 50 μm) were subjected to strain-controlled, high-strain-rate deformation ( ε ̇ ≈3×10 4/s) in a cylindrical geometry which imposed simultaneous compressive stresses. The experiments involved two explosive stag...
Saved in:
Published in | Acta materialia Vol. 46; no. 11; pp. 4037 - 4065 |
---|---|
Main Authors | , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Oxford
Elsevier Ltd
01.07.1998
Elsevier Science |
Subjects | |
Online Access | Get full text |
ISSN | 1359-6454 1873-2453 |
DOI | 10.1016/S1359-6454(98)00040-8 |
Cover
Loading…
Abstract | Silicon carbide powders with three particle size distributions (average sizes of 0.4, 3 and 50
μm) were subjected to strain-controlled, high-strain-rate deformation (
ε
̇
≈3×10
4/s) in a cylindrical geometry which imposed simultaneous compressive stresses. The experiments involved two explosive stages to (a) densify the powder and to (b) subject the densified granules to large deformation. The powder, with initial density of 33–59% of theoretical density, was densified to densities between 73 and 94% of theoretical density in the first stage. The densified powders were subjected to a global effective strain of ≈−0.27 in the second stage. Their response to the imposed constraints occurred through both homogeneous deformation (82–100%) and shear localization (0–18%), depending on the particle size. In the coarse powder (50
μm), the shear localization process was primarily due to particle break-up (comminution) and rearrangement of the comminuted particles, through a similar mechanism to the bulk and prefractured SiC (Shih, C. J., Nesterenko, V. F. and Meyers, M. A.,
Journal of Applied Physics, 1998,
83, 4660). Comminution was observed in the medium powder (3
μm), but was never seen in the fine powder (0.4
μm). In medium and fine granular SiC, the shear localization at sufficiently high displacement (>150
μm) leads to the formation of a thin layer (5–20
μm) of well-bonded material. Calculated temperatures in the centers of the bands are up to 2300°C (using an assumed shear strength of 2
GPa and linear thermal softening), which explain the bonding. An analytical model is developed that correctly predicts break-up of large particles and plastic deformation of the smaller ones. It is based on the Griffith fracture criterion and Weibull distribution of strength, which quantitatively express the fact that the fracture is generated by flaws the size of which is limited by the particle size. |
---|---|
AbstractList | Silicon carbide powders with three particle size distributions (average sizes of 0.4, 3 and 50 mu m) were subjected to strain-controlled, high-strain-rate deformation ( epsilon approx3x10 exp 4 /s) in a cylindrical geometry which imposed simultaneous compressive stresses. The experiments involved two explosive stages to (a) densify the powder and to (b) subject the densified granules to large deformation. The powder, with initial density of 33-59% of theoretical density, was densified to densities between 73-94% of theoretical density in the first stage. The densified powders were subjected to a global effective strain of approx-0.27 in the second stage. Their response to the imposed constraints occurred through both homogeneous deformation (82-100%) and shear localization (0-18%), depending on the particle size. In the coarse powder (50 mu m), the shear localization process was primarily due to particle break-up (comminution) and rearrangement of the comminuted particles, through a similar mechanism to the bulk and prefractured SiC (Shih, C. J., Nesterenko, V. F. and Meyers, M. A., Journal of Applied Physics, 1998, 83, 4660). Comminution was observed in the medium powder (3 mu m), but was never seen in the fine powder (0.4 mu m). In medium and fine granular SiC, the shear localization at sufficiently high displacement ( > 150 mu m) leads to the formation of a thin layer (5-20 mu m) of well-bonded material. Calculated temperatures in the centers of the bands are up to 2300 deg C (using an assumed shear strength of 2 GPa and linear thermal softening), which explain the bonding. An analytical model is developed that correctly predicts break-up of large particles and plastic deformation of the smaller ones. It is based on the Griffith fracture criterion and Weibull distribution of strength, which quantitatively express the fact that the fracture is generated by flaws the size of which is limited by the particle size. Silicon carbide powders with three particle size distributions (average sizes of 0.4, 3 and 50 μm) were subjected to strain-controlled, high-strain-rate deformation ( ε ̇ ≈3×10 4/s) in a cylindrical geometry which imposed simultaneous compressive stresses. The experiments involved two explosive stages to (a) densify the powder and to (b) subject the densified granules to large deformation. The powder, with initial density of 33–59% of theoretical density, was densified to densities between 73 and 94% of theoretical density in the first stage. The densified powders were subjected to a global effective strain of ≈−0.27 in the second stage. Their response to the imposed constraints occurred through both homogeneous deformation (82–100%) and shear localization (0–18%), depending on the particle size. In the coarse powder (50 μm), the shear localization process was primarily due to particle break-up (comminution) and rearrangement of the comminuted particles, through a similar mechanism to the bulk and prefractured SiC (Shih, C. J., Nesterenko, V. F. and Meyers, M. A., Journal of Applied Physics, 1998, 83, 4660). Comminution was observed in the medium powder (3 μm), but was never seen in the fine powder (0.4 μm). In medium and fine granular SiC, the shear localization at sufficiently high displacement (>150 μm) leads to the formation of a thin layer (5–20 μm) of well-bonded material. Calculated temperatures in the centers of the bands are up to 2300°C (using an assumed shear strength of 2 GPa and linear thermal softening), which explain the bonding. An analytical model is developed that correctly predicts break-up of large particles and plastic deformation of the smaller ones. It is based on the Griffith fracture criterion and Weibull distribution of strength, which quantitatively express the fact that the fracture is generated by flaws the size of which is limited by the particle size. |
Author | Shih, C.J. Nesterenko, V.F. Meyers, M.A. |
Author_xml | – sequence: 1 givenname: C.J. surname: Shih fullname: Shih, C.J. organization: Institute for Mechanics and Materials, University of California, San Diego, La Jolla, CA 92093, USA – sequence: 2 givenname: M.A. surname: Meyers fullname: Meyers, M.A. organization: Institute for Mechanics and Materials, University of California, San Diego, La Jolla, CA 92093, USA – sequence: 3 givenname: V.F. surname: Nesterenko fullname: Nesterenko, V.F. organization: Department of Applied Mechanics and Engineering Sciences, University of California, San Diego, La Jolla, CA 92093, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2428093$$DView record in Pascal Francis |
BookMark | eNqFkE1LAzEURYNUsK3-BGEWIrqI5msmCS5Eilqh4EJdh0zmpUamMzWZCv57p18bN13lEc69vHdGaNC0DSB0TskNJbS4faM817gQubjS6poQIghWR2hIleSYiZwP-nmPnKBRSl-EUCYFGSI1DfNPnLpoQ4Oj7SCrwLdxYbvQNlnrs3m0zaq2MUuhDq7_czaWoYJTdOxtneBs947Rx9Pj-2SKZ6_PL5OHGXZc8w6DLL0srSqU5VTrUtBCV5Qpr4nWkvDKARGCVp5RSaqSkcKW0kvJmGWlBM_H6HLbu4zt9wpSZxYhOahr20C7SobJXAjGZA9e7ECbnK19v7cLySxjWNj4a5hgimjeY3dbzMU2pQjeuNBtrl07qA0lZi3VbKSatTGjldlINapP5__S-_5DufttDnpVPwGiSS5A46AKEVxnqjYcaPgDsdSP2Q |
CitedBy_id | crossref_primary_10_1016_j_cma_2007_08_027 crossref_primary_10_1016_j_ces_2019_03_043 crossref_primary_10_1016_j_jmps_2021_104518 crossref_primary_10_1007_BF02427993 crossref_primary_10_1002_nme_1797 crossref_primary_10_1007_s10853_018_1985_1 crossref_primary_10_1007_s40195_013_0103_2 crossref_primary_10_1016_j_ceramint_2021_04_231 crossref_primary_10_1016_j_matdes_2013_12_042 crossref_primary_10_1007_s10853_021_06095_7 crossref_primary_10_1063_1_3665644 crossref_primary_10_1063_1_1542655 crossref_primary_10_1016_j_msea_2007_06_053 crossref_primary_10_1088_1742_6596_500_11_112042 crossref_primary_10_1007_s11661_015_2739_1 crossref_primary_10_1140_epje_i2013_13095_x crossref_primary_10_1063_1_5099142 crossref_primary_10_1016_S1359_6454_99_00409_7 crossref_primary_10_1063_1_2955456 crossref_primary_10_1016_j_pmatsci_2020_100755 crossref_primary_10_1016_S0921_5093_01_01160_1 crossref_primary_10_1088_0965_0393_22_1_015005 crossref_primary_10_1016_j_surfcoat_2021_127886 crossref_primary_10_1063_1_4905853 crossref_primary_10_1063_1_3000631 crossref_primary_10_1016_j_msea_2010_04_079 crossref_primary_10_1063_1_4811837 crossref_primary_10_1103_PhysRevE_69_061306 crossref_primary_10_1007_s10853_010_4409_4 crossref_primary_10_1016_j_jnucmat_2006_02_038 crossref_primary_10_1016_j_actamat_2018_07_047 crossref_primary_10_1007_s11661_004_0204_7 crossref_primary_10_1016_j_ijsolstr_2016_07_014 crossref_primary_10_1016_S1359_6454_01_00120_3 crossref_primary_10_1016_j_msea_2018_06_087 crossref_primary_10_1016_j_msea_2004_05_069 crossref_primary_10_1016_j_tafmec_2005_11_005 crossref_primary_10_1016_j_jmps_2020_104031 crossref_primary_10_1016_j_msea_2016_09_021 crossref_primary_10_1142_S0217979208046451 crossref_primary_10_4236_wjm_2013_32011 crossref_primary_10_1111_jace_16871 crossref_primary_10_1016_j_mtla_2019_100265 crossref_primary_10_1080_14786435_2014_948523 crossref_primary_10_1016_j_msea_2010_12_053 crossref_primary_10_1016_j_msea_2006_12_034 crossref_primary_10_1016_j_scriptamat_2019_08_003 |
Cites_doi | 10.1016/1359-6454(95)00304-5 10.1063/1.1147294 10.1179/cmq.1970.9.2.429 10.1016/0022-5096(75)90001-0 10.1111/j.1151-2916.1979.tb09490.x 10.1680/geot.1987.37.3.271 10.1007/BF01181755 10.1016/0148-9062(80)91361-3 10.1007/BF00532248 10.1016/0020-7683(81)90015-9 10.1007/BF02669409 10.1016/B978-0-12-341829-6.50008-6 10.1016/0734-743X(93)90108-J 10.1115/1.4010337 10.1002/nag.1610040202 10.1016/B978-0-444-70523-5.50036-9 10.1061/(ASCE)0733-9399(1991)117:7(1466) 10.1063/1.367252 10.1002/9780470172278 10.1016/S0032-5910(97)03277-4 10.1063/1.349750 10.1680/geot.1994.44.1.35 10.1016/0734-743X(90)90002-D 10.1117/12.225300 10.1016/0001-6160(86)90086-6 10.1016/0013-7944(85)90097-9 |
ContentType | Journal Article Conference Proceeding |
Copyright | 1998 Acta Metallurgica Inc. 1998 INIST-CNRS |
Copyright_xml | – notice: 1998 Acta Metallurgica Inc. – notice: 1998 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SR 8FD JG9 |
DOI | 10.1016/S1359-6454(98)00040-8 |
DatabaseName | CrossRef Pascal-Francis Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-2453 |
EndPage | 4065 |
ExternalDocumentID | 2428093 10_1016_S1359_6454_98_00040_8 S1359645498000408 |
GrantInformation_xml | – fundername: Acta Metallurgica Inc – fundername: Institute of Mechanics and Materials |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABTAH ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSM SSQ SSZ T5K T9H TN5 XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c393t-e7bf7ba868a3199b4169d128f9099703dce0441df2170db206ab7f7722a2b7ef3 |
IEDL.DBID | AIKHN |
ISSN | 1359-6454 |
IngestDate | Thu Aug 07 15:14:59 EDT 2025 Mon Jul 21 09:14:54 EDT 2025 Thu Apr 24 22:59:10 EDT 2025 Tue Jul 01 02:03:10 EDT 2025 Fri Feb 23 02:30:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Temperature distribution Grain size analysis Composite materials Mechanical properties Silicon carbides Plastic properties Experimental study Shear band Granular structure Strain rate |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MeetingName | Workshop on Coupled Property Issues in Integrated Microstructures |
MergedId | FETCHMERGED-LOGICAL-c393t-e7bf7ba868a3199b4169d128f9099703dce0441df2170db206ab7f7722a2b7ef3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 27544227 |
PQPubID | 23500 |
PageCount | 29 |
ParticipantIDs | proquest_miscellaneous_27544227 pascalfrancis_primary_2428093 crossref_citationtrail_10_1016_S1359_6454_98_00040_8 crossref_primary_10_1016_S1359_6454_98_00040_8 elsevier_sciencedirect_doi_10_1016_S1359_6454_98_00040_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1998-07-01 |
PublicationDateYYYYMMDD | 1998-07-01 |
PublicationDate_xml | – month: 07 year: 1998 text: 1998-07-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Acta materialia |
PublicationYear | 1998 |
Publisher | Elsevier Ltd Elsevier Science |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science |
References | Klopp, Shockey (BIB22) 1991; 70 Delft, 1982, p. 485 John Wiley, New York, NY, 1994, p.597 Chen, H. C., Meyers, M. A. and Nesterenko, V. F., in Bardet (BIB17) 1991; 117 Espinosa (BIB24) 1996; 11 Hauver, G., Netherwood, P., Benck, R. and Kecskes, L., Enhanced ballistic performance of ceramics. Paper presented at 19th Army Science Conf., Orlando, FL, 20–24 June 1994 Grady, Kipp (BIB32) 1980; 17 ed. C. B. Biezeno and J. M. Burgers, 1924, p. 55 Horii, Nemat-Nasser (BIB43) 1986; A319 Scarpelli, G. and Wood, D. M., in Nesterenko, Meyers, Chen, LaSalvia (BIB29) 1995; 26A Weibull (BIB40) 1951; 9 Schaeffer (BIB18) 1992; A436 Plymouth, MA, 1993 ed. L. K. Murr, K. P. Standhamme and M. A. Meyers. Elsevier Science, Amsterdam, 1995, p. 397 Shih, Nesterenko, Meyers (BIB26) 1998; 83 Spencer, A. J. M. Vardoulakis (BIB10) 1981; 17 Vardoulakis, I. G. and Graf, B., in McClintock, F. A. and Walsh, J. B., in American Society of Metals, Metal Park, OH, 1986, p. 882 Krosche, E. R., A theoretical study of brittle fracture in rocks for applications in comminution. M.S. thesis, New Mexico Institute of Mining and Technology, Socorro, NM, 1985 Muehlhaus, Vardoulakis (BIB15) 1987; 37 Vardoulakis (BIB9) 1980; 4 Kolymbas, Rombach (BIB16) 1989; 59 Pergamon Press, Oxford, 1982 Nesterenko, Bondar (BIB28) 1994; 1 Grady (BIB51) 1998; 8 Nesterenko, V. F., Meyers, M. A. and Wright, T. W., in Shih, Ezis (BIB41) 1995; 2543 Shockey, Marchand, Skaggs, Cort, Birckett, Parker (BIB1) 1990; 9 Saada, Bianchini, Liang (BIB19) 1994; 44 vol. 197. AMD, ASME, New York, 1994, p. 23 Meyers, M. A. Oka, Majima (BIB36) 1970; 9 Srinivasan (BIB45) 1989; 29 Bondar, Nesterenko (BIB27) 1991; 1 ed. M. Satake and J. T. Jenkins. Elsevier Science, Amsterdam, 1988, p. 253 Massalski, R. W. and Abbaschian, G. J. Viechnicki, Slavin, Kliman (BIB2) 1991; 70 Rapacki, E. J., Hauver, G. E., Netherwood, P. H. and Benck, R., Ceramics for armors—A material system perspective. Paper presented at 19th Annual TARDEC Ground Vehicle Survivability Symp., Monterey, CA, 26–28 March 1996 Desrues, Lanier, Stutz (BIB14) 1987; 21 Rudnicki, Rice (BIB48) 1975; 23 Potapov, Campbell (BIB33) 1997; 94 Johnson, G. R., Holmqinst, T. J., Lankford, J., Anderson, C. E. and Walker, J., A computational constitutive model and test data for ceramics subjected to large strains, high strain rates, and high pressure. Final Technical Report, DOE Contract No. DE-AC04-87AL-42550, 1990 ed. K. S. Kim. ASME, Atlanta, Georgia, 1991, p. 37 Hauver, G., Netherwood, P., Benck, R. and Kecskes, L., in Nesterenko, Meyers, Chen (BIB25) 1996; 44 Sundaram, S., Pressure-shear plate impact studies of alumina ceramics and the influence of an intergranular glassy phase. Ph.D. dissertation, Brown University, Providence, RI, 1998 Sairam, S. and Clifton, R. J., in Mehrabadi, M. M., Nemat-Nesser, S., Shodja, H. M. and Subhash, G., in Lankford (BIB46) 1979; 62 Delft, 1982, p. 473 Ashby, Hallam (BIB42) 1986; 34 ed. S. C. Schmidt and W. C. Tao. AIP Press, Woodbury, New York, 1995, p. 607 Curran, Seaman, Copper, Shockey (BIB4) 1993; 13 Rudnicki, Rice (BIB8) 1975; 23 Miller, J., Ceradyne Inc., Costa Mesa, CA, private communication, 1997 Griffith, A. A., in Chang, Misra (BIB21) 1989; 115A Adams, M. A., Jet Propulsion Lab, Pasadena, CA, private communication, 1997 Espinosa, H. D. and Clifton, R. J. Vardoulakis (BIB11) 1983; 49 Meyers, Meyers (BIB35) 1984; 174 Vol. 2. AISME, New York, 1962, p. 1015 10.1016/S1359-6454(98)00040-8_BIB47 Chang (10.1016/S1359-6454(98)00040-8_BIB21) 1989; 115A 10.1016/S1359-6454(98)00040-8_BIB44 Ashby (10.1016/S1359-6454(98)00040-8_BIB42) 1986; 34 Vardoulakis (10.1016/S1359-6454(98)00040-8_BIB10) 1981; 17 Shih (10.1016/S1359-6454(98)00040-8_BIB26) 1998; 83 10.1016/S1359-6454(98)00040-8_BIB49 Nesterenko (10.1016/S1359-6454(98)00040-8_BIB25) 1996; 44 Desrues (10.1016/S1359-6454(98)00040-8_BIB14) 1987; 21 Saada (10.1016/S1359-6454(98)00040-8_BIB19) 1994; 44 Vardoulakis (10.1016/S1359-6454(98)00040-8_BIB9) 1980; 4 Curran (10.1016/S1359-6454(98)00040-8_BIB4) 1993; 13 Grady (10.1016/S1359-6454(98)00040-8_BIB32) 1980; 17 10.1016/S1359-6454(98)00040-8_BIB50 Grady (10.1016/S1359-6454(98)00040-8_BIB51) 1998; 8 Weibull (10.1016/S1359-6454(98)00040-8_BIB40) 1951; 9 Horii (10.1016/S1359-6454(98)00040-8_BIB43) 1986; A319 Rudnicki (10.1016/S1359-6454(98)00040-8_BIB8) 1975; 23 10.1016/S1359-6454(98)00040-8_BIB34 Nesterenko (10.1016/S1359-6454(98)00040-8_BIB28) 1994; 1 Oka (10.1016/S1359-6454(98)00040-8_BIB36) 1970; 9 10.1016/S1359-6454(98)00040-8_BIB31 10.1016/S1359-6454(98)00040-8_BIB30 10.1016/S1359-6454(98)00040-8_BIB39 Rudnicki (10.1016/S1359-6454(98)00040-8_BIB48) 1975; 23 Vardoulakis (10.1016/S1359-6454(98)00040-8_BIB11) 1983; 49 10.1016/S1359-6454(98)00040-8_BIB38 10.1016/S1359-6454(98)00040-8_BIB37 Kolymbas (10.1016/S1359-6454(98)00040-8_BIB16) 1989; 59 Espinosa (10.1016/S1359-6454(98)00040-8_BIB24) 1996; 11 Nesterenko (10.1016/S1359-6454(98)00040-8_BIB29) 1995; 26A Muehlhaus (10.1016/S1359-6454(98)00040-8_BIB15) 1987; 37 10.1016/S1359-6454(98)00040-8_BIB23 Viechnicki (10.1016/S1359-6454(98)00040-8_BIB2) 1991; 70 10.1016/S1359-6454(98)00040-8_BIB20 Bondar (10.1016/S1359-6454(98)00040-8_BIB27) 1991; 1 Meyers (10.1016/S1359-6454(98)00040-8_BIB35) 1984; 174 Potapov (10.1016/S1359-6454(98)00040-8_BIB33) 1997; 94 Lankford (10.1016/S1359-6454(98)00040-8_BIB46) 1979; 62 Shih (10.1016/S1359-6454(98)00040-8_BIB41) 1995; 2543 10.1016/S1359-6454(98)00040-8_BIB13 10.1016/S1359-6454(98)00040-8_BIB12 10.1016/S1359-6454(98)00040-8_BIB53 10.1016/S1359-6454(98)00040-8_BIB52 10.1016/S1359-6454(98)00040-8_BIB3 Bardet (10.1016/S1359-6454(98)00040-8_BIB17) 1991; 117 Srinivasan (10.1016/S1359-6454(98)00040-8_BIB45) 1989; 29 Shockey (10.1016/S1359-6454(98)00040-8_BIB1) 1990; 9 Schaeffer (10.1016/S1359-6454(98)00040-8_BIB18) 1992; A436 Klopp (10.1016/S1359-6454(98)00040-8_BIB22) 1991; 70 10.1016/S1359-6454(98)00040-8_BIB5 10.1016/S1359-6454(98)00040-8_BIB6 10.1016/S1359-6454(98)00040-8_BIB7 |
References_xml | – reference: , ed. L. K. Murr, K. P. Standhamme and M. A. Meyers. Elsevier Science, Amsterdam, 1995, p. 397 – reference: Mehrabadi, M. M., Nemat-Nesser, S., Shodja, H. M. and Subhash, G., in – reference: Johnson, G. R., Holmqinst, T. J., Lankford, J., Anderson, C. E. and Walker, J., A computational constitutive model and test data for ceramics subjected to large strains, high strain rates, and high pressure. Final Technical Report, DOE Contract No. DE-AC04-87AL-42550, 1990 – volume: 8 year: 1998 ident: BIB51 publication-title: Mech. Matls. – reference: . Plymouth, MA, 1993 – reference: . Delft, 1982, p. 473 – reference: , vol. 197. AMD, ASME, New York, 1994, p. 23 – volume: 94 start-page: 109 year: 1997 ident: BIB33 publication-title: Powder Technology – reference: , ed. M. Satake and J. T. Jenkins. Elsevier Science, Amsterdam, 1988, p. 253 – volume: 1 start-page: 245 year: 1994 ident: BIB28 publication-title: Dymat J. – volume: 44 start-page: 35 year: 1994 ident: BIB19 publication-title: Geotechnique – reference: Nesterenko, V. F., Meyers, M. A. and Wright, T. W., in – volume: 37 start-page: 271 year: 1987 ident: BIB15 publication-title: Geotechnique – volume: 115A start-page: 705 year: 1989 ident: BIB21 publication-title: Eng. Mech. – reference: , Vol. 2. AISME, New York, 1962, p. 1015 – volume: 49 start-page: 57 year: 1983 ident: BIB11 publication-title: Acta Mechanica – reference: Sundaram, S., Pressure-shear plate impact studies of alumina ceramics and the influence of an intergranular glassy phase. Ph.D. dissertation, Brown University, Providence, RI, 1998 – volume: 9 start-page: 429 year: 1970 ident: BIB36 publication-title: Can. Metall. Quart. – reference: Adams, M. A., Jet Propulsion Lab, Pasadena, CA, private communication, 1997 – volume: 29 start-page: 99 year: 1989 ident: BIB45 publication-title: Treatise on Materials Science and Technology, – reference: , ed. K. S. Kim. ASME, Atlanta, Georgia, 1991, p. 37 – volume: 1 start-page: C3 year: 1991 end-page: 163 ident: BIB27 publication-title: J. de Physique IV – volume: 23 start-page: 371 year: 1975 ident: BIB8 publication-title: J. Mech. Phys. Solids – reference: Vardoulakis, I. G. and Graf, B., in – reference: Chen, H. C., Meyers, M. A. and Nesterenko, V. F., in – volume: 70 start-page: 7318 year: 1991 ident: BIB22 publication-title: J. Appl. Phys. – volume: 17 start-page: 147 year: 1980 ident: BIB32 publication-title: Int. J. Rock Mech. Min. Sci. – reference: Hauver, G., Netherwood, P., Benck, R. and Kecskes, L., in – volume: 59 start-page: 177 year: 1989 ident: BIB16 publication-title: Ingenieur-Archiv – reference: Meyers, M. A., – reference: , ed. C. B. Biezeno and J. M. Burgers, 1924, p. 55 – volume: 23 start-page: 371 year: 1975 ident: BIB48 publication-title: J. Mech. Phys. Sol. – volume: 34 start-page: 497 year: 1986 ident: BIB42 publication-title: Acta metall. – volume: 2543 start-page: 24 year: 1995 ident: BIB41 publication-title: SPIE Proceedings – volume: A436 start-page: 217 year: 1992 ident: BIB18 publication-title: Proc. R. Soc. Lond. – volume: 44 start-page: 2017 year: 1996 ident: BIB25 publication-title: Acta mater. – volume: 9 start-page: 263 year: 1990 ident: BIB1 publication-title: Int. J. Impact Eng. – reference: , ed. S. C. Schmidt and W. C. Tao. AIP Press, Woodbury, New York, 1995, p. 607 – volume: 17 start-page: 1085 year: 1981 ident: BIB10 publication-title: Int. J. Solids Struct. – reference: Griffith, A. A., in – reference: Miller, J., Ceradyne Inc., Costa Mesa, CA, private communication, 1997 – volume: A319 start-page: 337 year: 1986 ident: BIB43 publication-title: Phil. Trans. R. Soc. Lond. – volume: 62 start-page: 310 year: 1979 ident: BIB46 publication-title: J. Am. Ceram. Soc. – reference: Massalski, R. W. and Abbaschian, G. J., – volume: 21 start-page: 909 year: 1987 ident: BIB14 publication-title: Eng. Fract. Mech. – reference: . Delft, 1982, p. 485 – volume: 11 start-page: 3931 year: 1996 ident: BIB24 publication-title: Rev. Sci. Instr. – reference: Spencer, A. J. M., – volume: 117 start-page: 1466 year: 1991 ident: BIB17 publication-title: J. Eng. Mech. – reference: . Pergamon Press, Oxford, 1982 – volume: 83 start-page: 4660 year: 1998 ident: BIB26 publication-title: J. Appl. Phys. – reference: . John Wiley, New York, NY, 1994, p.597 – reference: . American Society of Metals, Metal Park, OH, 1986, p. 882 – reference: Hauver, G., Netherwood, P., Benck, R. and Kecskes, L., Enhanced ballistic performance of ceramics. Paper presented at 19th Army Science Conf., Orlando, FL, 20–24 June 1994 – reference: Sairam, S. and Clifton, R. J., in – volume: 26A start-page: 2511 year: 1995 ident: BIB29 publication-title: Metall. mater. Trans. A – reference: McClintock, F. A. and Walsh, J. B., in – reference: Scarpelli, G. and Wood, D. M., in – reference: Rapacki, E. J., Hauver, G. E., Netherwood, P. H. and Benck, R., Ceramics for armors—A material system perspective. Paper presented at 19th Annual TARDEC Ground Vehicle Survivability Symp., Monterey, CA, 26–28 March 1996 – volume: 174 start-page: 1875 year: 1984 ident: BIB35 publication-title: Soc. of Mining Eng. of AIME – volume: 70 start-page: 1035 year: 1991 ident: BIB2 publication-title: Cer. Bull. – reference: Krosche, E. R., A theoretical study of brittle fracture in rocks for applications in comminution. M.S. thesis, New Mexico Institute of Mining and Technology, Socorro, NM, 1985 – reference: Espinosa, H. D. and Clifton, R. J., – volume: 13 start-page: 53 year: 1993 ident: BIB4 publication-title: Int. J. Impact Eng. – volume: 4 start-page: 103 year: 1980 ident: BIB9 publication-title: Int. J. Num. Analyt. Mech. Geomech. – volume: 9 start-page: 293 year: 1951 ident: BIB40 publication-title: J. Appl. Mech. – ident: 10.1016/S1359-6454(98)00040-8_BIB39 – volume: 44 start-page: 2017 year: 1996 ident: 10.1016/S1359-6454(98)00040-8_BIB25 publication-title: Acta mater. doi: 10.1016/1359-6454(95)00304-5 – volume: 11 start-page: 3931 year: 1996 ident: 10.1016/S1359-6454(98)00040-8_BIB24 publication-title: Rev. Sci. Instr. doi: 10.1063/1.1147294 – volume: 9 start-page: 429 year: 1970 ident: 10.1016/S1359-6454(98)00040-8_BIB36 publication-title: Can. Metall. Quart. doi: 10.1179/cmq.1970.9.2.429 – ident: 10.1016/S1359-6454(98)00040-8_BIB50 – ident: 10.1016/S1359-6454(98)00040-8_BIB49 – ident: 10.1016/S1359-6454(98)00040-8_BIB31 – volume: 23 start-page: 371 year: 1975 ident: 10.1016/S1359-6454(98)00040-8_BIB48 publication-title: J. Mech. Phys. Sol. doi: 10.1016/0022-5096(75)90001-0 – ident: 10.1016/S1359-6454(98)00040-8_BIB12 – volume: 62 start-page: 310 year: 1979 ident: 10.1016/S1359-6454(98)00040-8_BIB46 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1979.tb09490.x – volume: A319 start-page: 337 year: 1986 ident: 10.1016/S1359-6454(98)00040-8_BIB43 publication-title: Phil. Trans. R. Soc. Lond. – volume: 37 start-page: 271 year: 1987 ident: 10.1016/S1359-6454(98)00040-8_BIB15 publication-title: Geotechnique doi: 10.1680/geot.1987.37.3.271 – volume: 70 start-page: 1035 year: 1991 ident: 10.1016/S1359-6454(98)00040-8_BIB2 publication-title: Cer. Bull. – volume: 49 start-page: 57 year: 1983 ident: 10.1016/S1359-6454(98)00040-8_BIB11 publication-title: Acta Mechanica doi: 10.1007/BF01181755 – volume: 17 start-page: 147 year: 1980 ident: 10.1016/S1359-6454(98)00040-8_BIB32 publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/0148-9062(80)91361-3 – ident: 10.1016/S1359-6454(98)00040-8_BIB53 – volume: 59 start-page: 177 year: 1989 ident: 10.1016/S1359-6454(98)00040-8_BIB16 publication-title: Ingenieur-Archiv doi: 10.1007/BF00532248 – volume: 17 start-page: 1085 year: 1981 ident: 10.1016/S1359-6454(98)00040-8_BIB10 publication-title: Int. J. Solids Struct. doi: 10.1016/0020-7683(81)90015-9 – ident: 10.1016/S1359-6454(98)00040-8_BIB7 – volume: A436 start-page: 217 year: 1992 ident: 10.1016/S1359-6454(98)00040-8_BIB18 publication-title: Proc. R. Soc. Lond. – ident: 10.1016/S1359-6454(98)00040-8_BIB37 – volume: 26A start-page: 2511 year: 1995 ident: 10.1016/S1359-6454(98)00040-8_BIB29 publication-title: Metall. mater. Trans. A doi: 10.1007/BF02669409 – volume: 8 year: 1998 ident: 10.1016/S1359-6454(98)00040-8_BIB51 publication-title: Mech. Matls. – ident: 10.1016/S1359-6454(98)00040-8_BIB20 – volume: 29 start-page: 99 year: 1989 ident: 10.1016/S1359-6454(98)00040-8_BIB45 publication-title: Treatise on Materials Science and Technology, doi: 10.1016/B978-0-12-341829-6.50008-6 – volume: 23 start-page: 371 year: 1975 ident: 10.1016/S1359-6454(98)00040-8_BIB8 publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(75)90001-0 – volume: 13 start-page: 53 year: 1993 ident: 10.1016/S1359-6454(98)00040-8_BIB4 publication-title: Int. J. Impact Eng. doi: 10.1016/0734-743X(93)90108-J – volume: 9 start-page: 293 year: 1951 ident: 10.1016/S1359-6454(98)00040-8_BIB40 publication-title: J. Appl. Mech. doi: 10.1115/1.4010337 – ident: 10.1016/S1359-6454(98)00040-8_BIB52 – ident: 10.1016/S1359-6454(98)00040-8_BIB47 – volume: 4 start-page: 103 year: 1980 ident: 10.1016/S1359-6454(98)00040-8_BIB9 publication-title: Int. J. Num. Analyt. Mech. Geomech. doi: 10.1002/nag.1610040202 – ident: 10.1016/S1359-6454(98)00040-8_BIB6 – ident: 10.1016/S1359-6454(98)00040-8_BIB13 – ident: 10.1016/S1359-6454(98)00040-8_BIB38 – volume: 1 start-page: C3 year: 1991 ident: 10.1016/S1359-6454(98)00040-8_BIB27 publication-title: J. de Physique IV – volume: 1 start-page: 245 year: 1994 ident: 10.1016/S1359-6454(98)00040-8_BIB28 publication-title: Dymat J. – ident: 10.1016/S1359-6454(98)00040-8_BIB44 – ident: 10.1016/S1359-6454(98)00040-8_BIB34 doi: 10.1016/B978-0-444-70523-5.50036-9 – volume: 117 start-page: 1466 year: 1991 ident: 10.1016/S1359-6454(98)00040-8_BIB17 publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(1991)117:7(1466) – ident: 10.1016/S1359-6454(98)00040-8_BIB23 – volume: 83 start-page: 4660 year: 1998 ident: 10.1016/S1359-6454(98)00040-8_BIB26 publication-title: J. Appl. Phys. doi: 10.1063/1.367252 – ident: 10.1016/S1359-6454(98)00040-8_BIB3 doi: 10.1002/9780470172278 – volume: 94 start-page: 109 year: 1997 ident: 10.1016/S1359-6454(98)00040-8_BIB33 publication-title: Powder Technology doi: 10.1016/S0032-5910(97)03277-4 – volume: 70 start-page: 7318 year: 1991 ident: 10.1016/S1359-6454(98)00040-8_BIB22 publication-title: J. Appl. Phys. doi: 10.1063/1.349750 – volume: 44 start-page: 35 year: 1994 ident: 10.1016/S1359-6454(98)00040-8_BIB19 publication-title: Geotechnique doi: 10.1680/geot.1994.44.1.35 – volume: 9 start-page: 263 year: 1990 ident: 10.1016/S1359-6454(98)00040-8_BIB1 publication-title: Int. J. Impact Eng. doi: 10.1016/0734-743X(90)90002-D – volume: 115A start-page: 705 issue: 4 year: 1989 ident: 10.1016/S1359-6454(98)00040-8_BIB21 publication-title: Eng. Mech. – volume: 174 start-page: 1875 year: 1984 ident: 10.1016/S1359-6454(98)00040-8_BIB35 publication-title: Soc. of Mining Eng. of AIME – ident: 10.1016/S1359-6454(98)00040-8_BIB5 – volume: 2543 start-page: 24 year: 1995 ident: 10.1016/S1359-6454(98)00040-8_BIB41 publication-title: SPIE Proceedings doi: 10.1117/12.225300 – volume: 34 start-page: 497 year: 1986 ident: 10.1016/S1359-6454(98)00040-8_BIB42 publication-title: Acta metall. doi: 10.1016/0001-6160(86)90086-6 – volume: 21 start-page: 909 year: 1987 ident: 10.1016/S1359-6454(98)00040-8_BIB14 publication-title: Eng. Fract. Mech. doi: 10.1016/0013-7944(85)90097-9 – ident: 10.1016/S1359-6454(98)00040-8_BIB30 |
SSID | ssj0012740 |
Score | 1.7761793 |
Snippet | Silicon carbide powders with three particle size distributions (average sizes of 0.4, 3 and 50
μm) were subjected to strain-controlled, high-strain-rate... Silicon carbide powders with three particle size distributions (average sizes of 0.4, 3 and 50 mu m) were subjected to strain-controlled, high-strain-rate... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4037 |
SubjectTerms | Condensed matter: structure, mechanical and thermal properties Deformation and plasticity (including yield, ductility, and superplasticity) Exact sciences and technology Mechanical and acoustical properties of condensed matter Mechanical properties of solids Physics |
Title | High-strain-rate deformation of granular silicon carbide |
URI | https://dx.doi.org/10.1016/S1359-6454(98)00040-8 https://www.proquest.com/docview/27544227 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA66XRQRf-L82YMHPWRLk7ZJjkMcU9GLCruFJE1kMLrh5tW_3Ze2q4qI4DXwkvbLy8sX8r4XhM6JsECMHcFOxBlO8sRi4dMY51TY2LLEWxLUyPcP2fA5uR2loxV0tdTChLTKOvZXMb2M1nVLr0azNxuPe48xS2WoRyVFICZB8NumTGbg2u3-zd3woblMgINXJRZOJQ4Gn0KeqpOy8UKKy7IfLH7bojZmeg7A-erFix_Bu9yRBltos6aSUb_62m204oodtP6lwOAuEiGNA8_LdyBwKAoR5a6RK0ZTH73AKCERNZqPJ-ATRWT1qxnnbg89D66froa4fisBWybZAjtuPDdaZELDopIGeJbMYe_xMkhjCcutI8B8cg9HEJIbSjJtuAdqTTU13Hm2j1rFtHAHKOJSGwc0wRFmEi5SAcfYhGtiE08ld1kHJUt4lK0LiYf_mKgmYyygqgKqSgpVoqpEB3Ubs1lVSeMvA7HEXn1zCQXR_i_Tk29z1QwIhEQQyTrobDl3CpZTuCPRhZu-zRUNBQEp5Yf_H_wIrVXCxZDTe4xai9c3dwLMZWFO0Wr3PT6t_fMDKurlpw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEA2iBxURP3H92h486CFu2qZNchRRVl29qOAtJGkiC9Jd3PXqb3em7VZFRPAamqR9mZm80HkTQo6YdECMPaNexjnlBXdUhiymRSJd7FIeHEM18u1d3n_k10_Z0xw5n2lhMK2yif11TK-iddPSa9DsjYfD3n2cZgrrUSmJxAQFvwsc3Be98_S9zfOI4dhVS4UzRfHxTxlPPUTVeKzkSTUKlb9tUCtjMwHYQn3fxY_QXe1Hl2tktSGS0Vn9rutkzpcbZPlLecFNIjGJg06qWyAoloSICt-KFaNRiJ5hFkxDjSbDF7CIMnLm1Q4Lv0UeLy8ezvu0uSmBulSlU-qFDcIamUsDLqUssCxVwM4TFApjWVo4z4D3FAEOIKywCcuNFQGIdWISK3xIt8l8OSr9DomEMtYDSfAstVzITMIhlgvDHA-JEj7vED6DR7umjDh-x4tu88UQVY2oaiV1haqWHXLadhvXdTT-6iBn2OtvBqEh1v_V9eDbWrUTAh2RTKUd0p2tnQZnwj8kpvSjt4lOsBxgkojd_0_eJYv9h9uBHlzd3eyRpVrCiNm9-2R--vrmD4DDTO1hZaMf-XDmaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Acta+materialia&rft.atitle=High-strain-rate+deformation+of+granular+silicon+carbide&rft.au=SHIH%2C+C.+J&rft.au=MEYERS%2C+M.+A&rft.au=NESTERENKO%2C+V.+F&rft.date=1998-07-01&rft.pub=Elsevier+Science&rft.issn=1359-6454&rft.volume=46&rft.issue=11&rft.spage=4037&rft.epage=4065&rft_id=info:doi/10.1016%2FS1359-6454%2898%2900040-8&rft.externalDBID=n%2Fa&rft.externalDocID=2428093 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon |