New quinone-based electrode additives electrochemically polymerized on activated carbon electrodes for improved pseudocapacitance
Three quinone-based derivatives (HBU680, HBU888, and HBU889) are synthesized and separately mixed with activated carbon (AC) and electropolymerized to form a homogeneous composite electrode. The electrochemical properties of the composite electrodes are studied. The electrochemical properties are ma...
Saved in:
Published in | Macromolecular research Vol. 31; no. 2; pp. 171 - 179 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Polymer Society of Korea
01.02.2023
Springer Springer Nature B.V 한국고분자학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1598-5032 2092-7673 |
DOI | 10.1007/s13233-023-00129-6 |
Cover
Abstract | Three quinone-based derivatives (HBU680, HBU888, and HBU889) are synthesized and separately mixed with activated carbon (AC) and electropolymerized to form a homogeneous composite electrode. The electrochemical properties of the composite electrodes are studied. The electrochemical properties are mainly characterized by PhQ-PhQH2 and Q-QH2 redox transitions. The composite electrodes show specific capacitance of 176 F/g, 262 F/g, and 145 F/g for HBU680, HBU888, and HBU889, respectively. The HBU888 shows the highest specific capacitance due to the fast PhQ-PhQH2 redox transition at a scan rate of 100 mV/s. The composite electrodes also show a 100% capacity retention over 10,000 cycles. These results show that the new quinone-based derivates can enhance pseudocapacitive behavior and warrant their use as electrode additives for supercapacitors.
Graphical abstract
The new quinone-based electrode additives were synthesized and used as additives for supercapacitor electrodes. The electrochemical properties are mainly characterized by PhQ-PhQH2 and Q-QH2 redox transitions. The composite electrodes show specific capacitance of 176 F/g, 262 F/g, and 145 F/g for HBU680, HBU888, and HBU889 respectively. The HBU888 shows the highest specific capacitance due to the fast PhQ-PhQH2 redox. The composite electrodes also show a 100% capacity retention over 5000 cycles. |
---|---|
AbstractList | Three quinone-based derivatives (HBU680, HBU888, and HBU889) are synthesized and separately mixed with activated carbon (AC) and electropolymerized to form a homogeneous composite electrode. The electrochemical properties of the composite electrodes are studied. The electrochemical properties are mainly characterized by PhQ-PhQH2 and Q-QH2 redox transitions. The composite electrodes show specific capacitance of 176 F/g, 262 F/g, and 145 F/g for HBU680, HBU888, and HBU889, respectively. The HBU888 shows the highest specific capacitance due to the fast PhQ-PhQH2 redox transition at a scan rate of 100 mV/s. The composite electrodes also show a 100% capacity retention over 10,000 cycles. These results show that the new quinone-based derivates can enhance pseudocapacitive behavior and warrant their use as electrode additives for supercapacitors. Graphical abstract The new quinone-based electrode additives were synthesized and used as additives for supercapacitor electrodes. The electrochemical properties are mainly characterized by PhQ-PhQH2 and Q-QH2 redox transitions. The composite electrodes show specific capacitance of 176 F/g, 262 F/g, and 145 F/g for HBU680, HBU888, and HBU889 respectively. The HBU888 shows the highest specific capacitance due to the fast PhQ-PhQH2 redox. The composite electrodes also show a 100% capacity retention over 5000 cycles. Three quinone-based derivatives (HBU680, HBU888, and HBU889) are synthesized and separately mixed with activated carbon (AC) and electropolymerized to form a homogeneous composite electrode. The electrochemical properties of the composite electrodes are studied. The electrochemical properties are mainly characterized by PhQ-PhQH2 and Q-QH2 redox transitions. The composite electrodes show specific capacitance of 176 F/g, 262 F/g, and 145 F/g for HBU680, HBU888, and HBU889, respectively. The HBU888 shows the highest specific capacitance due to the fast PhQ-PhQH2 redox transition at a scan rate of 100 mV/s. The composite electrodes also show a 100% capacity retention over 10,000 cycles. These results show that the new quinone-based derivates can enhance pseudocapacitive behavior and warrant their use as electrode additives for supercapacitors. KCI Citation Count: 0 Three quinone-based derivatives (HBU680, HBU888, and HBU889) are synthesized and separately mixed with activated carbon (AC) and electropolymerized to form a homogeneous composite electrode. The electrochemical properties of the composite electrodes are studied. The electrochemical properties are mainly characterized by PhQ-PhQH2 and Q-QH2 redox transitions. The composite electrodes show specific capacitance of 176 F/g, 262 F/g, and 145 F/g for HBU680, HBU888, and HBU889, respectively. The HBU888 shows the highest specific capacitance due to the fast PhQ-PhQH2 redox transition at a scan rate of 100 mV/s. The composite electrodes also show a 100% capacity retention over 10,000 cycles. These results show that the new quinone-based derivates can enhance pseudocapacitive behavior and warrant their use as electrode additives for supercapacitors.The new quinone-based electrode additives were synthesized and used as additives for supercapacitor electrodes. The electrochemical properties are mainly characterized by PhQ-PhQH2 and Q-QH2 redox transitions. The composite electrodes show specific capacitance of 176 F/g, 262 F/g, and 145 F/g for HBU680, HBU888, and HBU889 respectively. The HBU888 shows the highest specific capacitance due to the fast PhQ-PhQH2 redox. The composite electrodes also show a 100% capacity retention over 5000 cycles. Three quinone-based derivatives (HBU680, HBU888, and HBU889) are synthesized and separately mixed with activated carbon (AC) and electropolymerized to form a homogeneous composite electrode. The electrochemical properties of the composite electrodes are studied. The electrochemical properties are mainly characterized by PhQ-PhQH2 and Q-QH2 redox transitions. The composite electrodes show specific capacitance of 176 F/g, 262 F/g, and 145 F/g for HBU680, HBU888, and HBU889, respectively. The HBU888 shows the highest specific capacitance due to the fast PhQ-PhQH2 redox transition at a scan rate of 100 mV/s. The composite electrodes also show a 100% capacity retention over 10,000 cycles. These results show that the new quinone-based derivates can enhance pseudocapacitive behavior and warrant their use as electrode additives for supercapacitors. Graphical abstract The new quinone-based electrode additives were synthesized and used as additives for supercapacitor electrodes. The electrochemical properties are mainly characterized by PhQ-PhQH2 and Q-QH2 redox transitions. The composite electrodes show specific capacitance of 176 F/g, 262 F/g, and 145 F/g for HBU680, HBU888, and HBU889 respectively. The HBU888 shows the highest specific capacitance due to the fast PhQ-PhQH2 redox. The composite electrodes also show a 100% capacity retention over 5000 cycles. |
Audience | Academic |
Author | Ko, Jang Myoun Lee, Kyuchul Lee, Kangwon Park, Jongwook Hwang, Jihyun Park, Jeong Ho |
Author_xml | – sequence: 1 givenname: Kyuchul surname: Lee fullname: Lee, Kyuchul organization: Program in Nano and Technology, Graduate School of Convergence Science and Technology, Seoul National University – sequence: 2 givenname: Jihyun surname: Hwang fullname: Hwang, Jihyun organization: Department of Applied Chemistry & Biotechnology, Hanbat National University – sequence: 3 givenname: Jeong Ho surname: Park fullname: Park, Jeong Ho organization: Department of Applied Chemistry & Biotechnology, Hanbat National University – sequence: 4 givenname: Jongwook orcidid: 0000-0002-6797-5211 surname: Park fullname: Park, Jongwook email: jongpark@khu.ac.kr organization: Integrated Engineering, Department of Chemical Engineering, Kyung Hee University – sequence: 5 givenname: Kangwon surname: Lee fullname: Lee, Kangwon email: kangwonlee@snu.ac.kr organization: Program in Nano and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University – sequence: 6 givenname: Jang Myoun surname: Ko fullname: Ko, Jang Myoun email: jmko@hanbat.ac.kr organization: Department of Applied Chemistry & Biotechnology, Hanbat National University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002939476$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kU1r3DAQhkVJoJs0f6AnQ28Fp_qwLem4hH4EQgslOYtZebRV4pUcyZuwvfWfV47TFnoIQgiN3mdmNO8JOQoxICFvGT1nlMoPmQkuRE152ZRxXXevyIpTzWvZSXFEVqzVqm6p4K_JSc63lHZMMLYiv77iY3W_93O-egMZ-woHtFOKPVbQ937yD5j_xOwP3HkLw3Coxjgcdpj8z0LEUIEtQpjKxULalMDfLLlyMVV-N6b4UJ7HjPs-WhjB-gmCxTfk2MGQ8ez5PCU3nz5eX3ypr759vrxYX9VWaDHVKNAJrZgE1SPfuAbapgGFGqAVDXVonQRUTndccyYoNI46zsBZ1XOmpDgl75e8ITlzZ72J4J_ObTR3yay_X18aRpnWTPEifreIS9f3e8yTuY37FEp_hkvVtS2VjS6q80W1hQGNDy5OCWxZ_TymMlHnS3wtG8Y07cQM8AWwKeac0Jkx-R2kQ6lsZiPNYqQpRponI01XIPUfNE9u8jGUan54GRULmkudsMX07xsvUL8B8vW3AA |
CitedBy_id | crossref_primary_10_3390_molecules28237885 crossref_primary_10_1016_j_colsurfa_2024_133445 crossref_primary_10_1007_s13233_024_00340_z crossref_primary_10_1002_batt_202400721 |
Cites_doi | 10.1002/eem2.12028 10.1021/jo9025447 10.1093/nsr/nww072 10.1021/acsami.2c05703 10.1016/j.colsurfb.2010.03.009 10.1021/am402821c 10.1021/acs.chemrev.0c00170 10.1016/j.electacta.2006.05.025 10.1016/j.mtadv.2020.100072 10.1186/s11671-017-2150-5 10.1016/j.cap.2019.10.017 10.1016/j.jpowsour.2014.10.166 10.1007/s00604-007-0745-8 10.1186/1556-276X-7-630 10.1038/s41598-017-17024-7 10.1016/j.electacta.2018.04.149 10.1016/j.electacta.2014.12.148 10.1016/j.est.2018.03.012 10.1016/0022-0728(86)87048-6 10.1016/j.jiec.2016.03.046 10.1016/j.jphotochem.2011.08.016 10.1016/S0022-0728(81)80085-X 10.1021/ja0743083 10.1016/j.synthmet.2016.03.012 10.1016/j.jiec.2018.01.032 10.1063/1.1725222 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to The Polymer Society of Korea 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2023 Springer |
Copyright_xml | – notice: The Author(s), under exclusive licence to The Polymer Society of Korea 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2023 Springer |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s13233-023-00129-6 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 2092-7673 |
EndPage | 179 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10199182 A741190639 10_1007_s13233_023_00129_6 |
GrantInformation_xml | – fundername: Ministry of Education grantid: 2017R1D1A1B04028757; 2020R1A6A1A03048004; 2019R1A6C1010052 funderid: http://dx.doi.org/10.13039/501100002701 |
GroupedDBID | -EM .UV 06D 0R~ 0VY 1N0 203 2JY 2KG 2VQ 3-Y 30V 4.4 406 408 40D 53G 5GY 67Z 8N- 8UJ 96X 9ZL AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AVWKF AXYYD AYJHY AZFZN BGNMA CAG COF CSCUP DBRKI DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GW5 H13 HF~ HMJXF HRMNR HZ~ I0C IAO IHR IKXTQ IWAJR IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y MZR NPVJJ NQJWS NU0 O9- O9J P9N PT4 R9I RIG RLLFE ROL RSV S1Z S27 S3B SCM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TDB TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7U Z7V Z7X Z7Y ZMTXR ZZE ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR CITATION AEIIB 85H AAFGU AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC SQXTU Z5O Z7R Z7S |
ID | FETCH-LOGICAL-c393t-e3ef39817a8de2bf4a544a8e9aa5340fecf7ae8f96292130a4f0f21afc8d21873 |
IEDL.DBID | U2A |
ISSN | 1598-5032 |
IngestDate | Fri Feb 23 03:15:59 EST 2024 Fri Jul 25 10:57:11 EDT 2025 Tue Jun 10 21:15:24 EDT 2025 Tue Jul 29 01:58:51 EDT 2025 Thu Apr 24 22:52:35 EDT 2025 Fri Feb 21 02:45:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Quinone based Pseudocapacitance Activated carbon Redox reaction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-e3ef39817a8de2bf4a544a8e9aa5340fecf7ae8f96292130a4f0f21afc8d21873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6797-5211 |
PQID | 2786550749 |
PQPubID | 2044280 |
PageCount | 9 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10199182 proquest_journals_2786550749 gale_infotracacademiconefile_A741190639 crossref_primary_10_1007_s13233_023_00129_6 crossref_citationtrail_10_1007_s13233_023_00129_6 springer_journals_10_1007_s13233_023_00129_6 |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Heidelberg |
PublicationTitle | Macromolecular research |
PublicationTitleAbbrev | Macromol. Res |
PublicationYear | 2023 |
Publisher | The Polymer Society of Korea Springer Springer Nature B.V 한국고분자학회 |
Publisher_xml | – name: The Polymer Society of Korea – name: Springer – name: Springer Nature B.V – name: 한국고분자학회 |
References | GaoYNanoscale Res. Lett.20171238710.1186/s11671-017-2150-5285829645457388 LiuYJiangSPShaoZMater. Today Adv.2020710.1016/j.mtadv.2020.100072 WangJDongSDingBWangYHaoXDouHXiaYZhangXNatl. Sci. Rev.20174719010.1093/nsr/nww072 LibichJMácaJVondrákJČechOSedlaříkováMJ. Energy Storage.20181722422710.1016/j.est.2018.03.012 JiangYLiuJEnergy Environ. Mater.201923010.1002/eem2.12028 SathyamoorthiSSuryanarayananVVelayuthamDJ. Power Sources.2015274113511391:CAS:528:DC%2BC2cXhvVGhs7vJ10.1016/j.jpowsour.2014.10.166 KoJSSassinMBRolisonDRLongJWElectrochim. Acta.20182752252351:CAS:528:DC%2BC1cXosFWqtLY%3D10.1016/j.electacta.2018.04.149 DongmoSWittJWittstockGElectrochim. Acta20151554744821:CAS:528:DC%2BC2MXhvVWgs78%3D10.1016/j.electacta.2014.12.148 ArdakaniMMKaramiPEZareHRHamzehlooMMicrochim. Acta.20071591651:CAS:528:DC%2BD2sXmvVaqsL4%3D10.1007/s00604-007-0745-8 SouierTSantosSAl GhaferiAStefancichMChiesaMNanoscale Res. Lett.20127110.1186/1556-276X-7-630 PhamMCHachemiADuboisJEJ. Electroanal. Chem.198619915316410.1016/0022-0728(86)87048-6 DavisJMolinaMTLeachCPCardosiMFApplACSMater. Interfaces.20135936793711:CAS:528:DC%2BC3sXhsVOgs7zM10.1021/am402821c LiuXDingZHeYXueZZhaoXLuXColloids Surfaces B Biointerfaces.201079271:CAS:528:DC%2BC3cXmsVOnsL8%3D10.1016/j.colsurfb.2010.03.00920413283 ChuJLiGWangYZhangXYangZHanYCaiTSongZApplACSMater. Interfaces20221425566255751:CAS:528:DC%2BB38XhtlGqu7bF10.1021/acsami.2c05703 ChauY-FCWangC-KShenLLimCMChiangH-PChaoC-TCHuangHJLinC-TKumaraNTRNVooNYSci. Rep201771681710.1038/s41598-017-17024-7291966415711893 AkaiNKawaiAShibuyaKJ. Photochem. Photobiol. A Chem.20112231821:CAS:528:DC%2BC3MXhtlWlsb%2FM10.1016/j.jphotochem.2011.08.016 QuanMSanchezDWasylkiwMFSmithDKJ. Am. Chem. Soc.2007129128471:CAS:528:DC%2BD2sXhtFShtbnJ10.1021/ja074308317910453 PhiriIBonCYKimSMwemeziMHamenuLMadzvamuseAKimSHKoJMCurr. Appl. Phys.20202012213110.1016/j.cap.2019.10.017 FleischmannSMitchellJBWangRZhanCJiangDEPresserVAugustynVChem. Rev.2020120673867821:CAS:528:DC%2BB3cXht1Git77F10.1021/acs.chemrev.0c0017032597172 FerreiraMVarelaHTorresiRMTremiliosi-FilhoGElectrochim. Acta.2006524341:CAS:528:DC%2BD28XhtVWrsL%2FJ10.1016/j.electacta.2006.05.025 KronickPLScottHLabesMMJ. Chem. Phys.1964408901:CAS:528:DyaF2cXjvVeisw%3D%3D10.1063/1.1725222 LeeHSuzukiMCuiJKozminSAJ. Org. Chem.201075175617591:CAS:528:DC%2BC3cXhslShtLo%3D10.1021/jo9025447201412242830352 LeeHSLatifatuMKimBCParkJHLeeYGKimKMParkJBaekYGKoJMSynth. Met.201621729361:CAS:528:DC%2BC28XksVahurY%3D10.1016/j.synthmet.2016.03.012 HaJSooHHamenuLLatifatuMMinYManKOhJIlWMyounJJ. Ind. Eng. Chem.20163732510.1016/j.jiec.2016.03.046 SuematsuSNaoiKJ. Power Sources.20018169798 DuboisJ-ELacazeP-CPhamMCJ. Electroanal. Chem. Interfacial Electrochem.19811172332411:CAS:528:DyaL3MXht12ns7c%3D10.1016/S0022-0728(81)80085-X LatifatuMParkJHKoJMParkJJ. Ind. Eng. Chem.20186312181:CAS:528:DC%2BC1cXisFOjs78%3D10.1016/j.jiec.2018.01.032 ZhangKGuoCZhaoQNiuZChenJAdv. Sci20152 HS Lee (129_CR11) 2016; 217 M Quan (129_CR25) 2007; 129 J Chu (129_CR13) 2022; 14 J Davis (129_CR16) 2013; 5 M Ferreira (129_CR20) 2006; 52 Y Jiang (129_CR5) 2019; 2 S Sathyamoorthi (129_CR12) 2015; 274 J-E Dubois (129_CR19) 1981; 117 Y Liu (129_CR1) 2020; 7 X Liu (129_CR23) 2010; 79 Y Gao (129_CR27) 2017; 12 J Ha (129_CR21) 2016; 37 JS Ko (129_CR2) 2018; 275 H Lee (129_CR10) 2010; 75 Y-FC Chau (129_CR17) 2017; 7 S Fleischmann (129_CR7) 2020; 120 K Zhang (129_CR14) 2015; 2 MM Ardakani (129_CR22) 2007; 159 J Libich (129_CR3) 2018; 17 I Phiri (129_CR6) 2020; 20 MC Pham (129_CR18) 1986; 199 S Suematsu (129_CR8) 2001; 816 M Latifatu (129_CR9) 2018; 63 J Wang (129_CR4) 2017; 4 S Dongmo (129_CR15) 2015; 155 T Souier (129_CR26) 2012; 7 PL Kronick (129_CR28) 1964; 40 N Akai (129_CR24) 2011; 223 |
References_xml | – reference: WangJDongSDingBWangYHaoXDouHXiaYZhangXNatl. Sci. Rev.20174719010.1093/nsr/nww072 – reference: KoJSSassinMBRolisonDRLongJWElectrochim. Acta.20182752252351:CAS:528:DC%2BC1cXosFWqtLY%3D10.1016/j.electacta.2018.04.149 – reference: LeeHSLatifatuMKimBCParkJHLeeYGKimKMParkJBaekYGKoJMSynth. Met.201621729361:CAS:528:DC%2BC28XksVahurY%3D10.1016/j.synthmet.2016.03.012 – reference: FerreiraMVarelaHTorresiRMTremiliosi-FilhoGElectrochim. Acta.2006524341:CAS:528:DC%2BD28XhtVWrsL%2FJ10.1016/j.electacta.2006.05.025 – reference: LibichJMácaJVondrákJČechOSedlaříkováMJ. Energy Storage.20181722422710.1016/j.est.2018.03.012 – reference: JiangYLiuJEnergy Environ. Mater.201923010.1002/eem2.12028 – reference: DongmoSWittJWittstockGElectrochim. Acta20151554744821:CAS:528:DC%2BC2MXhvVWgs78%3D10.1016/j.electacta.2014.12.148 – reference: ChuJLiGWangYZhangXYangZHanYCaiTSongZApplACSMater. Interfaces20221425566255751:CAS:528:DC%2BB38XhtlGqu7bF10.1021/acsami.2c05703 – reference: HaJSooHHamenuLLatifatuMMinYManKOhJIlWMyounJJ. Ind. Eng. Chem.20163732510.1016/j.jiec.2016.03.046 – reference: AkaiNKawaiAShibuyaKJ. Photochem. Photobiol. A Chem.20112231821:CAS:528:DC%2BC3MXhtlWlsb%2FM10.1016/j.jphotochem.2011.08.016 – reference: ChauY-FCWangC-KShenLLimCMChiangH-PChaoC-TCHuangHJLinC-TKumaraNTRNVooNYSci. Rep201771681710.1038/s41598-017-17024-7291966415711893 – reference: ArdakaniMMKaramiPEZareHRHamzehlooMMicrochim. Acta.20071591651:CAS:528:DC%2BD2sXmvVaqsL4%3D10.1007/s00604-007-0745-8 – reference: FleischmannSMitchellJBWangRZhanCJiangDEPresserVAugustynVChem. Rev.2020120673867821:CAS:528:DC%2BB3cXht1Git77F10.1021/acs.chemrev.0c0017032597172 – reference: SuematsuSNaoiKJ. Power Sources.20018169798 – reference: LeeHSuzukiMCuiJKozminSAJ. Org. Chem.201075175617591:CAS:528:DC%2BC3cXhslShtLo%3D10.1021/jo9025447201412242830352 – reference: LiuYJiangSPShaoZMater. Today Adv.2020710.1016/j.mtadv.2020.100072 – reference: PhiriIBonCYKimSMwemeziMHamenuLMadzvamuseAKimSHKoJMCurr. Appl. Phys.20202012213110.1016/j.cap.2019.10.017 – reference: ZhangKGuoCZhaoQNiuZChenJAdv. Sci20152 – reference: LatifatuMParkJHKoJMParkJJ. Ind. Eng. Chem.20186312181:CAS:528:DC%2BC1cXisFOjs78%3D10.1016/j.jiec.2018.01.032 – reference: QuanMSanchezDWasylkiwMFSmithDKJ. Am. Chem. Soc.2007129128471:CAS:528:DC%2BD2sXhtFShtbnJ10.1021/ja074308317910453 – reference: DuboisJ-ELacazeP-CPhamMCJ. Electroanal. Chem. Interfacial Electrochem.19811172332411:CAS:528:DyaL3MXht12ns7c%3D10.1016/S0022-0728(81)80085-X – reference: DavisJMolinaMTLeachCPCardosiMFApplACSMater. Interfaces.20135936793711:CAS:528:DC%2BC3sXhsVOgs7zM10.1021/am402821c – reference: LiuXDingZHeYXueZZhaoXLuXColloids Surfaces B Biointerfaces.201079271:CAS:528:DC%2BC3cXmsVOnsL8%3D10.1016/j.colsurfb.2010.03.00920413283 – reference: SathyamoorthiSSuryanarayananVVelayuthamDJ. Power Sources.2015274113511391:CAS:528:DC%2BC2cXhvVGhs7vJ10.1016/j.jpowsour.2014.10.166 – reference: SouierTSantosSAl GhaferiAStefancichMChiesaMNanoscale Res. Lett.20127110.1186/1556-276X-7-630 – reference: PhamMCHachemiADuboisJEJ. Electroanal. Chem.198619915316410.1016/0022-0728(86)87048-6 – reference: KronickPLScottHLabesMMJ. Chem. Phys.1964408901:CAS:528:DyaF2cXjvVeisw%3D%3D10.1063/1.1725222 – reference: GaoYNanoscale Res. Lett.20171238710.1186/s11671-017-2150-5285829645457388 – volume: 816 start-page: 97 year: 2001 ident: 129_CR8 publication-title: J. Power Sources. – volume: 2 start-page: 30 year: 2019 ident: 129_CR5 publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12028 – volume: 75 start-page: 1756 year: 2010 ident: 129_CR10 publication-title: J. Org. Chem. doi: 10.1021/jo9025447 – volume: 4 start-page: 71 year: 2017 ident: 129_CR4 publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nww072 – volume: 14 start-page: 25566 year: 2022 ident: 129_CR13 publication-title: Mater. Interfaces doi: 10.1021/acsami.2c05703 – volume: 79 start-page: 27 year: 2010 ident: 129_CR23 publication-title: Colloids Surfaces B Biointerfaces. doi: 10.1016/j.colsurfb.2010.03.009 – volume: 5 start-page: 9367 year: 2013 ident: 129_CR16 publication-title: Mater. Interfaces. doi: 10.1021/am402821c – volume: 120 start-page: 6738 year: 2020 ident: 129_CR7 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00170 – volume: 52 start-page: 434 year: 2006 ident: 129_CR20 publication-title: Electrochim. Acta. doi: 10.1016/j.electacta.2006.05.025 – volume: 7 year: 2020 ident: 129_CR1 publication-title: Mater. Today Adv. doi: 10.1016/j.mtadv.2020.100072 – volume: 12 start-page: 387 year: 2017 ident: 129_CR27 publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-017-2150-5 – volume: 20 start-page: 122 year: 2020 ident: 129_CR6 publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2019.10.017 – volume: 274 start-page: 1135 year: 2015 ident: 129_CR12 publication-title: J. Power Sources. doi: 10.1016/j.jpowsour.2014.10.166 – volume: 159 start-page: 165 year: 2007 ident: 129_CR22 publication-title: Microchim. Acta. doi: 10.1007/s00604-007-0745-8 – volume: 7 start-page: 1 year: 2012 ident: 129_CR26 publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-7-630 – volume: 7 start-page: 16817 year: 2017 ident: 129_CR17 publication-title: Sci. Rep doi: 10.1038/s41598-017-17024-7 – volume: 275 start-page: 225 year: 2018 ident: 129_CR2 publication-title: Electrochim. Acta. doi: 10.1016/j.electacta.2018.04.149 – volume: 155 start-page: 474 year: 2015 ident: 129_CR15 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.12.148 – volume: 17 start-page: 224 year: 2018 ident: 129_CR3 publication-title: J. Energy Storage. doi: 10.1016/j.est.2018.03.012 – volume: 199 start-page: 153 year: 1986 ident: 129_CR18 publication-title: J. Electroanal. Chem. doi: 10.1016/0022-0728(86)87048-6 – volume: 37 start-page: 325 year: 2016 ident: 129_CR21 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2016.03.046 – volume: 223 start-page: 182 year: 2011 ident: 129_CR24 publication-title: J. Photochem. Photobiol. A Chem. doi: 10.1016/j.jphotochem.2011.08.016 – volume: 117 start-page: 233 year: 1981 ident: 129_CR19 publication-title: J. Electroanal. Chem. Interfacial Electrochem. doi: 10.1016/S0022-0728(81)80085-X – volume: 129 start-page: 12847 year: 2007 ident: 129_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0743083 – volume: 2 year: 2015 ident: 129_CR14 publication-title: Adv. Sci – volume: 217 start-page: 29 year: 2016 ident: 129_CR11 publication-title: Synth. Met. doi: 10.1016/j.synthmet.2016.03.012 – volume: 63 start-page: 12 year: 2018 ident: 129_CR9 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2018.01.032 – volume: 40 start-page: 890 year: 1964 ident: 129_CR28 publication-title: J. Chem. Phys. doi: 10.1063/1.1725222 |
SSID | ssj0061311 |
Score | 2.3227572 |
Snippet | Three quinone-based derivatives (HBU680, HBU888, and HBU889) are synthesized and separately mixed with activated carbon (AC) and electropolymerized to form a... |
SourceID | nrf proquest gale crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 171 |
SubjectTerms | Activated carbon Additives Capacitance Capacitors Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Complex Fluids and Microfluidics Electrochemical analysis Electrodes Electrons Nanochemistry Nanotechnology Physical Chemistry Polymer Sciences Quinone Quinones Soft and Granular Matter Supercapacitors Synthesis 고분자공학 |
Title | New quinone-based electrode additives electrochemically polymerized on activated carbon electrodes for improved pseudocapacitance |
URI | https://link.springer.com/article/10.1007/s13233-023-00129-6 https://www.proquest.com/docview/2786550749 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002939476 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Macromolecular Research, 2023, 31(2), , pp.171-179 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEA62fdA-FK1KT2sJKPiggd1kd5M8HqW1KvrkQX0KuWQiR4-76-2dUN_8z53ZZnutqODDsrA_QnZnMvNNJvOFsVdQj1P0GJ3EAipBGiJMKL2wgN47JUQMNVUjf_rcnI2qD-f1eS4Ka_vV7n1KsrPUm2I3JRXlHPGg2RPRbLGdGmN3Go4jOeztb0MEMh1LqjWiLpTMpTJ_buOOO8pGeWu2THcA52850s71nD5kexkz8uG1kB-xezDbZ_eP-63a9tnuLVbBx-wnGi5-uZ5gYA-CvFTkebObCJzWD5GFa_trITMGTK_4Yj69ogTOD3xjPuNU8vAdoWjkwS_HeOGmlZYj1OWTbj4Cby9aWEf0iRh-T1akRU_Y6PTky_GZyDstiKCsWglQkJQ1pfYmghynytdV5Q1Y72tVFQlC0h5Mso20Er2er1KRZOlTMBExglZP2TZ91AHjARGdhsZYH0NVgrYF-FpC0FoZnaIdsLL_4S5kGnLaDWPqNgTKJCSHQnKdkFwzYG9u3llck3D88-nXJEdHIxRbDj4XGmD_iOvKDRFEIQxCaDZgL1HU7iJMHLFs0_nb3F0sHcYS72nxG4JnIwfssFcFlwd466Smil7EX9jI2149Nrf_3rtn__f4c_ZAdupKC2gO2fZquYYXCINW4yO2M3z39ePJUaf9vwDH0gCv |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbYeBg8IBggCgMsgcQDWErsJLYfq4mpg21Pq7Q3y7XPqFrVlqZFGm_859xlzsoQIPEQRcoPy8md776zfd8x9hbqSYoeo5NYQCVIQ4QJpRcW0HunhIihpmzk07NmNK4-XdQXOSms7Xe790uSnaXeJrspqWjNEQ-aPRHNDruLYMBQ3YKxHPb2tyECmY4l1RpRF0rmVJk_t3HLHWWjvDNfpVuA87c10s71HD1kDzJm5MNrIT9id2C-z_YO-1Jt--z-L6yCj9kPNFz862aKgT0I8lKR52I3ETjtHyIL1_bXQmYMmF3x5WJ2RQs43_GNxZxTysM3hKKRB7-a4IWbVlqOUJdPu_kIvL1sYRPRJ2L4PV2TFj1h46OP54cjkSstiKCsWgtQkJQ1pfYmgpykytdV5Q1Y72tVFQlC0h5Mso20Er2er1KRZOlTMBExglZP2S591DPGAyI6DY2xPoaqBG0L8LWEoLUyOkU7YGX_w13INORUDWPmtgTKJCSHQnKdkFwzYO9v3llek3D88-l3JEdHIxRbDj4nGmD_iOvKDRFEIQxCaDZgb1DU7jJMHbFs0_nLwl2uHMYSx7T5DcGzkQN20KuCywO8dVJTRi_iL2zkQ68e29t_793z_3v8NdsbnZ-euJPjs88v2D3ZqS5tpjlgu-vVBl4iJFpPXnUj4Cf6HAIO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZokXgcKiggAi1YAokDrLpr767tY9Q2anlUHIjUm-XYYxQ1SkKyQSo3_jkzG2_TIkDisFrJL3l3xjOfH_OZsddQjWJwODsJOZQZaUimfeEyA-i9Y0TEUFE08qez-mRYvj-vzq9F8ben3bstyXVMA7E0TZuDeYgHm8A3KSTtP-JDKylZvcVuozkuSNOHot_Z4prIZFrGVKOzKpcihc38uY0brikZ6K3pIt4An7_tl7ZuaPCA7ST8yPtrgT9kt2C6y-4edte27bL71xgGH7GfaMT4t9UYJ_mQkccKPF18E4DTWSKydssuzSf2gMkln88ml7SZ8wNrzKacwh--IywN3LvFCBOuWllyhL183K5NYPZ8CauA_hGn4uOGNOoxGw6OvxyeZOnWhcxLI5sMJERpdKGcDiBGsXRVWToNxrlKlnkEH5UDHU0tjEAP6MqYR1G46HVAvKDkE7ZNH_WUcY_oTkGtjQu-LECZHFwlwCsltYrB9FjR_XDrEyU53YwxsRsyZRKSRSHZVki27rG3V3Xma0KOf5Z-Q3K0NFqxZe9S0AH2j3ivbB8BFUIihGk99gpFbS_82BLjNr2_zuzFwuK84pQOwiGQ1qLH9jpVsGmwL61QFN2LWAwbedepxyb777179n_FX7I7n48G9uPp2Yfn7J5oNZfO1eyx7Waxgn1ER83oRTsAfgGo3wZK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+quinone-based+electrode+additives+electrochemically+polymerized+on+activated+carbon+electrodes+for+improved+pseudocapacitance&rft.jtitle=Macromolecular+research&rft.au=Lee%2C+Kyuchul&rft.au=Hwang%2C+Jihyun&rft.au=Park%2C+Jeong+Ho&rft.au=Park%2C+Jongwook&rft.date=2023-02-01&rft.issn=1598-5032&rft.eissn=2092-7673&rft.volume=31&rft.issue=2&rft.spage=171&rft.epage=179&rft_id=info:doi/10.1007%2Fs13233-023-00129-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13233_023_00129_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-5032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-5032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-5032&client=summon |