Cell-cycle transitions: a common role for stoichiometric inhibitors

The cell division cycle is the process by which eukaryotic cells replicate their chromosomes and partition them to two daughter cells. To maintain the integrity of the genome, proliferating cells must be able to block progression through the division cycle at key transition points (called “checkpoin...

Full description

Saved in:
Bibliographic Details
Published inMolecular biology of the cell Vol. 28; no. 23; pp. 3437 - 3446
Main Authors Hopkins, Michael, Tyson, John J., Novák, Béla
Format Journal Article
LanguageEnglish
Published United States The American Society for Cell Biology 07.11.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The cell division cycle is the process by which eukaryotic cells replicate their chromosomes and partition them to two daughter cells. To maintain the integrity of the genome, proliferating cells must be able to block progression through the division cycle at key transition points (called “checkpoints”) if there have been problems in the replication of the chromosomes or their biorientation on the mitotic spindle. These checkpoints are governed by protein-interaction networks, composed of phase-specific cell-cycle activators and inhibitors. Examples include Cdk1:Clb5 and its inhibitor Sic1 at the G1/S checkpoint in budding yeast, APC:Cdc20 and its inhibitor MCC at the mitotic checkpoint, and PP2A:B55 and its inhibitor, alpha-endosulfine, at the mitotic-exit checkpoint. Each of these inhibitors is a substrate as well as a stoichiometric inhibitor of the cell-cycle activator. Because the production of each inhibitor is promoted by a regulatory protein that is itself inhibited by the cell-cycle activator, their interaction network presents a regulatory motif characteristic of a “feedback-amplified domineering substrate” (FADS). We describe how the FADS motif responds to signals in the manner of a bistable toggle switch, and then we discuss how this toggle switch accounts for the abrupt and irreversible nature of three specific cell-cycle checkpoints.
AbstractList The cell division cycle is the process by which eukaryotic cells replicate their chromosomes and partition them to two daughter cells. To maintain the integrity of the genome, proliferating cells must be able to block progression through the division cycle at key transition points (called "checkpoints") if there have been problems in the replication of the chromosomes or their biorientation on the mitotic spindle. These checkpoints are governed by protein-interaction networks, composed of phase-specific cell-cycle activators and inhibitors. Examples include Cdk1:Clb5 and its inhibitor Sic1 at the G1/S checkpoint in budding yeast, APC:Cdc20 and its inhibitor MCC at the mitotic checkpoint, and PP2A:B55 and its inhibitor, alpha-endosulfine, at the mitotic-exit checkpoint. Each of these inhibitors is a substrate as well as a stoichiometric inhibitor of the cell-cycle activator. Because the production of each inhibitor is promoted by a regulatory protein that is itself inhibited by the cell-cycle activator, their interaction network presents a regulatory motif characteristic of a "feedback-amplified domineering substrate" (FADS). We describe how the FADS motif responds to signals in the manner of a bistable toggle switch, and then we discuss how this toggle switch accounts for the abrupt and irreversible nature of three specific cell-cycle checkpoints.The cell division cycle is the process by which eukaryotic cells replicate their chromosomes and partition them to two daughter cells. To maintain the integrity of the genome, proliferating cells must be able to block progression through the division cycle at key transition points (called "checkpoints") if there have been problems in the replication of the chromosomes or their biorientation on the mitotic spindle. These checkpoints are governed by protein-interaction networks, composed of phase-specific cell-cycle activators and inhibitors. Examples include Cdk1:Clb5 and its inhibitor Sic1 at the G1/S checkpoint in budding yeast, APC:Cdc20 and its inhibitor MCC at the mitotic checkpoint, and PP2A:B55 and its inhibitor, alpha-endosulfine, at the mitotic-exit checkpoint. Each of these inhibitors is a substrate as well as a stoichiometric inhibitor of the cell-cycle activator. Because the production of each inhibitor is promoted by a regulatory protein that is itself inhibited by the cell-cycle activator, their interaction network presents a regulatory motif characteristic of a "feedback-amplified domineering substrate" (FADS). We describe how the FADS motif responds to signals in the manner of a bistable toggle switch, and then we discuss how this toggle switch accounts for the abrupt and irreversible nature of three specific cell-cycle checkpoints.
The cell division cycle is the process by which eukaryotic cells replicate their chromosomes and partition them to two daughter cells. To maintain the integrity of the genome, proliferating cells must be able to block progression through the division cycle at key transition points (called “checkpoints”) if there have been problems in the replication of the chromosomes or their biorientation on the mitotic spindle. These checkpoints are governed by protein-interaction networks, composed of phase-specific cell-cycle activators and inhibitors. Examples include Cdk1:Clb5 and its inhibitor Sic1 at the G1/S checkpoint in budding yeast, APC:Cdc20 and its inhibitor MCC at the mitotic checkpoint, and PP2A:B55 and its inhibitor, alpha-endosulfine, at the mitotic-exit checkpoint. Each of these inhibitors is a substrate as well as a stoichiometric inhibitor of the cell-cycle activator. Because the production of each inhibitor is promoted by a regulatory protein that is itself inhibited by the cell-cycle activator, their interaction network presents a regulatory motif characteristic of a “feedback-amplified domineering substrate” (FADS). We describe how the FADS motif responds to signals in the manner of a bistable toggle switch, and then we discuss how this toggle switch accounts for the abrupt and irreversible nature of three specific cell-cycle checkpoints.
The abrupt and irreversible transitions that drive cells through the DNA replication-division cycle are governed by molecular mechanisms that function as bistable “toggle” switches. A common theme of these switches is a network motif consisting of a “beleaguered” enzyme and its “domineering” substrate, locked in a feedback amplification loop. The cell division cycle is the process by which eukaryotic cells replicate their chromosomes and partition them to two daughter cells. To maintain the integrity of the genome, proliferating cells must be able to block progression through the division cycle at key transition points (called “checkpoints”) if there have been problems in the replication of the chromosomes or their biorientation on the mitotic spindle. These checkpoints are governed by protein-interaction networks, composed of phase-specific cell-cycle activators and inhibitors. Examples include Cdk1:Clb5 and its inhibitor Sic1 at the G1/S checkpoint in budding yeast, APC:Cdc20 and its inhibitor MCC at the mitotic checkpoint, and PP2A:B55 and its inhibitor, alpha-endosulfine, at the mitotic-exit checkpoint. Each of these inhibitors is a substrate as well as a stoichiometric inhibitor of the cell-cycle activator. Because the production of each inhibitor is promoted by a regulatory protein that is itself inhibited by the cell-cycle activator, their interaction network presents a regulatory motif characteristic of a “feedback-amplified domineering substrate” (FADS). We describe how the FADS motif responds to signals in the manner of a bistable toggle switch, and then we discuss how this toggle switch accounts for the abrupt and irreversible nature of three specific cell-cycle checkpoints.
Author Novák, Béla
Hopkins, Michael
Tyson, John J.
Author_xml – sequence: 1
  givenname: Michael
  surname: Hopkins
  fullname: Hopkins, Michael
  organization: Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
– sequence: 2
  givenname: John J.
  surname: Tyson
  fullname: Tyson, John J.
  organization: Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061
– sequence: 3
  givenname: Béla
  surname: Novák
  fullname: Novák, Béla
  organization: Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28931595$$D View this record in MEDLINE/PubMed
BookMark eNp1UU1LxDAUDLKi68fZm_TopWvSfLTxIMjiFwhe9BzSl9SNtMmadAX_vVl2FRU8vQdvZt4wc4AmPniL0AnBM4IlOR9amFlSl1iUmDK5g6ZEUlky3ohJ3jGXJeEV20cHKb1iTBgT9R7arxpJCZd8iuZz2_clfEBvizFqn9zogk8XhS4gDEPwRQz51IVYpDE4WLgw2DE6KJxfuNaNIaYjtNvpPtnj7TxEzzfXT_O78uHx9n5-9VAClXQsjWkMgDWibqnlhLbSgCHcYMpNNs1px6qaQKdZTbHFoLEmHGRXN1XdElrRQ3S50V2u2sEasD477tUyukHHDxW0U78v3i3US3hXXDQ1ZmuBs61ADG8rm0Y1uAQ5AO1tWCVFJCNUCMlFhp7-_PX95Cu5DDjfACCGlKLtviEEq3U3KnejcjcKC7XuJjP4Hwa4Ua_jzmZd_y_vE2jIlYA
CitedBy_id crossref_primary_10_1371_journal_pone_0319280
crossref_primary_10_1038_s41417_019_0105_y
crossref_primary_10_1016_j_isci_2024_109316
crossref_primary_10_1016_j_mbs_2024_109291
crossref_primary_10_1073_pnas_1816000116
crossref_primary_10_1083_jcb_202103171
crossref_primary_10_3390_ijms22062984
crossref_primary_10_1016_j_vph_2019_106568
crossref_primary_10_3390_molecules27123819
crossref_primary_10_1534_genetics_118_301421
crossref_primary_10_3892_ijmm_2018_3900
crossref_primary_10_1016_j_ijrobp_2019_08_009
crossref_primary_10_3390_synbio2040023
crossref_primary_10_1016_j_cub_2020_11_058
crossref_primary_10_15252_msb_20209945
crossref_primary_10_1016_j_coisb_2018_02_004
Cites_doi 10.1016/j.cell.2004.05.024
10.1091/mbc.e09-07-0643
10.1242/jcs.087106
10.7554/eLife.01695
10.1073/pnas.78.11.6840
10.1128/MCB.06525-11
10.1073/pnas.0507322102
10.1101/gad.13.12.1501
10.1111/j.1742-4658.2009.07027.x
10.1016/j.cub.2015.08.051
10.1016/j.molcel.2013.09.005
10.1016/0022-5193(68)90190-2
10.1016/0092-8674(91)90118-I
10.1006/jtbi.2000.1068
10.1126/science.1195689
10.1016/j.cub.2014.01.034
10.1242/jcs.106.4.1153
10.1038/emboj.2009.238
10.1016/j.cell.2005.04.006
10.1186/gb4184
10.1038/nrm1988
10.4161/cc.29336
10.1016/0301-4622(95)00075-5
10.1146/annurev.physchem.012809.103457
10.1038/ncb0707-724
10.1016/j.ceb.2008.09.003
10.1016/j.febslet.2015.02.007
10.1038/ncb2347
10.1016/j.molcel.2011.11.014
10.1016/S0955-0674(03)00017-6
10.1016/j.cell.2004.05.025
10.1098/rsob.120179
10.1038/emboj.2009.228
10.1073/pnas.1102106108
10.1038/nature07984
10.1083/jcb.200111001
10.1038/10049
10.1073/pnas.0602767103
10.1038/nature10560
10.1016/j.tibs.2014.09.003
10.1038/nsmb.2412
10.1371/journal.pbio.1001673
10.1126/science.1197048
10.1126/science.282.5394.1721
10.1038/nature05734
10.1016/j.cub.2016.10.022
10.1038/ncb2018
10.1016/0092-8674(94)90193-7
10.1016/j.pbiomolbio.2009.06.004
10.1529/biophysj.103.036558
ContentType Journal Article
Copyright 2017 Hopkins et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
2017 Hopkins et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
2017 Hopkins This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). 2017
Copyright_xml – notice: 2017 Hopkins et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
– notice: 2017 Hopkins et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
– notice: 2017 Hopkins This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1091/mbc.e17-06-0349
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1939-4586
EndPage 3446
ExternalDocumentID PMC5687042
28931595
10_1091_mbc_e17_06_0349
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM078989
GroupedDBID ---
123
18M
29M
2WC
34G
39C
4.4
5RE
5VS
AAYXX
ABDNZ
ABSQV
ACGFO
ADBBV
ADNWM
AEILP
AENEX
AFHIN
AFOSN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CITATION
CS3
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
HH5
HYE
IH2
INIJC
KQ8
R0Z
RPM
SJN
TCB
TR2
W8F
WOQ
YHG
YKV
YNT
YQT
YWH
CGR
CUY
CVF
ECM
EIF
NPM
OK1
RHF
VQA
7X8
5PM
ID FETCH-LOGICAL-c393t-dd8dcced67b3e513b9dcd15d035d93953f4271cfa4730e0ca0a15c9f7827b1323
ISSN 1059-1524
1939-4586
IngestDate Thu Aug 21 13:46:24 EDT 2025
Thu Jul 10 19:32:25 EDT 2025
Wed Feb 19 02:43:18 EST 2025
Tue Jul 01 02:19:21 EDT 2025
Thu Apr 24 23:01:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License 2017 Hopkins et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
“ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c393t-dd8dcced67b3e513b9dcd15d035d93953f4271cfa4730e0ca0a15c9f7827b1323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5687042
PMID 28931595
PQID 1941366956
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5687042
proquest_miscellaneous_1941366956
pubmed_primary_28931595
crossref_primary_10_1091_mbc_e17_06_0349
crossref_citationtrail_10_1091_mbc_e17_06_0349
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-07
2017-Nov-07
20171107
PublicationDateYYYYMMDD 2017-11-07
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular biology of the cell
PublicationTitleAlternate Mol Biol Cell
PublicationYear 2017
Publisher The American Society for Cell Biology
Publisher_xml – name: The American Society for Cell Biology
References Mochida S (B25) 2009; 28
Craciun G (B9) 2006; 103
Novak B (B32) 2007; 9
Zachariae W (B56) 1998; 282
He E (B18) 2011; 108
Lopez-Aviles S (B21) 2009; 459
Varetti G (B48) 2011; 44
Gunawardena J (B16) 2005; 102
Tyson JJ (B45) 2013
Reddy SK (B37) 2007; 446
Barr FA (B1) 2011; 124
Vazquez-Novelle MD (B49) 2014; 24
Ferrell JE (B12) 2014; 39
Bosl WJ (B3) 2005; 121
de Bruin RA (B11) 2004; 117
Mitchison JM (B24) 1971
Tyson JJ (B46) 1978; 5
Williams BC (B53) 2014; 3
Griffith JS (B15) 1968; 20
B4
Gharbi-Ayachi A (B13) 2010; 330
Mochida S (B26) 2010; 330
Vinod PK (B52) 2015; 589
Sherr CJ (B40) 1999; 13
Vigneron S (B51) 2009; 28
Thron CD (B42) 1996; 57
Yang X (B55) 2013; 11
Cherry JL (B5) 2000; 203
Koivomagi M (B20) 2011; 480
Schwob E (B39) 1994; 79
Musacchio A (B30) 2015; 25
Cundell MJ (B10) 2013; 52
Verdugo A (B50) 2013; 3
Queralt E (B35) 2008; 20
Goldbeter A (B14) 1981; 78
Tyson JJ (B44) 2010; 61
Hagting A (B17) 2002; 157
Novak B (B31) 1993; 106
Clute P (B7) 1999; 1
Mochida S (B27) 2016; 26
Oliveira RA (B33) 2010; 12
Kapuy O (B19) 2009; 100
Yang L (B54) 2004; 86
Costanzo M (B8) 2004; 117
Mansfeld J (B23) 2011; 13
Moll T (B28) 1991; 66
Uzunova K (B47) 2012; 19
Morgan DO (B29) 2007
Malumbres M (B22) 2014; 15
Peters JM (B34) 2006; 7
Blake-Hodek KA (B2) 2012; 32
Salazar C (B38) 2009; 276
Clijsters L (B6) 2014; 13
Tyson JJ (B43) 2003; 15
Thomas R (B41) 1998; 42
20081838 - Nat Cell Biol. 2010 Feb;12 (2):185-92
16195377 - Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14617-22
15210111 - Cell. 2004 Jun 25;117(7):899-913
10704297 - J Theor Biol. 2000 Mar 21;203(2):117-33
27889260 - Curr Biol. 2016 Dec 19;26(24):3361-3367
24583019 - Curr Biol. 2014 Mar 17;24(6):638-45
9831566 - Science. 1998 Nov 27;282(5394):1721-4
15882616 - Cell. 2005 May 6;121(3):325-33
25180339 - Genome Biol. 2014;15(6):122
15189845 - Biophys J. 2004 Jun;86(6):3432-43
20055671 - Annu Rev Phys Chem. 2010;61:219-40
22354989 - Mol Cell Biol. 2012 Apr;32(8):1337-53
5727240 - J Theor Biol. 1968 Aug;20(2):209-16
17603504 - Nat Cell Biol. 2007 Jul;9(7):724-8
10559878 - Nat Cell Biol. 1999 Jun;1(2):82-7
21993622 - Nature. 2011 Oct 12;480(7375):128-31
19387440 - Nature. 2009 May 28;459(7246):592-5
12070128 - J Cell Biol. 2002 Jun 24;157(7):1125-37
15210110 - Cell. 2004 Jun 25;117(7):887-98
21617094 - Proc Natl Acad Sci U S A. 2011 Jun 14;108(24):10016-21
21164014 - Science. 2010 Dec 17;330(6011):1673-7
1652372 - Cell. 1991 Aug 23;66(4):743-58
19680222 - EMBO J. 2009 Sep 16;28(18):2786-93
25683003 - FEBS Lett. 2015 Mar 12;589(6):667-71
24120663 - Mol Cell. 2013 Nov 7;52(3):393-405
19696736 - EMBO J. 2009 Sep 16;28(18):2777-85
24130459 - PLoS Biol. 2013 Oct;11(10):e1001673
19793917 - Mol Biol Cell. 2009 Nov;20(22):4777-89
12648679 - Curr Opin Cell Biol. 2003 Apr;15(2):221-31
21709074 - J Cell Sci. 2011 Jul 15;124(Pt 14):2323-34
21926987 - Nat Cell Biol. 2011 Sep 18;13(10 ):1234-43
25483188 - Cell Cycle. 2014;13(15):2370-8
18845253 - Curr Opin Cell Biol. 2008 Dec;20(6):661-8
21164013 - Science. 2010 Dec 17;330(6011):1670-3
23007861 - Nat Struct Mol Biol. 2012 Nov;19(11):1116-23
16896351 - Nat Rev Mol Cell Biol. 2006 Sep;7(9):644-56
8573678 - Biophys Chem. 1996 Jan;57(2-3):239-51
25440716 - Trends Biochem Sci. 2014 Nov;39(11):556-69
24583015 - Curr Biol. 2014 Mar 17;24(6):630-7
19438722 - FEBS J. 2009 Jun;276(12):3177-98
8126097 - J Cell Sci. 1993 Dec;106 ( Pt 4):1153-68
24618897 - Elife. 2014 Mar 11;3:e01695
6947258 - Proc Natl Acad Sci U S A. 1981 Nov;78(11):6840-4
7954792 - Cell. 1994 Oct 21;79(2):233-44
10385618 - Genes Dev. 1999 Jun 15;13(12):1501-12
26485365 - Curr Biol. 2015 Oct 19;25(20):R1002-18
22152475 - Mol Cell. 2011 Dec 9;44(5):710-20
17443186 - Nature. 2007 Apr 19;446(7138):921-5
9654035 - Int J Dev Biol. 1998;42(3):479-85
16735474 - Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8697-702
19523976 - Prog Biophys Mol Biol. 2009 Sep-Oct;100(1-3):47-56
23486222 - Open Biol. 2013 Mar 13;3(3):120179
References_xml – volume: 117
  start-page: 899
  year: 2004
  ident: B8
  publication-title: Cell
  doi: 10.1016/j.cell.2004.05.024
– ident: B4
  doi: 10.1091/mbc.e09-07-0643
– volume: 124
  start-page: 2323
  year: 2011
  ident: B1
  publication-title: J Cell Sci
  doi: 10.1242/jcs.087106
– volume: 3
  start-page: e01695
  year: 2014
  ident: B53
  publication-title: eLife
  doi: 10.7554/eLife.01695
– volume: 78
  start-page: 6840
  year: 1981
  ident: B14
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.78.11.6840
– volume: 32
  start-page: 1337
  year: 2012
  ident: B2
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.06525-11
– volume: 102
  start-page: 14617
  year: 2005
  ident: B16
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0507322102
– volume: 13
  start-page: 1501
  year: 1999
  ident: B40
  publication-title: Genes Dev
  doi: 10.1101/gad.13.12.1501
– volume: 276
  start-page: 3177
  year: 2009
  ident: B38
  publication-title: FEBS J
  doi: 10.1111/j.1742-4658.2009.07027.x
– volume: 25
  start-page: R1002
  year: 2015
  ident: B30
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2015.08.051
– volume: 52
  start-page: 393
  year: 2013
  ident: B10
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2013.09.005
– volume: 20
  start-page: 209
  year: 1968
  ident: B15
  publication-title: J Theor Biol
  doi: 10.1016/0022-5193(68)90190-2
– volume: 66
  start-page: 743
  year: 1991
  ident: B28
  publication-title: Cell
  doi: 10.1016/0092-8674(91)90118-I
– volume: 203
  start-page: 117
  year: 2000
  ident: B5
  publication-title: J Theor Biol
  doi: 10.1006/jtbi.2000.1068
– volume: 330
  start-page: 1670
  year: 2010
  ident: B26
  publication-title: Science
  doi: 10.1126/science.1195689
– volume-title: The Cell Cycle: Principles of Control
  year: 2007
  ident: B29
– volume: 24
  start-page: 638
  year: 2014
  ident: B49
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2014.01.034
– volume: 106
  start-page: 1153
  year: 1993
  ident: B31
  publication-title: J Cell Sci
  doi: 10.1242/jcs.106.4.1153
– volume: 28
  start-page: 2777
  year: 2009
  ident: B25
  publication-title: EMBO J
  doi: 10.1038/emboj.2009.238
– volume: 5
  start-page: 1
  year: 1978
  ident: B46
  publication-title: Prog Theor Biol
– volume: 121
  start-page: 325
  year: 2005
  ident: B3
  publication-title: Cell
  doi: 10.1016/j.cell.2005.04.006
– volume: 15
  start-page: 122
  year: 2014
  ident: B22
  publication-title: Genome Biol
  doi: 10.1186/gb4184
– volume: 7
  start-page: 644
  year: 2006
  ident: B34
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm1988
– volume: 13
  start-page: 2370
  year: 2014
  ident: B6
  publication-title: Cell Cycle
  doi: 10.4161/cc.29336
– volume: 57
  start-page: 239
  year: 1996
  ident: B42
  publication-title: Biophys Chem
  doi: 10.1016/0301-4622(95)00075-5
– volume: 61
  start-page: 219
  year: 2010
  ident: B44
  publication-title: Annu Rev Phys Chem
  doi: 10.1146/annurev.physchem.012809.103457
– volume: 9
  start-page: 724
  year: 2007
  ident: B32
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb0707-724
– volume: 42
  start-page: 479
  year: 1998
  ident: B41
  publication-title: Int J Dev Biol
– volume: 20
  start-page: 661
  year: 2008
  ident: B35
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2008.09.003
– volume: 589
  start-page: 667
  year: 2015
  ident: B52
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2015.02.007
– volume: 13
  start-page: 1234
  year: 2011
  ident: B23
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2347
– volume: 44
  start-page: 710
  year: 2011
  ident: B48
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2011.11.014
– volume: 15
  start-page: 221
  year: 2003
  ident: B43
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/S0955-0674(03)00017-6
– volume: 117
  start-page: 887
  year: 2004
  ident: B11
  publication-title: Cell
  doi: 10.1016/j.cell.2004.05.025
– volume: 3
  start-page: 120179
  year: 2013
  ident: B50
  publication-title: Open Biol
  doi: 10.1098/rsob.120179
– volume: 28
  start-page: 2786
  year: 2009
  ident: B51
  publication-title: Embo J
  doi: 10.1038/emboj.2009.228
– volume: 108
  start-page: 10016
  year: 2011
  ident: B18
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1102106108
– volume: 459
  start-page: 592
  year: 2009
  ident: B21
  publication-title: Nature
  doi: 10.1038/nature07984
– volume: 157
  start-page: 1125
  year: 2002
  ident: B17
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200111001
– volume: 1
  start-page: 82
  year: 1999
  ident: B7
  publication-title: Nat Cell Biol
  doi: 10.1038/10049
– volume: 103
  start-page: 8697
  year: 2006
  ident: B9
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0602767103
– volume: 480
  start-page: 128
  year: 2011
  ident: B20
  publication-title: Nature
  doi: 10.1038/nature10560
– volume: 39
  start-page: 556
  year: 2014
  ident: B12
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2014.09.003
– volume: 19
  start-page: 1116
  year: 2012
  ident: B47
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2412
– volume: 11
  start-page: e1001673
  year: 2013
  ident: B55
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1001673
– volume: 330
  start-page: 1673
  year: 2010
  ident: B13
  publication-title: Science
  doi: 10.1126/science.1197048
– volume: 282
  start-page: 1721
  year: 1998
  ident: B56
  publication-title: Science
  doi: 10.1126/science.282.5394.1721
– volume: 446
  start-page: 921
  year: 2007
  ident: B37
  publication-title: Nature
  doi: 10.1038/nature05734
– volume-title: The Biology of the Cell Cycle
  year: 1971
  ident: B24
– volume: 26
  start-page: 3361
  year: 2016
  ident: B27
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2016.10.022
– volume: 12
  start-page: 185
  year: 2010
  ident: B33
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2018
– volume-title: Handbook of Systems Biology. Concepts and Insights
  year: 2013
  ident: B45
– volume: 79
  start-page: 233
  year: 1994
  ident: B39
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90193-7
– volume: 100
  start-page: 47
  year: 2009
  ident: B19
  publication-title: Prog Biophys Mol Biol
  doi: 10.1016/j.pbiomolbio.2009.06.004
– volume: 86
  start-page: 3432
  year: 2004
  ident: B54
  publication-title: Biophys J
  doi: 10.1529/biophysj.103.036558
– reference: 12648679 - Curr Opin Cell Biol. 2003 Apr;15(2):221-31
– reference: 9654035 - Int J Dev Biol. 1998;42(3):479-85
– reference: 19793917 - Mol Biol Cell. 2009 Nov;20(22):4777-89
– reference: 25683003 - FEBS Lett. 2015 Mar 12;589(6):667-71
– reference: 21164013 - Science. 2010 Dec 17;330(6011):1670-3
– reference: 15210110 - Cell. 2004 Jun 25;117(7):887-98
– reference: 15882616 - Cell. 2005 May 6;121(3):325-33
– reference: 24130459 - PLoS Biol. 2013 Oct;11(10):e1001673
– reference: 15210111 - Cell. 2004 Jun 25;117(7):899-913
– reference: 19696736 - EMBO J. 2009 Sep 16;28(18):2777-85
– reference: 15189845 - Biophys J. 2004 Jun;86(6):3432-43
– reference: 17603504 - Nat Cell Biol. 2007 Jul;9(7):724-8
– reference: 25440716 - Trends Biochem Sci. 2014 Nov;39(11):556-69
– reference: 10385618 - Genes Dev. 1999 Jun 15;13(12):1501-12
– reference: 26485365 - Curr Biol. 2015 Oct 19;25(20):R1002-18
– reference: 10559878 - Nat Cell Biol. 1999 Jun;1(2):82-7
– reference: 23007861 - Nat Struct Mol Biol. 2012 Nov;19(11):1116-23
– reference: 25180339 - Genome Biol. 2014;15(6):122
– reference: 16896351 - Nat Rev Mol Cell Biol. 2006 Sep;7(9):644-56
– reference: 17443186 - Nature. 2007 Apr 19;446(7138):921-5
– reference: 19680222 - EMBO J. 2009 Sep 16;28(18):2786-93
– reference: 18845253 - Curr Opin Cell Biol. 2008 Dec;20(6):661-8
– reference: 19387440 - Nature. 2009 May 28;459(7246):592-5
– reference: 24618897 - Elife. 2014 Mar 11;3:e01695
– reference: 20081838 - Nat Cell Biol. 2010 Feb;12 (2):185-92
– reference: 16735474 - Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8697-702
– reference: 12070128 - J Cell Biol. 2002 Jun 24;157(7):1125-37
– reference: 5727240 - J Theor Biol. 1968 Aug;20(2):209-16
– reference: 27889260 - Curr Biol. 2016 Dec 19;26(24):3361-3367
– reference: 8573678 - Biophys Chem. 1996 Jan;57(2-3):239-51
– reference: 1652372 - Cell. 1991 Aug 23;66(4):743-58
– reference: 19438722 - FEBS J. 2009 Jun;276(12):3177-98
– reference: 8126097 - J Cell Sci. 1993 Dec;106 ( Pt 4):1153-68
– reference: 21617094 - Proc Natl Acad Sci U S A. 2011 Jun 14;108(24):10016-21
– reference: 21926987 - Nat Cell Biol. 2011 Sep 18;13(10 ):1234-43
– reference: 21709074 - J Cell Sci. 2011 Jul 15;124(Pt 14):2323-34
– reference: 21993622 - Nature. 2011 Oct 12;480(7375):128-31
– reference: 25483188 - Cell Cycle. 2014;13(15):2370-8
– reference: 19523976 - Prog Biophys Mol Biol. 2009 Sep-Oct;100(1-3):47-56
– reference: 16195377 - Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14617-22
– reference: 21164014 - Science. 2010 Dec 17;330(6011):1673-7
– reference: 9831566 - Science. 1998 Nov 27;282(5394):1721-4
– reference: 24120663 - Mol Cell. 2013 Nov 7;52(3):393-405
– reference: 24583019 - Curr Biol. 2014 Mar 17;24(6):638-45
– reference: 24583015 - Curr Biol. 2014 Mar 17;24(6):630-7
– reference: 22152475 - Mol Cell. 2011 Dec 9;44(5):710-20
– reference: 10704297 - J Theor Biol. 2000 Mar 21;203(2):117-33
– reference: 7954792 - Cell. 1994 Oct 21;79(2):233-44
– reference: 22354989 - Mol Cell Biol. 2012 Apr;32(8):1337-53
– reference: 23486222 - Open Biol. 2013 Mar 13;3(3):120179
– reference: 6947258 - Proc Natl Acad Sci U S A. 1981 Nov;78(11):6840-4
– reference: 20055671 - Annu Rev Phys Chem. 2010;61:219-40
SSID ssj0014467
Score 2.343402
Snippet The cell division cycle is the process by which eukaryotic cells replicate their chromosomes and partition them to two daughter cells. To maintain the...
The abrupt and irreversible transitions that drive cells through the DNA replication-division cycle are governed by molecular mechanisms that function as...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3437
SubjectTerms CDC2 Protein Kinase - metabolism
Cdc20 Proteins - metabolism
Cell Cycle - physiology
Cell Cycle Checkpoints - physiology
Cell Cycle Proteins - metabolism
Chromosomes - metabolism
Cyclin B - metabolism
Cyclin-Dependent Kinase Inhibitor Proteins - metabolism
Cyclin-Dependent Kinases - metabolism
DNA Replication
Feedback, Physiological - physiology
M Phase Cell Cycle Checkpoints
Mitosis
Phosphorylation
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - metabolism
Spindle Apparatus - metabolism
Title Cell-cycle transitions: a common role for stoichiometric inhibitors
URI https://www.ncbi.nlm.nih.gov/pubmed/28931595
https://www.proquest.com/docview/1941366956
https://pubmed.ncbi.nlm.nih.gov/PMC5687042
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtSqGX0nc3faBCD4XgrWVZfvTWLilpS3NKIDcjSzJr2HhDuwlsf30_Pez1bhpoezGLLNvLzMdoRvpmhpC3WKEKFSc6YpKZKGWGRUWpZcSyItYmgz9XO7bFcXZ0mn49E2d9i_uQXbKqp-rXH_NK_kerGINebZbsP2h2eCkG8Bv6xRUaxvWvdDwzi0Wk1hi1rR66QL_y-cv4Hv6HZw9aKiGcvFbNbbK9rcl_0Hbztm5tq52xe_q9b5Z70BdnChQCu78_IMATa3ZJ9zb8X4f8LcfHGXagj5dX7jyeOcv7yZ_NL-R4wwGLmN1E9Yui8UaytKfHIpSwDlY0KUZoSfjIJvLUl3W5ZqzhqkDC57WaHjLHwbO1csYzIa-Lc6c7hIUcjpfYrFoDl7C_dZvcSQAtF1Z_-TacJCHczfuSTiV7v_M1Wws6PL_tmFyLNnZJsyMv5OQBuR_CB_rRY-EhuWW6R-Subyi6fkxmG0TQESI-UEk9HqjFAwUe6DYe6AYPT8jp58OT2VEU2mREipd8FWldaKWMzvKaG8F4XWqlmdAxFxqaErxJk5ypRqaw5iZWMpZMqLKBb5jXjCf8Kdnrlp15TiisMW-kq_nHUpPKUma5Eg1CBKWaXPEJmfYyqlSoIW9bmSwqz2VgFeRbGZZXli0J-U7Iu-GBC18-5eapb3qhVzBxFteyM8vLnxUr4WllGSL5CXnmlTC8rNfehORb6hkm2PLp23e6du7KqIsMa1Wa7N_4zhfk3gb_L8ne6seleQUXdFW_dhj7DWBXhgo
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell-cycle+transitions%3A+a+common+role+for+stoichiometric+inhibitors&rft.jtitle=Molecular+biology+of+the+cell&rft.au=Hopkins%2C+Michael&rft.au=Tyson%2C+John+J&rft.au=Nov%C3%A1k%2C+B%C3%A9la&rft.date=2017-11-07&rft.eissn=1939-4586&rft.volume=28&rft.issue=23&rft.spage=3437&rft_id=info:doi/10.1091%2Fmbc.E17-06-0349&rft_id=info%3Apmid%2F28931595&rft.externalDocID=28931595
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-1524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-1524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-1524&client=summon