Factorization strategies for third-order tensors

Operations with tensors, or multiway arrays, have become increasingly prevalent in recent years. Traditionally, tensors are represented or decomposed as a sum of rank-1 outer products using either the CANDECOMP/PARAFAC (CP) or the Tucker models, or some variation thereof. Such decompositions are mot...

Full description

Saved in:
Bibliographic Details
Published inLinear algebra and its applications Vol. 435; no. 3; pp. 641 - 658
Main Authors Kilmer, Misha E., Martin, Carla D.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.08.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Operations with tensors, or multiway arrays, have become increasingly prevalent in recent years. Traditionally, tensors are represented or decomposed as a sum of rank-1 outer products using either the CANDECOMP/PARAFAC (CP) or the Tucker models, or some variation thereof. Such decompositions are motivated by specific applications where the goal is to find an approximate such representation for a given multiway array. The specifics of the approximate representation (such as how many terms to use in the sum, orthogonality constraints, etc.) depend on the application. In this paper, we explore an alternate representation of tensors which shows promise with respect to the tensor approximation problem. Reminiscent of matrix factorizations, we present a new factorization of a tensor as a product of tensors. To derive the new factorization, we define a closed multiplication operation between tensors. A major motivation for considering this new type of tensor multiplication is to devise new types of factorizations for tensors which can then be used in applications. Specifically, this new multiplication allows us to introduce concepts such as tensor transpose, inverse, and identity, which lead to the notion of an orthogonal tensor. The multiplication also gives rise to a linear operator, and the null space of the resulting operator is identified. We extend the concept of outer products of vectors to outer products of matrices. All derivations are presented for third-order tensors. However, they can be easily extended to the order- p ( p > 3 ) case. We conclude with an application in image deblurring.
AbstractList Operations with tensors, or multiway arrays, have become increasingly prevalent in recent years. Traditionally, tensors are represented or decomposed as a sum of rank-1 outer products using either the CANDECOMP/PARAFAC (CP) or the Tucker models, or some variation thereof. Such decompositions are motivated by specific applications where the goal is to find an approximate such representation for a given multiway array. The specifics of the approximate representation (such as how many terms to use in the sum, orthogonality constraints, etc.) depend on the application. In this paper, we explore an alternate representation of tensors which shows promise with respect to the tensor approximation problem. Reminiscent of matrix factorizations, we present a new factorization of a tensor as a product of tensors. To derive the new factorization, we define a closed multiplication operation between tensors. A major motivation for considering this new type of tensor multiplication is to devise new types of factorizations for tensors which can then be used in applications. Specifically, this new multiplication allows us to introduce concepts such as tensor transpose, inverse, and identity, which lead to the notion of an orthogonal tensor. The multiplication also gives rise to a linear operator, and the null space of the resulting operator is identified. We extend the concept of outer products of vectors to outer products of matrices. All derivations are presented for third-order tensors. However, they can be easily extended to the order- p ( p > 3 ) case. We conclude with an application in image deblurring.
Author Kilmer, Misha E.
Martin, Carla D.
Author_xml – sequence: 1
  givenname: Misha E.
  surname: Kilmer
  fullname: Kilmer, Misha E.
  email: misha.kilmer@tufts.edu
  organization: Mathematics, Tufts University, 113 Bromfield-Pearson Bldg., Medford, MA 02155, United States
– sequence: 2
  givenname: Carla D.
  surname: Martin
  fullname: Martin, Carla D.
  email: carlam@math.jmu.edu
  organization: Mathematics and Statistics, James Madison University, 112 Roop Hall, MSC 1911, Harrisonburg, VA 22807, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24178399$$DView record in Pascal Francis
BookMark eNp9kLFOwzAQhj0UibbwAGxZGBPOdhLHYkIVpUiVWGC2XOcMjkJc2RYSPD0uRQwMne5O-r-T_m9BZpOfkJArChUF2t4M1ah1xSDfICtgMCNzAFaXXMjmnCxiHACgFsDmBNbaJB_cl07OT0VMQSd8dRgL60OR3lzoSx96zDtO0Yd4Qc6sHiNe_s4leVnfP6825fbp4XF1ty0NlzyV2IKtO9Zz3nai3ulm1zLKZCt401jGjaWdZQY0cAGcokVqJTOyAYs16zXnS3J9_LvX0ejRBj0ZF9U-uHcdPhWrqei4lDlHjzkTfIwB7V-EgjroUIPKOtRBhwKpso7MiH-McelHQK7vxpPk7ZHEXP3DYVDROJwM9i6gSar37gT9Dc3TfQg
CODEN LAAPAW
CitedBy_id crossref_primary_10_1016_j_knosys_2023_110812
crossref_primary_10_1109_TPAMI_2024_3429498
crossref_primary_10_1109_JBHI_2023_3299274
crossref_primary_10_1088_1742_6596_2722_1_012011
crossref_primary_10_1016_j_cam_2022_114086
crossref_primary_10_1109_TCYB_2022_3233108
crossref_primary_10_1016_j_mri_2025_110337
crossref_primary_10_1137_110842570
crossref_primary_10_1080_01630563_2023_2192593
crossref_primary_10_1007_s40314_022_01770_0
crossref_primary_10_1007_s10489_021_02833_1
crossref_primary_10_1016_j_sigpro_2021_108060
crossref_primary_10_1109_TGRS_2020_2995573
crossref_primary_10_1109_JIOT_2024_3401217
crossref_primary_10_23919_cje_2022_00_180
crossref_primary_10_1109_TGRS_2020_3022069
crossref_primary_10_1016_j_apm_2023_02_012
crossref_primary_10_1109_TNNLS_2023_3280086
crossref_primary_10_1142_S0219720022500020
crossref_primary_10_1007_s10444_024_10117_8
crossref_primary_10_1049_ipr2_12049
crossref_primary_10_12677_AAM_2022_1111809
crossref_primary_10_1109_TNNLS_2018_2872583
crossref_primary_10_1109_TGRS_2025_3538632
crossref_primary_10_1109_TIP_2023_3247165
crossref_primary_10_1109_TGRS_2024_3368099
crossref_primary_10_3390_app15073453
crossref_primary_10_1109_LCSYS_2025_3532470
crossref_primary_10_1109_TPAMI_2020_2986773
crossref_primary_10_1007_s10589_020_00167_1
crossref_primary_10_1109_LGRS_2019_2902629
crossref_primary_10_3390_rs12142264
crossref_primary_10_1137_23M1625998
crossref_primary_10_1007_s10489_023_04744_9
crossref_primary_10_1007_s11128_021_03131_y
crossref_primary_10_1016_j_aml_2021_107597
crossref_primary_10_3233_JIFS_212316
crossref_primary_10_12677_mos_2024_134378
crossref_primary_10_1007_s10543_023_00990_y
crossref_primary_10_1109_LGRS_2024_3425479
crossref_primary_10_1007_s11263_023_01960_1
crossref_primary_10_1016_j_laa_2024_04_015
crossref_primary_10_1109_TSP_2022_3201330
crossref_primary_10_1109_TNNLS_2022_3152252
crossref_primary_10_1007_s00138_023_01455_6
crossref_primary_10_1007_s10915_024_02637_8
crossref_primary_10_1109_TCSVT_2023_3239376
crossref_primary_10_1109_JIOT_2024_3378202
crossref_primary_10_1016_j_cam_2023_115439
crossref_primary_10_1007_s10851_024_01188_9
crossref_primary_10_1109_TGRS_2017_2786718
crossref_primary_10_1145_3696669
crossref_primary_10_1109_TGRS_2023_3347420
crossref_primary_10_1016_j_ins_2022_07_049
crossref_primary_10_12677_AAM_2021_1010345
crossref_primary_10_1109_TMM_2019_2952984
crossref_primary_10_1109_ACCESS_2019_2960078
crossref_primary_10_1109_TGRS_2020_3045169
crossref_primary_10_1016_j_acha_2021_05_002
crossref_primary_10_1145_3582574
crossref_primary_10_1016_j_neucom_2024_129253
crossref_primary_10_1016_j_patcog_2023_109926
crossref_primary_10_1109_TETCI_2024_3353576
crossref_primary_10_1109_TCSVT_2024_3379291
crossref_primary_10_1109_TGRS_2019_2927764
crossref_primary_10_1109_TIP_2018_2877937
crossref_primary_10_1109_TGRS_2024_3485595
crossref_primary_10_3390_electronics14020238
crossref_primary_10_1109_TIP_2015_2403235
crossref_primary_10_1016_j_neucom_2020_01_009
crossref_primary_10_1007_s40314_025_03089_y
crossref_primary_10_1109_TKDE_2019_2937027
crossref_primary_10_1007_s10957_023_02287_0
crossref_primary_10_1016_j_jmaa_2023_127541
crossref_primary_10_1109_ACCESS_2020_3027029
crossref_primary_10_1016_j_apnum_2023_07_011
crossref_primary_10_1016_j_image_2018_11_007
crossref_primary_10_1088_1361_6420_adb8c6
crossref_primary_10_1016_j_neucom_2024_129266
crossref_primary_10_1109_TGRS_2019_2926440
crossref_primary_10_1109_TSP_2016_2612171
crossref_primary_10_1007_s10915_022_01841_8
crossref_primary_10_3390_s19235299
crossref_primary_10_1016_j_apnum_2022_06_010
crossref_primary_10_1109_LSP_2020_3030212
crossref_primary_10_1016_j_apnum_2021_04_007
crossref_primary_10_1049_ipr2_13184
crossref_primary_10_1109_TGRS_2020_3007945
crossref_primary_10_1016_j_engappai_2023_106209
crossref_primary_10_1109_TCSVT_2024_3375997
crossref_primary_10_1016_j_eswa_2023_121518
crossref_primary_10_1109_TCYB_2021_3108847
crossref_primary_10_1145_3649138
crossref_primary_10_1137_23M1560847
crossref_primary_10_1073_pnas_2015851118
crossref_primary_10_1109_JIOT_2021_3116505
crossref_primary_10_1088_1361_6420_ac8ac5
crossref_primary_10_1016_j_compeleceng_2022_108180
crossref_primary_10_1016_j_neucom_2024_129036
crossref_primary_10_1016_j_patcog_2024_111140
crossref_primary_10_1109_LSP_2022_3169044
crossref_primary_10_1109_TMI_2017_2778230
crossref_primary_10_2298_FIL2218403L
crossref_primary_10_1007_s13042_023_01866_x
crossref_primary_10_1109_LRA_2022_3212665
crossref_primary_10_1109_TGRS_2023_3285269
crossref_primary_10_1109_TSP_2024_3504292
crossref_primary_10_1109_TPAMI_2020_3017672
crossref_primary_10_1016_j_sigpro_2019_107271
crossref_primary_10_1007_s10957_023_02234_z
crossref_primary_10_1007_s11075_022_01392_x
crossref_primary_10_1109_ACCESS_2023_3274837
crossref_primary_10_1109_TIP_2024_3378471
crossref_primary_10_1109_TNNLS_2023_3248156
crossref_primary_10_1016_j_ins_2023_02_012
crossref_primary_10_1016_j_patcog_2018_07_033
crossref_primary_10_1016_j_acha_2023_03_007
crossref_primary_10_1109_TIP_2023_3284673
crossref_primary_10_1109_TSIPN_2021_3105795
crossref_primary_10_12677_AIRR_2020_92008
crossref_primary_10_1109_LSP_2025_3540369
crossref_primary_10_3390_sym11121512
crossref_primary_10_1142_S0219691324500231
crossref_primary_10_1109_TIP_2020_3000349
crossref_primary_10_1109_ACCESS_2022_3186364
crossref_primary_10_1007_s10957_023_02169_5
crossref_primary_10_1016_j_neucom_2022_12_008
crossref_primary_10_1007_s40314_023_02427_2
crossref_primary_10_1109_TASE_2022_3163674
crossref_primary_10_1016_j_camwa_2017_04_017
crossref_primary_10_1016_j_neucom_2021_06_092
crossref_primary_10_1109_ACCESS_2018_2883727
crossref_primary_10_3390_rs12091520
crossref_primary_10_1016_j_image_2024_117152
crossref_primary_10_1016_j_knosys_2022_108590
crossref_primary_10_1016_j_apnum_2024_01_017
crossref_primary_10_1109_TGRS_2022_3172745
crossref_primary_10_1109_TNNLS_2024_3356228
crossref_primary_10_1109_JSTSP_2018_2879185
crossref_primary_10_1109_ACCESS_2024_3477319
crossref_primary_10_1137_110841229
crossref_primary_10_1109_TPDS_2019_2940192
crossref_primary_10_1016_j_knosys_2022_108468
crossref_primary_10_1364_AO_56_006094
crossref_primary_10_3390_rs15041021
crossref_primary_10_1109_LGRS_2024_3516363
crossref_primary_10_1109_TIP_2020_3023798
crossref_primary_10_3390_rs14092142
crossref_primary_10_1109_TIP_2022_3226406
crossref_primary_10_1109_TKDE_2024_3399707
crossref_primary_10_1016_j_eswa_2022_119245
crossref_primary_10_1007_s10489_023_04538_z
crossref_primary_10_1109_TPAMI_2023_3257407
crossref_primary_10_1007_s10589_020_00231_w
crossref_primary_10_1109_TCSVT_2024_3492814
crossref_primary_10_1109_JSTARS_2021_3136217
crossref_primary_10_1109_TGRS_2023_3234608
crossref_primary_10_1109_TGRS_2022_3204049
crossref_primary_10_12677_orf_2024_143262
crossref_primary_10_1016_j_heliyon_2023_e17735
crossref_primary_10_1109_TKDE_2022_3151861
crossref_primary_10_1007_s12539_021_00441_8
crossref_primary_10_1007_s10851_020_00946_9
crossref_primary_10_1080_01630563_2022_2056198
crossref_primary_10_1109_TGRS_2023_3243831
crossref_primary_10_1109_TIP_2022_3187562
crossref_primary_10_1016_j_patcog_2024_110253
crossref_primary_10_1007_s11042_019_08177_w
crossref_primary_10_1049_ipr2_12693
crossref_primary_10_1007_s42967_022_00186_1
crossref_primary_10_1016_j_elerap_2016_01_003
crossref_primary_10_1109_TITS_2024_3422214
crossref_primary_10_1109_TSP_2021_3085116
crossref_primary_10_1007_s11634_025_00628_7
crossref_primary_10_1109_TCI_2021_3130977
crossref_primary_10_1109_TMM_2020_3045259
crossref_primary_10_1109_TKDE_2022_3230964
crossref_primary_10_1109_TSP_2016_2639466
crossref_primary_10_1109_TGRS_2021_3075968
crossref_primary_10_1007_s11075_020_01013_5
crossref_primary_10_1007_s10589_023_00465_4
crossref_primary_10_1109_TGRS_2024_3493164
crossref_primary_10_1080_00207721_2021_1880665
crossref_primary_10_1109_TIT_2019_2959980
crossref_primary_10_1109_ACCESS_2020_2996303
crossref_primary_10_1360_SSI_2022_0013
crossref_primary_10_1007_s10915_020_01356_0
crossref_primary_10_1007_s10489_021_02710_x
crossref_primary_10_1016_j_compbiomed_2024_108034
crossref_primary_10_1109_TIP_2019_2907478
crossref_primary_10_1088_1361_6420_abd85b
crossref_primary_10_1109_JSTARS_2021_3083495
crossref_primary_10_1002_nla_2299
crossref_primary_10_1109_TNNLS_2021_3051650
crossref_primary_10_1002_nla_2179
crossref_primary_10_1137_24M1655093
crossref_primary_10_1016_j_knosys_2024_111917
crossref_primary_10_1007_s40314_022_02114_8
crossref_primary_10_1016_j_iot_2024_101114
crossref_primary_10_1109_TCI_2021_3126232
crossref_primary_10_1109_TNET_2020_3022757
crossref_primary_10_1109_TGRS_2024_3392215
crossref_primary_10_1137_15M1040128
crossref_primary_10_1007_s10489_024_05529_4
crossref_primary_10_1016_j_patcog_2019_107181
crossref_primary_10_1016_j_amc_2024_128627
crossref_primary_10_1016_j_neunet_2024_107111
crossref_primary_10_1109_TCYB_2019_2910151
crossref_primary_10_1109_TNNLS_2020_2984625
crossref_primary_10_1109_TNNLS_2021_3104837
crossref_primary_10_1016_j_jvcir_2020_102791
crossref_primary_10_1109_ACCESS_2021_3076786
crossref_primary_10_1016_j_ins_2022_10_026
crossref_primary_10_1109_TIP_2019_2893530
crossref_primary_10_1137_19M1306440
crossref_primary_10_1137_22M150071X
crossref_primary_10_1016_j_patcog_2024_110598
crossref_primary_10_1109_TIP_2025_3539472
crossref_primary_10_1016_j_ins_2021_03_025
crossref_primary_10_1016_j_cam_2025_116604
crossref_primary_10_1109_TIP_2022_3155949
crossref_primary_10_1109_JSEN_2023_3248285
crossref_primary_10_1016_j_displa_2022_102194
crossref_primary_10_1007_s10915_023_02411_2
crossref_primary_10_1109_TGRS_2023_3276414
crossref_primary_10_1002_nla_2288
crossref_primary_10_1109_TCI_2024_3384812
crossref_primary_10_1109_TR_2024_3361717
crossref_primary_10_3390_s23031706
crossref_primary_10_1016_j_neucom_2021_01_039
crossref_primary_10_3390_rs14246275
crossref_primary_10_1109_TMM_2024_3360689
crossref_primary_10_1002_nla_2291
crossref_primary_10_1002_nla_2290
crossref_primary_10_1137_23M1552115
crossref_primary_10_1007_s10915_021_01719_1
crossref_primary_10_1007_s11432_023_4095_y
crossref_primary_10_1109_ACCESS_2020_2972316
crossref_primary_10_1007_s11042_023_15018_4
crossref_primary_10_1109_TCSVT_2024_3492045
crossref_primary_10_1109_TGRS_2023_3321789
crossref_primary_10_1109_ACCESS_2018_2888499
crossref_primary_10_1088_1361_6420_ad847a
crossref_primary_10_1109_LGRS_2017_2686878
crossref_primary_10_1109_TCYB_2021_3139037
crossref_primary_10_1007_s42967_024_00381_2
crossref_primary_10_1007_s10915_022_02006_3
crossref_primary_10_1109_TGRS_2023_3341030
crossref_primary_10_1109_TGRS_2023_3347930
crossref_primary_10_3233_ICA_190614
crossref_primary_10_1109_TGRS_2024_3371545
crossref_primary_10_1016_j_sigpro_2025_109903
crossref_primary_10_1109_TNNLS_2022_3182541
crossref_primary_10_12677_PM_2023_138246
crossref_primary_10_1109_TGRS_2023_3346714
crossref_primary_10_1109_TNSE_2018_2865511
crossref_primary_10_1109_TNNLS_2019_2956153
crossref_primary_10_1007_s10957_024_02507_1
crossref_primary_10_1109_TSIPN_2023_3276687
crossref_primary_10_1016_j_knosys_2023_110510
crossref_primary_10_1007_s11075_025_02030_y
crossref_primary_10_1080_10106049_2022_2063400
crossref_primary_10_1109_TNET_2023_3268982
crossref_primary_10_1088_2399_6528_ac0d5f
crossref_primary_10_1049_iet_cvi_2018_5764
crossref_primary_10_1016_j_aml_2024_109198
crossref_primary_10_1109_LSP_2018_2849590
crossref_primary_10_1109_TETCI_2024_3409724
crossref_primary_10_1137_21M1398562
crossref_primary_10_1016_j_patrec_2018_12_012
crossref_primary_10_1016_j_patcog_2020_107441
crossref_primary_10_1109_TGRS_2019_2953069
crossref_primary_10_3390_math12010159
crossref_primary_10_1109_ACCESS_2019_2953878
crossref_primary_10_1016_j_patcog_2022_109067
crossref_primary_10_1016_j_sigpro_2024_109875
crossref_primary_10_1016_j_patcog_2019_107145
crossref_primary_10_1016_j_sigpro_2024_109514
crossref_primary_10_1109_TIP_2024_3385284
crossref_primary_10_1109_TNNLS_2018_2851444
crossref_primary_10_1007_s13042_023_01921_7
crossref_primary_10_1016_j_sigpro_2024_109510
crossref_primary_10_1109_TAI_2023_3293479
crossref_primary_10_1109_JSTARS_2018_2866815
crossref_primary_10_1109_TGRS_2023_3233945
crossref_primary_10_1109_TII_2021_3129526
crossref_primary_10_1109_TMM_2022_3193855
crossref_primary_10_1016_j_eswa_2025_126488
crossref_primary_10_1016_j_ymssp_2023_110761
crossref_primary_10_1007_s10543_021_00877_w
crossref_primary_10_1016_j_apm_2024_115744
crossref_primary_10_1007_s12190_021_01687_7
crossref_primary_10_1109_TCYB_2023_3265851
crossref_primary_10_1109_TSP_2021_3135695
crossref_primary_10_1007_s10915_022_02009_0
crossref_primary_10_1109_TPAMI_2023_3259640
crossref_primary_10_1016_j_sigpro_2024_109628
crossref_primary_10_1007_s10915_022_01956_y
crossref_primary_10_3390_fi13020036
crossref_primary_10_1007_s10957_022_02051_w
crossref_primary_10_1109_TIP_2021_3061908
crossref_primary_10_1016_j_cam_2020_112767
crossref_primary_10_1016_j_ins_2022_10_061
crossref_primary_10_1016_j_laa_2016_04_033
crossref_primary_10_1093_gji_ggac211
crossref_primary_10_1109_TCSVT_2019_2901311
crossref_primary_10_1016_j_sigpro_2023_109121
crossref_primary_10_1088_1361_6420_acc88a
crossref_primary_10_1109_LGRS_2022_3159341
crossref_primary_10_1109_TGRS_2020_3032168
crossref_primary_10_3390_rs16214018
crossref_primary_10_1109_ACCESS_2021_3051069
crossref_primary_10_1007_s10589_015_9769_x
crossref_primary_10_1016_j_patcog_2025_111600
crossref_primary_10_1016_j_eswa_2025_127118
crossref_primary_10_1016_j_cviu_2024_104007
crossref_primary_10_3390_math11071682
crossref_primary_10_1109_JSEN_2024_3486313
crossref_primary_10_1016_j_sigpro_2025_109935
crossref_primary_10_3934_ipi_2024044
crossref_primary_10_1002_mp_17501
crossref_primary_10_1109_TNNLS_2020_2979685
crossref_primary_10_3934_ipi_2024045
crossref_primary_10_3934_ipi_2025011
crossref_primary_10_1109_TBDATA_2023_3254156
crossref_primary_10_1137_23M158975X
crossref_primary_10_1002_nla_2489
crossref_primary_10_1016_j_aml_2024_109170
crossref_primary_10_1016_j_eswa_2024_124809
crossref_primary_10_1016_j_sigpro_2025_109933
crossref_primary_10_1007_s41095_020_0176_6
crossref_primary_10_1007_s00371_021_02220_4
crossref_primary_10_1016_j_apm_2021_02_032
crossref_primary_10_1016_j_neucom_2021_02_002
crossref_primary_10_1109_TGRS_2022_3176266
crossref_primary_10_1109_TPAMI_2019_2954874
crossref_primary_10_1109_LGRS_2023_3329936
crossref_primary_10_1007_s00006_021_01195_8
crossref_primary_10_1239_jap_1402578637
crossref_primary_10_1007_s13042_024_02224_1
crossref_primary_10_1109_TITS_2021_3098637
crossref_primary_10_1109_TSP_2019_2946022
crossref_primary_10_1007_s10589_021_00315_1
crossref_primary_10_1109_TGRS_2021_3091157
crossref_primary_10_1016_j_neunet_2020_10_010
crossref_primary_10_1016_j_iot_2024_101203
crossref_primary_10_1007_s10957_021_01947_3
crossref_primary_10_1109_ACCESS_2019_2940664
crossref_primary_10_1109_TITS_2022_3151925
crossref_primary_10_1016_j_knosys_2024_112902
crossref_primary_10_1007_s11042_023_15645_x
crossref_primary_10_1109_JETCAS_2021_3098454
crossref_primary_10_1109_TIP_2021_3068646
crossref_primary_10_1016_j_jvcir_2025_104406
crossref_primary_10_1016_j_sigpro_2024_109407
crossref_primary_10_1002_nla_2594
crossref_primary_10_1142_S0219691323500674
crossref_primary_10_1002_nla_2599
crossref_primary_10_1016_j_optlastec_2022_109020
crossref_primary_10_1007_s10915_024_02509_1
crossref_primary_10_1145_3587034
crossref_primary_10_1016_j_sigpro_2024_109400
crossref_primary_10_1109_TKDE_2022_3230874
crossref_primary_10_3390_math10234594
crossref_primary_10_1016_j_dsp_2023_103949
crossref_primary_10_1109_TIP_2024_3489272
crossref_primary_10_1109_TGRS_2021_3093582
crossref_primary_10_1109_TITS_2024_3524582
crossref_primary_10_1007_s10915_025_02801_8
crossref_primary_10_1109_JBHI_2022_3231908
crossref_primary_10_1109_TPAMI_2023_3341688
crossref_primary_10_1016_j_sigpro_2022_108901
crossref_primary_10_1007_s10915_021_01679_6
crossref_primary_10_3390_rs14236044
crossref_primary_10_1007_s40314_023_02487_4
crossref_primary_10_1002_nla_2464
crossref_primary_10_1016_j_sigpro_2023_109158
crossref_primary_10_1016_j_sigpro_2024_109799
crossref_primary_10_1109_LGRS_2022_3186877
crossref_primary_10_1109_TCYB_2022_3198932
crossref_primary_10_1109_TETCI_2023_3300522
crossref_primary_10_1007_s42967_022_00217_x
crossref_primary_10_3390_rs11040382
crossref_primary_10_1007_s11263_018_1086_2
crossref_primary_10_1137_19M1297026
crossref_primary_10_1002_nla_2470
crossref_primary_10_1016_j_sigpro_2023_109157
crossref_primary_10_2298_FIL2403939H
crossref_primary_10_1016_j_neucom_2022_01_010
crossref_primary_10_1109_TCSVT_2024_3413992
crossref_primary_10_1016_j_cam_2019_112680
crossref_primary_10_1109_TITS_2024_3375658
crossref_primary_10_1109_TSE_2021_3056139
crossref_primary_10_1007_s11265_022_01818_8
crossref_primary_10_1007_s40314_022_02107_7
crossref_primary_10_1016_j_apnum_2023_11_009
crossref_primary_10_1016_j_neunet_2023_01_037
crossref_primary_10_1016_j_knosys_2023_110262
crossref_primary_10_3389_fdata_2024_1363978
crossref_primary_10_1016_j_patcog_2023_110241
crossref_primary_10_1109_TSP_2024_3454115
crossref_primary_10_3389_fenrg_2024_1420449
crossref_primary_10_3390_rs13193829
crossref_primary_10_1155_2018_2835175
crossref_primary_10_1016_j_apm_2023_06_039
crossref_primary_10_1002_nla_70009
crossref_primary_10_1007_s11075_024_01982_x
crossref_primary_10_1016_j_neucom_2020_12_110
crossref_primary_10_1002_nla_2574
crossref_primary_10_1155_2022_3304677
crossref_primary_10_1109_TSP_2022_3164837
crossref_primary_10_1016_j_cam_2024_116018
crossref_primary_10_1016_j_dsp_2022_103741
crossref_primary_10_1016_j_ins_2021_02_028
crossref_primary_10_1109_TNNLS_2024_3371382
crossref_primary_10_3934_jimo_2020131
crossref_primary_10_1007_s10543_016_0607_z
crossref_primary_10_1088_1742_6596_2670_1_012026
crossref_primary_10_1002_nla_2580
crossref_primary_10_1016_j_neucom_2023_126359
crossref_primary_10_1103_PhysRevB_101_041301
crossref_primary_10_1109_TGRS_2022_3230051
crossref_primary_10_1109_TIP_2013_2253485
crossref_primary_10_1007_s11075_025_02011_1
crossref_primary_10_1007_s10092_023_00527_3
crossref_primary_10_3390_app15010322
crossref_primary_10_1016_j_neunet_2023_01_044
crossref_primary_10_1109_TBC_2024_3417342
crossref_primary_10_1007_s10915_025_02792_6
crossref_primary_10_1016_j_cam_2022_114866
crossref_primary_10_1109_ACCESS_2021_3085322
crossref_primary_10_1109_TIP_2024_3388969
crossref_primary_10_1109_LGRS_2024_3431683
crossref_primary_10_1155_2021_5535169
crossref_primary_10_1002_nla_2560
crossref_primary_10_1016_j_amc_2021_126342
crossref_primary_10_1109_TIP_2019_2941319
crossref_primary_10_1002_nla_2444
crossref_primary_10_1002_nla_70011
crossref_primary_10_1016_j_cam_2024_116048
crossref_primary_10_1016_j_cose_2023_103247
crossref_primary_10_1109_TIP_2014_2305840
crossref_primary_10_1007_s42967_022_00218_w
crossref_primary_10_1016_j_sigpro_2023_109014
crossref_primary_10_1109_TIP_2020_3031813
crossref_primary_10_1109_JSTARS_2021_3076793
crossref_primary_10_1109_TII_2024_3390389
crossref_primary_10_1142_S2010326322500381
crossref_primary_10_1109_TIP_2024_3420796
crossref_primary_10_1109_TPAMI_2022_3179556
crossref_primary_10_1002_stvr_1867
crossref_primary_10_1016_j_inffus_2024_102583
crossref_primary_10_1109_TGRS_2022_3223792
crossref_primary_10_1145_3701235
crossref_primary_10_1016_j_mlwa_2023_100479
crossref_primary_10_1109_TGRS_2020_3005199
crossref_primary_10_1109_TSP_2024_3524568
crossref_primary_10_1109_TAI_2022_3229297
crossref_primary_10_1109_TMM_2021_3106789
crossref_primary_10_1016_j_bspc_2022_103524
crossref_primary_10_1007_s10044_022_01082_3
crossref_primary_10_1007_s10092_024_00569_1
crossref_primary_10_1109_MNET_005_2200650
crossref_primary_10_1007_s13042_023_01935_1
crossref_primary_10_1016_j_apm_2024_01_020
crossref_primary_10_1016_j_neunet_2024_106529
crossref_primary_10_1109_ACCESS_2019_2934482
crossref_primary_10_1109_TSIPN_2023_3345142
crossref_primary_10_1190_geo2014_0467_1
crossref_primary_10_1007_s10957_024_02444_z
crossref_primary_10_1016_j_eswa_2023_120055
crossref_primary_10_1109_TNSE_2023_3253163
crossref_primary_10_1137_17M1159932
crossref_primary_10_12677_AAM_2018_78129
crossref_primary_10_1016_j_patcog_2023_109343
crossref_primary_10_3390_math12070982
crossref_primary_10_3788_LOP222077
crossref_primary_10_3390_math11132940
crossref_primary_10_1109_TSP_2021_3086363
crossref_primary_10_1016_j_patcog_2024_110619
crossref_primary_10_1002_nla_2544
crossref_primary_10_3390_electronics14040817
crossref_primary_10_3934_jimo_2021154
crossref_primary_10_1016_j_patcog_2024_110735
crossref_primary_10_1109_TCBB_2019_2943459
crossref_primary_10_1137_18M1202311
crossref_primary_10_3390_rs10071033
crossref_primary_10_1016_j_knosys_2023_111271
crossref_primary_10_1007_s00521_022_06927_w
crossref_primary_10_3390_axioms12100954
crossref_primary_10_1007_s13042_024_02096_5
crossref_primary_10_1109_TMM_2024_3398295
crossref_primary_10_1002_nla_2416
crossref_primary_10_1007_s10589_022_00439_y
crossref_primary_10_1109_LSP_2020_2983305
crossref_primary_10_1007_s10589_023_00545_5
crossref_primary_10_3390_electronics13030491
crossref_primary_10_3390_rs11080984
crossref_primary_10_1016_j_patcog_2024_110860
crossref_primary_10_1007_s10915_022_02005_4
crossref_primary_10_1002_nla_2530
crossref_primary_10_3390_app9071411
crossref_primary_10_1016_j_dsp_2024_104472
crossref_primary_10_1002_nla_2412
crossref_primary_10_1016_j_dsp_2024_104597
crossref_primary_10_12677_AAM_2024_131024
crossref_primary_10_1002_for_2735
crossref_primary_10_1088_1361_6420_ad40c9
crossref_primary_10_1016_j_knosys_2022_110198
crossref_primary_10_1016_j_ins_2019_06_061
crossref_primary_10_12677_aam_2025_141024
crossref_primary_10_1109_TCYB_2018_2869789
crossref_primary_10_1109_TMM_2023_3307239
crossref_primary_10_1109_TSP_2022_3229642
crossref_primary_10_3390_axioms12100929
crossref_primary_10_3390_electronics12194083
crossref_primary_10_1002_nla_2403
crossref_primary_10_1007_s10444_023_10036_0
crossref_primary_10_1007_s10915_025_02794_4
crossref_primary_10_1109_TCI_2021_3054249
crossref_primary_10_1109_TSP_2022_3183466
crossref_primary_10_1016_j_patcog_2021_108311
crossref_primary_10_1142_S0219530520400084
crossref_primary_10_1017_S0021900200011360
crossref_primary_10_1080_00401706_2023_2200541
crossref_primary_10_1137_20M1318006
crossref_primary_10_1109_JSTARS_2017_2714338
crossref_primary_10_3390_math8040628
crossref_primary_10_1109_JSTARS_2023_3324732
crossref_primary_10_1016_j_sigpro_2023_109176
crossref_primary_10_1007_s40314_020_01328_y
crossref_primary_10_3389_fgene_2023_1271311
crossref_primary_10_1109_ACCESS_2021_3125069
crossref_primary_10_3934_era_2024213
crossref_primary_10_1016_j_eswa_2020_113913
crossref_primary_10_1016_j_inffus_2023_102086
crossref_primary_10_1016_j_media_2020_101853
crossref_primary_10_1109_TCYB_2023_3263175
crossref_primary_10_1007_s10915_024_02653_8
crossref_primary_10_1080_03081087_2022_2032567
crossref_primary_10_1016_j_patcog_2024_110605
crossref_primary_10_1016_j_apm_2024_115921
crossref_primary_10_12677_AAM_2019_810186
crossref_primary_10_1007_s10489_023_04477_9
crossref_primary_10_1016_j_sigpro_2022_108910
crossref_primary_10_1109_ACCESS_2020_3024635
crossref_primary_10_1109_TIP_2017_2762595
crossref_primary_10_1007_s00521_023_08279_5
crossref_primary_10_1016_j_knosys_2022_110094
crossref_primary_10_1109_TPAMI_2019_2891760
crossref_primary_10_1007_s10915_022_01937_1
crossref_primary_10_1007_s10489_022_03735_6
crossref_primary_10_1007_s10489_024_05899_9
crossref_primary_10_1007_s10851_019_00933_9
crossref_primary_10_1016_j_sigpro_2024_109480
crossref_primary_10_1016_j_cam_2022_114488
crossref_primary_10_1109_ACCESS_2022_3187112
crossref_primary_10_1109_TGRS_2021_3126608
crossref_primary_10_1109_TCSVT_2019_2892848
crossref_primary_10_1109_TCSVT_2024_3401134
crossref_primary_10_1049_sil2_12035
crossref_primary_10_1016_j_neucom_2021_08_125
crossref_primary_10_1016_j_patcog_2023_109545
crossref_primary_10_1109_TITS_2023_3243087
crossref_primary_10_1016_j_neucom_2014_05_018
crossref_primary_10_1007_s40314_022_01811_8
crossref_primary_10_1109_TGRS_2018_2833473
crossref_primary_10_1190_geo2022_0016_1
crossref_primary_10_1109_TIP_2023_3310331
crossref_primary_10_1016_j_neucom_2024_127579
crossref_primary_10_1007_s10044_024_01291_y
crossref_primary_10_1109_TGRS_2024_3422404
crossref_primary_10_1007_s10994_021_05987_8
crossref_primary_10_1016_j_bspc_2024_106848
crossref_primary_10_1016_j_optlastec_2025_112486
crossref_primary_10_2139_ssrn_4133647
crossref_primary_10_1109_TNNLS_2023_3236641
crossref_primary_10_1109_TPAMI_2021_3059299
crossref_primary_10_1109_TAES_2022_3147437
crossref_primary_10_1007_s40305_023_00522_z
crossref_primary_10_1109_TIT_2022_3198725
crossref_primary_10_1016_j_inffus_2023_102222
crossref_primary_10_1109_TCYB_2021_3053057
crossref_primary_10_1016_j_ins_2023_120002
crossref_primary_10_1007_s10915_023_02364_6
crossref_primary_10_1016_j_neucom_2020_03_018
crossref_primary_10_1109_TCSVT_2023_3316279
crossref_primary_10_1109_TSP_2024_3427136
crossref_primary_10_1109_TCYB_2022_3175771
crossref_primary_10_1109_LSP_2023_3236585
crossref_primary_10_1007_s10915_024_02502_8
crossref_primary_10_1007_s42967_019_00055_4
crossref_primary_10_1109_LCOMM_2021_3097158
crossref_primary_10_1214_22_EJS2004
crossref_primary_10_1137_22M1473236
crossref_primary_10_1109_TNNLS_2023_3236415
crossref_primary_10_1016_j_neunet_2024_106944
crossref_primary_10_3390_app14104239
crossref_primary_10_1016_j_neunet_2024_106947
crossref_primary_10_1007_s42967_024_00409_7
crossref_primary_10_1016_j_apm_2025_116064
crossref_primary_10_1109_TCI_2019_2904207
crossref_primary_10_1109_TIP_2015_2397314
crossref_primary_10_1016_j_aml_2024_109318
crossref_primary_10_1016_j_patrec_2023_08_016
crossref_primary_10_1109_TNNLS_2021_3083931
crossref_primary_10_1109_TIP_2022_3171411
crossref_primary_10_1049_sil2_12017
crossref_primary_10_3390_rs14092234
crossref_primary_10_1002_nla_2608
crossref_primary_10_1080_03081087_2021_1999381
crossref_primary_10_1016_j_jvcir_2023_103960
crossref_primary_10_1109_JSTARS_2022_3228942
crossref_primary_10_3390_math9111249
crossref_primary_10_1090_mcom_4025
crossref_primary_10_1007_s42967_021_00172_z
crossref_primary_10_1016_j_neunet_2023_06_038
crossref_primary_10_1016_j_infrared_2019_03_009
crossref_primary_10_1109_TGRS_2023_3279256
crossref_primary_10_1007_s43034_022_00183_8
crossref_primary_10_1016_j_sigpro_2021_108240
crossref_primary_10_1109_TNNLS_2018_2860964
crossref_primary_10_1007_s00138_022_01350_6
crossref_primary_10_1007_s40314_024_03068_9
crossref_primary_10_1109_JSTARS_2025_3525743
crossref_primary_10_1016_j_apnum_2024_04_016
crossref_primary_10_1109_TGRS_2023_3270667
crossref_primary_10_1109_TKDE_2024_3469782
crossref_primary_10_1007_s42967_024_00461_3
crossref_primary_10_1137_110837711
crossref_primary_10_3390_app142411895
crossref_primary_10_1109_JSTARS_2024_3491221
crossref_primary_10_1016_j_future_2017_10_013
crossref_primary_10_1109_TKDE_2022_3185126
crossref_primary_10_1109_TCSS_2019_2959948
crossref_primary_10_1007_s11063_023_11361_7
crossref_primary_10_1109_ACCESS_2023_3297630
crossref_primary_10_1109_TNSE_2024_3514171
crossref_primary_10_1109_TNNLS_2024_3373384
crossref_primary_10_3390_electronics13091745
crossref_primary_10_4169_amer_math_monthly_119_10_838
crossref_primary_10_1016_j_neucom_2019_11_014
crossref_primary_10_1007_s12190_023_01909_0
crossref_primary_10_1109_ACCESS_2020_3016777
crossref_primary_10_1109_ACCESS_2020_3015975
crossref_primary_10_1007_s12190_024_02351_6
crossref_primary_10_1109_TGRS_2024_3457673
crossref_primary_10_1007_s10898_022_01148_w
crossref_primary_10_1016_j_jmaa_2024_128864
crossref_primary_10_3390_rs15153862
crossref_primary_10_1007_s40314_024_03031_8
crossref_primary_10_1109_TMM_2021_3110098
crossref_primary_10_1016_j_inffus_2022_11_026
crossref_primary_10_1016_j_jmva_2013_09_007
crossref_primary_10_1109_TIP_2022_3220949
crossref_primary_10_1142_S0218001424550048
crossref_primary_10_1016_j_enganabound_2022_02_019
crossref_primary_10_1109_ACCESS_2018_2830975
crossref_primary_10_1109_JSTARS_2021_3139594
crossref_primary_10_1109_TGRS_2023_3237865
crossref_primary_10_1117_1_JRS_11_035019
crossref_primary_10_3934_math_20231371
crossref_primary_10_1016_j_patcog_2023_109624
crossref_primary_10_1109_JSTSP_2018_2873148
crossref_primary_10_3390_s24020327
crossref_primary_10_1007_s11075_023_01684_w
crossref_primary_10_1016_j_neunet_2023_10_031
crossref_primary_10_1109_JSTSP_2018_2873142
crossref_primary_10_1016_j_mri_2023_09_003
crossref_primary_10_1007_s10957_023_02177_5
crossref_primary_10_32604_cmc_2021_016804
crossref_primary_10_1002_nla_1845
crossref_primary_10_1049_iet_ipr_2018_6594
crossref_primary_10_1109_LGRS_2023_3251861
crossref_primary_10_1109_TPAMI_2021_3063527
crossref_primary_10_1109_TNNLS_2023_3306006
crossref_primary_10_1109_ACCESS_2019_2942195
crossref_primary_10_3390_electronics11193250
crossref_primary_10_1016_j_cam_2024_116297
crossref_primary_10_1016_j_neucom_2021_06_020
crossref_primary_10_1109_ACCESS_2019_2956115
crossref_primary_10_1109_TGRS_2025_3544811
crossref_primary_10_12677_mos_2024_133362
crossref_primary_10_1007_s10543_023_00964_0
crossref_primary_10_1109_TCSVT_2024_3442295
crossref_primary_10_1016_j_laa_2019_12_035
crossref_primary_10_1109_TITS_2024_3447453
crossref_primary_10_1109_TIT_2022_3142846
crossref_primary_10_1137_21M1429539
crossref_primary_10_1016_j_amc_2021_126224
crossref_primary_10_1016_j_laa_2020_11_004
crossref_primary_10_1190_geo2020_0539_1
crossref_primary_10_1016_j_patcog_2021_108150
crossref_primary_10_1080_01630563_2022_2087676
crossref_primary_10_1016_j_apm_2025_116002
crossref_primary_10_1109_TPAMI_2025_3526790
crossref_primary_10_1007_s40314_020_01225_4
crossref_primary_10_1007_s10915_024_02623_0
crossref_primary_10_1109_TCBB_2022_3229678
crossref_primary_10_1109_TSP_2024_3424272
crossref_primary_10_1109_TGRS_2023_3279694
crossref_primary_10_1007_s10915_023_02308_0
crossref_primary_10_1080_00207160_2022_2118525
crossref_primary_10_1371_journal_pone_0312723
crossref_primary_10_1007_s10915_024_02624_z
crossref_primary_10_1109_TPAMI_2019_2923240
crossref_primary_10_1016_j_media_2021_102152
crossref_primary_10_1016_j_dsp_2024_104534
crossref_primary_10_1109_TMM_2019_2915036
crossref_primary_10_1016_j_neucom_2023_02_052
crossref_primary_10_1137_23M157363X
crossref_primary_10_1007_s10543_023_01004_7
crossref_primary_10_1007_s11075_023_01607_9
crossref_primary_10_1080_03081087_2021_1992335
crossref_primary_10_1109_TCYB_2023_3234356
crossref_primary_10_1016_j_neunet_2020_08_019
crossref_primary_10_1137_23M1620326
crossref_primary_10_1109_TNNLS_2022_3181097
crossref_primary_10_1109_TCE_2024_3376397
crossref_primary_10_1007_s11227_024_06791_6
crossref_primary_10_1016_j_laa_2015_07_021
crossref_primary_10_1016_j_neunet_2024_106849
crossref_primary_10_1109_TGRS_2023_3329639
crossref_primary_10_1016_j_aml_2023_108587
crossref_primary_10_1016_j_neunet_2022_03_038
crossref_primary_10_1109_TCSS_2023_3331366
crossref_primary_10_1109_TIP_2023_3282072
crossref_primary_10_1155_2023_8073365
crossref_primary_10_1007_s10915_021_01437_8
Cites_doi 10.1016/j.laa.2010.05.025
10.1137/S0036144594276474
10.1007/3-540-47969-4_30
10.1145/1186785.1186794
10.1016/j.laa.2010.06.027
10.1109/ICPR.2002.1048350
10.1016/j.neuroimage.2004.03.039
10.1007/11427995_21
10.1007/BF02294495
10.1016/j.neuroimage.2004.03.038
10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
10.1137/S0895479898346995
10.1016/j.patcog.2006.08.004
10.1016/j.neuroimage.2004.10.043
10.1137/S0895479896305696
10.1007/BF02289464
10.1109/CVPR.2003.1211457
10.1023/B:NUMA.0000027762.08431.64
10.1137/07070111X
10.1137/S0895479899352045
10.1109/ICDM.2005.77
10.2172/923081
10.1137/060655894
10.1137/0208037
10.1109/TIP.2005.863112
10.1007/s10543-006-0042-7
10.1145/355984.355989
10.1137/06066518X
10.1137/S0895479801387413
10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I
10.1002/1099-128X(200005/06)14:3<285::AID-CEM584>3.0.CO;2-1
10.1109/78.852018
10.1007/BF02310791
10.1137/S0895479897319532
10.1016/j.laa.2010.03.032
ContentType Journal Article
Copyright 2010 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.laa.2010.09.020
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 658
ExternalDocumentID 24178399
10_1016_j_laa_2010_09_020
S0024379510004830
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXKI
AAXUO
ABAOU
ABDPE
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADVLN
AEBSH
AEKER
AENEX
AEXQZ
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
T9H
TN5
TWZ
WH7
WUQ
XPP
YQT
ZMT
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AETEA
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
ID FETCH-LOGICAL-c393t-e60f482d336874ba5b6212967355f23cf18f2c0a037031efe1f92c950fe42da33
IEDL.DBID .~1
ISSN 0024-3795
IngestDate Mon Jul 21 09:13:21 EDT 2025
Thu Apr 24 22:58:44 EDT 2025
Tue Jul 01 05:27:19 EDT 2025
Tue Dec 03 03:44:25 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Tensor decomposition
Multidimensional arrays
15A69
65F30
Multilinear algebra
Singular value decomposition
Constraint
Tensor product
Third order
Matrix factorization
Matrix decomposition
Orthogonality
Modeling
Linear operator
Algebra
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-e60f482d336874ba5b6212967355f23cf18f2c0a037031efe1f92c950fe42da33
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0024379510004830
PageCount 18
ParticipantIDs pascalfrancis_primary_24178399
crossref_primary_10_1016_j_laa_2010_09_020
crossref_citationtrail_10_1016_j_laa_2010_09_020
elsevier_sciencedirect_doi_10_1016_j_laa_2010_09_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-08-01
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Linear algebra and its applications
PublicationYear 2011
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Hansen, Kilmer, Kjeldsen (b0070) 2006; 46
Oseledets, Savostianov, Tyrtyshnikov (b0170) 2008; 30
E. Acar, S. Çamtepe, M. Krishnamoorthy, B. Yener, Modeling and multiway analysis of chatroom tensors, in: Proceedings of the IEEE International Conference on Intelligence and Security Informatics, EMBS 2007, Lecture Notes in Computer Science, vol. 3495, 2005, pp. 256–268.
Nagy, Kilmer (b0160) 2006; 15
Comon (b0045) 2002
Paatero (b0175) 2000; 14
M. Vasilescu, D. Terzopoulos, Multilinear subspace analysis of image ensembles, in: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2003, 2003, pp. 93–99.
Kruskal (b0125) 1989
Lathauwer, Moor, Vandewalle (b0130) 2000; 21
Ja (b0080) 1979; 8
Silva, Kim (b0200) 2008; 30
M. Vasilescu, D. Terzopoulos, Multilinear image analysis for face recognition, in: Proceedings of the International Conference on Pattern Recognition, ICPR 2002, vol. 2, Quebec City, Canada, 2002, pp. 511–514.
Kilmer (b0090) 1999; 20
.
Lathauwer, Moor, Vandewalle (b0140) 2000; 21
Braman (b0025) 2010; 433
Bader, Kolda (b0010) 2006; 32
Kofidis, Regalia (b0100) 2001; 23
M. Rezghi, L. Eldèn, Diagonalization of tensors with circulant structure, Linear Algebra Appl., this issue
Tucker (b0215) 1966; 31
Smilde, Bro, Geladi (b0205) 2004
Kiers (b0085) 2000; 14
C. Martin, The rank of a
Golub, Loan (b0060) 1996
Bro, Jong (b0030) 1997; 11
M.P. Friedlander, K. Hatz, Computing nonnegative tensor factorizations, Tech. Report TR-2006-21, University of British Columbia, Computer Science Department, 2006.
Zhang, Golub (b0235) 2001; 23
M. Hanke, J.G. Nagy, R.J. Plemmons, Preconditioned iterative regularization, in: Numerical Linear Algebra, de Gruyter, Berlin, 1993, pp. 141–163.
Berge (b0020) 1991; 56
T. Kolda, B. Bader, Higher-order web link analysis using multilinear algebra, in: Proceedings of the Fifth IEEE International Conference on Data Mining, ICDM 2005, IEEE Computer Society, 2005, pp. 242–249.
Nagy, Palmer, Perrone (b0165) 2004; 36
R. Harshman, Foundations of the parafac procedure: model and conditions for an ‘explanatory’ multi-mode factor analysis, UCLA Working Papers in Phonetics, 16, 1970, pp. 1–84.
Miwakeichi, Martínez-Montes, Valdés-Sosa, Nishiyama, Mizuhara, Yamaguchi (b0155) 2004; 22
Kroonenberg (b0120) 1983
Lathauwer, Moor (b0135) 1998
tensor, Linear and Multilinear Algebra, submitted for publication.
Chan, Ng (b0040) 1996; 38
Kolda, Bader (b0110) 2009; 51
A. Stegeman, P. Comon, Subtracting a best rank-1 approximation may increase tensor rank, arXiv e-prints (2009).
Paige, Saunders (b0180) 1982; 8
M.E. Kilmer, C.D. Martin, L. Perrone, A third-order generalization of the matrix svd as a product of third-order tensors, Tech. Report TR-2008-4, Tufts University, Computer Science Department, 2008.
Savas, Eldén (b0190) 2007; 40
Beckmann, Smith (b0015) 2005; 25
Carroll, Chang (b0035) 1970; 35
Sidiropoulos, Bro, Giannakis (b0195) 2000; 48
Martínez-Montes, Valdés-Sosa, Miwakeichi, Goldman, Cohen (b0150) 2004; 22
Denis, Dhorne (b0050) 1989
M. Vasilescu, D. Terzopoulos, Multilinear analysis of image ensembles: tensorfaces, in: Proceedings of the Seventh European Conference on Computer Vision, ECCV 2002, Lecture Notes in Computer Science, vol. 2350, 2002, pp. 447–460.
T.G. Kolda, Multilinear operators for higher-order decompositions, Tech. Report SAND2006-2081, Sandia National Laboratories, 2006.
Silva (10.1016/j.laa.2010.09.020_b0200) 2008; 30
Kiers (10.1016/j.laa.2010.09.020_b0085) 2000; 14
Paatero (10.1016/j.laa.2010.09.020_b0175) 2000; 14
Savas (10.1016/j.laa.2010.09.020_b0190) 2007; 40
10.1016/j.laa.2010.09.020_b0005
10.1016/j.laa.2010.09.020_b0105
Nagy (10.1016/j.laa.2010.09.020_b0160) 2006; 15
10.1016/j.laa.2010.09.020_b0225
Chan (10.1016/j.laa.2010.09.020_b0040) 1996; 38
Kruskal (10.1016/j.laa.2010.09.020_b0125) 1989
Kroonenberg (10.1016/j.laa.2010.09.020_b0120) 1983
Comon (10.1016/j.laa.2010.09.020_b0045) 2002
Ja (10.1016/j.laa.2010.09.020_b0080) 1979; 8
Sidiropoulos (10.1016/j.laa.2010.09.020_b0195) 2000; 48
10.1016/j.laa.2010.09.020_b0075
10.1016/j.laa.2010.09.020_b0055
10.1016/j.laa.2010.09.020_b0230
Beckmann (10.1016/j.laa.2010.09.020_b0015) 2005; 25
Golub (10.1016/j.laa.2010.09.020_b0060) 1996
Lathauwer (10.1016/j.laa.2010.09.020_b0130) 2000; 21
10.1016/j.laa.2010.09.020_b0210
Miwakeichi (10.1016/j.laa.2010.09.020_b0155) 2004; 22
Carroll (10.1016/j.laa.2010.09.020_b0035) 1970; 35
10.1016/j.laa.2010.09.020_b0095
Oseledets (10.1016/j.laa.2010.09.020_b0170) 2008; 30
Smilde (10.1016/j.laa.2010.09.020_b0205) 2004
Kofidis (10.1016/j.laa.2010.09.020_b0100) 2001; 23
Kolda (10.1016/j.laa.2010.09.020_b0110) 2009; 51
Paige (10.1016/j.laa.2010.09.020_b0180) 1982; 8
Martínez-Montes (10.1016/j.laa.2010.09.020_b0150) 2004; 22
Zhang (10.1016/j.laa.2010.09.020_b0235) 2001; 23
Denis (10.1016/j.laa.2010.09.020_b0050) 1989
10.1016/j.laa.2010.09.020_b0115
Lathauwer (10.1016/j.laa.2010.09.020_b0140) 2000; 21
Nagy (10.1016/j.laa.2010.09.020_b0165) 2004; 36
10.1016/j.laa.2010.09.020_b0185
10.1016/j.laa.2010.09.020_b0065
10.1016/j.laa.2010.09.020_b0220
Kilmer (10.1016/j.laa.2010.09.020_b0090) 1999; 20
Tucker (10.1016/j.laa.2010.09.020_b0215) 1966; 31
10.1016/j.laa.2010.09.020_b0145
Berge (10.1016/j.laa.2010.09.020_b0020) 1991; 56
Hansen (10.1016/j.laa.2010.09.020_b0070) 2006; 46
Lathauwer (10.1016/j.laa.2010.09.020_b0135) 1998
Bader (10.1016/j.laa.2010.09.020_b0010) 2006; 32
Bro (10.1016/j.laa.2010.09.020_b0030) 1997; 11
Braman (10.1016/j.laa.2010.09.020_b0025) 2010; 433
References_xml – start-page: 1
  year: 2002
  end-page: 24
  ident: b0045
  article-title: Tensor decompositions
  publication-title: Mathematics in Signal Processing V
– volume: 56
  start-page: 631
  year: 1991
  end-page: 636
  ident: b0020
  article-title: Kruskal’s polynomial for
  publication-title: Psychometrika
– reference: E. Acar, S. Çamtepe, M. Krishnamoorthy, B. Yener, Modeling and multiway analysis of chatroom tensors, in: Proceedings of the IEEE International Conference on Intelligence and Security Informatics, EMBS 2007, Lecture Notes in Computer Science, vol. 3495, 2005, pp. 256–268.
– volume: 11
  start-page: 393
  year: 1997
  end-page: 401
  ident: b0030
  article-title: A fast non-negativity-constrained least squares algorithm
  publication-title: J. Chemom.
– reference: M.E. Kilmer, C.D. Martin, L. Perrone, A third-order generalization of the matrix svd as a product of third-order tensors, Tech. Report TR-2008-4, Tufts University, Computer Science Department, 2008.
– volume: 30
  start-page: 939
  year: 2008
  end-page: 956
  ident: b0170
  article-title: Tucker dimensionality reduction of three-dimensional arrays in linear time
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 30
  start-page: 1084
  year: 2008
  end-page: 1127
  ident: b0200
  article-title: Tensor rank and the ill-posedness of the best low-rank approximation problem
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 35
  start-page: 283
  year: 1970
  end-page: 319
  ident: b0035
  article-title: Analysis of individual differences in multidimensional scaling via an
  publication-title: Psychometrika
– volume: 15
  start-page: 604
  year: 2006
  end-page: 613
  ident: b0160
  article-title: Kronecker product approximation for preconditioning in three-dimensional imaging applications
  publication-title: IEEE Trans. Image Process.
– volume: 25
  start-page: 294
  year: 2005
  end-page: 311
  ident: b0015
  article-title: Tensorial extensions of the independent component analysis for multisubject FMRI analysis
  publication-title: NeuroImage
– volume: 8
  start-page: 43
  year: 1982
  end-page: 71
  ident: b0180
  article-title: LSQR: An algorithm for sparse linear equations and sparse least squares
  publication-title: ACM Trans. Math. Software
– volume: 433
  start-page: 1241
  year: 2010
  end-page: 1253
  ident: b0025
  article-title: Third-order tensors as linear operators on a space of matrices
  publication-title: Linear Algebra Appl.
– volume: 32
  start-page: 635
  year: 2006
  end-page: 653
  ident: b0010
  article-title: Algorithm 862: MATLAB tensor classes for fast algorithm prototyping
  publication-title: ACM Trans. Math. Software
– volume: 14
  start-page: 105
  year: 2000
  end-page: 122
  ident: b0085
  article-title: Towards a standardized notation and terminology in multiway analysis
  publication-title: J. Chemom.
– reference: T. Kolda, B. Bader, Higher-order web link analysis using multilinear algebra, in: Proceedings of the Fifth IEEE International Conference on Data Mining, ICDM 2005, IEEE Computer Society, 2005, pp. 242–249.
– start-page: 1
  year: 1998
  end-page: 15
  ident: b0135
  article-title: From matrix to tensor: multilinear algebra and signal processing
  publication-title: Mathematics in Signal Processing IV
– volume: 40
  start-page: 993
  year: 2007
  end-page: 1003
  ident: b0190
  article-title: Handwritten digit classification using higher order singular value decomposition
  publication-title: Pattern Recognit.
– reference: .
– reference: M. Hanke, J.G. Nagy, R.J. Plemmons, Preconditioned iterative regularization, in: Numerical Linear Algebra, de Gruyter, Berlin, 1993, pp. 141–163.
– reference: M.P. Friedlander, K. Hatz, Computing nonnegative tensor factorizations, Tech. Report TR-2006-21, University of British Columbia, Computer Science Department, 2006.
– reference: M. Rezghi, L. Eldèn, Diagonalization of tensors with circulant structure, Linear Algebra Appl., this issue,
– volume: 51
  start-page: 455
  year: 2009
  end-page: 500
  ident: b0110
  article-title: Tensor decompositions and applications
  publication-title: SIAM Rev.
– volume: 22
  start-page: 1023
  year: 2004
  end-page: 1034
  ident: b0150
  article-title: Concurrent EEG/FMRI analysis by multiway partial least squares
  publication-title: NeuroImage
– volume: 8
  start-page: 443
  year: 1979
  end-page: 461
  ident: b0080
  article-title: Optimal evaluation of pairs of bilinear forms
  publication-title: SIAM J. Comput.
– volume: 14
  start-page: 285
  year: 2000
  end-page: 299
  ident: b0175
  article-title: Construction and analysis of degenerate parafac models
  publication-title: J. Chemom.
– volume: 21
  start-page: 1324
  year: 2000
  end-page: 1342
  ident: b0140
  article-title: On the best rank-1 and rank-
  publication-title: SIAM J. Matrix Anal. Appl.
– reference: C. Martin, The rank of a
– reference: R. Harshman, Foundations of the parafac procedure: model and conditions for an ‘explanatory’ multi-mode factor analysis, UCLA Working Papers in Phonetics, 16, 1970, pp. 1–84.
– reference: M. Vasilescu, D. Terzopoulos, Multilinear analysis of image ensembles: tensorfaces, in: Proceedings of the Seventh European Conference on Computer Vision, ECCV 2002, Lecture Notes in Computer Science, vol. 2350, 2002, pp. 447–460.
– reference: M. Vasilescu, D. Terzopoulos, Multilinear subspace analysis of image ensembles, in: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2003, 2003, pp. 93–99.
– start-page: 31
  year: 1989
  end-page: 37
  ident: b0050
  article-title: Orthogonal tensor decomposition of 3-way tables
  publication-title: Multiway Data Analysis
– volume: 38
  start-page: 427
  year: 1996
  end-page: 482
  ident: b0040
  article-title: Conjugate gradient methods for Toeplitz systems
  publication-title: SIAM Rev.
– year: 1983
  ident: b0120
  article-title: Three-mode Principal Component Analysis: Theory and Applications
– volume: 46
  start-page: 41
  year: 2006
  end-page: 59
  ident: b0070
  article-title: Exploiting residual information in the parameter choice for discrete ill-posed problems
  publication-title: BIT
– volume: 31
  start-page: 279
  year: 1966
  end-page: 311
  ident: b0215
  article-title: Some mathematical notes on three-mode factor analysis
  publication-title: Psychometrika
– year: 1996
  ident: b0060
  article-title: Matrix Computations
– volume: 20
  year: 1999
  ident: b0090
  article-title: Cauchy-like preconditioners for 2-dimensional ill-posed problems
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 23
  start-page: 863
  year: 2001
  end-page: 884
  ident: b0100
  article-title: On the best rank-1 approximation of higher-order supersymmetric tensors
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 36
  start-page: 73
  year: 2004
  end-page: 93
  ident: b0165
  article-title: Iterative methods for image deblurring: a matlab object oriented approach
  publication-title: Numer. Algorithms
– volume: 21
  start-page: 1253
  year: 2000
  end-page: 1278
  ident: b0130
  article-title: A multilinear singular value decomposition
  publication-title: SIAM J. Matrix Anal. Appl.
– start-page: 7
  year: 1989
  end-page: 18
  ident: b0125
  article-title: Rank, decomposition, and uniqueness for 3-way and
  publication-title: Multiway Data Analysis
– year: 2004
  ident: b0205
  article-title: Multi-way Analysis: Applications in the Chemical Sciences
– reference: T.G. Kolda, Multilinear operators for higher-order decompositions, Tech. Report SAND2006-2081, Sandia National Laboratories, 2006.
– reference: A. Stegeman, P. Comon, Subtracting a best rank-1 approximation may increase tensor rank, arXiv e-prints (2009).
– volume: 48
  start-page: 2377
  year: 2000
  end-page: 2388
  ident: b0195
  article-title: Parallel factor analysis in sensor array processing
  publication-title: IEEE Trans. Signal Process.
– reference: M. Vasilescu, D. Terzopoulos, Multilinear image analysis for face recognition, in: Proceedings of the International Conference on Pattern Recognition, ICPR 2002, vol. 2, Quebec City, Canada, 2002, pp. 511–514.
– volume: 23
  start-page: 534
  year: 2001
  end-page: 550
  ident: b0235
  article-title: Rank-one approximation to high order tensors
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 22
  start-page: 1035
  year: 2004
  end-page: 1045
  ident: b0155
  article-title: Decomposing EEG data into space–time–frequency components using parallel factor analysis
  publication-title: NeuroImage
– reference: tensor, Linear and Multilinear Algebra, submitted for publication.
– ident: 10.1016/j.laa.2010.09.020_b0145
– volume: 433
  start-page: 1241
  year: 2010
  ident: 10.1016/j.laa.2010.09.020_b0025
  article-title: Third-order tensors as linear operators on a space of matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2010.05.025
– volume: 38
  start-page: 427
  year: 1996
  ident: 10.1016/j.laa.2010.09.020_b0040
  article-title: Conjugate gradient methods for Toeplitz systems
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144594276474
– ident: 10.1016/j.laa.2010.09.020_b0055
– ident: 10.1016/j.laa.2010.09.020_b0220
  doi: 10.1007/3-540-47969-4_30
– volume: 32
  start-page: 635
  year: 2006
  ident: 10.1016/j.laa.2010.09.020_b0010
  article-title: Algorithm 862: MATLAB tensor classes for fast algorithm prototyping
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/1186785.1186794
– ident: 10.1016/j.laa.2010.09.020_b0210
  doi: 10.1016/j.laa.2010.06.027
– ident: 10.1016/j.laa.2010.09.020_b0225
  doi: 10.1109/ICPR.2002.1048350
– volume: 22
  start-page: 1035
  year: 2004
  ident: 10.1016/j.laa.2010.09.020_b0155
  article-title: Decomposing EEG data into space–time–frequency components using parallel factor analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.03.039
– ident: 10.1016/j.laa.2010.09.020_b0005
  doi: 10.1007/11427995_21
– volume: 56
  start-page: 631
  year: 1991
  ident: 10.1016/j.laa.2010.09.020_b0020
  article-title: Kruskal’s polynomial for 2×2×2 arrays and a generalization to 2×n×n arrays
  publication-title: Psychometrika
  doi: 10.1007/BF02294495
– volume: 22
  start-page: 1023
  year: 2004
  ident: 10.1016/j.laa.2010.09.020_b0150
  article-title: Concurrent EEG/FMRI analysis by multiway partial least squares
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.03.038
– volume: 11
  start-page: 393
  year: 1997
  ident: 10.1016/j.laa.2010.09.020_b0030
  article-title: A fast non-negativity-constrained least squares algorithm
  publication-title: J. Chemom.
  doi: 10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
– start-page: 7
  year: 1989
  ident: 10.1016/j.laa.2010.09.020_b0125
  article-title: Rank, decomposition, and uniqueness for 3-way and n-way arrays
– volume: 21
  start-page: 1324
  year: 2000
  ident: 10.1016/j.laa.2010.09.020_b0140
  article-title: On the best rank-1 and rank-R1,…,RN approximation of higher-order tensors
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479898346995
– volume: 40
  start-page: 993
  year: 2007
  ident: 10.1016/j.laa.2010.09.020_b0190
  article-title: Handwritten digit classification using higher order singular value decomposition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2006.08.004
– ident: 10.1016/j.laa.2010.09.020_b0095
– volume: 25
  start-page: 294
  year: 2005
  ident: 10.1016/j.laa.2010.09.020_b0015
  article-title: Tensorial extensions of the independent component analysis for multisubject FMRI analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.10.043
– volume: 21
  start-page: 1253
  year: 2000
  ident: 10.1016/j.laa.2010.09.020_b0130
  article-title: A multilinear singular value decomposition
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479896305696
– volume: 31
  start-page: 279
  year: 1966
  ident: 10.1016/j.laa.2010.09.020_b0215
  article-title: Some mathematical notes on three-mode factor analysis
  publication-title: Psychometrika
  doi: 10.1007/BF02289464
– ident: 10.1016/j.laa.2010.09.020_b0230
  doi: 10.1109/CVPR.2003.1211457
– year: 1983
  ident: 10.1016/j.laa.2010.09.020_b0120
– volume: 36
  start-page: 73
  year: 2004
  ident: 10.1016/j.laa.2010.09.020_b0165
  article-title: Iterative methods for image deblurring: a matlab object oriented approach
  publication-title: Numer. Algorithms
  doi: 10.1023/B:NUMA.0000027762.08431.64
– volume: 51
  start-page: 455
  year: 2009
  ident: 10.1016/j.laa.2010.09.020_b0110
  article-title: Tensor decompositions and applications
  publication-title: SIAM Rev.
  doi: 10.1137/07070111X
– start-page: 1
  year: 2002
  ident: 10.1016/j.laa.2010.09.020_b0045
  article-title: Tensor decompositions
– start-page: 31
  year: 1989
  ident: 10.1016/j.laa.2010.09.020_b0050
  article-title: Orthogonal tensor decomposition of 3-way tables
– volume: 23
  start-page: 534
  year: 2001
  ident: 10.1016/j.laa.2010.09.020_b0235
  article-title: Rank-one approximation to high order tensors
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479899352045
– ident: 10.1016/j.laa.2010.09.020_b0105
  doi: 10.1109/ICDM.2005.77
– ident: 10.1016/j.laa.2010.09.020_b0115
  doi: 10.2172/923081
– volume: 30
  start-page: 939
  year: 2008
  ident: 10.1016/j.laa.2010.09.020_b0170
  article-title: Tucker dimensionality reduction of three-dimensional arrays in linear time
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/060655894
– ident: 10.1016/j.laa.2010.09.020_b0075
– volume: 8
  start-page: 443
  year: 1979
  ident: 10.1016/j.laa.2010.09.020_b0080
  article-title: Optimal evaluation of pairs of bilinear forms
  publication-title: SIAM J. Comput.
  doi: 10.1137/0208037
– volume: 15
  start-page: 604
  year: 2006
  ident: 10.1016/j.laa.2010.09.020_b0160
  article-title: Kronecker product approximation for preconditioning in three-dimensional imaging applications
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.863112
– volume: 46
  start-page: 41
  year: 2006
  ident: 10.1016/j.laa.2010.09.020_b0070
  article-title: Exploiting residual information in the parameter choice for discrete ill-posed problems
  publication-title: BIT
  doi: 10.1007/s10543-006-0042-7
– year: 1996
  ident: 10.1016/j.laa.2010.09.020_b0060
– start-page: 1
  year: 1998
  ident: 10.1016/j.laa.2010.09.020_b0135
  article-title: From matrix to tensor: multilinear algebra and signal processing
– volume: 8
  start-page: 43
  year: 1982
  ident: 10.1016/j.laa.2010.09.020_b0180
  article-title: LSQR: An algorithm for sparse linear equations and sparse least squares
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/355984.355989
– volume: 30
  start-page: 1084
  year: 2008
  ident: 10.1016/j.laa.2010.09.020_b0200
  article-title: Tensor rank and the ill-posedness of the best low-rank approximation problem
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/06066518X
– volume: 23
  start-page: 863
  year: 2001
  ident: 10.1016/j.laa.2010.09.020_b0100
  article-title: On the best rank-1 approximation of higher-order supersymmetric tensors
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479801387413
– volume: 14
  start-page: 105
  year: 2000
  ident: 10.1016/j.laa.2010.09.020_b0085
  article-title: Towards a standardized notation and terminology in multiway analysis
  publication-title: J. Chemom.
  doi: 10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I
– volume: 14
  start-page: 285
  year: 2000
  ident: 10.1016/j.laa.2010.09.020_b0175
  article-title: Construction and analysis of degenerate parafac models
  publication-title: J. Chemom.
  doi: 10.1002/1099-128X(200005/06)14:3<285::AID-CEM584>3.0.CO;2-1
– volume: 48
  start-page: 2377
  year: 2000
  ident: 10.1016/j.laa.2010.09.020_b0195
  article-title: Parallel factor analysis in sensor array processing
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.852018
– volume: 35
  start-page: 283
  year: 1970
  ident: 10.1016/j.laa.2010.09.020_b0035
  article-title: Analysis of individual differences in multidimensional scaling via an n-way generalization of “eckart-young” decomposition
  publication-title: Psychometrika
  doi: 10.1007/BF02310791
– ident: 10.1016/j.laa.2010.09.020_b0065
– volume: 20
  year: 1999
  ident: 10.1016/j.laa.2010.09.020_b0090
  article-title: Cauchy-like preconditioners for 2-dimensional ill-posed problems
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479897319532
– ident: 10.1016/j.laa.2010.09.020_b0185
  doi: 10.1016/j.laa.2010.03.032
– year: 2004
  ident: 10.1016/j.laa.2010.09.020_b0205
SSID ssj0004702
Score 2.5388262
Snippet Operations with tensors, or multiway arrays, have become increasingly prevalent in recent years. Traditionally, tensors are represented or decomposed as a sum...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 641
SubjectTerms Algebra
Exact sciences and technology
Linear and multilinear algebra, matrix theory
Mathematics
Multidimensional arrays
Multilinear algebra
Sciences and techniques of general use
Singular value decomposition
Tensor decomposition
Title Factorization strategies for third-order tensors
URI https://dx.doi.org/10.1016/j.laa.2010.09.020
Volume 435
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IXjTG-DPiD7KDJ5NCt75t7RGJBDRwkoTb0nVtxBAgbF792223DiUxHDxu6duWr-3rW_u97yH0EDNlRTYlFgHXGDIGZkqBwMAjLSBKpa_tPuR4Eg2n8DILZw3Ur3NhLK3S-f7Kp5fe2t3pOjS76_nc5viWYnqhXyZGU_vfDhDbUd75-qF5QEycYjhg27o-2Sw5XgshHLuLd4gt-f332nS8FrlBTFelLn6tP4NTdOICR69XfdsZaqjlOToab1VX8wtEBmXxHJdZ6eVFLQPhmcjUK97nmwyXUpuepa2vNvklmg6e3_pD7CoiYEk5LbCKiAYWZJRGLIZUhGlklh4exSZq0AGV2mc6kEQQamXplVa-5oHkIdEKgkxQeoWay9VSXSNPQxoyIoAobuYxVcLYchYKFgeZ1KlsIVJjkUgnF26rViySmhf2kRj4EgtfQnhi4Guhx63JutLK2NcYaoCTnQ5PjC_fZ9be6Yzti0wkEptgj9_877m36LDeLSb-HWoWm091b8KNIm2X46mNDnqj1-HEXI1mT99QadNK
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV27TsMwFLUQDIAQ4imeJQMsSCmO4zw8MCCgKvQxtVI34zi2KEKlaoIQCz_FD3KdOIVKqAMSaxQn0bFz7o1z7rkInUaxMiab0hWEaZemMYVXigqXslALGibS02YfstMNm316PwgGC-izqoUxskrL_SWnF2xtj1xYNC_Gw6Gp8S3M9AKvKIz2sVVWttT7G3y3ZZd3NzDJZ4Q0bnvXTde2FnClz_zcVSHWNCap74dxRBMRJCFwOAsjCL-a-FJ7sSYSC-wbf3ellacZkSzAWlGSCrMLCry_RIEuTNuE-se3roRG2FqUU9c8XvUrtRCVPQth5WSsjk2P8d-D4dpYZDBFuuyt8SPgNTbQus1UnasSjE20oEZbaLUztXnNthFuFN16bCmnk-WV74QDqbCTPw4nqVt4ezpGJ_8yyXZQ_19w2kWLo5eR2kOOpkkQY0GxYkAcvhIwlsWBiCOSSp3IfYQrLLi0_uSmTcYzr4RoTxzg4wY-jhkH-PbR-XTIuDTnmHcyrQDmMyuMQ_CYN6w2MxnTG0HqE0F2yQ7-dt0TtNzsddq8fddtHaKVaqsae0doMZ-8qmPIdfKkVqwtBz3892L-AgcIDJE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Factorization+strategies+for+third-order+tensors&rft.jtitle=Linear+algebra+and+its+applications&rft.au=KILMER%2C+Misha+E&rft.au=MARTIN%2C+Carla+D&rft.date=2011-08-01&rft.pub=Elsevier&rft.issn=0024-3795&rft.volume=435&rft.issue=3&rft.spage=641&rft.epage=658&rft_id=info:doi/10.1016%2Fj.laa.2010.09.020&rft.externalDBID=n%2Fa&rft.externalDocID=24178399
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon