New quinone-based electrode additives electrochemically polymerized on activated carbon electrodes for improved pseudocapacitance

Three quinone-based derivatives (HBU680, HBU888, and HBU889) are synthesized and separately mixed with activated carbon (AC) and electropolymerized to form a homogeneous composite electrode. The electrochemical properties of the composite electrodes are studied. The electrochemical properties are ma...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular research Vol. 31; no. 2; pp. 171 - 179
Main Authors Lee, Kyuchul, Hwang, Jihyun, Park, Jeong Ho, Park, Jongwook, Lee, Kangwon, Ko, Jang Myoun
Format Journal Article
LanguageEnglish
Published Seoul The Polymer Society of Korea 01.02.2023
Springer
Springer Nature B.V
한국고분자학회
Subjects
Online AccessGet full text
ISSN1598-5032
2092-7673
DOI10.1007/s13233-023-00129-6

Cover

Abstract Three quinone-based derivatives (HBU680, HBU888, and HBU889) are synthesized and separately mixed with activated carbon (AC) and electropolymerized to form a homogeneous composite electrode. The electrochemical properties of the composite electrodes are studied. The electrochemical properties are mainly characterized by PhQ-PhQH2 and Q-QH2 redox transitions. The composite electrodes show specific capacitance of 176 F/g, 262 F/g, and 145 F/g for HBU680, HBU888, and HBU889, respectively. The HBU888 shows the highest specific capacitance due to the fast PhQ-PhQH2 redox transition at a scan rate of 100 mV/s. The composite electrodes also show a 100% capacity retention over 10,000 cycles. These results show that the new quinone-based derivates can enhance pseudocapacitive behavior and warrant their use as electrode additives for supercapacitors. Graphical abstract The new quinone-based electrode additives were synthesized and used as additives for supercapacitor electrodes. The electrochemical properties are mainly characterized by PhQ-PhQH2 and Q-QH2 redox transitions. The composite electrodes show specific capacitance of 176 F/g, 262 F/g, and 145 F/g for HBU680, HBU888, and HBU889 respectively. The HBU888 shows the highest specific capacitance due to the fast PhQ-PhQH2 redox. The composite electrodes also show a 100% capacity retention over 5000 cycles.
AbstractList Three quinone-based derivatives (HBU680, HBU888, and HBU889) are synthesized and separately mixed with activated carbon (AC) and electropolymerized to form a homogeneous composite electrode. The electrochemical properties of the composite electrodes are studied. The electrochemical properties are mainly characterized by PhQ-PhQH2 and Q-QH2 redox transitions. The composite electrodes show specific capacitance of 176 F/g, 262 F/g, and 145 F/g for HBU680, HBU888, and HBU889, respectively. The HBU888 shows the highest specific capacitance due to the fast PhQ-PhQH2 redox transition at a scan rate of 100 mV/s. The composite electrodes also show a 100% capacity retention over 10,000 cycles. These results show that the new quinone-based derivates can enhance pseudocapacitive behavior and warrant their use as electrode additives for supercapacitors. Graphical abstract The new quinone-based electrode additives were synthesized and used as additives for supercapacitor electrodes. The electrochemical properties are mainly characterized by PhQ-PhQH2 and Q-QH2 redox transitions. The composite electrodes show specific capacitance of 176 F/g, 262 F/g, and 145 F/g for HBU680, HBU888, and HBU889 respectively. The HBU888 shows the highest specific capacitance due to the fast PhQ-PhQH2 redox. The composite electrodes also show a 100% capacity retention over 5000 cycles.
Three quinone-based derivatives (HBU680, HBU888, and HBU889) are synthesized and separately mixed with activated carbon (AC) and electropolymerized to form a homogeneous composite electrode. The electrochemical properties of the composite electrodes are studied. The electrochemical properties are mainly characterized by PhQ-PhQH2 and Q-QH2 redox transitions. The composite electrodes show specific capacitance of 176 F/g, 262 F/g, and 145 F/g for HBU680, HBU888, and HBU889, respectively. The HBU888 shows the highest specific capacitance due to the fast PhQ-PhQH2 redox transition at a scan rate of 100 mV/s. The composite electrodes also show a 100% capacity retention over 10,000 cycles. These results show that the new quinone-based derivates can enhance pseudocapacitive behavior and warrant their use as electrode additives for supercapacitors. KCI Citation Count: 0
Three quinone-based derivatives (HBU680, HBU888, and HBU889) are synthesized and separately mixed with activated carbon (AC) and electropolymerized to form a homogeneous composite electrode. The electrochemical properties of the composite electrodes are studied. The electrochemical properties are mainly characterized by PhQ-PhQH2 and Q-QH2 redox transitions. The composite electrodes show specific capacitance of 176 F/g, 262 F/g, and 145 F/g for HBU680, HBU888, and HBU889, respectively. The HBU888 shows the highest specific capacitance due to the fast PhQ-PhQH2 redox transition at a scan rate of 100 mV/s. The composite electrodes also show a 100% capacity retention over 10,000 cycles. These results show that the new quinone-based derivates can enhance pseudocapacitive behavior and warrant their use as electrode additives for supercapacitors.The new quinone-based electrode additives were synthesized and used as additives for supercapacitor electrodes. The electrochemical properties are mainly characterized by PhQ-PhQH2 and Q-QH2 redox transitions. The composite electrodes show specific capacitance of 176 F/g, 262 F/g, and 145 F/g for HBU680, HBU888, and HBU889 respectively. The HBU888 shows the highest specific capacitance due to the fast PhQ-PhQH2 redox. The composite electrodes also show a 100% capacity retention over 5000 cycles.
Three quinone-based derivatives (HBU680, HBU888, and HBU889) are synthesized and separately mixed with activated carbon (AC) and electropolymerized to form a homogeneous composite electrode. The electrochemical properties of the composite electrodes are studied. The electrochemical properties are mainly characterized by PhQ-PhQH2 and Q-QH2 redox transitions. The composite electrodes show specific capacitance of 176 F/g, 262 F/g, and 145 F/g for HBU680, HBU888, and HBU889, respectively. The HBU888 shows the highest specific capacitance due to the fast PhQ-PhQH2 redox transition at a scan rate of 100 mV/s. The composite electrodes also show a 100% capacity retention over 10,000 cycles. These results show that the new quinone-based derivates can enhance pseudocapacitive behavior and warrant their use as electrode additives for supercapacitors. Graphical abstract The new quinone-based electrode additives were synthesized and used as additives for supercapacitor electrodes. The electrochemical properties are mainly characterized by PhQ-PhQH2 and Q-QH2 redox transitions. The composite electrodes show specific capacitance of 176 F/g, 262 F/g, and 145 F/g for HBU680, HBU888, and HBU889 respectively. The HBU888 shows the highest specific capacitance due to the fast PhQ-PhQH2 redox. The composite electrodes also show a 100% capacity retention over 5000 cycles.
Audience Academic
Author Ko, Jang Myoun
Lee, Kyuchul
Lee, Kangwon
Park, Jongwook
Hwang, Jihyun
Park, Jeong Ho
Author_xml – sequence: 1
  givenname: Kyuchul
  surname: Lee
  fullname: Lee, Kyuchul
  organization: Program in Nano and Technology, Graduate School of Convergence Science and Technology, Seoul National University
– sequence: 2
  givenname: Jihyun
  surname: Hwang
  fullname: Hwang, Jihyun
  organization: Department of Applied Chemistry & Biotechnology, Hanbat National University
– sequence: 3
  givenname: Jeong Ho
  surname: Park
  fullname: Park, Jeong Ho
  organization: Department of Applied Chemistry & Biotechnology, Hanbat National University
– sequence: 4
  givenname: Jongwook
  orcidid: 0000-0002-6797-5211
  surname: Park
  fullname: Park, Jongwook
  email: jongpark@khu.ac.kr
  organization: Integrated Engineering, Department of Chemical Engineering, Kyung Hee University
– sequence: 5
  givenname: Kangwon
  surname: Lee
  fullname: Lee, Kangwon
  email: kangwonlee@snu.ac.kr
  organization: Program in Nano and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University
– sequence: 6
  givenname: Jang Myoun
  surname: Ko
  fullname: Ko, Jang Myoun
  email: jmko@hanbat.ac.kr
  organization: Department of Applied Chemistry & Biotechnology, Hanbat National University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002939476$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kU1r3DAQhkVJoJs0f6AnQ28Fp_qwLem4hH4EQgslOYtZebRV4pUcyZuwvfWfV47TFnoIQgiN3mdmNO8JOQoxICFvGT1nlMoPmQkuRE152ZRxXXevyIpTzWvZSXFEVqzVqm6p4K_JSc63lHZMMLYiv77iY3W_93O-egMZ-woHtFOKPVbQ937yD5j_xOwP3HkLw3Coxjgcdpj8z0LEUIEtQpjKxULalMDfLLlyMVV-N6b4UJ7HjPs-WhjB-gmCxTfk2MGQ8ez5PCU3nz5eX3ypr759vrxYX9VWaDHVKNAJrZgE1SPfuAbapgGFGqAVDXVonQRUTndccyYoNI46zsBZ1XOmpDgl75e8ITlzZ72J4J_ObTR3yay_X18aRpnWTPEifreIS9f3e8yTuY37FEp_hkvVtS2VjS6q80W1hQGNDy5OCWxZ_TymMlHnS3wtG8Y07cQM8AWwKeac0Jkx-R2kQ6lsZiPNYqQpRponI01XIPUfNE9u8jGUan54GRULmkudsMX07xsvUL8B8vW3AA
CitedBy_id crossref_primary_10_3390_molecules28237885
crossref_primary_10_1016_j_colsurfa_2024_133445
crossref_primary_10_1007_s13233_024_00340_z
crossref_primary_10_1002_batt_202400721
Cites_doi 10.1002/eem2.12028
10.1021/jo9025447
10.1093/nsr/nww072
10.1021/acsami.2c05703
10.1016/j.colsurfb.2010.03.009
10.1021/am402821c
10.1021/acs.chemrev.0c00170
10.1016/j.electacta.2006.05.025
10.1016/j.mtadv.2020.100072
10.1186/s11671-017-2150-5
10.1016/j.cap.2019.10.017
10.1016/j.jpowsour.2014.10.166
10.1007/s00604-007-0745-8
10.1186/1556-276X-7-630
10.1038/s41598-017-17024-7
10.1016/j.electacta.2018.04.149
10.1016/j.electacta.2014.12.148
10.1016/j.est.2018.03.012
10.1016/0022-0728(86)87048-6
10.1016/j.jiec.2016.03.046
10.1016/j.jphotochem.2011.08.016
10.1016/S0022-0728(81)80085-X
10.1021/ja0743083
10.1016/j.synthmet.2016.03.012
10.1016/j.jiec.2018.01.032
10.1063/1.1725222
ContentType Journal Article
Copyright The Author(s), under exclusive licence to The Polymer Society of Korea 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2023 Springer
Copyright_xml – notice: The Author(s), under exclusive licence to The Polymer Society of Korea 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2023 Springer
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s13233-023-00129-6
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList



DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 2092-7673
EndPage 179
ExternalDocumentID oai_kci_go_kr_ARTI_10199182
A741190639
10_1007_s13233_023_00129_6
GrantInformation_xml – fundername: Ministry of Education
  grantid: 2017R1D1A1B04028757; 2020R1A6A1A03048004; 2019R1A6C1010052
  funderid: http://dx.doi.org/10.13039/501100002701
GroupedDBID -EM
.UV
06D
0R~
0VY
1N0
203
2JY
2KG
2VQ
3-Y
30V
4.4
406
408
40D
53G
5GY
67Z
8N-
8UJ
96X
9ZL
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BGNMA
CAG
COF
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GW5
H13
HF~
HMJXF
HRMNR
HZ~
I0C
IAO
IHR
IKXTQ
IWAJR
IXD
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MZR
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PT4
R9I
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SCM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TDB
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7U
Z7V
Z7X
Z7Y
ZMTXR
ZZE
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
AEIIB
85H
AAFGU
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
SQXTU
Z5O
Z7R
Z7S
ID FETCH-LOGICAL-c393t-e3ef39817a8de2bf4a544a8e9aa5340fecf7ae8f96292130a4f0f21afc8d21873
IEDL.DBID U2A
ISSN 1598-5032
IngestDate Fri Feb 23 03:15:59 EST 2024
Fri Jul 25 10:57:11 EDT 2025
Tue Jun 10 21:15:24 EDT 2025
Tue Jul 29 01:58:51 EDT 2025
Thu Apr 24 22:52:35 EDT 2025
Fri Feb 21 02:45:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Quinone based
Pseudocapacitance
Activated carbon
Redox reaction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-e3ef39817a8de2bf4a544a8e9aa5340fecf7ae8f96292130a4f0f21afc8d21873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6797-5211
PQID 2786550749
PQPubID 2044280
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10199182
proquest_journals_2786550749
gale_infotracacademiconefile_A741190639
crossref_primary_10_1007_s13233_023_00129_6
crossref_citationtrail_10_1007_s13233_023_00129_6
springer_journals_10_1007_s13233_023_00129_6
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Heidelberg
PublicationTitle Macromolecular research
PublicationTitleAbbrev Macromol. Res
PublicationYear 2023
Publisher The Polymer Society of Korea
Springer
Springer Nature B.V
한국고분자학회
Publisher_xml – name: The Polymer Society of Korea
– name: Springer
– name: Springer Nature B.V
– name: 한국고분자학회
References GaoYNanoscale Res. Lett.20171238710.1186/s11671-017-2150-5285829645457388
LiuYJiangSPShaoZMater. Today Adv.2020710.1016/j.mtadv.2020.100072
WangJDongSDingBWangYHaoXDouHXiaYZhangXNatl. Sci. Rev.20174719010.1093/nsr/nww072
LibichJMácaJVondrákJČechOSedlaříkováMJ. Energy Storage.20181722422710.1016/j.est.2018.03.012
JiangYLiuJEnergy Environ. Mater.201923010.1002/eem2.12028
SathyamoorthiSSuryanarayananVVelayuthamDJ. Power Sources.2015274113511391:CAS:528:DC%2BC2cXhvVGhs7vJ10.1016/j.jpowsour.2014.10.166
KoJSSassinMBRolisonDRLongJWElectrochim. Acta.20182752252351:CAS:528:DC%2BC1cXosFWqtLY%3D10.1016/j.electacta.2018.04.149
DongmoSWittJWittstockGElectrochim. Acta20151554744821:CAS:528:DC%2BC2MXhvVWgs78%3D10.1016/j.electacta.2014.12.148
ArdakaniMMKaramiPEZareHRHamzehlooMMicrochim. Acta.20071591651:CAS:528:DC%2BD2sXmvVaqsL4%3D10.1007/s00604-007-0745-8
SouierTSantosSAl GhaferiAStefancichMChiesaMNanoscale Res. Lett.20127110.1186/1556-276X-7-630
PhamMCHachemiADuboisJEJ. Electroanal. Chem.198619915316410.1016/0022-0728(86)87048-6
DavisJMolinaMTLeachCPCardosiMFApplACSMater. Interfaces.20135936793711:CAS:528:DC%2BC3sXhsVOgs7zM10.1021/am402821c
LiuXDingZHeYXueZZhaoXLuXColloids Surfaces B Biointerfaces.201079271:CAS:528:DC%2BC3cXmsVOnsL8%3D10.1016/j.colsurfb.2010.03.00920413283
ChuJLiGWangYZhangXYangZHanYCaiTSongZApplACSMater. Interfaces20221425566255751:CAS:528:DC%2BB38XhtlGqu7bF10.1021/acsami.2c05703
ChauY-FCWangC-KShenLLimCMChiangH-PChaoC-TCHuangHJLinC-TKumaraNTRNVooNYSci. Rep201771681710.1038/s41598-017-17024-7291966415711893
AkaiNKawaiAShibuyaKJ. Photochem. Photobiol. A Chem.20112231821:CAS:528:DC%2BC3MXhtlWlsb%2FM10.1016/j.jphotochem.2011.08.016
QuanMSanchezDWasylkiwMFSmithDKJ. Am. Chem. Soc.2007129128471:CAS:528:DC%2BD2sXhtFShtbnJ10.1021/ja074308317910453
PhiriIBonCYKimSMwemeziMHamenuLMadzvamuseAKimSHKoJMCurr. Appl. Phys.20202012213110.1016/j.cap.2019.10.017
FleischmannSMitchellJBWangRZhanCJiangDEPresserVAugustynVChem. Rev.2020120673867821:CAS:528:DC%2BB3cXht1Git77F10.1021/acs.chemrev.0c0017032597172
FerreiraMVarelaHTorresiRMTremiliosi-FilhoGElectrochim. Acta.2006524341:CAS:528:DC%2BD28XhtVWrsL%2FJ10.1016/j.electacta.2006.05.025
KronickPLScottHLabesMMJ. Chem. Phys.1964408901:CAS:528:DyaF2cXjvVeisw%3D%3D10.1063/1.1725222
LeeHSuzukiMCuiJKozminSAJ. Org. Chem.201075175617591:CAS:528:DC%2BC3cXhslShtLo%3D10.1021/jo9025447201412242830352
LeeHSLatifatuMKimBCParkJHLeeYGKimKMParkJBaekYGKoJMSynth. Met.201621729361:CAS:528:DC%2BC28XksVahurY%3D10.1016/j.synthmet.2016.03.012
HaJSooHHamenuLLatifatuMMinYManKOhJIlWMyounJJ. Ind. Eng. Chem.20163732510.1016/j.jiec.2016.03.046
SuematsuSNaoiKJ. Power Sources.20018169798
DuboisJ-ELacazeP-CPhamMCJ. Electroanal. Chem. Interfacial Electrochem.19811172332411:CAS:528:DyaL3MXht12ns7c%3D10.1016/S0022-0728(81)80085-X
LatifatuMParkJHKoJMParkJJ. Ind. Eng. Chem.20186312181:CAS:528:DC%2BC1cXisFOjs78%3D10.1016/j.jiec.2018.01.032
ZhangKGuoCZhaoQNiuZChenJAdv. Sci20152
HS Lee (129_CR11) 2016; 217
M Quan (129_CR25) 2007; 129
J Chu (129_CR13) 2022; 14
J Davis (129_CR16) 2013; 5
M Ferreira (129_CR20) 2006; 52
Y Jiang (129_CR5) 2019; 2
S Sathyamoorthi (129_CR12) 2015; 274
J-E Dubois (129_CR19) 1981; 117
Y Liu (129_CR1) 2020; 7
X Liu (129_CR23) 2010; 79
Y Gao (129_CR27) 2017; 12
J Ha (129_CR21) 2016; 37
JS Ko (129_CR2) 2018; 275
H Lee (129_CR10) 2010; 75
Y-FC Chau (129_CR17) 2017; 7
S Fleischmann (129_CR7) 2020; 120
K Zhang (129_CR14) 2015; 2
MM Ardakani (129_CR22) 2007; 159
J Libich (129_CR3) 2018; 17
I Phiri (129_CR6) 2020; 20
MC Pham (129_CR18) 1986; 199
S Suematsu (129_CR8) 2001; 816
M Latifatu (129_CR9) 2018; 63
J Wang (129_CR4) 2017; 4
S Dongmo (129_CR15) 2015; 155
T Souier (129_CR26) 2012; 7
PL Kronick (129_CR28) 1964; 40
N Akai (129_CR24) 2011; 223
References_xml – reference: WangJDongSDingBWangYHaoXDouHXiaYZhangXNatl. Sci. Rev.20174719010.1093/nsr/nww072
– reference: KoJSSassinMBRolisonDRLongJWElectrochim. Acta.20182752252351:CAS:528:DC%2BC1cXosFWqtLY%3D10.1016/j.electacta.2018.04.149
– reference: LeeHSLatifatuMKimBCParkJHLeeYGKimKMParkJBaekYGKoJMSynth. Met.201621729361:CAS:528:DC%2BC28XksVahurY%3D10.1016/j.synthmet.2016.03.012
– reference: FerreiraMVarelaHTorresiRMTremiliosi-FilhoGElectrochim. Acta.2006524341:CAS:528:DC%2BD28XhtVWrsL%2FJ10.1016/j.electacta.2006.05.025
– reference: LibichJMácaJVondrákJČechOSedlaříkováMJ. Energy Storage.20181722422710.1016/j.est.2018.03.012
– reference: JiangYLiuJEnergy Environ. Mater.201923010.1002/eem2.12028
– reference: DongmoSWittJWittstockGElectrochim. Acta20151554744821:CAS:528:DC%2BC2MXhvVWgs78%3D10.1016/j.electacta.2014.12.148
– reference: ChuJLiGWangYZhangXYangZHanYCaiTSongZApplACSMater. Interfaces20221425566255751:CAS:528:DC%2BB38XhtlGqu7bF10.1021/acsami.2c05703
– reference: HaJSooHHamenuLLatifatuMMinYManKOhJIlWMyounJJ. Ind. Eng. Chem.20163732510.1016/j.jiec.2016.03.046
– reference: AkaiNKawaiAShibuyaKJ. Photochem. Photobiol. A Chem.20112231821:CAS:528:DC%2BC3MXhtlWlsb%2FM10.1016/j.jphotochem.2011.08.016
– reference: ChauY-FCWangC-KShenLLimCMChiangH-PChaoC-TCHuangHJLinC-TKumaraNTRNVooNYSci. Rep201771681710.1038/s41598-017-17024-7291966415711893
– reference: ArdakaniMMKaramiPEZareHRHamzehlooMMicrochim. Acta.20071591651:CAS:528:DC%2BD2sXmvVaqsL4%3D10.1007/s00604-007-0745-8
– reference: FleischmannSMitchellJBWangRZhanCJiangDEPresserVAugustynVChem. Rev.2020120673867821:CAS:528:DC%2BB3cXht1Git77F10.1021/acs.chemrev.0c0017032597172
– reference: SuematsuSNaoiKJ. Power Sources.20018169798
– reference: LeeHSuzukiMCuiJKozminSAJ. Org. Chem.201075175617591:CAS:528:DC%2BC3cXhslShtLo%3D10.1021/jo9025447201412242830352
– reference: LiuYJiangSPShaoZMater. Today Adv.2020710.1016/j.mtadv.2020.100072
– reference: PhiriIBonCYKimSMwemeziMHamenuLMadzvamuseAKimSHKoJMCurr. Appl. Phys.20202012213110.1016/j.cap.2019.10.017
– reference: ZhangKGuoCZhaoQNiuZChenJAdv. Sci20152
– reference: LatifatuMParkJHKoJMParkJJ. Ind. Eng. Chem.20186312181:CAS:528:DC%2BC1cXisFOjs78%3D10.1016/j.jiec.2018.01.032
– reference: QuanMSanchezDWasylkiwMFSmithDKJ. Am. Chem. Soc.2007129128471:CAS:528:DC%2BD2sXhtFShtbnJ10.1021/ja074308317910453
– reference: DuboisJ-ELacazeP-CPhamMCJ. Electroanal. Chem. Interfacial Electrochem.19811172332411:CAS:528:DyaL3MXht12ns7c%3D10.1016/S0022-0728(81)80085-X
– reference: DavisJMolinaMTLeachCPCardosiMFApplACSMater. Interfaces.20135936793711:CAS:528:DC%2BC3sXhsVOgs7zM10.1021/am402821c
– reference: LiuXDingZHeYXueZZhaoXLuXColloids Surfaces B Biointerfaces.201079271:CAS:528:DC%2BC3cXmsVOnsL8%3D10.1016/j.colsurfb.2010.03.00920413283
– reference: SathyamoorthiSSuryanarayananVVelayuthamDJ. Power Sources.2015274113511391:CAS:528:DC%2BC2cXhvVGhs7vJ10.1016/j.jpowsour.2014.10.166
– reference: SouierTSantosSAl GhaferiAStefancichMChiesaMNanoscale Res. Lett.20127110.1186/1556-276X-7-630
– reference: PhamMCHachemiADuboisJEJ. Electroanal. Chem.198619915316410.1016/0022-0728(86)87048-6
– reference: KronickPLScottHLabesMMJ. Chem. Phys.1964408901:CAS:528:DyaF2cXjvVeisw%3D%3D10.1063/1.1725222
– reference: GaoYNanoscale Res. Lett.20171238710.1186/s11671-017-2150-5285829645457388
– volume: 816
  start-page: 97
  year: 2001
  ident: 129_CR8
  publication-title: J. Power Sources.
– volume: 2
  start-page: 30
  year: 2019
  ident: 129_CR5
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12028
– volume: 75
  start-page: 1756
  year: 2010
  ident: 129_CR10
  publication-title: J. Org. Chem.
  doi: 10.1021/jo9025447
– volume: 4
  start-page: 71
  year: 2017
  ident: 129_CR4
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nww072
– volume: 14
  start-page: 25566
  year: 2022
  ident: 129_CR13
  publication-title: Mater. Interfaces
  doi: 10.1021/acsami.2c05703
– volume: 79
  start-page: 27
  year: 2010
  ident: 129_CR23
  publication-title: Colloids Surfaces B Biointerfaces.
  doi: 10.1016/j.colsurfb.2010.03.009
– volume: 5
  start-page: 9367
  year: 2013
  ident: 129_CR16
  publication-title: Mater. Interfaces.
  doi: 10.1021/am402821c
– volume: 120
  start-page: 6738
  year: 2020
  ident: 129_CR7
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00170
– volume: 52
  start-page: 434
  year: 2006
  ident: 129_CR20
  publication-title: Electrochim. Acta.
  doi: 10.1016/j.electacta.2006.05.025
– volume: 7
  year: 2020
  ident: 129_CR1
  publication-title: Mater. Today Adv.
  doi: 10.1016/j.mtadv.2020.100072
– volume: 12
  start-page: 387
  year: 2017
  ident: 129_CR27
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-017-2150-5
– volume: 20
  start-page: 122
  year: 2020
  ident: 129_CR6
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2019.10.017
– volume: 274
  start-page: 1135
  year: 2015
  ident: 129_CR12
  publication-title: J. Power Sources.
  doi: 10.1016/j.jpowsour.2014.10.166
– volume: 159
  start-page: 165
  year: 2007
  ident: 129_CR22
  publication-title: Microchim. Acta.
  doi: 10.1007/s00604-007-0745-8
– volume: 7
  start-page: 1
  year: 2012
  ident: 129_CR26
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-7-630
– volume: 7
  start-page: 16817
  year: 2017
  ident: 129_CR17
  publication-title: Sci. Rep
  doi: 10.1038/s41598-017-17024-7
– volume: 275
  start-page: 225
  year: 2018
  ident: 129_CR2
  publication-title: Electrochim. Acta.
  doi: 10.1016/j.electacta.2018.04.149
– volume: 155
  start-page: 474
  year: 2015
  ident: 129_CR15
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.12.148
– volume: 17
  start-page: 224
  year: 2018
  ident: 129_CR3
  publication-title: J. Energy Storage.
  doi: 10.1016/j.est.2018.03.012
– volume: 199
  start-page: 153
  year: 1986
  ident: 129_CR18
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/0022-0728(86)87048-6
– volume: 37
  start-page: 325
  year: 2016
  ident: 129_CR21
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2016.03.046
– volume: 223
  start-page: 182
  year: 2011
  ident: 129_CR24
  publication-title: J. Photochem. Photobiol. A Chem.
  doi: 10.1016/j.jphotochem.2011.08.016
– volume: 117
  start-page: 233
  year: 1981
  ident: 129_CR19
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
  doi: 10.1016/S0022-0728(81)80085-X
– volume: 129
  start-page: 12847
  year: 2007
  ident: 129_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0743083
– volume: 2
  year: 2015
  ident: 129_CR14
  publication-title: Adv. Sci
– volume: 217
  start-page: 29
  year: 2016
  ident: 129_CR11
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2016.03.012
– volume: 63
  start-page: 12
  year: 2018
  ident: 129_CR9
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2018.01.032
– volume: 40
  start-page: 890
  year: 1964
  ident: 129_CR28
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1725222
SSID ssj0061311
Score 2.3227572
Snippet Three quinone-based derivatives (HBU680, HBU888, and HBU889) are synthesized and separately mixed with activated carbon (AC) and electropolymerized to form a...
SourceID nrf
proquest
gale
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 171
SubjectTerms Activated carbon
Additives
Capacitance
Capacitors
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Complex Fluids and Microfluidics
Electrochemical analysis
Electrodes
Electrons
Nanochemistry
Nanotechnology
Physical Chemistry
Polymer Sciences
Quinone
Quinones
Soft and Granular Matter
Supercapacitors
Synthesis
고분자공학
Title New quinone-based electrode additives electrochemically polymerized on activated carbon electrodes for improved pseudocapacitance
URI https://link.springer.com/article/10.1007/s13233-023-00129-6
https://www.proquest.com/docview/2786550749
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002939476
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Macromolecular Research, 2023, 31(2), , pp.171-179
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEA62fdA-FK1KT2sJKPiggd1kd5M8HqW1KvrkQX0KuWQiR4-76-2dUN_8z53ZZnutqODDsrA_QnZnMvNNJvOFsVdQj1P0GJ3EAipBGiJMKL2wgN47JUQMNVUjf_rcnI2qD-f1eS4Ka_vV7n1KsrPUm2I3JRXlHPGg2RPRbLGdGmN3Go4jOeztb0MEMh1LqjWiLpTMpTJ_buOOO8pGeWu2THcA52850s71nD5kexkz8uG1kB-xezDbZ_eP-63a9tnuLVbBx-wnGi5-uZ5gYA-CvFTkebObCJzWD5GFa_trITMGTK_4Yj69ogTOD3xjPuNU8vAdoWjkwS_HeOGmlZYj1OWTbj4Cby9aWEf0iRh-T1akRU_Y6PTky_GZyDstiKCsWglQkJQ1pfYmghynytdV5Q1Y72tVFQlC0h5Mso20Er2er1KRZOlTMBExglZP2TZ91AHjARGdhsZYH0NVgrYF-FpC0FoZnaIdsLL_4S5kGnLaDWPqNgTKJCSHQnKdkFwzYG9u3llck3D88-nXJEdHIxRbDj4XGmD_iOvKDRFEIQxCaDZgL1HU7iJMHLFs0_nb3F0sHcYS72nxG4JnIwfssFcFlwd466Smil7EX9jI2149Nrf_3rtn__f4c_ZAdupKC2gO2fZquYYXCINW4yO2M3z39ePJUaf9vwDH0gCv
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbYeBg8IBggCgMsgcQDWErsJLYfq4mpg21Pq7Q3y7XPqFrVlqZFGm_859xlzsoQIPEQRcoPy8md776zfd8x9hbqSYoeo5NYQCVIQ4QJpRcW0HunhIihpmzk07NmNK4-XdQXOSms7Xe790uSnaXeJrspqWjNEQ-aPRHNDruLYMBQ3YKxHPb2tyECmY4l1RpRF0rmVJk_t3HLHWWjvDNfpVuA87c10s71HD1kDzJm5MNrIT9id2C-z_YO-1Jt--z-L6yCj9kPNFz862aKgT0I8lKR52I3ETjtHyIL1_bXQmYMmF3x5WJ2RQs43_GNxZxTysM3hKKRB7-a4IWbVlqOUJdPu_kIvL1sYRPRJ2L4PV2TFj1h46OP54cjkSstiKCsWgtQkJQ1pfYmgpykytdV5Q1Y72tVFQlC0h5Mso20Er2er1KRZOlTMBExglZP2S591DPGAyI6DY2xPoaqBG0L8LWEoLUyOkU7YGX_w13INORUDWPmtgTKJCSHQnKdkFwzYO9v3llek3D88-l3JEdHIxRbDj4nGmD_iOvKDRFEIQxCaDZgb1DU7jJMHbFs0_nLwl2uHMYSx7T5DcGzkQN20KuCywO8dVJTRi_iL2zkQ68e29t_793z_3v8NdsbnZ-euJPjs88v2D3ZqS5tpjlgu-vVBl4iJFpPXnUj4Cf6HAIO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZokXgcKiggAi1YAokDrLpr767tY9Q2anlUHIjUm-XYYxQ1SkKyQSo3_jkzG2_TIkDisFrJL3l3xjOfH_OZsddQjWJwODsJOZQZaUimfeEyA-i9Y0TEUFE08qez-mRYvj-vzq9F8ben3bstyXVMA7E0TZuDeYgHm8A3KSTtP-JDKylZvcVuozkuSNOHot_Z4prIZFrGVKOzKpcihc38uY0brikZ6K3pIt4An7_tl7ZuaPCA7ST8yPtrgT9kt2C6y-4edte27bL71xgGH7GfaMT4t9UYJ_mQkccKPF18E4DTWSKydssuzSf2gMkln88ml7SZ8wNrzKacwh--IywN3LvFCBOuWllyhL183K5NYPZ8CauA_hGn4uOGNOoxGw6OvxyeZOnWhcxLI5sMJERpdKGcDiBGsXRVWToNxrlKlnkEH5UDHU0tjEAP6MqYR1G46HVAvKDkE7ZNH_WUcY_oTkGtjQu-LECZHFwlwCsltYrB9FjR_XDrEyU53YwxsRsyZRKSRSHZVki27rG3V3Xma0KOf5Z-Q3K0NFqxZe9S0AH2j3ivbB8BFUIihGk99gpFbS_82BLjNr2_zuzFwuK84pQOwiGQ1qLH9jpVsGmwL61QFN2LWAwbedepxyb777179n_FX7I7n48G9uPp2Yfn7J5oNZfO1eyx7Waxgn1ER83oRTsAfgGo3wZK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+quinone-based+electrode+additives+electrochemically+polymerized+on+activated+carbon+electrodes+for+improved+pseudocapacitance&rft.jtitle=Macromolecular+research&rft.au=Lee%2C+Kyuchul&rft.au=Hwang%2C+Jihyun&rft.au=Park%2C+Jeong+Ho&rft.au=Park%2C+Jongwook&rft.date=2023-02-01&rft.issn=1598-5032&rft.eissn=2092-7673&rft.volume=31&rft.issue=2&rft.spage=171&rft.epage=179&rft_id=info:doi/10.1007%2Fs13233-023-00129-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13233_023_00129_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-5032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-5032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-5032&client=summon