Cell-cycle transitions: a common role for stoichiometric inhibitors
The cell division cycle is the process by which eukaryotic cells replicate their chromosomes and partition them to two daughter cells. To maintain the integrity of the genome, proliferating cells must be able to block progression through the division cycle at key transition points (called “checkpoin...
Saved in:
Published in | Molecular biology of the cell Vol. 28; no. 23; pp. 3437 - 3446 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Society for Cell Biology
07.11.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The cell division cycle is the process by which eukaryotic cells replicate their chromosomes and partition them to two daughter cells. To maintain the integrity of the genome, proliferating cells must be able to block progression through the division cycle at key transition points (called “checkpoints”) if there have been problems in the replication of the chromosomes or their biorientation on the mitotic spindle. These checkpoints are governed by protein-interaction networks, composed of phase-specific cell-cycle activators and inhibitors. Examples include Cdk1:Clb5 and its inhibitor Sic1 at the G1/S checkpoint in budding yeast, APC:Cdc20 and its inhibitor MCC at the mitotic checkpoint, and PP2A:B55 and its inhibitor, alpha-endosulfine, at the mitotic-exit checkpoint. Each of these inhibitors is a substrate as well as a stoichiometric inhibitor of the cell-cycle activator. Because the production of each inhibitor is promoted by a regulatory protein that is itself inhibited by the cell-cycle activator, their interaction network presents a regulatory motif characteristic of a “feedback-amplified domineering substrate” (FADS). We describe how the FADS motif responds to signals in the manner of a bistable toggle switch, and then we discuss how this toggle switch accounts for the abrupt and irreversible nature of three specific cell-cycle checkpoints. |
---|---|
AbstractList | The cell division cycle is the process by which eukaryotic cells replicate their chromosomes and partition them to two daughter cells. To maintain the integrity of the genome, proliferating cells must be able to block progression through the division cycle at key transition points (called "checkpoints") if there have been problems in the replication of the chromosomes or their biorientation on the mitotic spindle. These checkpoints are governed by protein-interaction networks, composed of phase-specific cell-cycle activators and inhibitors. Examples include Cdk1:Clb5 and its inhibitor Sic1 at the G1/S checkpoint in budding yeast, APC:Cdc20 and its inhibitor MCC at the mitotic checkpoint, and PP2A:B55 and its inhibitor, alpha-endosulfine, at the mitotic-exit checkpoint. Each of these inhibitors is a substrate as well as a stoichiometric inhibitor of the cell-cycle activator. Because the production of each inhibitor is promoted by a regulatory protein that is itself inhibited by the cell-cycle activator, their interaction network presents a regulatory motif characteristic of a "feedback-amplified domineering substrate" (FADS). We describe how the FADS motif responds to signals in the manner of a bistable toggle switch, and then we discuss how this toggle switch accounts for the abrupt and irreversible nature of three specific cell-cycle checkpoints.The cell division cycle is the process by which eukaryotic cells replicate their chromosomes and partition them to two daughter cells. To maintain the integrity of the genome, proliferating cells must be able to block progression through the division cycle at key transition points (called "checkpoints") if there have been problems in the replication of the chromosomes or their biorientation on the mitotic spindle. These checkpoints are governed by protein-interaction networks, composed of phase-specific cell-cycle activators and inhibitors. Examples include Cdk1:Clb5 and its inhibitor Sic1 at the G1/S checkpoint in budding yeast, APC:Cdc20 and its inhibitor MCC at the mitotic checkpoint, and PP2A:B55 and its inhibitor, alpha-endosulfine, at the mitotic-exit checkpoint. Each of these inhibitors is a substrate as well as a stoichiometric inhibitor of the cell-cycle activator. Because the production of each inhibitor is promoted by a regulatory protein that is itself inhibited by the cell-cycle activator, their interaction network presents a regulatory motif characteristic of a "feedback-amplified domineering substrate" (FADS). We describe how the FADS motif responds to signals in the manner of a bistable toggle switch, and then we discuss how this toggle switch accounts for the abrupt and irreversible nature of three specific cell-cycle checkpoints. The cell division cycle is the process by which eukaryotic cells replicate their chromosomes and partition them to two daughter cells. To maintain the integrity of the genome, proliferating cells must be able to block progression through the division cycle at key transition points (called “checkpoints”) if there have been problems in the replication of the chromosomes or their biorientation on the mitotic spindle. These checkpoints are governed by protein-interaction networks, composed of phase-specific cell-cycle activators and inhibitors. Examples include Cdk1:Clb5 and its inhibitor Sic1 at the G1/S checkpoint in budding yeast, APC:Cdc20 and its inhibitor MCC at the mitotic checkpoint, and PP2A:B55 and its inhibitor, alpha-endosulfine, at the mitotic-exit checkpoint. Each of these inhibitors is a substrate as well as a stoichiometric inhibitor of the cell-cycle activator. Because the production of each inhibitor is promoted by a regulatory protein that is itself inhibited by the cell-cycle activator, their interaction network presents a regulatory motif characteristic of a “feedback-amplified domineering substrate” (FADS). We describe how the FADS motif responds to signals in the manner of a bistable toggle switch, and then we discuss how this toggle switch accounts for the abrupt and irreversible nature of three specific cell-cycle checkpoints. The abrupt and irreversible transitions that drive cells through the DNA replication-division cycle are governed by molecular mechanisms that function as bistable “toggle” switches. A common theme of these switches is a network motif consisting of a “beleaguered” enzyme and its “domineering” substrate, locked in a feedback amplification loop. The cell division cycle is the process by which eukaryotic cells replicate their chromosomes and partition them to two daughter cells. To maintain the integrity of the genome, proliferating cells must be able to block progression through the division cycle at key transition points (called “checkpoints”) if there have been problems in the replication of the chromosomes or their biorientation on the mitotic spindle. These checkpoints are governed by protein-interaction networks, composed of phase-specific cell-cycle activators and inhibitors. Examples include Cdk1:Clb5 and its inhibitor Sic1 at the G1/S checkpoint in budding yeast, APC:Cdc20 and its inhibitor MCC at the mitotic checkpoint, and PP2A:B55 and its inhibitor, alpha-endosulfine, at the mitotic-exit checkpoint. Each of these inhibitors is a substrate as well as a stoichiometric inhibitor of the cell-cycle activator. Because the production of each inhibitor is promoted by a regulatory protein that is itself inhibited by the cell-cycle activator, their interaction network presents a regulatory motif characteristic of a “feedback-amplified domineering substrate” (FADS). We describe how the FADS motif responds to signals in the manner of a bistable toggle switch, and then we discuss how this toggle switch accounts for the abrupt and irreversible nature of three specific cell-cycle checkpoints. |
Author | Novák, Béla Hopkins, Michael Tyson, John J. |
Author_xml | – sequence: 1 givenname: Michael surname: Hopkins fullname: Hopkins, Michael organization: Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK – sequence: 2 givenname: John J. surname: Tyson fullname: Tyson, John J. organization: Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061 – sequence: 3 givenname: Béla surname: Novák fullname: Novák, Béla organization: Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28931595$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UU1LxDAUDLKi68fZm_TopWvSfLTxIMjiFwhe9BzSl9SNtMmadAX_vVl2FRU8vQdvZt4wc4AmPniL0AnBM4IlOR9amFlSl1iUmDK5g6ZEUlky3ohJ3jGXJeEV20cHKb1iTBgT9R7arxpJCZd8iuZz2_clfEBvizFqn9zogk8XhS4gDEPwRQz51IVYpDE4WLgw2DE6KJxfuNaNIaYjtNvpPtnj7TxEzzfXT_O78uHx9n5-9VAClXQsjWkMgDWibqnlhLbSgCHcYMpNNs1px6qaQKdZTbHFoLEmHGRXN1XdElrRQ3S50V2u2sEasD477tUyukHHDxW0U78v3i3US3hXXDQ1ZmuBs61ADG8rm0Y1uAQ5AO1tWCVFJCNUCMlFhp7-_PX95Cu5DDjfACCGlKLtviEEq3U3KnejcjcKC7XuJjP4Hwa4Ua_jzmZd_y_vE2jIlYA |
CitedBy_id | crossref_primary_10_1371_journal_pone_0319280 crossref_primary_10_1038_s41417_019_0105_y crossref_primary_10_1016_j_isci_2024_109316 crossref_primary_10_1016_j_mbs_2024_109291 crossref_primary_10_1073_pnas_1816000116 crossref_primary_10_1083_jcb_202103171 crossref_primary_10_3390_ijms22062984 crossref_primary_10_1016_j_vph_2019_106568 crossref_primary_10_3390_molecules27123819 crossref_primary_10_1534_genetics_118_301421 crossref_primary_10_3892_ijmm_2018_3900 crossref_primary_10_1016_j_ijrobp_2019_08_009 crossref_primary_10_3390_synbio2040023 crossref_primary_10_1016_j_cub_2020_11_058 crossref_primary_10_15252_msb_20209945 crossref_primary_10_1016_j_coisb_2018_02_004 |
Cites_doi | 10.1016/j.cell.2004.05.024 10.1091/mbc.e09-07-0643 10.1242/jcs.087106 10.7554/eLife.01695 10.1073/pnas.78.11.6840 10.1128/MCB.06525-11 10.1073/pnas.0507322102 10.1101/gad.13.12.1501 10.1111/j.1742-4658.2009.07027.x 10.1016/j.cub.2015.08.051 10.1016/j.molcel.2013.09.005 10.1016/0022-5193(68)90190-2 10.1016/0092-8674(91)90118-I 10.1006/jtbi.2000.1068 10.1126/science.1195689 10.1016/j.cub.2014.01.034 10.1242/jcs.106.4.1153 10.1038/emboj.2009.238 10.1016/j.cell.2005.04.006 10.1186/gb4184 10.1038/nrm1988 10.4161/cc.29336 10.1016/0301-4622(95)00075-5 10.1146/annurev.physchem.012809.103457 10.1038/ncb0707-724 10.1016/j.ceb.2008.09.003 10.1016/j.febslet.2015.02.007 10.1038/ncb2347 10.1016/j.molcel.2011.11.014 10.1016/S0955-0674(03)00017-6 10.1016/j.cell.2004.05.025 10.1098/rsob.120179 10.1038/emboj.2009.228 10.1073/pnas.1102106108 10.1038/nature07984 10.1083/jcb.200111001 10.1038/10049 10.1073/pnas.0602767103 10.1038/nature10560 10.1016/j.tibs.2014.09.003 10.1038/nsmb.2412 10.1371/journal.pbio.1001673 10.1126/science.1197048 10.1126/science.282.5394.1721 10.1038/nature05734 10.1016/j.cub.2016.10.022 10.1038/ncb2018 10.1016/0092-8674(94)90193-7 10.1016/j.pbiomolbio.2009.06.004 10.1529/biophysj.103.036558 |
ContentType | Journal Article |
Copyright | 2017 Hopkins et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0). 2017 Hopkins et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0). 2017 Hopkins This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). 2017 |
Copyright_xml | – notice: 2017 Hopkins et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0). – notice: 2017 Hopkins et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0). – notice: 2017 Hopkins This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1091/mbc.e17-06-0349 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1939-4586 |
EndPage | 3446 |
ExternalDocumentID | PMC5687042 28931595 10_1091_mbc_e17_06_0349 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM078989 |
GroupedDBID | --- 123 18M 29M 2WC 34G 39C 4.4 5RE 5VS AAYXX ABDNZ ABSQV ACGFO ADBBV ADNWM AEILP AENEX AFHIN AFOSN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CITATION CS3 D0L DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 HH5 HYE IH2 INIJC KQ8 R0Z RPM SJN TCB TR2 W8F WOQ YHG YKV YNT YQT YWH CGR CUY CVF ECM EIF NPM OK1 RHF VQA 7X8 5PM |
ID | FETCH-LOGICAL-c393t-dd8dcced67b3e513b9dcd15d035d93953f4271cfa4730e0ca0a15c9f7827b1323 |
ISSN | 1059-1524 1939-4586 |
IngestDate | Thu Aug 21 13:46:24 EDT 2025 Thu Jul 10 19:32:25 EDT 2025 Wed Feb 19 02:43:18 EST 2025 Tue Jul 01 02:19:21 EDT 2025 Thu Apr 24 23:01:05 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | 2017 Hopkins et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0). “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c393t-dd8dcced67b3e513b9dcd15d035d93953f4271cfa4730e0ca0a15c9f7827b1323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5687042 |
PMID | 28931595 |
PQID | 1941366956 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5687042 proquest_miscellaneous_1941366956 pubmed_primary_28931595 crossref_primary_10_1091_mbc_e17_06_0349 crossref_citationtrail_10_1091_mbc_e17_06_0349 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-07 2017-Nov-07 20171107 |
PublicationDateYYYYMMDD | 2017-11-07 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular biology of the cell |
PublicationTitleAlternate | Mol Biol Cell |
PublicationYear | 2017 |
Publisher | The American Society for Cell Biology |
Publisher_xml | – name: The American Society for Cell Biology |
References | Mochida S (B25) 2009; 28 Craciun G (B9) 2006; 103 Novak B (B32) 2007; 9 Zachariae W (B56) 1998; 282 He E (B18) 2011; 108 Lopez-Aviles S (B21) 2009; 459 Varetti G (B48) 2011; 44 Gunawardena J (B16) 2005; 102 Tyson JJ (B45) 2013 Reddy SK (B37) 2007; 446 Barr FA (B1) 2011; 124 Vazquez-Novelle MD (B49) 2014; 24 Ferrell JE (B12) 2014; 39 Bosl WJ (B3) 2005; 121 de Bruin RA (B11) 2004; 117 Mitchison JM (B24) 1971 Tyson JJ (B46) 1978; 5 Williams BC (B53) 2014; 3 Griffith JS (B15) 1968; 20 B4 Gharbi-Ayachi A (B13) 2010; 330 Mochida S (B26) 2010; 330 Vinod PK (B52) 2015; 589 Sherr CJ (B40) 1999; 13 Vigneron S (B51) 2009; 28 Thron CD (B42) 1996; 57 Yang X (B55) 2013; 11 Cherry JL (B5) 2000; 203 Koivomagi M (B20) 2011; 480 Schwob E (B39) 1994; 79 Musacchio A (B30) 2015; 25 Cundell MJ (B10) 2013; 52 Verdugo A (B50) 2013; 3 Queralt E (B35) 2008; 20 Goldbeter A (B14) 1981; 78 Tyson JJ (B44) 2010; 61 Hagting A (B17) 2002; 157 Novak B (B31) 1993; 106 Clute P (B7) 1999; 1 Mochida S (B27) 2016; 26 Oliveira RA (B33) 2010; 12 Kapuy O (B19) 2009; 100 Yang L (B54) 2004; 86 Costanzo M (B8) 2004; 117 Mansfeld J (B23) 2011; 13 Moll T (B28) 1991; 66 Uzunova K (B47) 2012; 19 Morgan DO (B29) 2007 Malumbres M (B22) 2014; 15 Peters JM (B34) 2006; 7 Blake-Hodek KA (B2) 2012; 32 Salazar C (B38) 2009; 276 Clijsters L (B6) 2014; 13 Tyson JJ (B43) 2003; 15 Thomas R (B41) 1998; 42 20081838 - Nat Cell Biol. 2010 Feb;12 (2):185-92 16195377 - Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14617-22 15210111 - Cell. 2004 Jun 25;117(7):899-913 10704297 - J Theor Biol. 2000 Mar 21;203(2):117-33 27889260 - Curr Biol. 2016 Dec 19;26(24):3361-3367 24583019 - Curr Biol. 2014 Mar 17;24(6):638-45 9831566 - Science. 1998 Nov 27;282(5394):1721-4 15882616 - Cell. 2005 May 6;121(3):325-33 25180339 - Genome Biol. 2014;15(6):122 15189845 - Biophys J. 2004 Jun;86(6):3432-43 20055671 - Annu Rev Phys Chem. 2010;61:219-40 22354989 - Mol Cell Biol. 2012 Apr;32(8):1337-53 5727240 - J Theor Biol. 1968 Aug;20(2):209-16 17603504 - Nat Cell Biol. 2007 Jul;9(7):724-8 10559878 - Nat Cell Biol. 1999 Jun;1(2):82-7 21993622 - Nature. 2011 Oct 12;480(7375):128-31 19387440 - Nature. 2009 May 28;459(7246):592-5 12070128 - J Cell Biol. 2002 Jun 24;157(7):1125-37 15210110 - Cell. 2004 Jun 25;117(7):887-98 21617094 - Proc Natl Acad Sci U S A. 2011 Jun 14;108(24):10016-21 21164014 - Science. 2010 Dec 17;330(6011):1673-7 1652372 - Cell. 1991 Aug 23;66(4):743-58 19680222 - EMBO J. 2009 Sep 16;28(18):2786-93 25683003 - FEBS Lett. 2015 Mar 12;589(6):667-71 24120663 - Mol Cell. 2013 Nov 7;52(3):393-405 19696736 - EMBO J. 2009 Sep 16;28(18):2777-85 24130459 - PLoS Biol. 2013 Oct;11(10):e1001673 19793917 - Mol Biol Cell. 2009 Nov;20(22):4777-89 12648679 - Curr Opin Cell Biol. 2003 Apr;15(2):221-31 21709074 - J Cell Sci. 2011 Jul 15;124(Pt 14):2323-34 21926987 - Nat Cell Biol. 2011 Sep 18;13(10 ):1234-43 25483188 - Cell Cycle. 2014;13(15):2370-8 18845253 - Curr Opin Cell Biol. 2008 Dec;20(6):661-8 21164013 - Science. 2010 Dec 17;330(6011):1670-3 23007861 - Nat Struct Mol Biol. 2012 Nov;19(11):1116-23 16896351 - Nat Rev Mol Cell Biol. 2006 Sep;7(9):644-56 8573678 - Biophys Chem. 1996 Jan;57(2-3):239-51 25440716 - Trends Biochem Sci. 2014 Nov;39(11):556-69 24583015 - Curr Biol. 2014 Mar 17;24(6):630-7 19438722 - FEBS J. 2009 Jun;276(12):3177-98 8126097 - J Cell Sci. 1993 Dec;106 ( Pt 4):1153-68 24618897 - Elife. 2014 Mar 11;3:e01695 6947258 - Proc Natl Acad Sci U S A. 1981 Nov;78(11):6840-4 7954792 - Cell. 1994 Oct 21;79(2):233-44 10385618 - Genes Dev. 1999 Jun 15;13(12):1501-12 26485365 - Curr Biol. 2015 Oct 19;25(20):R1002-18 22152475 - Mol Cell. 2011 Dec 9;44(5):710-20 17443186 - Nature. 2007 Apr 19;446(7138):921-5 9654035 - Int J Dev Biol. 1998;42(3):479-85 16735474 - Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8697-702 19523976 - Prog Biophys Mol Biol. 2009 Sep-Oct;100(1-3):47-56 23486222 - Open Biol. 2013 Mar 13;3(3):120179 |
References_xml | – volume: 117 start-page: 899 year: 2004 ident: B8 publication-title: Cell doi: 10.1016/j.cell.2004.05.024 – ident: B4 doi: 10.1091/mbc.e09-07-0643 – volume: 124 start-page: 2323 year: 2011 ident: B1 publication-title: J Cell Sci doi: 10.1242/jcs.087106 – volume: 3 start-page: e01695 year: 2014 ident: B53 publication-title: eLife doi: 10.7554/eLife.01695 – volume: 78 start-page: 6840 year: 1981 ident: B14 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.78.11.6840 – volume: 32 start-page: 1337 year: 2012 ident: B2 publication-title: Mol Cell Biol doi: 10.1128/MCB.06525-11 – volume: 102 start-page: 14617 year: 2005 ident: B16 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0507322102 – volume: 13 start-page: 1501 year: 1999 ident: B40 publication-title: Genes Dev doi: 10.1101/gad.13.12.1501 – volume: 276 start-page: 3177 year: 2009 ident: B38 publication-title: FEBS J doi: 10.1111/j.1742-4658.2009.07027.x – volume: 25 start-page: R1002 year: 2015 ident: B30 publication-title: Curr Biol doi: 10.1016/j.cub.2015.08.051 – volume: 52 start-page: 393 year: 2013 ident: B10 publication-title: Mol Cell doi: 10.1016/j.molcel.2013.09.005 – volume: 20 start-page: 209 year: 1968 ident: B15 publication-title: J Theor Biol doi: 10.1016/0022-5193(68)90190-2 – volume: 66 start-page: 743 year: 1991 ident: B28 publication-title: Cell doi: 10.1016/0092-8674(91)90118-I – volume: 203 start-page: 117 year: 2000 ident: B5 publication-title: J Theor Biol doi: 10.1006/jtbi.2000.1068 – volume: 330 start-page: 1670 year: 2010 ident: B26 publication-title: Science doi: 10.1126/science.1195689 – volume-title: The Cell Cycle: Principles of Control year: 2007 ident: B29 – volume: 24 start-page: 638 year: 2014 ident: B49 publication-title: Curr Biol doi: 10.1016/j.cub.2014.01.034 – volume: 106 start-page: 1153 year: 1993 ident: B31 publication-title: J Cell Sci doi: 10.1242/jcs.106.4.1153 – volume: 28 start-page: 2777 year: 2009 ident: B25 publication-title: EMBO J doi: 10.1038/emboj.2009.238 – volume: 5 start-page: 1 year: 1978 ident: B46 publication-title: Prog Theor Biol – volume: 121 start-page: 325 year: 2005 ident: B3 publication-title: Cell doi: 10.1016/j.cell.2005.04.006 – volume: 15 start-page: 122 year: 2014 ident: B22 publication-title: Genome Biol doi: 10.1186/gb4184 – volume: 7 start-page: 644 year: 2006 ident: B34 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm1988 – volume: 13 start-page: 2370 year: 2014 ident: B6 publication-title: Cell Cycle doi: 10.4161/cc.29336 – volume: 57 start-page: 239 year: 1996 ident: B42 publication-title: Biophys Chem doi: 10.1016/0301-4622(95)00075-5 – volume: 61 start-page: 219 year: 2010 ident: B44 publication-title: Annu Rev Phys Chem doi: 10.1146/annurev.physchem.012809.103457 – volume: 9 start-page: 724 year: 2007 ident: B32 publication-title: Nat Cell Biol doi: 10.1038/ncb0707-724 – volume: 42 start-page: 479 year: 1998 ident: B41 publication-title: Int J Dev Biol – volume: 20 start-page: 661 year: 2008 ident: B35 publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2008.09.003 – volume: 589 start-page: 667 year: 2015 ident: B52 publication-title: FEBS Lett doi: 10.1016/j.febslet.2015.02.007 – volume: 13 start-page: 1234 year: 2011 ident: B23 publication-title: Nat Cell Biol doi: 10.1038/ncb2347 – volume: 44 start-page: 710 year: 2011 ident: B48 publication-title: Mol Cell doi: 10.1016/j.molcel.2011.11.014 – volume: 15 start-page: 221 year: 2003 ident: B43 publication-title: Curr Opin Cell Biol doi: 10.1016/S0955-0674(03)00017-6 – volume: 117 start-page: 887 year: 2004 ident: B11 publication-title: Cell doi: 10.1016/j.cell.2004.05.025 – volume: 3 start-page: 120179 year: 2013 ident: B50 publication-title: Open Biol doi: 10.1098/rsob.120179 – volume: 28 start-page: 2786 year: 2009 ident: B51 publication-title: Embo J doi: 10.1038/emboj.2009.228 – volume: 108 start-page: 10016 year: 2011 ident: B18 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1102106108 – volume: 459 start-page: 592 year: 2009 ident: B21 publication-title: Nature doi: 10.1038/nature07984 – volume: 157 start-page: 1125 year: 2002 ident: B17 publication-title: J Cell Biol doi: 10.1083/jcb.200111001 – volume: 1 start-page: 82 year: 1999 ident: B7 publication-title: Nat Cell Biol doi: 10.1038/10049 – volume: 103 start-page: 8697 year: 2006 ident: B9 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0602767103 – volume: 480 start-page: 128 year: 2011 ident: B20 publication-title: Nature doi: 10.1038/nature10560 – volume: 39 start-page: 556 year: 2014 ident: B12 publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2014.09.003 – volume: 19 start-page: 1116 year: 2012 ident: B47 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2412 – volume: 11 start-page: e1001673 year: 2013 ident: B55 publication-title: PLoS Biol doi: 10.1371/journal.pbio.1001673 – volume: 330 start-page: 1673 year: 2010 ident: B13 publication-title: Science doi: 10.1126/science.1197048 – volume: 282 start-page: 1721 year: 1998 ident: B56 publication-title: Science doi: 10.1126/science.282.5394.1721 – volume: 446 start-page: 921 year: 2007 ident: B37 publication-title: Nature doi: 10.1038/nature05734 – volume-title: The Biology of the Cell Cycle year: 1971 ident: B24 – volume: 26 start-page: 3361 year: 2016 ident: B27 publication-title: Curr Biol doi: 10.1016/j.cub.2016.10.022 – volume: 12 start-page: 185 year: 2010 ident: B33 publication-title: Nat Cell Biol doi: 10.1038/ncb2018 – volume-title: Handbook of Systems Biology. Concepts and Insights year: 2013 ident: B45 – volume: 79 start-page: 233 year: 1994 ident: B39 publication-title: Cell doi: 10.1016/0092-8674(94)90193-7 – volume: 100 start-page: 47 year: 2009 ident: B19 publication-title: Prog Biophys Mol Biol doi: 10.1016/j.pbiomolbio.2009.06.004 – volume: 86 start-page: 3432 year: 2004 ident: B54 publication-title: Biophys J doi: 10.1529/biophysj.103.036558 – reference: 12648679 - Curr Opin Cell Biol. 2003 Apr;15(2):221-31 – reference: 9654035 - Int J Dev Biol. 1998;42(3):479-85 – reference: 19793917 - Mol Biol Cell. 2009 Nov;20(22):4777-89 – reference: 25683003 - FEBS Lett. 2015 Mar 12;589(6):667-71 – reference: 21164013 - Science. 2010 Dec 17;330(6011):1670-3 – reference: 15210110 - Cell. 2004 Jun 25;117(7):887-98 – reference: 15882616 - Cell. 2005 May 6;121(3):325-33 – reference: 24130459 - PLoS Biol. 2013 Oct;11(10):e1001673 – reference: 15210111 - Cell. 2004 Jun 25;117(7):899-913 – reference: 19696736 - EMBO J. 2009 Sep 16;28(18):2777-85 – reference: 15189845 - Biophys J. 2004 Jun;86(6):3432-43 – reference: 17603504 - Nat Cell Biol. 2007 Jul;9(7):724-8 – reference: 25440716 - Trends Biochem Sci. 2014 Nov;39(11):556-69 – reference: 10385618 - Genes Dev. 1999 Jun 15;13(12):1501-12 – reference: 26485365 - Curr Biol. 2015 Oct 19;25(20):R1002-18 – reference: 10559878 - Nat Cell Biol. 1999 Jun;1(2):82-7 – reference: 23007861 - Nat Struct Mol Biol. 2012 Nov;19(11):1116-23 – reference: 25180339 - Genome Biol. 2014;15(6):122 – reference: 16896351 - Nat Rev Mol Cell Biol. 2006 Sep;7(9):644-56 – reference: 17443186 - Nature. 2007 Apr 19;446(7138):921-5 – reference: 19680222 - EMBO J. 2009 Sep 16;28(18):2786-93 – reference: 18845253 - Curr Opin Cell Biol. 2008 Dec;20(6):661-8 – reference: 19387440 - Nature. 2009 May 28;459(7246):592-5 – reference: 24618897 - Elife. 2014 Mar 11;3:e01695 – reference: 20081838 - Nat Cell Biol. 2010 Feb;12 (2):185-92 – reference: 16735474 - Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8697-702 – reference: 12070128 - J Cell Biol. 2002 Jun 24;157(7):1125-37 – reference: 5727240 - J Theor Biol. 1968 Aug;20(2):209-16 – reference: 27889260 - Curr Biol. 2016 Dec 19;26(24):3361-3367 – reference: 8573678 - Biophys Chem. 1996 Jan;57(2-3):239-51 – reference: 1652372 - Cell. 1991 Aug 23;66(4):743-58 – reference: 19438722 - FEBS J. 2009 Jun;276(12):3177-98 – reference: 8126097 - J Cell Sci. 1993 Dec;106 ( Pt 4):1153-68 – reference: 21617094 - Proc Natl Acad Sci U S A. 2011 Jun 14;108(24):10016-21 – reference: 21926987 - Nat Cell Biol. 2011 Sep 18;13(10 ):1234-43 – reference: 21709074 - J Cell Sci. 2011 Jul 15;124(Pt 14):2323-34 – reference: 21993622 - Nature. 2011 Oct 12;480(7375):128-31 – reference: 25483188 - Cell Cycle. 2014;13(15):2370-8 – reference: 19523976 - Prog Biophys Mol Biol. 2009 Sep-Oct;100(1-3):47-56 – reference: 16195377 - Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14617-22 – reference: 21164014 - Science. 2010 Dec 17;330(6011):1673-7 – reference: 9831566 - Science. 1998 Nov 27;282(5394):1721-4 – reference: 24120663 - Mol Cell. 2013 Nov 7;52(3):393-405 – reference: 24583019 - Curr Biol. 2014 Mar 17;24(6):638-45 – reference: 24583015 - Curr Biol. 2014 Mar 17;24(6):630-7 – reference: 22152475 - Mol Cell. 2011 Dec 9;44(5):710-20 – reference: 10704297 - J Theor Biol. 2000 Mar 21;203(2):117-33 – reference: 7954792 - Cell. 1994 Oct 21;79(2):233-44 – reference: 22354989 - Mol Cell Biol. 2012 Apr;32(8):1337-53 – reference: 23486222 - Open Biol. 2013 Mar 13;3(3):120179 – reference: 6947258 - Proc Natl Acad Sci U S A. 1981 Nov;78(11):6840-4 – reference: 20055671 - Annu Rev Phys Chem. 2010;61:219-40 |
SSID | ssj0014467 |
Score | 2.343402 |
Snippet | The cell division cycle is the process by which eukaryotic cells replicate their chromosomes and partition them to two daughter cells. To maintain the... The abrupt and irreversible transitions that drive cells through the DNA replication-division cycle are governed by molecular mechanisms that function as... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3437 |
SubjectTerms | CDC2 Protein Kinase - metabolism Cdc20 Proteins - metabolism Cell Cycle - physiology Cell Cycle Checkpoints - physiology Cell Cycle Proteins - metabolism Chromosomes - metabolism Cyclin B - metabolism Cyclin-Dependent Kinase Inhibitor Proteins - metabolism Cyclin-Dependent Kinases - metabolism DNA Replication Feedback, Physiological - physiology M Phase Cell Cycle Checkpoints Mitosis Phosphorylation Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - metabolism Spindle Apparatus - metabolism |
Title | Cell-cycle transitions: a common role for stoichiometric inhibitors |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28931595 https://www.proquest.com/docview/1941366956 https://pubmed.ncbi.nlm.nih.gov/PMC5687042 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtSqGX0nc3faBCD4XgrWVZfvTWLilpS3NKIDcjSzJr2HhDuwlsf30_Pez1bhpoezGLLNvLzMdoRvpmhpC3WKEKFSc6YpKZKGWGRUWpZcSyItYmgz9XO7bFcXZ0mn49E2d9i_uQXbKqp-rXH_NK_kerGINebZbsP2h2eCkG8Bv6xRUaxvWvdDwzi0Wk1hi1rR66QL_y-cv4Hv6HZw9aKiGcvFbNbbK9rcl_0Hbztm5tq52xe_q9b5Z70BdnChQCu78_IMATa3ZJ9zb8X4f8LcfHGXagj5dX7jyeOcv7yZ_NL-R4wwGLmN1E9Yui8UaytKfHIpSwDlY0KUZoSfjIJvLUl3W5ZqzhqkDC57WaHjLHwbO1csYzIa-Lc6c7hIUcjpfYrFoDl7C_dZvcSQAtF1Z_-TacJCHczfuSTiV7v_M1Wws6PL_tmFyLNnZJsyMv5OQBuR_CB_rRY-EhuWW6R-Subyi6fkxmG0TQESI-UEk9HqjFAwUe6DYe6AYPT8jp58OT2VEU2mREipd8FWldaKWMzvKaG8F4XWqlmdAxFxqaErxJk5ypRqaw5iZWMpZMqLKBb5jXjCf8Kdnrlp15TiisMW-kq_nHUpPKUma5Eg1CBKWaXPEJmfYyqlSoIW9bmSwqz2VgFeRbGZZXli0J-U7Iu-GBC18-5eapb3qhVzBxFteyM8vLnxUr4WllGSL5CXnmlTC8rNfehORb6hkm2PLp23e6du7KqIsMa1Wa7N_4zhfk3gb_L8ne6seleQUXdFW_dhj7DWBXhgo |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell-cycle+transitions%3A+a+common+role+for+stoichiometric+inhibitors&rft.jtitle=Molecular+biology+of+the+cell&rft.au=Hopkins%2C+Michael&rft.au=Tyson%2C+John+J&rft.au=Nov%C3%A1k%2C+B%C3%A9la&rft.date=2017-11-07&rft.eissn=1939-4586&rft.volume=28&rft.issue=23&rft.spage=3437&rft_id=info:doi/10.1091%2Fmbc.E17-06-0349&rft_id=info%3Apmid%2F28931595&rft.externalDocID=28931595 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-1524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-1524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-1524&client=summon |