Factorization strategies for third-order tensors
Operations with tensors, or multiway arrays, have become increasingly prevalent in recent years. Traditionally, tensors are represented or decomposed as a sum of rank-1 outer products using either the CANDECOMP/PARAFAC (CP) or the Tucker models, or some variation thereof. Such decompositions are mot...
Saved in:
Published in | Linear algebra and its applications Vol. 435; no. 3; pp. 641 - 658 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
01.08.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Operations with tensors, or multiway arrays, have become increasingly prevalent in recent years. Traditionally, tensors are represented or decomposed as a sum of rank-1 outer products using either the CANDECOMP/PARAFAC (CP) or the Tucker models, or some variation thereof. Such decompositions are motivated by specific applications where the goal is to find an approximate such representation for a given multiway array. The specifics of the approximate representation (such as how many terms to use in the sum, orthogonality constraints, etc.) depend on the application.
In this paper, we explore an alternate representation of tensors which shows promise with respect to the tensor approximation problem. Reminiscent of matrix factorizations, we present a new factorization of a tensor as a product of tensors. To derive the new factorization, we define a closed multiplication operation between tensors. A major motivation for considering this new type of tensor multiplication is to devise new types of factorizations for tensors which can then be used in applications.
Specifically, this new multiplication allows us to introduce concepts such as tensor transpose, inverse, and identity, which lead to the notion of an orthogonal tensor. The multiplication also gives rise to a linear operator, and the null space of the resulting operator is identified. We extend the concept of outer products of vectors to outer products of matrices. All derivations are presented for third-order tensors. However, they can be easily extended to the order-
p
(
p
>
3
)
case. We conclude with an application in image deblurring. |
---|---|
AbstractList | Operations with tensors, or multiway arrays, have become increasingly prevalent in recent years. Traditionally, tensors are represented or decomposed as a sum of rank-1 outer products using either the CANDECOMP/PARAFAC (CP) or the Tucker models, or some variation thereof. Such decompositions are motivated by specific applications where the goal is to find an approximate such representation for a given multiway array. The specifics of the approximate representation (such as how many terms to use in the sum, orthogonality constraints, etc.) depend on the application.
In this paper, we explore an alternate representation of tensors which shows promise with respect to the tensor approximation problem. Reminiscent of matrix factorizations, we present a new factorization of a tensor as a product of tensors. To derive the new factorization, we define a closed multiplication operation between tensors. A major motivation for considering this new type of tensor multiplication is to devise new types of factorizations for tensors which can then be used in applications.
Specifically, this new multiplication allows us to introduce concepts such as tensor transpose, inverse, and identity, which lead to the notion of an orthogonal tensor. The multiplication also gives rise to a linear operator, and the null space of the resulting operator is identified. We extend the concept of outer products of vectors to outer products of matrices. All derivations are presented for third-order tensors. However, they can be easily extended to the order-
p
(
p
>
3
)
case. We conclude with an application in image deblurring. |
Author | Kilmer, Misha E. Martin, Carla D. |
Author_xml | – sequence: 1 givenname: Misha E. surname: Kilmer fullname: Kilmer, Misha E. email: misha.kilmer@tufts.edu organization: Mathematics, Tufts University, 113 Bromfield-Pearson Bldg., Medford, MA 02155, United States – sequence: 2 givenname: Carla D. surname: Martin fullname: Martin, Carla D. email: carlam@math.jmu.edu organization: Mathematics and Statistics, James Madison University, 112 Roop Hall, MSC 1911, Harrisonburg, VA 22807, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24178399$$DView record in Pascal Francis |
BookMark | eNp9kLFOwzAQhj0UibbwAGxZGBPOdhLHYkIVpUiVWGC2XOcMjkJc2RYSPD0uRQwMne5O-r-T_m9BZpOfkJArChUF2t4M1ah1xSDfICtgMCNzAFaXXMjmnCxiHACgFsDmBNbaJB_cl07OT0VMQSd8dRgL60OR3lzoSx96zDtO0Yd4Qc6sHiNe_s4leVnfP6825fbp4XF1ty0NlzyV2IKtO9Zz3nai3ulm1zLKZCt401jGjaWdZQY0cAGcokVqJTOyAYs16zXnS3J9_LvX0ejRBj0ZF9U-uHcdPhWrqei4lDlHjzkTfIwB7V-EgjroUIPKOtRBhwKpso7MiH-McelHQK7vxpPk7ZHEXP3DYVDROJwM9i6gSar37gT9Dc3TfQg |
CODEN | LAAPAW |
CitedBy_id | crossref_primary_10_1016_j_knosys_2023_110812 crossref_primary_10_1109_TPAMI_2024_3429498 crossref_primary_10_1109_JBHI_2023_3299274 crossref_primary_10_1088_1742_6596_2722_1_012011 crossref_primary_10_1016_j_cam_2022_114086 crossref_primary_10_1109_TCYB_2022_3233108 crossref_primary_10_1016_j_mri_2025_110337 crossref_primary_10_1137_110842570 crossref_primary_10_1080_01630563_2023_2192593 crossref_primary_10_1007_s40314_022_01770_0 crossref_primary_10_1007_s10489_021_02833_1 crossref_primary_10_1016_j_sigpro_2021_108060 crossref_primary_10_1109_TGRS_2020_2995573 crossref_primary_10_1109_JIOT_2024_3401217 crossref_primary_10_23919_cje_2022_00_180 crossref_primary_10_1109_TGRS_2020_3022069 crossref_primary_10_1016_j_apm_2023_02_012 crossref_primary_10_1109_TNNLS_2023_3280086 crossref_primary_10_1142_S0219720022500020 crossref_primary_10_1007_s10444_024_10117_8 crossref_primary_10_1049_ipr2_12049 crossref_primary_10_12677_AAM_2022_1111809 crossref_primary_10_1109_TNNLS_2018_2872583 crossref_primary_10_1109_TGRS_2025_3538632 crossref_primary_10_1109_TIP_2023_3247165 crossref_primary_10_1109_TGRS_2024_3368099 crossref_primary_10_3390_app15073453 crossref_primary_10_1109_LCSYS_2025_3532470 crossref_primary_10_1109_TPAMI_2020_2986773 crossref_primary_10_1007_s10589_020_00167_1 crossref_primary_10_1109_LGRS_2019_2902629 crossref_primary_10_3390_rs12142264 crossref_primary_10_1137_23M1625998 crossref_primary_10_1007_s10489_023_04744_9 crossref_primary_10_1007_s11128_021_03131_y crossref_primary_10_1016_j_aml_2021_107597 crossref_primary_10_3233_JIFS_212316 crossref_primary_10_12677_mos_2024_134378 crossref_primary_10_1007_s10543_023_00990_y crossref_primary_10_1109_LGRS_2024_3425479 crossref_primary_10_1007_s11263_023_01960_1 crossref_primary_10_1016_j_laa_2024_04_015 crossref_primary_10_1109_TSP_2022_3201330 crossref_primary_10_1109_TNNLS_2022_3152252 crossref_primary_10_1007_s00138_023_01455_6 crossref_primary_10_1007_s10915_024_02637_8 crossref_primary_10_1109_TCSVT_2023_3239376 crossref_primary_10_1109_JIOT_2024_3378202 crossref_primary_10_1016_j_cam_2023_115439 crossref_primary_10_1007_s10851_024_01188_9 crossref_primary_10_1109_TGRS_2017_2786718 crossref_primary_10_1145_3696669 crossref_primary_10_1109_TGRS_2023_3347420 crossref_primary_10_1016_j_ins_2022_07_049 crossref_primary_10_12677_AAM_2021_1010345 crossref_primary_10_1109_TMM_2019_2952984 crossref_primary_10_1109_ACCESS_2019_2960078 crossref_primary_10_1109_TGRS_2020_3045169 crossref_primary_10_1016_j_acha_2021_05_002 crossref_primary_10_1145_3582574 crossref_primary_10_1016_j_neucom_2024_129253 crossref_primary_10_1016_j_patcog_2023_109926 crossref_primary_10_1109_TETCI_2024_3353576 crossref_primary_10_1109_TCSVT_2024_3379291 crossref_primary_10_1109_TGRS_2019_2927764 crossref_primary_10_1109_TIP_2018_2877937 crossref_primary_10_1109_TGRS_2024_3485595 crossref_primary_10_3390_electronics14020238 crossref_primary_10_1109_TIP_2015_2403235 crossref_primary_10_1016_j_neucom_2020_01_009 crossref_primary_10_1007_s40314_025_03089_y crossref_primary_10_1109_TKDE_2019_2937027 crossref_primary_10_1007_s10957_023_02287_0 crossref_primary_10_1016_j_jmaa_2023_127541 crossref_primary_10_1109_ACCESS_2020_3027029 crossref_primary_10_1016_j_apnum_2023_07_011 crossref_primary_10_1016_j_image_2018_11_007 crossref_primary_10_1088_1361_6420_adb8c6 crossref_primary_10_1016_j_neucom_2024_129266 crossref_primary_10_1109_TGRS_2019_2926440 crossref_primary_10_1109_TSP_2016_2612171 crossref_primary_10_1007_s10915_022_01841_8 crossref_primary_10_3390_s19235299 crossref_primary_10_1016_j_apnum_2022_06_010 crossref_primary_10_1109_LSP_2020_3030212 crossref_primary_10_1016_j_apnum_2021_04_007 crossref_primary_10_1049_ipr2_13184 crossref_primary_10_1109_TGRS_2020_3007945 crossref_primary_10_1016_j_engappai_2023_106209 crossref_primary_10_1109_TCSVT_2024_3375997 crossref_primary_10_1016_j_eswa_2023_121518 crossref_primary_10_1109_TCYB_2021_3108847 crossref_primary_10_1145_3649138 crossref_primary_10_1137_23M1560847 crossref_primary_10_1073_pnas_2015851118 crossref_primary_10_1109_JIOT_2021_3116505 crossref_primary_10_1088_1361_6420_ac8ac5 crossref_primary_10_1016_j_compeleceng_2022_108180 crossref_primary_10_1016_j_neucom_2024_129036 crossref_primary_10_1016_j_patcog_2024_111140 crossref_primary_10_1109_LSP_2022_3169044 crossref_primary_10_1109_TMI_2017_2778230 crossref_primary_10_2298_FIL2218403L crossref_primary_10_1007_s13042_023_01866_x crossref_primary_10_1109_LRA_2022_3212665 crossref_primary_10_1109_TGRS_2023_3285269 crossref_primary_10_1109_TSP_2024_3504292 crossref_primary_10_1109_TPAMI_2020_3017672 crossref_primary_10_1016_j_sigpro_2019_107271 crossref_primary_10_1007_s10957_023_02234_z crossref_primary_10_1007_s11075_022_01392_x crossref_primary_10_1109_ACCESS_2023_3274837 crossref_primary_10_1109_TIP_2024_3378471 crossref_primary_10_1109_TNNLS_2023_3248156 crossref_primary_10_1016_j_ins_2023_02_012 crossref_primary_10_1016_j_patcog_2018_07_033 crossref_primary_10_1016_j_acha_2023_03_007 crossref_primary_10_1109_TIP_2023_3284673 crossref_primary_10_1109_TSIPN_2021_3105795 crossref_primary_10_12677_AIRR_2020_92008 crossref_primary_10_1109_LSP_2025_3540369 crossref_primary_10_3390_sym11121512 crossref_primary_10_1142_S0219691324500231 crossref_primary_10_1109_TIP_2020_3000349 crossref_primary_10_1109_ACCESS_2022_3186364 crossref_primary_10_1007_s10957_023_02169_5 crossref_primary_10_1016_j_neucom_2022_12_008 crossref_primary_10_1007_s40314_023_02427_2 crossref_primary_10_1109_TASE_2022_3163674 crossref_primary_10_1016_j_camwa_2017_04_017 crossref_primary_10_1016_j_neucom_2021_06_092 crossref_primary_10_1109_ACCESS_2018_2883727 crossref_primary_10_3390_rs12091520 crossref_primary_10_1016_j_image_2024_117152 crossref_primary_10_1016_j_knosys_2022_108590 crossref_primary_10_1016_j_apnum_2024_01_017 crossref_primary_10_1109_TGRS_2022_3172745 crossref_primary_10_1109_TNNLS_2024_3356228 crossref_primary_10_1109_JSTSP_2018_2879185 crossref_primary_10_1109_ACCESS_2024_3477319 crossref_primary_10_1137_110841229 crossref_primary_10_1109_TPDS_2019_2940192 crossref_primary_10_1016_j_knosys_2022_108468 crossref_primary_10_1364_AO_56_006094 crossref_primary_10_3390_rs15041021 crossref_primary_10_1109_LGRS_2024_3516363 crossref_primary_10_1109_TIP_2020_3023798 crossref_primary_10_3390_rs14092142 crossref_primary_10_1109_TIP_2022_3226406 crossref_primary_10_1109_TKDE_2024_3399707 crossref_primary_10_1016_j_eswa_2022_119245 crossref_primary_10_1007_s10489_023_04538_z crossref_primary_10_1109_TPAMI_2023_3257407 crossref_primary_10_1007_s10589_020_00231_w crossref_primary_10_1109_TCSVT_2024_3492814 crossref_primary_10_1109_JSTARS_2021_3136217 crossref_primary_10_1109_TGRS_2023_3234608 crossref_primary_10_1109_TGRS_2022_3204049 crossref_primary_10_12677_orf_2024_143262 crossref_primary_10_1016_j_heliyon_2023_e17735 crossref_primary_10_1109_TKDE_2022_3151861 crossref_primary_10_1007_s12539_021_00441_8 crossref_primary_10_1007_s10851_020_00946_9 crossref_primary_10_1080_01630563_2022_2056198 crossref_primary_10_1109_TGRS_2023_3243831 crossref_primary_10_1109_TIP_2022_3187562 crossref_primary_10_1016_j_patcog_2024_110253 crossref_primary_10_1007_s11042_019_08177_w crossref_primary_10_1049_ipr2_12693 crossref_primary_10_1007_s42967_022_00186_1 crossref_primary_10_1016_j_elerap_2016_01_003 crossref_primary_10_1109_TITS_2024_3422214 crossref_primary_10_1109_TSP_2021_3085116 crossref_primary_10_1007_s11634_025_00628_7 crossref_primary_10_1109_TCI_2021_3130977 crossref_primary_10_1109_TMM_2020_3045259 crossref_primary_10_1109_TKDE_2022_3230964 crossref_primary_10_1109_TSP_2016_2639466 crossref_primary_10_1109_TGRS_2021_3075968 crossref_primary_10_1007_s11075_020_01013_5 crossref_primary_10_1007_s10589_023_00465_4 crossref_primary_10_1109_TGRS_2024_3493164 crossref_primary_10_1080_00207721_2021_1880665 crossref_primary_10_1109_TIT_2019_2959980 crossref_primary_10_1109_ACCESS_2020_2996303 crossref_primary_10_1360_SSI_2022_0013 crossref_primary_10_1007_s10915_020_01356_0 crossref_primary_10_1007_s10489_021_02710_x crossref_primary_10_1016_j_compbiomed_2024_108034 crossref_primary_10_1109_TIP_2019_2907478 crossref_primary_10_1088_1361_6420_abd85b crossref_primary_10_1109_JSTARS_2021_3083495 crossref_primary_10_1002_nla_2299 crossref_primary_10_1109_TNNLS_2021_3051650 crossref_primary_10_1002_nla_2179 crossref_primary_10_1137_24M1655093 crossref_primary_10_1016_j_knosys_2024_111917 crossref_primary_10_1007_s40314_022_02114_8 crossref_primary_10_1016_j_iot_2024_101114 crossref_primary_10_1109_TCI_2021_3126232 crossref_primary_10_1109_TNET_2020_3022757 crossref_primary_10_1109_TGRS_2024_3392215 crossref_primary_10_1137_15M1040128 crossref_primary_10_1007_s10489_024_05529_4 crossref_primary_10_1016_j_patcog_2019_107181 crossref_primary_10_1016_j_amc_2024_128627 crossref_primary_10_1016_j_neunet_2024_107111 crossref_primary_10_1109_TCYB_2019_2910151 crossref_primary_10_1109_TNNLS_2020_2984625 crossref_primary_10_1109_TNNLS_2021_3104837 crossref_primary_10_1016_j_jvcir_2020_102791 crossref_primary_10_1109_ACCESS_2021_3076786 crossref_primary_10_1016_j_ins_2022_10_026 crossref_primary_10_1109_TIP_2019_2893530 crossref_primary_10_1137_19M1306440 crossref_primary_10_1137_22M150071X crossref_primary_10_1016_j_patcog_2024_110598 crossref_primary_10_1109_TIP_2025_3539472 crossref_primary_10_1016_j_ins_2021_03_025 crossref_primary_10_1016_j_cam_2025_116604 crossref_primary_10_1109_TIP_2022_3155949 crossref_primary_10_1109_JSEN_2023_3248285 crossref_primary_10_1016_j_displa_2022_102194 crossref_primary_10_1007_s10915_023_02411_2 crossref_primary_10_1109_TGRS_2023_3276414 crossref_primary_10_1002_nla_2288 crossref_primary_10_1109_TCI_2024_3384812 crossref_primary_10_1109_TR_2024_3361717 crossref_primary_10_3390_s23031706 crossref_primary_10_1016_j_neucom_2021_01_039 crossref_primary_10_3390_rs14246275 crossref_primary_10_1109_TMM_2024_3360689 crossref_primary_10_1002_nla_2291 crossref_primary_10_1002_nla_2290 crossref_primary_10_1137_23M1552115 crossref_primary_10_1007_s10915_021_01719_1 crossref_primary_10_1007_s11432_023_4095_y crossref_primary_10_1109_ACCESS_2020_2972316 crossref_primary_10_1007_s11042_023_15018_4 crossref_primary_10_1109_TCSVT_2024_3492045 crossref_primary_10_1109_TGRS_2023_3321789 crossref_primary_10_1109_ACCESS_2018_2888499 crossref_primary_10_1088_1361_6420_ad847a crossref_primary_10_1109_LGRS_2017_2686878 crossref_primary_10_1109_TCYB_2021_3139037 crossref_primary_10_1007_s42967_024_00381_2 crossref_primary_10_1007_s10915_022_02006_3 crossref_primary_10_1109_TGRS_2023_3341030 crossref_primary_10_1109_TGRS_2023_3347930 crossref_primary_10_3233_ICA_190614 crossref_primary_10_1109_TGRS_2024_3371545 crossref_primary_10_1016_j_sigpro_2025_109903 crossref_primary_10_1109_TNNLS_2022_3182541 crossref_primary_10_12677_PM_2023_138246 crossref_primary_10_1109_TGRS_2023_3346714 crossref_primary_10_1109_TNSE_2018_2865511 crossref_primary_10_1109_TNNLS_2019_2956153 crossref_primary_10_1007_s10957_024_02507_1 crossref_primary_10_1109_TSIPN_2023_3276687 crossref_primary_10_1016_j_knosys_2023_110510 crossref_primary_10_1007_s11075_025_02030_y crossref_primary_10_1080_10106049_2022_2063400 crossref_primary_10_1109_TNET_2023_3268982 crossref_primary_10_1088_2399_6528_ac0d5f crossref_primary_10_1049_iet_cvi_2018_5764 crossref_primary_10_1016_j_aml_2024_109198 crossref_primary_10_1109_LSP_2018_2849590 crossref_primary_10_1109_TETCI_2024_3409724 crossref_primary_10_1137_21M1398562 crossref_primary_10_1016_j_patrec_2018_12_012 crossref_primary_10_1016_j_patcog_2020_107441 crossref_primary_10_1109_TGRS_2019_2953069 crossref_primary_10_3390_math12010159 crossref_primary_10_1109_ACCESS_2019_2953878 crossref_primary_10_1016_j_patcog_2022_109067 crossref_primary_10_1016_j_sigpro_2024_109875 crossref_primary_10_1016_j_patcog_2019_107145 crossref_primary_10_1016_j_sigpro_2024_109514 crossref_primary_10_1109_TIP_2024_3385284 crossref_primary_10_1109_TNNLS_2018_2851444 crossref_primary_10_1007_s13042_023_01921_7 crossref_primary_10_1016_j_sigpro_2024_109510 crossref_primary_10_1109_TAI_2023_3293479 crossref_primary_10_1109_JSTARS_2018_2866815 crossref_primary_10_1109_TGRS_2023_3233945 crossref_primary_10_1109_TII_2021_3129526 crossref_primary_10_1109_TMM_2022_3193855 crossref_primary_10_1016_j_eswa_2025_126488 crossref_primary_10_1016_j_ymssp_2023_110761 crossref_primary_10_1007_s10543_021_00877_w crossref_primary_10_1016_j_apm_2024_115744 crossref_primary_10_1007_s12190_021_01687_7 crossref_primary_10_1109_TCYB_2023_3265851 crossref_primary_10_1109_TSP_2021_3135695 crossref_primary_10_1007_s10915_022_02009_0 crossref_primary_10_1109_TPAMI_2023_3259640 crossref_primary_10_1016_j_sigpro_2024_109628 crossref_primary_10_1007_s10915_022_01956_y crossref_primary_10_3390_fi13020036 crossref_primary_10_1007_s10957_022_02051_w crossref_primary_10_1109_TIP_2021_3061908 crossref_primary_10_1016_j_cam_2020_112767 crossref_primary_10_1016_j_ins_2022_10_061 crossref_primary_10_1016_j_laa_2016_04_033 crossref_primary_10_1093_gji_ggac211 crossref_primary_10_1109_TCSVT_2019_2901311 crossref_primary_10_1016_j_sigpro_2023_109121 crossref_primary_10_1088_1361_6420_acc88a crossref_primary_10_1109_LGRS_2022_3159341 crossref_primary_10_1109_TGRS_2020_3032168 crossref_primary_10_3390_rs16214018 crossref_primary_10_1109_ACCESS_2021_3051069 crossref_primary_10_1007_s10589_015_9769_x crossref_primary_10_1016_j_patcog_2025_111600 crossref_primary_10_1016_j_eswa_2025_127118 crossref_primary_10_1016_j_cviu_2024_104007 crossref_primary_10_3390_math11071682 crossref_primary_10_1109_JSEN_2024_3486313 crossref_primary_10_1016_j_sigpro_2025_109935 crossref_primary_10_3934_ipi_2024044 crossref_primary_10_1002_mp_17501 crossref_primary_10_1109_TNNLS_2020_2979685 crossref_primary_10_3934_ipi_2024045 crossref_primary_10_3934_ipi_2025011 crossref_primary_10_1109_TBDATA_2023_3254156 crossref_primary_10_1137_23M158975X crossref_primary_10_1002_nla_2489 crossref_primary_10_1016_j_aml_2024_109170 crossref_primary_10_1016_j_eswa_2024_124809 crossref_primary_10_1016_j_sigpro_2025_109933 crossref_primary_10_1007_s41095_020_0176_6 crossref_primary_10_1007_s00371_021_02220_4 crossref_primary_10_1016_j_apm_2021_02_032 crossref_primary_10_1016_j_neucom_2021_02_002 crossref_primary_10_1109_TGRS_2022_3176266 crossref_primary_10_1109_TPAMI_2019_2954874 crossref_primary_10_1109_LGRS_2023_3329936 crossref_primary_10_1007_s00006_021_01195_8 crossref_primary_10_1239_jap_1402578637 crossref_primary_10_1007_s13042_024_02224_1 crossref_primary_10_1109_TITS_2021_3098637 crossref_primary_10_1109_TSP_2019_2946022 crossref_primary_10_1007_s10589_021_00315_1 crossref_primary_10_1109_TGRS_2021_3091157 crossref_primary_10_1016_j_neunet_2020_10_010 crossref_primary_10_1016_j_iot_2024_101203 crossref_primary_10_1007_s10957_021_01947_3 crossref_primary_10_1109_ACCESS_2019_2940664 crossref_primary_10_1109_TITS_2022_3151925 crossref_primary_10_1016_j_knosys_2024_112902 crossref_primary_10_1007_s11042_023_15645_x crossref_primary_10_1109_JETCAS_2021_3098454 crossref_primary_10_1109_TIP_2021_3068646 crossref_primary_10_1016_j_jvcir_2025_104406 crossref_primary_10_1016_j_sigpro_2024_109407 crossref_primary_10_1002_nla_2594 crossref_primary_10_1142_S0219691323500674 crossref_primary_10_1002_nla_2599 crossref_primary_10_1016_j_optlastec_2022_109020 crossref_primary_10_1007_s10915_024_02509_1 crossref_primary_10_1145_3587034 crossref_primary_10_1016_j_sigpro_2024_109400 crossref_primary_10_1109_TKDE_2022_3230874 crossref_primary_10_3390_math10234594 crossref_primary_10_1016_j_dsp_2023_103949 crossref_primary_10_1109_TIP_2024_3489272 crossref_primary_10_1109_TGRS_2021_3093582 crossref_primary_10_1109_TITS_2024_3524582 crossref_primary_10_1007_s10915_025_02801_8 crossref_primary_10_1109_JBHI_2022_3231908 crossref_primary_10_1109_TPAMI_2023_3341688 crossref_primary_10_1016_j_sigpro_2022_108901 crossref_primary_10_1007_s10915_021_01679_6 crossref_primary_10_3390_rs14236044 crossref_primary_10_1007_s40314_023_02487_4 crossref_primary_10_1002_nla_2464 crossref_primary_10_1016_j_sigpro_2023_109158 crossref_primary_10_1016_j_sigpro_2024_109799 crossref_primary_10_1109_LGRS_2022_3186877 crossref_primary_10_1109_TCYB_2022_3198932 crossref_primary_10_1109_TETCI_2023_3300522 crossref_primary_10_1007_s42967_022_00217_x crossref_primary_10_3390_rs11040382 crossref_primary_10_1007_s11263_018_1086_2 crossref_primary_10_1137_19M1297026 crossref_primary_10_1002_nla_2470 crossref_primary_10_1016_j_sigpro_2023_109157 crossref_primary_10_2298_FIL2403939H crossref_primary_10_1016_j_neucom_2022_01_010 crossref_primary_10_1109_TCSVT_2024_3413992 crossref_primary_10_1016_j_cam_2019_112680 crossref_primary_10_1109_TITS_2024_3375658 crossref_primary_10_1109_TSE_2021_3056139 crossref_primary_10_1007_s11265_022_01818_8 crossref_primary_10_1007_s40314_022_02107_7 crossref_primary_10_1016_j_apnum_2023_11_009 crossref_primary_10_1016_j_neunet_2023_01_037 crossref_primary_10_1016_j_knosys_2023_110262 crossref_primary_10_3389_fdata_2024_1363978 crossref_primary_10_1016_j_patcog_2023_110241 crossref_primary_10_1109_TSP_2024_3454115 crossref_primary_10_3389_fenrg_2024_1420449 crossref_primary_10_3390_rs13193829 crossref_primary_10_1155_2018_2835175 crossref_primary_10_1016_j_apm_2023_06_039 crossref_primary_10_1002_nla_70009 crossref_primary_10_1007_s11075_024_01982_x crossref_primary_10_1016_j_neucom_2020_12_110 crossref_primary_10_1002_nla_2574 crossref_primary_10_1155_2022_3304677 crossref_primary_10_1109_TSP_2022_3164837 crossref_primary_10_1016_j_cam_2024_116018 crossref_primary_10_1016_j_dsp_2022_103741 crossref_primary_10_1016_j_ins_2021_02_028 crossref_primary_10_1109_TNNLS_2024_3371382 crossref_primary_10_3934_jimo_2020131 crossref_primary_10_1007_s10543_016_0607_z crossref_primary_10_1088_1742_6596_2670_1_012026 crossref_primary_10_1002_nla_2580 crossref_primary_10_1016_j_neucom_2023_126359 crossref_primary_10_1103_PhysRevB_101_041301 crossref_primary_10_1109_TGRS_2022_3230051 crossref_primary_10_1109_TIP_2013_2253485 crossref_primary_10_1007_s11075_025_02011_1 crossref_primary_10_1007_s10092_023_00527_3 crossref_primary_10_3390_app15010322 crossref_primary_10_1016_j_neunet_2023_01_044 crossref_primary_10_1109_TBC_2024_3417342 crossref_primary_10_1007_s10915_025_02792_6 crossref_primary_10_1016_j_cam_2022_114866 crossref_primary_10_1109_ACCESS_2021_3085322 crossref_primary_10_1109_TIP_2024_3388969 crossref_primary_10_1109_LGRS_2024_3431683 crossref_primary_10_1155_2021_5535169 crossref_primary_10_1002_nla_2560 crossref_primary_10_1016_j_amc_2021_126342 crossref_primary_10_1109_TIP_2019_2941319 crossref_primary_10_1002_nla_2444 crossref_primary_10_1002_nla_70011 crossref_primary_10_1016_j_cam_2024_116048 crossref_primary_10_1016_j_cose_2023_103247 crossref_primary_10_1109_TIP_2014_2305840 crossref_primary_10_1007_s42967_022_00218_w crossref_primary_10_1016_j_sigpro_2023_109014 crossref_primary_10_1109_TIP_2020_3031813 crossref_primary_10_1109_JSTARS_2021_3076793 crossref_primary_10_1109_TII_2024_3390389 crossref_primary_10_1142_S2010326322500381 crossref_primary_10_1109_TIP_2024_3420796 crossref_primary_10_1109_TPAMI_2022_3179556 crossref_primary_10_1002_stvr_1867 crossref_primary_10_1016_j_inffus_2024_102583 crossref_primary_10_1109_TGRS_2022_3223792 crossref_primary_10_1145_3701235 crossref_primary_10_1016_j_mlwa_2023_100479 crossref_primary_10_1109_TGRS_2020_3005199 crossref_primary_10_1109_TSP_2024_3524568 crossref_primary_10_1109_TAI_2022_3229297 crossref_primary_10_1109_TMM_2021_3106789 crossref_primary_10_1016_j_bspc_2022_103524 crossref_primary_10_1007_s10044_022_01082_3 crossref_primary_10_1007_s10092_024_00569_1 crossref_primary_10_1109_MNET_005_2200650 crossref_primary_10_1007_s13042_023_01935_1 crossref_primary_10_1016_j_apm_2024_01_020 crossref_primary_10_1016_j_neunet_2024_106529 crossref_primary_10_1109_ACCESS_2019_2934482 crossref_primary_10_1109_TSIPN_2023_3345142 crossref_primary_10_1190_geo2014_0467_1 crossref_primary_10_1007_s10957_024_02444_z crossref_primary_10_1016_j_eswa_2023_120055 crossref_primary_10_1109_TNSE_2023_3253163 crossref_primary_10_1137_17M1159932 crossref_primary_10_12677_AAM_2018_78129 crossref_primary_10_1016_j_patcog_2023_109343 crossref_primary_10_3390_math12070982 crossref_primary_10_3788_LOP222077 crossref_primary_10_3390_math11132940 crossref_primary_10_1109_TSP_2021_3086363 crossref_primary_10_1016_j_patcog_2024_110619 crossref_primary_10_1002_nla_2544 crossref_primary_10_3390_electronics14040817 crossref_primary_10_3934_jimo_2021154 crossref_primary_10_1016_j_patcog_2024_110735 crossref_primary_10_1109_TCBB_2019_2943459 crossref_primary_10_1137_18M1202311 crossref_primary_10_3390_rs10071033 crossref_primary_10_1016_j_knosys_2023_111271 crossref_primary_10_1007_s00521_022_06927_w crossref_primary_10_3390_axioms12100954 crossref_primary_10_1007_s13042_024_02096_5 crossref_primary_10_1109_TMM_2024_3398295 crossref_primary_10_1002_nla_2416 crossref_primary_10_1007_s10589_022_00439_y crossref_primary_10_1109_LSP_2020_2983305 crossref_primary_10_1007_s10589_023_00545_5 crossref_primary_10_3390_electronics13030491 crossref_primary_10_3390_rs11080984 crossref_primary_10_1016_j_patcog_2024_110860 crossref_primary_10_1007_s10915_022_02005_4 crossref_primary_10_1002_nla_2530 crossref_primary_10_3390_app9071411 crossref_primary_10_1016_j_dsp_2024_104472 crossref_primary_10_1002_nla_2412 crossref_primary_10_1016_j_dsp_2024_104597 crossref_primary_10_12677_AAM_2024_131024 crossref_primary_10_1002_for_2735 crossref_primary_10_1088_1361_6420_ad40c9 crossref_primary_10_1016_j_knosys_2022_110198 crossref_primary_10_1016_j_ins_2019_06_061 crossref_primary_10_12677_aam_2025_141024 crossref_primary_10_1109_TCYB_2018_2869789 crossref_primary_10_1109_TMM_2023_3307239 crossref_primary_10_1109_TSP_2022_3229642 crossref_primary_10_3390_axioms12100929 crossref_primary_10_3390_electronics12194083 crossref_primary_10_1002_nla_2403 crossref_primary_10_1007_s10444_023_10036_0 crossref_primary_10_1007_s10915_025_02794_4 crossref_primary_10_1109_TCI_2021_3054249 crossref_primary_10_1109_TSP_2022_3183466 crossref_primary_10_1016_j_patcog_2021_108311 crossref_primary_10_1142_S0219530520400084 crossref_primary_10_1017_S0021900200011360 crossref_primary_10_1080_00401706_2023_2200541 crossref_primary_10_1137_20M1318006 crossref_primary_10_1109_JSTARS_2017_2714338 crossref_primary_10_3390_math8040628 crossref_primary_10_1109_JSTARS_2023_3324732 crossref_primary_10_1016_j_sigpro_2023_109176 crossref_primary_10_1007_s40314_020_01328_y crossref_primary_10_3389_fgene_2023_1271311 crossref_primary_10_1109_ACCESS_2021_3125069 crossref_primary_10_3934_era_2024213 crossref_primary_10_1016_j_eswa_2020_113913 crossref_primary_10_1016_j_inffus_2023_102086 crossref_primary_10_1016_j_media_2020_101853 crossref_primary_10_1109_TCYB_2023_3263175 crossref_primary_10_1007_s10915_024_02653_8 crossref_primary_10_1080_03081087_2022_2032567 crossref_primary_10_1016_j_patcog_2024_110605 crossref_primary_10_1016_j_apm_2024_115921 crossref_primary_10_12677_AAM_2019_810186 crossref_primary_10_1007_s10489_023_04477_9 crossref_primary_10_1016_j_sigpro_2022_108910 crossref_primary_10_1109_ACCESS_2020_3024635 crossref_primary_10_1109_TIP_2017_2762595 crossref_primary_10_1007_s00521_023_08279_5 crossref_primary_10_1016_j_knosys_2022_110094 crossref_primary_10_1109_TPAMI_2019_2891760 crossref_primary_10_1007_s10915_022_01937_1 crossref_primary_10_1007_s10489_022_03735_6 crossref_primary_10_1007_s10489_024_05899_9 crossref_primary_10_1007_s10851_019_00933_9 crossref_primary_10_1016_j_sigpro_2024_109480 crossref_primary_10_1016_j_cam_2022_114488 crossref_primary_10_1109_ACCESS_2022_3187112 crossref_primary_10_1109_TGRS_2021_3126608 crossref_primary_10_1109_TCSVT_2019_2892848 crossref_primary_10_1109_TCSVT_2024_3401134 crossref_primary_10_1049_sil2_12035 crossref_primary_10_1016_j_neucom_2021_08_125 crossref_primary_10_1016_j_patcog_2023_109545 crossref_primary_10_1109_TITS_2023_3243087 crossref_primary_10_1016_j_neucom_2014_05_018 crossref_primary_10_1007_s40314_022_01811_8 crossref_primary_10_1109_TGRS_2018_2833473 crossref_primary_10_1190_geo2022_0016_1 crossref_primary_10_1109_TIP_2023_3310331 crossref_primary_10_1016_j_neucom_2024_127579 crossref_primary_10_1007_s10044_024_01291_y crossref_primary_10_1109_TGRS_2024_3422404 crossref_primary_10_1007_s10994_021_05987_8 crossref_primary_10_1016_j_bspc_2024_106848 crossref_primary_10_1016_j_optlastec_2025_112486 crossref_primary_10_2139_ssrn_4133647 crossref_primary_10_1109_TNNLS_2023_3236641 crossref_primary_10_1109_TPAMI_2021_3059299 crossref_primary_10_1109_TAES_2022_3147437 crossref_primary_10_1007_s40305_023_00522_z crossref_primary_10_1109_TIT_2022_3198725 crossref_primary_10_1016_j_inffus_2023_102222 crossref_primary_10_1109_TCYB_2021_3053057 crossref_primary_10_1016_j_ins_2023_120002 crossref_primary_10_1007_s10915_023_02364_6 crossref_primary_10_1016_j_neucom_2020_03_018 crossref_primary_10_1109_TCSVT_2023_3316279 crossref_primary_10_1109_TSP_2024_3427136 crossref_primary_10_1109_TCYB_2022_3175771 crossref_primary_10_1109_LSP_2023_3236585 crossref_primary_10_1007_s10915_024_02502_8 crossref_primary_10_1007_s42967_019_00055_4 crossref_primary_10_1109_LCOMM_2021_3097158 crossref_primary_10_1214_22_EJS2004 crossref_primary_10_1137_22M1473236 crossref_primary_10_1109_TNNLS_2023_3236415 crossref_primary_10_1016_j_neunet_2024_106944 crossref_primary_10_3390_app14104239 crossref_primary_10_1016_j_neunet_2024_106947 crossref_primary_10_1007_s42967_024_00409_7 crossref_primary_10_1016_j_apm_2025_116064 crossref_primary_10_1109_TCI_2019_2904207 crossref_primary_10_1109_TIP_2015_2397314 crossref_primary_10_1016_j_aml_2024_109318 crossref_primary_10_1016_j_patrec_2023_08_016 crossref_primary_10_1109_TNNLS_2021_3083931 crossref_primary_10_1109_TIP_2022_3171411 crossref_primary_10_1049_sil2_12017 crossref_primary_10_3390_rs14092234 crossref_primary_10_1002_nla_2608 crossref_primary_10_1080_03081087_2021_1999381 crossref_primary_10_1016_j_jvcir_2023_103960 crossref_primary_10_1109_JSTARS_2022_3228942 crossref_primary_10_3390_math9111249 crossref_primary_10_1090_mcom_4025 crossref_primary_10_1007_s42967_021_00172_z crossref_primary_10_1016_j_neunet_2023_06_038 crossref_primary_10_1016_j_infrared_2019_03_009 crossref_primary_10_1109_TGRS_2023_3279256 crossref_primary_10_1007_s43034_022_00183_8 crossref_primary_10_1016_j_sigpro_2021_108240 crossref_primary_10_1109_TNNLS_2018_2860964 crossref_primary_10_1007_s00138_022_01350_6 crossref_primary_10_1007_s40314_024_03068_9 crossref_primary_10_1109_JSTARS_2025_3525743 crossref_primary_10_1016_j_apnum_2024_04_016 crossref_primary_10_1109_TGRS_2023_3270667 crossref_primary_10_1109_TKDE_2024_3469782 crossref_primary_10_1007_s42967_024_00461_3 crossref_primary_10_1137_110837711 crossref_primary_10_3390_app142411895 crossref_primary_10_1109_JSTARS_2024_3491221 crossref_primary_10_1016_j_future_2017_10_013 crossref_primary_10_1109_TKDE_2022_3185126 crossref_primary_10_1109_TCSS_2019_2959948 crossref_primary_10_1007_s11063_023_11361_7 crossref_primary_10_1109_ACCESS_2023_3297630 crossref_primary_10_1109_TNSE_2024_3514171 crossref_primary_10_1109_TNNLS_2024_3373384 crossref_primary_10_3390_electronics13091745 crossref_primary_10_4169_amer_math_monthly_119_10_838 crossref_primary_10_1016_j_neucom_2019_11_014 crossref_primary_10_1007_s12190_023_01909_0 crossref_primary_10_1109_ACCESS_2020_3016777 crossref_primary_10_1109_ACCESS_2020_3015975 crossref_primary_10_1007_s12190_024_02351_6 crossref_primary_10_1109_TGRS_2024_3457673 crossref_primary_10_1007_s10898_022_01148_w crossref_primary_10_1016_j_jmaa_2024_128864 crossref_primary_10_3390_rs15153862 crossref_primary_10_1007_s40314_024_03031_8 crossref_primary_10_1109_TMM_2021_3110098 crossref_primary_10_1016_j_inffus_2022_11_026 crossref_primary_10_1016_j_jmva_2013_09_007 crossref_primary_10_1109_TIP_2022_3220949 crossref_primary_10_1142_S0218001424550048 crossref_primary_10_1016_j_enganabound_2022_02_019 crossref_primary_10_1109_ACCESS_2018_2830975 crossref_primary_10_1109_JSTARS_2021_3139594 crossref_primary_10_1109_TGRS_2023_3237865 crossref_primary_10_1117_1_JRS_11_035019 crossref_primary_10_3934_math_20231371 crossref_primary_10_1016_j_patcog_2023_109624 crossref_primary_10_1109_JSTSP_2018_2873148 crossref_primary_10_3390_s24020327 crossref_primary_10_1007_s11075_023_01684_w crossref_primary_10_1016_j_neunet_2023_10_031 crossref_primary_10_1109_JSTSP_2018_2873142 crossref_primary_10_1016_j_mri_2023_09_003 crossref_primary_10_1007_s10957_023_02177_5 crossref_primary_10_32604_cmc_2021_016804 crossref_primary_10_1002_nla_1845 crossref_primary_10_1049_iet_ipr_2018_6594 crossref_primary_10_1109_LGRS_2023_3251861 crossref_primary_10_1109_TPAMI_2021_3063527 crossref_primary_10_1109_TNNLS_2023_3306006 crossref_primary_10_1109_ACCESS_2019_2942195 crossref_primary_10_3390_electronics11193250 crossref_primary_10_1016_j_cam_2024_116297 crossref_primary_10_1016_j_neucom_2021_06_020 crossref_primary_10_1109_ACCESS_2019_2956115 crossref_primary_10_1109_TGRS_2025_3544811 crossref_primary_10_12677_mos_2024_133362 crossref_primary_10_1007_s10543_023_00964_0 crossref_primary_10_1109_TCSVT_2024_3442295 crossref_primary_10_1016_j_laa_2019_12_035 crossref_primary_10_1109_TITS_2024_3447453 crossref_primary_10_1109_TIT_2022_3142846 crossref_primary_10_1137_21M1429539 crossref_primary_10_1016_j_amc_2021_126224 crossref_primary_10_1016_j_laa_2020_11_004 crossref_primary_10_1190_geo2020_0539_1 crossref_primary_10_1016_j_patcog_2021_108150 crossref_primary_10_1080_01630563_2022_2087676 crossref_primary_10_1016_j_apm_2025_116002 crossref_primary_10_1109_TPAMI_2025_3526790 crossref_primary_10_1007_s40314_020_01225_4 crossref_primary_10_1007_s10915_024_02623_0 crossref_primary_10_1109_TCBB_2022_3229678 crossref_primary_10_1109_TSP_2024_3424272 crossref_primary_10_1109_TGRS_2023_3279694 crossref_primary_10_1007_s10915_023_02308_0 crossref_primary_10_1080_00207160_2022_2118525 crossref_primary_10_1371_journal_pone_0312723 crossref_primary_10_1007_s10915_024_02624_z crossref_primary_10_1109_TPAMI_2019_2923240 crossref_primary_10_1016_j_media_2021_102152 crossref_primary_10_1016_j_dsp_2024_104534 crossref_primary_10_1109_TMM_2019_2915036 crossref_primary_10_1016_j_neucom_2023_02_052 crossref_primary_10_1137_23M157363X crossref_primary_10_1007_s10543_023_01004_7 crossref_primary_10_1007_s11075_023_01607_9 crossref_primary_10_1080_03081087_2021_1992335 crossref_primary_10_1109_TCYB_2023_3234356 crossref_primary_10_1016_j_neunet_2020_08_019 crossref_primary_10_1137_23M1620326 crossref_primary_10_1109_TNNLS_2022_3181097 crossref_primary_10_1109_TCE_2024_3376397 crossref_primary_10_1007_s11227_024_06791_6 crossref_primary_10_1016_j_laa_2015_07_021 crossref_primary_10_1016_j_neunet_2024_106849 crossref_primary_10_1109_TGRS_2023_3329639 crossref_primary_10_1016_j_aml_2023_108587 crossref_primary_10_1016_j_neunet_2022_03_038 crossref_primary_10_1109_TCSS_2023_3331366 crossref_primary_10_1109_TIP_2023_3282072 crossref_primary_10_1155_2023_8073365 crossref_primary_10_1007_s10915_021_01437_8 |
Cites_doi | 10.1016/j.laa.2010.05.025 10.1137/S0036144594276474 10.1007/3-540-47969-4_30 10.1145/1186785.1186794 10.1016/j.laa.2010.06.027 10.1109/ICPR.2002.1048350 10.1016/j.neuroimage.2004.03.039 10.1007/11427995_21 10.1007/BF02294495 10.1016/j.neuroimage.2004.03.038 10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L 10.1137/S0895479898346995 10.1016/j.patcog.2006.08.004 10.1016/j.neuroimage.2004.10.043 10.1137/S0895479896305696 10.1007/BF02289464 10.1109/CVPR.2003.1211457 10.1023/B:NUMA.0000027762.08431.64 10.1137/07070111X 10.1137/S0895479899352045 10.1109/ICDM.2005.77 10.2172/923081 10.1137/060655894 10.1137/0208037 10.1109/TIP.2005.863112 10.1007/s10543-006-0042-7 10.1145/355984.355989 10.1137/06066518X 10.1137/S0895479801387413 10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I 10.1002/1099-128X(200005/06)14:3<285::AID-CEM584>3.0.CO;2-1 10.1109/78.852018 10.1007/BF02310791 10.1137/S0895479897319532 10.1016/j.laa.2010.03.032 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Inc. 2015 INIST-CNRS |
Copyright_xml | – notice: 2010 Elsevier Inc. – notice: 2015 INIST-CNRS |
DBID | 6I. AAFTH AAYXX CITATION IQODW |
DOI | 10.1016/j.laa.2010.09.020 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EndPage | 658 |
ExternalDocumentID | 24178399 10_1016_j_laa_2010_09_020 S0024379510004830 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXKI AAXUO ABAOU ABDPE ABEFU ABFNM ABJNI ABMAC ABVKL ABXDB ACDAQ ACGFS ACRLP ADBBV ADEZE ADIYS ADMUD ADVLN AEBSH AEKER AENEX AEXQZ AFFNX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM M26 M41 MCRUF MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSW SSZ T5K T9H TN5 TWZ WH7 WUQ XPP YQT ZMT ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AETEA AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW |
ID | FETCH-LOGICAL-c393t-e60f482d336874ba5b6212967355f23cf18f2c0a037031efe1f92c950fe42da33 |
IEDL.DBID | .~1 |
ISSN | 0024-3795 |
IngestDate | Mon Jul 21 09:13:21 EDT 2025 Thu Apr 24 22:58:44 EDT 2025 Tue Jul 01 05:27:19 EDT 2025 Tue Dec 03 03:44:25 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Tensor decomposition Multidimensional arrays 15A69 65F30 Multilinear algebra Singular value decomposition Constraint Tensor product Third order Matrix factorization Matrix decomposition Orthogonality Modeling Linear operator Algebra |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-e60f482d336874ba5b6212967355f23cf18f2c0a037031efe1f92c950fe42da33 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0024379510004830 |
PageCount | 18 |
ParticipantIDs | pascalfrancis_primary_24178399 crossref_primary_10_1016_j_laa_2010_09_020 crossref_citationtrail_10_1016_j_laa_2010_09_020 elsevier_sciencedirect_doi_10_1016_j_laa_2010_09_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-08-01 |
PublicationDateYYYYMMDD | 2011-08-01 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Linear algebra and its applications |
PublicationYear | 2011 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Hansen, Kilmer, Kjeldsen (b0070) 2006; 46 Oseledets, Savostianov, Tyrtyshnikov (b0170) 2008; 30 E. Acar, S. Çamtepe, M. Krishnamoorthy, B. Yener, Modeling and multiway analysis of chatroom tensors, in: Proceedings of the IEEE International Conference on Intelligence and Security Informatics, EMBS 2007, Lecture Notes in Computer Science, vol. 3495, 2005, pp. 256–268. Nagy, Kilmer (b0160) 2006; 15 Comon (b0045) 2002 Paatero (b0175) 2000; 14 M. Vasilescu, D. Terzopoulos, Multilinear subspace analysis of image ensembles, in: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2003, 2003, pp. 93–99. Kruskal (b0125) 1989 Lathauwer, Moor, Vandewalle (b0130) 2000; 21 Ja (b0080) 1979; 8 Silva, Kim (b0200) 2008; 30 M. Vasilescu, D. Terzopoulos, Multilinear image analysis for face recognition, in: Proceedings of the International Conference on Pattern Recognition, ICPR 2002, vol. 2, Quebec City, Canada, 2002, pp. 511–514. Kilmer (b0090) 1999; 20 . Lathauwer, Moor, Vandewalle (b0140) 2000; 21 Braman (b0025) 2010; 433 Bader, Kolda (b0010) 2006; 32 Kofidis, Regalia (b0100) 2001; 23 M. Rezghi, L. Eldèn, Diagonalization of tensors with circulant structure, Linear Algebra Appl., this issue Tucker (b0215) 1966; 31 Smilde, Bro, Geladi (b0205) 2004 Kiers (b0085) 2000; 14 C. Martin, The rank of a Golub, Loan (b0060) 1996 Bro, Jong (b0030) 1997; 11 M.P. Friedlander, K. Hatz, Computing nonnegative tensor factorizations, Tech. Report TR-2006-21, University of British Columbia, Computer Science Department, 2006. Zhang, Golub (b0235) 2001; 23 M. Hanke, J.G. Nagy, R.J. Plemmons, Preconditioned iterative regularization, in: Numerical Linear Algebra, de Gruyter, Berlin, 1993, pp. 141–163. Berge (b0020) 1991; 56 T. Kolda, B. Bader, Higher-order web link analysis using multilinear algebra, in: Proceedings of the Fifth IEEE International Conference on Data Mining, ICDM 2005, IEEE Computer Society, 2005, pp. 242–249. Nagy, Palmer, Perrone (b0165) 2004; 36 R. Harshman, Foundations of the parafac procedure: model and conditions for an ‘explanatory’ multi-mode factor analysis, UCLA Working Papers in Phonetics, 16, 1970, pp. 1–84. Miwakeichi, Martínez-Montes, Valdés-Sosa, Nishiyama, Mizuhara, Yamaguchi (b0155) 2004; 22 Kroonenberg (b0120) 1983 Lathauwer, Moor (b0135) 1998 tensor, Linear and Multilinear Algebra, submitted for publication. Chan, Ng (b0040) 1996; 38 Kolda, Bader (b0110) 2009; 51 A. Stegeman, P. Comon, Subtracting a best rank-1 approximation may increase tensor rank, arXiv e-prints (2009). Paige, Saunders (b0180) 1982; 8 M.E. Kilmer, C.D. Martin, L. Perrone, A third-order generalization of the matrix svd as a product of third-order tensors, Tech. Report TR-2008-4, Tufts University, Computer Science Department, 2008. Savas, Eldén (b0190) 2007; 40 Beckmann, Smith (b0015) 2005; 25 Carroll, Chang (b0035) 1970; 35 Sidiropoulos, Bro, Giannakis (b0195) 2000; 48 Martínez-Montes, Valdés-Sosa, Miwakeichi, Goldman, Cohen (b0150) 2004; 22 Denis, Dhorne (b0050) 1989 M. Vasilescu, D. Terzopoulos, Multilinear analysis of image ensembles: tensorfaces, in: Proceedings of the Seventh European Conference on Computer Vision, ECCV 2002, Lecture Notes in Computer Science, vol. 2350, 2002, pp. 447–460. T.G. Kolda, Multilinear operators for higher-order decompositions, Tech. Report SAND2006-2081, Sandia National Laboratories, 2006. Silva (10.1016/j.laa.2010.09.020_b0200) 2008; 30 Kiers (10.1016/j.laa.2010.09.020_b0085) 2000; 14 Paatero (10.1016/j.laa.2010.09.020_b0175) 2000; 14 Savas (10.1016/j.laa.2010.09.020_b0190) 2007; 40 10.1016/j.laa.2010.09.020_b0005 10.1016/j.laa.2010.09.020_b0105 Nagy (10.1016/j.laa.2010.09.020_b0160) 2006; 15 10.1016/j.laa.2010.09.020_b0225 Chan (10.1016/j.laa.2010.09.020_b0040) 1996; 38 Kruskal (10.1016/j.laa.2010.09.020_b0125) 1989 Kroonenberg (10.1016/j.laa.2010.09.020_b0120) 1983 Comon (10.1016/j.laa.2010.09.020_b0045) 2002 Ja (10.1016/j.laa.2010.09.020_b0080) 1979; 8 Sidiropoulos (10.1016/j.laa.2010.09.020_b0195) 2000; 48 10.1016/j.laa.2010.09.020_b0075 10.1016/j.laa.2010.09.020_b0055 10.1016/j.laa.2010.09.020_b0230 Beckmann (10.1016/j.laa.2010.09.020_b0015) 2005; 25 Golub (10.1016/j.laa.2010.09.020_b0060) 1996 Lathauwer (10.1016/j.laa.2010.09.020_b0130) 2000; 21 10.1016/j.laa.2010.09.020_b0210 Miwakeichi (10.1016/j.laa.2010.09.020_b0155) 2004; 22 Carroll (10.1016/j.laa.2010.09.020_b0035) 1970; 35 10.1016/j.laa.2010.09.020_b0095 Oseledets (10.1016/j.laa.2010.09.020_b0170) 2008; 30 Smilde (10.1016/j.laa.2010.09.020_b0205) 2004 Kofidis (10.1016/j.laa.2010.09.020_b0100) 2001; 23 Kolda (10.1016/j.laa.2010.09.020_b0110) 2009; 51 Paige (10.1016/j.laa.2010.09.020_b0180) 1982; 8 Martínez-Montes (10.1016/j.laa.2010.09.020_b0150) 2004; 22 Zhang (10.1016/j.laa.2010.09.020_b0235) 2001; 23 Denis (10.1016/j.laa.2010.09.020_b0050) 1989 10.1016/j.laa.2010.09.020_b0115 Lathauwer (10.1016/j.laa.2010.09.020_b0140) 2000; 21 Nagy (10.1016/j.laa.2010.09.020_b0165) 2004; 36 10.1016/j.laa.2010.09.020_b0185 10.1016/j.laa.2010.09.020_b0065 10.1016/j.laa.2010.09.020_b0220 Kilmer (10.1016/j.laa.2010.09.020_b0090) 1999; 20 Tucker (10.1016/j.laa.2010.09.020_b0215) 1966; 31 10.1016/j.laa.2010.09.020_b0145 Berge (10.1016/j.laa.2010.09.020_b0020) 1991; 56 Hansen (10.1016/j.laa.2010.09.020_b0070) 2006; 46 Lathauwer (10.1016/j.laa.2010.09.020_b0135) 1998 Bader (10.1016/j.laa.2010.09.020_b0010) 2006; 32 Bro (10.1016/j.laa.2010.09.020_b0030) 1997; 11 Braman (10.1016/j.laa.2010.09.020_b0025) 2010; 433 |
References_xml | – start-page: 1 year: 2002 end-page: 24 ident: b0045 article-title: Tensor decompositions publication-title: Mathematics in Signal Processing V – volume: 56 start-page: 631 year: 1991 end-page: 636 ident: b0020 article-title: Kruskal’s polynomial for publication-title: Psychometrika – reference: E. Acar, S. Çamtepe, M. Krishnamoorthy, B. Yener, Modeling and multiway analysis of chatroom tensors, in: Proceedings of the IEEE International Conference on Intelligence and Security Informatics, EMBS 2007, Lecture Notes in Computer Science, vol. 3495, 2005, pp. 256–268. – volume: 11 start-page: 393 year: 1997 end-page: 401 ident: b0030 article-title: A fast non-negativity-constrained least squares algorithm publication-title: J. Chemom. – reference: M.E. Kilmer, C.D. Martin, L. Perrone, A third-order generalization of the matrix svd as a product of third-order tensors, Tech. Report TR-2008-4, Tufts University, Computer Science Department, 2008. – volume: 30 start-page: 939 year: 2008 end-page: 956 ident: b0170 article-title: Tucker dimensionality reduction of three-dimensional arrays in linear time publication-title: SIAM J. Matrix Anal. Appl. – volume: 30 start-page: 1084 year: 2008 end-page: 1127 ident: b0200 article-title: Tensor rank and the ill-posedness of the best low-rank approximation problem publication-title: SIAM J. Matrix Anal. Appl. – volume: 35 start-page: 283 year: 1970 end-page: 319 ident: b0035 article-title: Analysis of individual differences in multidimensional scaling via an publication-title: Psychometrika – volume: 15 start-page: 604 year: 2006 end-page: 613 ident: b0160 article-title: Kronecker product approximation for preconditioning in three-dimensional imaging applications publication-title: IEEE Trans. Image Process. – volume: 25 start-page: 294 year: 2005 end-page: 311 ident: b0015 article-title: Tensorial extensions of the independent component analysis for multisubject FMRI analysis publication-title: NeuroImage – volume: 8 start-page: 43 year: 1982 end-page: 71 ident: b0180 article-title: LSQR: An algorithm for sparse linear equations and sparse least squares publication-title: ACM Trans. Math. Software – volume: 433 start-page: 1241 year: 2010 end-page: 1253 ident: b0025 article-title: Third-order tensors as linear operators on a space of matrices publication-title: Linear Algebra Appl. – volume: 32 start-page: 635 year: 2006 end-page: 653 ident: b0010 article-title: Algorithm 862: MATLAB tensor classes for fast algorithm prototyping publication-title: ACM Trans. Math. Software – volume: 14 start-page: 105 year: 2000 end-page: 122 ident: b0085 article-title: Towards a standardized notation and terminology in multiway analysis publication-title: J. Chemom. – reference: T. Kolda, B. Bader, Higher-order web link analysis using multilinear algebra, in: Proceedings of the Fifth IEEE International Conference on Data Mining, ICDM 2005, IEEE Computer Society, 2005, pp. 242–249. – start-page: 1 year: 1998 end-page: 15 ident: b0135 article-title: From matrix to tensor: multilinear algebra and signal processing publication-title: Mathematics in Signal Processing IV – volume: 40 start-page: 993 year: 2007 end-page: 1003 ident: b0190 article-title: Handwritten digit classification using higher order singular value decomposition publication-title: Pattern Recognit. – reference: . – reference: M. Hanke, J.G. Nagy, R.J. Plemmons, Preconditioned iterative regularization, in: Numerical Linear Algebra, de Gruyter, Berlin, 1993, pp. 141–163. – reference: M.P. Friedlander, K. Hatz, Computing nonnegative tensor factorizations, Tech. Report TR-2006-21, University of British Columbia, Computer Science Department, 2006. – reference: M. Rezghi, L. Eldèn, Diagonalization of tensors with circulant structure, Linear Algebra Appl., this issue, – volume: 51 start-page: 455 year: 2009 end-page: 500 ident: b0110 article-title: Tensor decompositions and applications publication-title: SIAM Rev. – volume: 22 start-page: 1023 year: 2004 end-page: 1034 ident: b0150 article-title: Concurrent EEG/FMRI analysis by multiway partial least squares publication-title: NeuroImage – volume: 8 start-page: 443 year: 1979 end-page: 461 ident: b0080 article-title: Optimal evaluation of pairs of bilinear forms publication-title: SIAM J. Comput. – volume: 14 start-page: 285 year: 2000 end-page: 299 ident: b0175 article-title: Construction and analysis of degenerate parafac models publication-title: J. Chemom. – volume: 21 start-page: 1324 year: 2000 end-page: 1342 ident: b0140 article-title: On the best rank-1 and rank- publication-title: SIAM J. Matrix Anal. Appl. – reference: C. Martin, The rank of a – reference: R. Harshman, Foundations of the parafac procedure: model and conditions for an ‘explanatory’ multi-mode factor analysis, UCLA Working Papers in Phonetics, 16, 1970, pp. 1–84. – reference: M. Vasilescu, D. Terzopoulos, Multilinear analysis of image ensembles: tensorfaces, in: Proceedings of the Seventh European Conference on Computer Vision, ECCV 2002, Lecture Notes in Computer Science, vol. 2350, 2002, pp. 447–460. – reference: M. Vasilescu, D. Terzopoulos, Multilinear subspace analysis of image ensembles, in: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2003, 2003, pp. 93–99. – start-page: 31 year: 1989 end-page: 37 ident: b0050 article-title: Orthogonal tensor decomposition of 3-way tables publication-title: Multiway Data Analysis – volume: 38 start-page: 427 year: 1996 end-page: 482 ident: b0040 article-title: Conjugate gradient methods for Toeplitz systems publication-title: SIAM Rev. – year: 1983 ident: b0120 article-title: Three-mode Principal Component Analysis: Theory and Applications – volume: 46 start-page: 41 year: 2006 end-page: 59 ident: b0070 article-title: Exploiting residual information in the parameter choice for discrete ill-posed problems publication-title: BIT – volume: 31 start-page: 279 year: 1966 end-page: 311 ident: b0215 article-title: Some mathematical notes on three-mode factor analysis publication-title: Psychometrika – year: 1996 ident: b0060 article-title: Matrix Computations – volume: 20 year: 1999 ident: b0090 article-title: Cauchy-like preconditioners for 2-dimensional ill-posed problems publication-title: SIAM J. Matrix Anal. Appl. – volume: 23 start-page: 863 year: 2001 end-page: 884 ident: b0100 article-title: On the best rank-1 approximation of higher-order supersymmetric tensors publication-title: SIAM J. Matrix Anal. Appl. – volume: 36 start-page: 73 year: 2004 end-page: 93 ident: b0165 article-title: Iterative methods for image deblurring: a matlab object oriented approach publication-title: Numer. Algorithms – volume: 21 start-page: 1253 year: 2000 end-page: 1278 ident: b0130 article-title: A multilinear singular value decomposition publication-title: SIAM J. Matrix Anal. Appl. – start-page: 7 year: 1989 end-page: 18 ident: b0125 article-title: Rank, decomposition, and uniqueness for 3-way and publication-title: Multiway Data Analysis – year: 2004 ident: b0205 article-title: Multi-way Analysis: Applications in the Chemical Sciences – reference: T.G. Kolda, Multilinear operators for higher-order decompositions, Tech. Report SAND2006-2081, Sandia National Laboratories, 2006. – reference: A. Stegeman, P. Comon, Subtracting a best rank-1 approximation may increase tensor rank, arXiv e-prints (2009). – volume: 48 start-page: 2377 year: 2000 end-page: 2388 ident: b0195 article-title: Parallel factor analysis in sensor array processing publication-title: IEEE Trans. Signal Process. – reference: M. Vasilescu, D. Terzopoulos, Multilinear image analysis for face recognition, in: Proceedings of the International Conference on Pattern Recognition, ICPR 2002, vol. 2, Quebec City, Canada, 2002, pp. 511–514. – volume: 23 start-page: 534 year: 2001 end-page: 550 ident: b0235 article-title: Rank-one approximation to high order tensors publication-title: SIAM J. Matrix Anal. Appl. – volume: 22 start-page: 1035 year: 2004 end-page: 1045 ident: b0155 article-title: Decomposing EEG data into space–time–frequency components using parallel factor analysis publication-title: NeuroImage – reference: tensor, Linear and Multilinear Algebra, submitted for publication. – ident: 10.1016/j.laa.2010.09.020_b0145 – volume: 433 start-page: 1241 year: 2010 ident: 10.1016/j.laa.2010.09.020_b0025 article-title: Third-order tensors as linear operators on a space of matrices publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2010.05.025 – volume: 38 start-page: 427 year: 1996 ident: 10.1016/j.laa.2010.09.020_b0040 article-title: Conjugate gradient methods for Toeplitz systems publication-title: SIAM Rev. doi: 10.1137/S0036144594276474 – ident: 10.1016/j.laa.2010.09.020_b0055 – ident: 10.1016/j.laa.2010.09.020_b0220 doi: 10.1007/3-540-47969-4_30 – volume: 32 start-page: 635 year: 2006 ident: 10.1016/j.laa.2010.09.020_b0010 article-title: Algorithm 862: MATLAB tensor classes for fast algorithm prototyping publication-title: ACM Trans. Math. Software doi: 10.1145/1186785.1186794 – ident: 10.1016/j.laa.2010.09.020_b0210 doi: 10.1016/j.laa.2010.06.027 – ident: 10.1016/j.laa.2010.09.020_b0225 doi: 10.1109/ICPR.2002.1048350 – volume: 22 start-page: 1035 year: 2004 ident: 10.1016/j.laa.2010.09.020_b0155 article-title: Decomposing EEG data into space–time–frequency components using parallel factor analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.03.039 – ident: 10.1016/j.laa.2010.09.020_b0005 doi: 10.1007/11427995_21 – volume: 56 start-page: 631 year: 1991 ident: 10.1016/j.laa.2010.09.020_b0020 article-title: Kruskal’s polynomial for 2×2×2 arrays and a generalization to 2×n×n arrays publication-title: Psychometrika doi: 10.1007/BF02294495 – volume: 22 start-page: 1023 year: 2004 ident: 10.1016/j.laa.2010.09.020_b0150 article-title: Concurrent EEG/FMRI analysis by multiway partial least squares publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.03.038 – volume: 11 start-page: 393 year: 1997 ident: 10.1016/j.laa.2010.09.020_b0030 article-title: A fast non-negativity-constrained least squares algorithm publication-title: J. Chemom. doi: 10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L – start-page: 7 year: 1989 ident: 10.1016/j.laa.2010.09.020_b0125 article-title: Rank, decomposition, and uniqueness for 3-way and n-way arrays – volume: 21 start-page: 1324 year: 2000 ident: 10.1016/j.laa.2010.09.020_b0140 article-title: On the best rank-1 and rank-R1,…,RN approximation of higher-order tensors publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479898346995 – volume: 40 start-page: 993 year: 2007 ident: 10.1016/j.laa.2010.09.020_b0190 article-title: Handwritten digit classification using higher order singular value decomposition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2006.08.004 – ident: 10.1016/j.laa.2010.09.020_b0095 – volume: 25 start-page: 294 year: 2005 ident: 10.1016/j.laa.2010.09.020_b0015 article-title: Tensorial extensions of the independent component analysis for multisubject FMRI analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.10.043 – volume: 21 start-page: 1253 year: 2000 ident: 10.1016/j.laa.2010.09.020_b0130 article-title: A multilinear singular value decomposition publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479896305696 – volume: 31 start-page: 279 year: 1966 ident: 10.1016/j.laa.2010.09.020_b0215 article-title: Some mathematical notes on three-mode factor analysis publication-title: Psychometrika doi: 10.1007/BF02289464 – ident: 10.1016/j.laa.2010.09.020_b0230 doi: 10.1109/CVPR.2003.1211457 – year: 1983 ident: 10.1016/j.laa.2010.09.020_b0120 – volume: 36 start-page: 73 year: 2004 ident: 10.1016/j.laa.2010.09.020_b0165 article-title: Iterative methods for image deblurring: a matlab object oriented approach publication-title: Numer. Algorithms doi: 10.1023/B:NUMA.0000027762.08431.64 – volume: 51 start-page: 455 year: 2009 ident: 10.1016/j.laa.2010.09.020_b0110 article-title: Tensor decompositions and applications publication-title: SIAM Rev. doi: 10.1137/07070111X – start-page: 1 year: 2002 ident: 10.1016/j.laa.2010.09.020_b0045 article-title: Tensor decompositions – start-page: 31 year: 1989 ident: 10.1016/j.laa.2010.09.020_b0050 article-title: Orthogonal tensor decomposition of 3-way tables – volume: 23 start-page: 534 year: 2001 ident: 10.1016/j.laa.2010.09.020_b0235 article-title: Rank-one approximation to high order tensors publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479899352045 – ident: 10.1016/j.laa.2010.09.020_b0105 doi: 10.1109/ICDM.2005.77 – ident: 10.1016/j.laa.2010.09.020_b0115 doi: 10.2172/923081 – volume: 30 start-page: 939 year: 2008 ident: 10.1016/j.laa.2010.09.020_b0170 article-title: Tucker dimensionality reduction of three-dimensional arrays in linear time publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/060655894 – ident: 10.1016/j.laa.2010.09.020_b0075 – volume: 8 start-page: 443 year: 1979 ident: 10.1016/j.laa.2010.09.020_b0080 article-title: Optimal evaluation of pairs of bilinear forms publication-title: SIAM J. Comput. doi: 10.1137/0208037 – volume: 15 start-page: 604 year: 2006 ident: 10.1016/j.laa.2010.09.020_b0160 article-title: Kronecker product approximation for preconditioning in three-dimensional imaging applications publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.863112 – volume: 46 start-page: 41 year: 2006 ident: 10.1016/j.laa.2010.09.020_b0070 article-title: Exploiting residual information in the parameter choice for discrete ill-posed problems publication-title: BIT doi: 10.1007/s10543-006-0042-7 – year: 1996 ident: 10.1016/j.laa.2010.09.020_b0060 – start-page: 1 year: 1998 ident: 10.1016/j.laa.2010.09.020_b0135 article-title: From matrix to tensor: multilinear algebra and signal processing – volume: 8 start-page: 43 year: 1982 ident: 10.1016/j.laa.2010.09.020_b0180 article-title: LSQR: An algorithm for sparse linear equations and sparse least squares publication-title: ACM Trans. Math. Software doi: 10.1145/355984.355989 – volume: 30 start-page: 1084 year: 2008 ident: 10.1016/j.laa.2010.09.020_b0200 article-title: Tensor rank and the ill-posedness of the best low-rank approximation problem publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/06066518X – volume: 23 start-page: 863 year: 2001 ident: 10.1016/j.laa.2010.09.020_b0100 article-title: On the best rank-1 approximation of higher-order supersymmetric tensors publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479801387413 – volume: 14 start-page: 105 year: 2000 ident: 10.1016/j.laa.2010.09.020_b0085 article-title: Towards a standardized notation and terminology in multiway analysis publication-title: J. Chemom. doi: 10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I – volume: 14 start-page: 285 year: 2000 ident: 10.1016/j.laa.2010.09.020_b0175 article-title: Construction and analysis of degenerate parafac models publication-title: J. Chemom. doi: 10.1002/1099-128X(200005/06)14:3<285::AID-CEM584>3.0.CO;2-1 – volume: 48 start-page: 2377 year: 2000 ident: 10.1016/j.laa.2010.09.020_b0195 article-title: Parallel factor analysis in sensor array processing publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.852018 – volume: 35 start-page: 283 year: 1970 ident: 10.1016/j.laa.2010.09.020_b0035 article-title: Analysis of individual differences in multidimensional scaling via an n-way generalization of “eckart-young” decomposition publication-title: Psychometrika doi: 10.1007/BF02310791 – ident: 10.1016/j.laa.2010.09.020_b0065 – volume: 20 year: 1999 ident: 10.1016/j.laa.2010.09.020_b0090 article-title: Cauchy-like preconditioners for 2-dimensional ill-posed problems publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479897319532 – ident: 10.1016/j.laa.2010.09.020_b0185 doi: 10.1016/j.laa.2010.03.032 – year: 2004 ident: 10.1016/j.laa.2010.09.020_b0205 |
SSID | ssj0004702 |
Score | 2.5388262 |
Snippet | Operations with tensors, or multiway arrays, have become increasingly prevalent in recent years. Traditionally, tensors are represented or decomposed as a sum... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 641 |
SubjectTerms | Algebra Exact sciences and technology Linear and multilinear algebra, matrix theory Mathematics Multidimensional arrays Multilinear algebra Sciences and techniques of general use Singular value decomposition Tensor decomposition |
Title | Factorization strategies for third-order tensors |
URI | https://dx.doi.org/10.1016/j.laa.2010.09.020 |
Volume | 435 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IXjTG-DPiD7KDJ5NCt75t7RGJBDRwkoTb0nVtxBAgbF792223DiUxHDxu6duWr-3rW_u97yH0EDNlRTYlFgHXGDIGZkqBwMAjLSBKpa_tPuR4Eg2n8DILZw3Ur3NhLK3S-f7Kp5fe2t3pOjS76_nc5viWYnqhXyZGU_vfDhDbUd75-qF5QEycYjhg27o-2Sw5XgshHLuLd4gt-f332nS8FrlBTFelLn6tP4NTdOICR69XfdsZaqjlOToab1VX8wtEBmXxHJdZ6eVFLQPhmcjUK97nmwyXUpuepa2vNvklmg6e3_pD7CoiYEk5LbCKiAYWZJRGLIZUhGlklh4exSZq0AGV2mc6kEQQamXplVa-5oHkIdEKgkxQeoWay9VSXSNPQxoyIoAobuYxVcLYchYKFgeZ1KlsIVJjkUgnF26rViySmhf2kRj4EgtfQnhi4Guhx63JutLK2NcYaoCTnQ5PjC_fZ9be6Yzti0wkEptgj9_877m36LDeLSb-HWoWm091b8KNIm2X46mNDnqj1-HEXI1mT99QadNK |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV27TsMwFLUQDIAQ4imeJQMsSCmO4zw8MCCgKvQxtVI34zi2KEKlaoIQCz_FD3KdOIVKqAMSaxQn0bFz7o1z7rkInUaxMiab0hWEaZemMYVXigqXslALGibS02YfstMNm316PwgGC-izqoUxskrL_SWnF2xtj1xYNC_Gw6Gp8S3M9AKvKIz2sVVWttT7G3y3ZZd3NzDJZ4Q0bnvXTde2FnClz_zcVSHWNCap74dxRBMRJCFwOAsjCL-a-FJ7sSYSC-wbf3ellacZkSzAWlGSCrMLCry_RIEuTNuE-se3roRG2FqUU9c8XvUrtRCVPQth5WSsjk2P8d-D4dpYZDBFuuyt8SPgNTbQus1UnasSjE20oEZbaLUztXnNthFuFN16bCmnk-WV74QDqbCTPw4nqVt4ezpGJ_8yyXZQ_19w2kWLo5eR2kOOpkkQY0GxYkAcvhIwlsWBiCOSSp3IfYQrLLi0_uSmTcYzr4RoTxzg4wY-jhkH-PbR-XTIuDTnmHcyrQDmMyuMQ_CYN6w2MxnTG0HqE0F2yQ7-dt0TtNzsddq8fddtHaKVaqsae0doMZ-8qmPIdfKkVqwtBz3892L-AgcIDJE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Factorization+strategies+for+third-order+tensors&rft.jtitle=Linear+algebra+and+its+applications&rft.au=KILMER%2C+Misha+E&rft.au=MARTIN%2C+Carla+D&rft.date=2011-08-01&rft.pub=Elsevier&rft.issn=0024-3795&rft.volume=435&rft.issue=3&rft.spage=641&rft.epage=658&rft_id=info:doi/10.1016%2Fj.laa.2010.09.020&rft.externalDBID=n%2Fa&rft.externalDocID=24178399 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon |