Impact of biochar on water retention of two agricultural soils – A multi-scale analysis
The ability of soil to retain water under drought and other extreme hydrological events is critical to the sustainability of food production systems and preserving soil ecosystem services. We investigated the impact of biochar on water retention properties in California agricultural soils in a serie...
Saved in:
Published in | Geoderma Vol. 340; pp. 185 - 191 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ability of soil to retain water under drought and other extreme hydrological events is critical to the sustainability of food production systems and preserving soil ecosystem services. We investigated the impact of biochar on water retention properties in California agricultural soils in a series of column, lab incubation, and field studies. Results from studies based on similar variables (soil, biochar) were used to demonstrate the impact of biochar on soil-water relations at different scales. The influences of biochar type (softwood, 600–700 °C, low surface area; walnut shell, 900 °C, high surface area), application rate (0, 0.5, 1% wt.), and particle diameter (0–0.25, 0.25–0.5, 0.5–1, 1–2 mm) were investigated. Only the higher surface area biochar increased the field capacity of a sandy soil. Neither biochar, altered the field capacity of the higher clay content soil. The walnut shell biochar with 1–2 mm particle diameter was more effective at increasing field capacity in sandy soils compare to smaller biochar size fractions. Neither biochar affected the wilting point in either soil. Neutron imaging was used to explore potential mechanisms involved in water retention by observing the spatial and temporal distribution of water in and surrounding biochar particles (~ 2 mm diameter). After wetting, water retained in the internal pores of biochar was continuously released to surrounding space (~ 2.2 mm sphere) during a 7-day air drying at room temperature, suggesting that soil water retention is improved via the biochar's intraparticle structure. In the field trial, (6 yr., corn-tomato rotation), neither walnut shell biochar amendment (10 t/ ha, equivalent to 0.5% wt. in lab scale experiments) nor agricultural management practices (organic, conventional) altered the water retention capacity of a silty clay loam soil. These data suggest that biochars with a high pore volume can temporarily increase the field capacity and plant available water in a coarse-textured soil, until biochar internal pores are filled by clay and soil organic matter. Our results suggest that biochar can have a limited impact on soil water retention when biochar pore volume is low, or soil texture is fine. High dosage (≥10 t/ha) of high pore volume biochar with bulky particle size (≥1 mm) can improve water retention of coarse-textured soil with limited capacity of water storage and may improve soil's resilience during hydrological extremes.
•High porosity biochar particles improved water retention of coarse-textured soils.•Water release from biochar particle to sand was observed using neutron imaging.•Biochar didn't impact soil water retention in a 6-year field trial (silty clay loam). |
---|---|
AbstractList | The ability of soil to retain water under drought and other extreme hydrological events is critical to the sustainability of food production systems and preserving soil ecosystem services. We investigated the impact of biochar on water retention properties in California agricultural soils in a series of column, lab incubation, and field studies. Results from studies based on similar variables (soil, biochar) were used to demonstrate the impact of biochar on soil-water relations at different scales. The influences of biochar type (softwood, 600–700 °C, low surface area; walnut shell, 900 °C, high surface area), application rate (0, 0.5, 1% wt.), and particle diameter (0–0.25, 0.25–0.5, 0.5–1, 1–2 mm) were investigated. Only the higher surface area biochar increased the field capacity of a sandy soil. Neither biochar, altered the field capacity of the higher clay content soil. The walnut shell biochar with 1–2 mm particle diameter was more effective at increasing field capacity in sandy soils compare to smaller biochar size fractions. Neither biochar affected the wilting point in either soil. Neutron imaging was used to explore potential mechanisms involved in water retention by observing the spatial and temporal distribution of water in and surrounding biochar particles (~ 2 mm diameter). After wetting, water retained in the internal pores of biochar was continuously released to surrounding space (~ 2.2 mm sphere) during a 7-day air drying at room temperature, suggesting that soil water retention is improved via the biochar's intraparticle structure. In the field trial, (6 yr., corn-tomato rotation), neither walnut shell biochar amendment (10 t/ ha, equivalent to 0.5% wt. in lab scale experiments) nor agricultural management practices (organic, conventional) altered the water retention capacity of a silty clay loam soil. These data suggest that biochars with a high pore volume can temporarily increase the field capacity and plant available water in a coarse-textured soil, until biochar internal pores are filled by clay and soil organic matter. Our results suggest that biochar can have a limited impact on soil water retention when biochar pore volume is low, or soil texture is fine. High dosage (≥10 t/ha) of high pore volume biochar with bulky particle size (≥1 mm) can improve water retention of coarse-textured soil with limited capacity of water storage and may improve soil's resilience during hydrological extremes. The ability of soil to retain water under drought and other extreme hydrological events is critical to the sustainability of food production systems and preserving soil ecosystem services. We investigated the impact of biochar on water retention properties in California agricultural soils in a series of column, lab incubation, and field studies. Results from studies based on similar variables (soil, biochar) were used to demonstrate the impact of biochar on soil-water relations at different scales. The influences of biochar type (softwood, 600–700 °C, low surface area; walnut shell, 900 °C, high surface area), application rate (0, 0.5, 1% wt.), and particle diameter (0–0.25, 0.25–0.5, 0.5–1, 1–2 mm) were investigated. Only the higher surface area biochar increased the field capacity of a sandy soil. Neither biochar, altered the field capacity of the higher clay content soil. The walnut shell biochar with 1–2 mm particle diameter was more effective at increasing field capacity in sandy soils compare to smaller biochar size fractions. Neither biochar affected the wilting point in either soil. Neutron imaging was used to explore potential mechanisms involved in water retention by observing the spatial and temporal distribution of water in and surrounding biochar particles (~ 2 mm diameter). After wetting, water retained in the internal pores of biochar was continuously released to surrounding space (~ 2.2 mm sphere) during a 7-day air drying at room temperature, suggesting that soil water retention is improved via the biochar's intraparticle structure. In the field trial, (6 yr., corn-tomato rotation), neither walnut shell biochar amendment (10 t/ ha, equivalent to 0.5% wt. in lab scale experiments) nor agricultural management practices (organic, conventional) altered the water retention capacity of a silty clay loam soil. These data suggest that biochars with a high pore volume can temporarily increase the field capacity and plant available water in a coarse-textured soil, until biochar internal pores are filled by clay and soil organic matter. Our results suggest that biochar can have a limited impact on soil water retention when biochar pore volume is low, or soil texture is fine. High dosage (≥10 t/ha) of high pore volume biochar with bulky particle size (≥1 mm) can improve water retention of coarse-textured soil with limited capacity of water storage and may improve soil's resilience during hydrological extremes. •High porosity biochar particles improved water retention of coarse-textured soils.•Water release from biochar particle to sand was observed using neutron imaging.•Biochar didn't impact soil water retention in a 6-year field trial (silty clay loam). |
Author | Scow, Kate M. Parikh, Sanjai J. Li, Chongyang Wang, Daoyuan |
Author_xml | – sequence: 1 givenname: Daoyuan surname: Wang fullname: Wang, Daoyuan email: dyuwang@ucdavis.edu – sequence: 2 givenname: Chongyang surname: Li fullname: Li, Chongyang – sequence: 3 givenname: Sanjai J. surname: Parikh fullname: Parikh, Sanjai J. – sequence: 4 givenname: Kate M. surname: Scow fullname: Scow, Kate M. |
BookMark | eNqFkE1OIzEQha0RSBPCXGHk5Ww62E63uy3NggjxEwmJzbBgZVXbFcaRux1sB8SOO3DDOQmOMmzYRHpSqaree4vvhByNYURCfnI244zLs_XsEYPFOMBMMK5mjBeJb2TCu1ZUUjTqiExYcVYtk_w7OUlpXdaWCTYhD8thAybTsKK9C-YvRBpG-gIZI42Yccyu7OWbXwKFx-jM1udtBE9TcD7Rf2_vdEGHcnRVMuCRwgj-Nbl0So5X4BP--D-n5P7q8s_FTXV7d728WNxWZq7mubJ93aNUXa9UzVTDmnZlUfGO141tbc9lD6y3dS1sDShB8dZ2rWywNUL2tZHzKfm1793E8LTFlPXgkkHvYcSwTVoIwbqadbwrVrm3mhhSirjSm-gGiK-aM71jqdf6k6XesdSMF4kS_P0laFyGHZocwfnD8fN9HAuHZ4dRJ-NwNGhdRJO1De5QxQfJN5gu |
CitedBy_id | crossref_primary_10_1016_j_jclepro_2020_122731 crossref_primary_10_1002_agj2_21040 crossref_primary_10_1016_j_jobab_2022_03_003 crossref_primary_10_1016_j_geoderma_2023_116591 crossref_primary_10_1007_s42773_024_00323_4 crossref_primary_10_3390_agronomy14092028 crossref_primary_10_1111_gcbb_12952 crossref_primary_10_1016_j_geoderma_2020_114734 crossref_primary_10_1021_acssusresmgt_4c00174 crossref_primary_10_3389_fsufs_2024_1384530 crossref_primary_10_1016_j_scitotenv_2020_138988 crossref_primary_10_1016_j_scitotenv_2021_152638 crossref_primary_10_1007_s42729_024_01791_0 crossref_primary_10_1007_s00344_022_10588_3 crossref_primary_10_1016_j_jclepro_2023_139443 crossref_primary_10_3389_fpls_2024_1438893 crossref_primary_10_3390_buildings9060141 crossref_primary_10_1371_journal_pone_0264620 crossref_primary_10_1016_j_scitotenv_2021_152772 crossref_primary_10_1016_j_jobe_2024_109272 crossref_primary_10_3390_polym16223102 crossref_primary_10_1016_j_stress_2024_100564 crossref_primary_10_1016_j_geoderma_2021_115097 crossref_primary_10_1186_s13765_023_00845_8 crossref_primary_10_7717_peerj_17883 crossref_primary_10_3390_w14213506 crossref_primary_10_1016_j_scitotenv_2022_158920 crossref_primary_10_1080_00103624_2024_2440069 crossref_primary_10_1111_ejss_13279 crossref_primary_10_3390_ma16041737 crossref_primary_10_1007_s40333_022_0060_6 crossref_primary_10_1016_j_catena_2024_108210 crossref_primary_10_1016_j_scitotenv_2024_174956 crossref_primary_10_3390_su141912267 crossref_primary_10_1007_s10811_021_02480_6 crossref_primary_10_1016_j_still_2020_104798 crossref_primary_10_1051_bioconf_202411905001 crossref_primary_10_2136_sssaj2019_07_0230 crossref_primary_10_3934_environsci_2019_5_379 crossref_primary_10_1007_s11368_019_02414_3 crossref_primary_10_1016_j_indcrop_2025_120762 crossref_primary_10_1016_j_jclepro_2024_143772 crossref_primary_10_1016_j_still_2023_105977 crossref_primary_10_1007_s11368_023_03505_y crossref_primary_10_3390_agriculture11010044 crossref_primary_10_1007_s11368_020_02786_x crossref_primary_10_1016_j_scitotenv_2020_138007 crossref_primary_10_1007_s42768_022_00114_2 crossref_primary_10_1016_j_catena_2025_108765 crossref_primary_10_1088_1755_1315_486_1_012133 crossref_primary_10_1007_s42773_020_00084_w crossref_primary_10_3390_su16073025 crossref_primary_10_1016_j_jconhyd_2022_104128 crossref_primary_10_3390_w13162296 crossref_primary_10_11118_actaun_2022_002 crossref_primary_10_1016_j_biosystemseng_2020_01_006 crossref_primary_10_3390_agronomy13051412 crossref_primary_10_3390_agronomy11030489 crossref_primary_10_1016_j_clema_2022_100162 crossref_primary_10_1111_gcbb_12765 crossref_primary_10_3390_agronomy12020311 crossref_primary_10_1080_23249676_2023_2261368 crossref_primary_10_3390_app12031266 crossref_primary_10_3390_app15063392 crossref_primary_10_3390_agriculture10030062 crossref_primary_10_1021_acsabm_4c00727 crossref_primary_10_1007_s10333_022_00912_8 crossref_primary_10_1080_00103624_2020_1751193 crossref_primary_10_1016_j_scitotenv_2020_136857 crossref_primary_10_1590_1983_21252024v3711792rc crossref_primary_10_1016_j_apsoil_2022_104591 crossref_primary_10_1016_j_jenvman_2024_122701 crossref_primary_10_1111_ejss_13497 crossref_primary_10_1016_j_ecoser_2023_101514 crossref_primary_10_1016_j_still_2024_106281 crossref_primary_10_37281_DRCSF_1_1_9 crossref_primary_10_5004_dwt_2020_25654 crossref_primary_10_46813_2020_129_060 crossref_primary_10_1016_j_still_2024_106320 crossref_primary_10_1007_s44279_024_00033_2 crossref_primary_10_1007_s13399_020_01137_7 crossref_primary_10_1007_s13399_020_00943_3 crossref_primary_10_1016_j_rser_2025_115581 crossref_primary_10_3389_fenvs_2023_1114752 crossref_primary_10_1039_D3LP00117B crossref_primary_10_1002_cjce_23771 crossref_primary_10_1007_s42773_023_00233_x crossref_primary_10_1002_ldr_4185 crossref_primary_10_1007_s42247_022_00442_3 crossref_primary_10_3390_horticulturae6030037 crossref_primary_10_1016_j_scitotenv_2022_155788 crossref_primary_10_1007_s10064_025_04153_x crossref_primary_10_1080_23311932_2023_2256136 crossref_primary_10_1016_j_still_2022_105482 crossref_primary_10_1080_01904167_2023_2203169 crossref_primary_10_1007_s10343_023_00875_8 crossref_primary_10_1111_wej_12684 crossref_primary_10_1007_s10706_023_02447_z crossref_primary_10_1007_s42729_021_00597_8 crossref_primary_10_1007_s42773_024_00381_8 crossref_primary_10_1016_j_still_2025_106554 crossref_primary_10_1007_s42773_020_00081_z crossref_primary_10_1016_j_scitotenv_2022_158043 crossref_primary_10_1016_j_agwat_2024_108953 crossref_primary_10_3390_su142214722 crossref_primary_10_1002_jpln_201800538 crossref_primary_10_1016_j_catena_2021_105284 crossref_primary_10_1002_ldr_4853 crossref_primary_10_48130_grares_0024_0003 crossref_primary_10_1007_s42773_023_00226_w crossref_primary_10_1016_j_scitotenv_2021_150304 crossref_primary_10_3390_w15101909 crossref_primary_10_1007_s00253_023_12519_y crossref_primary_10_1007_s11738_022_03440_4 crossref_primary_10_3390_en13205270 crossref_primary_10_1016_j_jenvman_2023_118584 crossref_primary_10_1016_j_jhydrol_2022_128220 crossref_primary_10_1007_s42729_021_00414_2 crossref_primary_10_1016_j_catena_2022_106616 crossref_primary_10_1016_j_still_2021_105051 crossref_primary_10_1016_j_geoderma_2019_114055 crossref_primary_10_1016_j_still_2021_104992 crossref_primary_10_1016_j_still_2022_105337 crossref_primary_10_1016_j_jssas_2021_07_005 crossref_primary_10_1016_j_scitotenv_2019_133732 crossref_primary_10_1016_j_scitotenv_2023_166950 crossref_primary_10_1016_j_still_2023_105935 crossref_primary_10_1007_s42773_021_00104_3 crossref_primary_10_1088_1757_899X_603_2_022068 crossref_primary_10_3390_agronomy14102286 crossref_primary_10_1016_j_fcr_2024_109340 crossref_primary_10_1016_j_cej_2025_161496 crossref_primary_10_3390_su16166750 crossref_primary_10_3390_agronomy11122474 crossref_primary_10_1016_j_jclepro_2024_142237 crossref_primary_10_1080_00103624_2021_1919698 crossref_primary_10_1007_s40098_024_00875_z crossref_primary_10_1016_j_chemosphere_2021_131986 crossref_primary_10_1016_j_envres_2023_116489 crossref_primary_10_3389_fenvs_2022_1053843 crossref_primary_10_1590_1983_40632023v5375742 crossref_primary_10_15243_jdmlm_2025_122_6991 crossref_primary_10_1016_j_biombioe_2024_107416 crossref_primary_10_1016_j_eti_2023_103229 crossref_primary_10_7717_peerj_12131 crossref_primary_10_1080_03650340_2019_1699240 crossref_primary_10_1002_ldr_5122 crossref_primary_10_3389_fenvs_2022_914766 crossref_primary_10_1002_bbb_2497 crossref_primary_10_1016_j_scitotenv_2022_158225 crossref_primary_10_1016_j_apsoil_2021_104134 crossref_primary_10_1007_s12649_025_02977_y crossref_primary_10_1038_s41598_021_88856_7 crossref_primary_10_1111_sum_12997 crossref_primary_10_1016_j_ecoleng_2020_106084 crossref_primary_10_1016_j_scitotenv_2021_151259 crossref_primary_10_1016_j_cherd_2024_02_040 |
Cites_doi | 10.1016/j.geoderma.2013.06.016 10.1071/SR10009 10.2136/sssaj1983.03615995004700040032x 10.1097/SS.0000000000000123 10.1016/j.geoderma.2010.05.013 10.1097/00010694-194808000-00003 10.1016/j.chemosphere.2016.01.043 10.1016/j.still.2015.08.002 10.1016/j.envpol.2018.07.078 10.1038/ncomms1053 10.1038/s41598-018-25039-x 10.1016/j.geoderma.2017.08.007 10.1016/j.jaap.2015.05.006 10.1016/j.geoderma.2016.07.019 10.1021/jf3049142 10.1016/j.geoderma.2015.03.022 10.1623/hysj.53.5.1043 10.1146/annurev.ns.21.120171.002003 10.1890/11-0026.1 10.1038/nclimate2657 10.1016/j.eja.2017.09.003 10.2136/sssaj2007.0302 10.1007/s11104-013-1980-x 10.1016/j.geoderma.2013.03.003 10.1021/ja01269a023 10.1016/j.biombioe.2013.12.010 10.1016/j.still.2016.03.002 10.1016/j.scitotenv.2011.05.011 10.2136/sssaj2011.0313 10.1016/j.advwatres.2013.12.004 10.1038/nature16467 10.1097/00010694-194312000-00001 10.1016/j.agee.2016.11.002 10.1016/j.geoderma.2017.05.027 10.1371/journal.pone.0179079 10.1016/j.jhazmat.2012.06.040 10.1016/j.geoderma.2016.06.028 10.1016/bs.agron.2016.10.001 10.2136/sssaj2005.0383 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2019.01.012 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 191 |
ExternalDocumentID | 10_1016_j_geoderma_2019_01_012 S0016706118315829 |
GeographicLocations | California |
GeographicLocations_xml | – name: California |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-c393t-db4be698b994095057fde918145d7db16ba0bd442d4ae6a917d8765e7c26b4c63 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 04:48:33 EDT 2025 Tue Jul 01 04:04:49 EDT 2025 Thu Apr 24 23:04:24 EDT 2025 Fri Feb 23 02:49:38 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soil water retention SW PAW PWP WA Water distribution Biochar FC Neutron imaging |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c393t-db4be698b994095057fde918145d7db16ba0bd442d4ae6a917d8765e7c26b4c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/am/pii/S0016706118315829?via%3Dihub |
PQID | 2220840818 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2220840818 crossref_primary_10_1016_j_geoderma_2019_01_012 crossref_citationtrail_10_1016_j_geoderma_2019_01_012 elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_01_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-15 |
PublicationDateYYYYMMDD | 2019-04-15 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ren, Sun, Wang, Zhang, Zhu (bb0200) 2018; 242 Trenberth, Fasullo, Shepherd (bb0215) 2015; 5 Richards, Fireman (bb0210) 1943; 56 Joseph, Camps-Arbestain, Lin, Munroe, Chia, Hook, van Zwieten, Kimber, Cowie, Singh, Lehmann, Foidl, Smernik, Amonette (bb0090) 2010; 48 Liu, Dugan, Masiello, Gonnermann (bb0145) 2017; 12 Mia, Dijkstra, Singh (bb0160) 2017 Głąb, Palmowska, Zaleski, Gondek (bb0040) 2016; 281 Woolf, Amonette, Street-Perrott, Lehmann, Joseph (bb0230) 2010; 1 Burrell, Zehetner, Rampazzo, Wimmer, Soja (bb0025) 2016; 282 Gray, Johnson, Dragila, Kleber (bb0045) 2014; 61 Manzoni, Schimel, Porporato (bb0150) 2012; 93 Richards (bb0205) 1948; 66 Herath, Camps-Arbestain, Hedley (bb0075) 2013; 209–210 Cheng, Kang, Perfect, Voisin, Horita, Bilheux, Warren, Jacobson, Hussey (bb0030) 2012; 76 Laird, Fleming, Davis, Horton, Wang, Karlen (bb0115) 2010; 158 Lehmann, Joseph (bb0125) 2009 Dane, Hopmans (bb0035) 2002 Obia, Mulder, Martinsen, Cornelissen, Børresen (bb0175) 2016; 155 Knowles, Robinson, Contangelo, Clucas (bb0110) 2011; 409 Liang, Lehmann, Solomon, Kinyangi, Grossman, O'Neill, Skjemstad, Thies, Luizao, Petersen, Neves (bb0140) 2006; 70 Gu, Muthukumarappan, Julson (bb0055) 2011; 242 Lesk, Rowhani, Ramankutty (bb0135) 2016; 529 Lal (bb0120) 2016 Martin, Kookana, Van Zwieten, Krull (bb0155) 2012; 231–232 Hansen, Hauggaard-Nielsen, Petersen, Mikkelsen, Müller-Stöver (bb0060) 2016; 161 Hardie, Clothier, Bound, Oliver, Close (bb0065) 2014; 376 Ratliff, Ritchie, Cassel (bb0195) 1983; 47 Paetsch, Mueller, Kögel-Knabner, von Lützow, Girardin, Rumpel (bb0180) 2018; 8 ISO-15901-3 (bb0080) 2007 Lehmann, Joseph (bb0130) 2015 Mollinedo, Schumacher, Chintala (bb0165) 2015; 114 Wang, Fonte, Parikh, Six, Scow (bb0225) 2017; 303 Kerre, Willaert, Cornelis, Smolders (bb0105) 2017; 91 Aller, Rathke, Laird, Cruse, Hatfield (bb0010) 2017; 307 Berger (bb0015) 1971; 21 Tumlinson, Liu, Silk, Hopmans (bb0220) 2008; 72 Kameyama, Miyamoto, Iwata, Shiono (bb0095) 2016; 181 Abel, Peters, Trinks, Schonsky, Facklam, Wessolek (bb0005) 2013; 202–203 Jeffery, Meinders, Stoof, Bezemer, van de Voorde, Mommer, van Groenigen (bb0085) 2015; 251–252 Post, Conradt, Suckow, Krysanova, Wechsung, Hattermann (bb0185) 2008; 53 Griffin, Wang, Parikh, Scow (bb0050) 2017; 236 Mukome, Zhang, Silva, Six, Parikh (bb0170) 2013; 61 Rajapaksha, Chen, Tsang, Zhang, Vithanage, Mandal, Gao, Bolan, Ok (bb0190) 2016; 148 Brunauer, Emmett, Teller (bb0020) 1938; 60 Harvey, Herbert, Rhue, Kuo (bb0070) 2010; 240 Kang, Perfect, Cheng, Bilheux, Lee, Horita, Warren (bb0100) 2014; 65 Lal (10.1016/j.geoderma.2019.01.012_bb0120) 2016 Lehmann (10.1016/j.geoderma.2019.01.012_bb0130) 2015 Aller (10.1016/j.geoderma.2019.01.012_bb0010) 2017; 307 Manzoni (10.1016/j.geoderma.2019.01.012_bb0150) 2012; 93 Richards (10.1016/j.geoderma.2019.01.012_bb0210) 1943; 56 Herath (10.1016/j.geoderma.2019.01.012_bb0075) 2013; 209–210 Abel (10.1016/j.geoderma.2019.01.012_bb0005) 2013; 202–203 Richards (10.1016/j.geoderma.2019.01.012_bb0205) 1948; 66 Brunauer (10.1016/j.geoderma.2019.01.012_bb0020) 1938; 60 Liu (10.1016/j.geoderma.2019.01.012_bb0145) 2017; 12 Kang (10.1016/j.geoderma.2019.01.012_bb0100) 2014; 65 Mia (10.1016/j.geoderma.2019.01.012_bb0160) 2017 ISO-15901-3 (10.1016/j.geoderma.2019.01.012_bb0080) 2007 Obia (10.1016/j.geoderma.2019.01.012_bb0175) 2016; 155 Kerre (10.1016/j.geoderma.2019.01.012_bb0105) 2017; 91 Martin (10.1016/j.geoderma.2019.01.012_bb0155) 2012; 231–232 Lehmann (10.1016/j.geoderma.2019.01.012_bb0125) 2009 Trenberth (10.1016/j.geoderma.2019.01.012_bb0215) 2015; 5 Kameyama (10.1016/j.geoderma.2019.01.012_bb0095) 2016; 181 Lesk (10.1016/j.geoderma.2019.01.012_bb0135) 2016; 529 Liang (10.1016/j.geoderma.2019.01.012_bb0140) 2006; 70 Woolf (10.1016/j.geoderma.2019.01.012_bb0230) 2010; 1 Laird (10.1016/j.geoderma.2019.01.012_bb0115) 2010; 158 Griffin (10.1016/j.geoderma.2019.01.012_bb0050) 2017; 236 Gray (10.1016/j.geoderma.2019.01.012_bb0045) 2014; 61 Hansen (10.1016/j.geoderma.2019.01.012_bb0060) 2016; 161 Ren (10.1016/j.geoderma.2019.01.012_bb0200) 2018; 242 Berger (10.1016/j.geoderma.2019.01.012_bb0015) 1971; 21 Jeffery (10.1016/j.geoderma.2019.01.012_bb0085) 2015; 251–252 Rajapaksha (10.1016/j.geoderma.2019.01.012_bb0190) 2016; 148 Knowles (10.1016/j.geoderma.2019.01.012_bb0110) 2011; 409 Burrell (10.1016/j.geoderma.2019.01.012_bb0025) 2016; 282 Cheng (10.1016/j.geoderma.2019.01.012_bb0030) 2012; 76 Głąb (10.1016/j.geoderma.2019.01.012_bb0040) 2016; 281 Joseph (10.1016/j.geoderma.2019.01.012_bb0090) 2010; 48 Dane (10.1016/j.geoderma.2019.01.012_bb0035) 2002 Mollinedo (10.1016/j.geoderma.2019.01.012_bb0165) 2015; 114 Ratliff (10.1016/j.geoderma.2019.01.012_bb0195) 1983; 47 Gu (10.1016/j.geoderma.2019.01.012_bb0055) 2011; 242 Post (10.1016/j.geoderma.2019.01.012_bb0185) 2008; 53 Hardie (10.1016/j.geoderma.2019.01.012_bb0065) 2014; 376 Tumlinson (10.1016/j.geoderma.2019.01.012_bb0220) 2008; 72 Paetsch (10.1016/j.geoderma.2019.01.012_bb0180) 2018; 8 Mukome (10.1016/j.geoderma.2019.01.012_bb0170) 2013; 61 Harvey (10.1016/j.geoderma.2019.01.012_bb0070) 2010; 240 Wang (10.1016/j.geoderma.2019.01.012_bb0225) 2017; 303 |
References_xml | – volume: 242 start-page: 1880 year: 2018 end-page: 1886 ident: bb0200 article-title: Effect of aging in field soil on biochar's properties and its sorption capacity publication-title: Environ. Pollut. – volume: 61 start-page: 196 year: 2014 end-page: 205 ident: bb0045 article-title: Water uptake in biochars: the roles of porosity and hydrophobicity publication-title: Biomass Bioenergy – volume: 61 start-page: 2196 year: 2013 end-page: 2204 ident: bb0170 article-title: Use of chemical and physical characteristics to investigate trends in biochar feedstocks publication-title: J. Agric. Food Chem. – volume: 202–203 start-page: 183 year: 2013 end-page: 191 ident: bb0005 article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil publication-title: Geoderma – volume: 281 start-page: 11 year: 2016 end-page: 20 ident: bb0040 article-title: Effect of biochar application on soil hydrological properties and physical quality of sandy soil publication-title: Geoderma – volume: 181 start-page: 20 year: 2016 end-page: 28 ident: bb0095 article-title: Effects of biochar produced from sugarcane bagasse at different pyrolysis temperatures on water retention of a calcaric dark red soil publication-title: Soil Sci. – volume: 242 year: 2011 ident: bb0055 article-title: Adsorption properties of biochar-based activated carbon publication-title: Abstr. Pap. Am. Chem. Soc. – volume: 161 start-page: 1 year: 2016 end-page: 9 ident: bb0060 article-title: Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types publication-title: Soil Tillage Res. – volume: 409 start-page: 3206 year: 2011 end-page: 3210 ident: bb0110 article-title: Biochar for the mitigation of nitrate leaching from soil amended with biosolids publication-title: Sci. Total Environ. – volume: 376 start-page: 347 year: 2014 end-page: 361 ident: bb0065 article-title: Does biochar influence soil physical properties and soil water availability? publication-title: Plant Soil – volume: 12 year: 2017 ident: bb0145 article-title: Biochar particle size, shape, and porosity act together to influence soil water properties publication-title: PLoS One – volume: 48 start-page: 501 year: 2010 end-page: 515 ident: bb0090 article-title: An investigation into the reactions of biochar in soil publication-title: Aust. J. Soil Res. – volume: 236 start-page: 21 year: 2017 end-page: 29 ident: bb0050 article-title: Short-lived effects of walnut shell biochar on soils and crop yields in a long-term field experiment publication-title: Agric. Ecosyst. Environ. – start-page: 1 year: 2017 end-page: 51 ident: bb0160 article-title: Chapter one - long-term aging of biochar: a molecular understanding with agricultural and environmental implications publication-title: Advances in Agronomy – volume: 91 start-page: 10 year: 2017 end-page: 15 ident: bb0105 article-title: Long-term presence of charcoal increases maize yield in Belgium due to increased soil water availability publication-title: Eur. J. Agron. – volume: 21 start-page: 335 year: 1971 end-page: 364 ident: bb0015 article-title: Neutron radiography publication-title: Annu. Rev. Nucl. Sci. – volume: 529 start-page: 84 year: 2016 ident: bb0135 article-title: Influence of extreme weather disasters on global crop production publication-title: Nature – volume: 158 start-page: 443 year: 2010 end-page: 449 ident: bb0115 article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil publication-title: Geoderma – volume: 56 start-page: 395 year: 1943 end-page: 404 ident: bb0210 article-title: Pressure-plate apparatus for measuring moisture sorption and transmission by soils publication-title: Soil Sci. – volume: 47 start-page: 770 year: 1983 end-page: 775 ident: bb0195 article-title: Field-measured limits of soil water availability as related to laboratory-measured properties1 publication-title: Soil Sci. Soc. Am. J. – volume: 5 start-page: 725 year: 2015 ident: bb0215 article-title: Attribution of climate extreme events publication-title: Nat. Clim. Chang. – volume: 303 start-page: 110 year: 2017 end-page: 117 ident: bb0225 article-title: Biochar additions can enhance soil structure and the physical stabilization of C in aggregates publication-title: Geoderma – volume: 307 start-page: 114 year: 2017 end-page: 121 ident: bb0010 article-title: Impacts of fresh and aged biochars on plant available water and water use efficiency publication-title: Geoderma – volume: 282 start-page: 96 year: 2016 end-page: 102 ident: bb0025 article-title: Long-term effects of biochar on soil physical properties publication-title: Geoderma – volume: 231–232 start-page: 70 year: 2012 end-page: 78 ident: bb0155 article-title: Marked changes in herbicide sorption–desorption upon ageing of biochars in soil publication-title: J. Hazard. Mater. – volume: 8 start-page: 6852 year: 2018 ident: bb0180 article-title: Effect of in-situ aged and fresh biochar on soil hydraulic conditions and microbial C use under drought conditions publication-title: Sci. Rep. – year: 2009 ident: bb0125 article-title: Biochar for Environmental Management: Science and Technology – volume: 66 start-page: 105 year: 1948 end-page: 110 ident: bb0205 article-title: Porous plate apparatus for measuring moisture retention and transmission by soil publication-title: Soil Sci. – volume: 60 start-page: 309 year: 1938 end-page: 319 ident: bb0020 article-title: Adsorption of gases in multimolecular layers publication-title: J. Am. Chem. Soc. – volume: 240 year: 2010 ident: bb0070 article-title: Metal interactions at the biochar-water interface: energetics and composition-sorption relationship elucidated by flow adsorption micro-calorimetry publication-title: Abstr. Pap. Am. Chem. Soc. – volume: 1 year: 2010 ident: bb0230 article-title: Sustainable biochar to mitigate global climate change publication-title: Nat. Commun. – volume: 76 start-page: 1184 year: 2012 end-page: 1191 ident: bb0030 article-title: Average soil water retention curves measured by neutron radiography publication-title: Soil Sci. Soc. Am. J. – volume: 65 start-page: 1 year: 2014 end-page: 8 ident: bb0100 article-title: Multiple pixel-scale soil water retention curves quantified by neutron radiography publication-title: Adv. Water Resour. – volume: 72 start-page: 1234 year: 2008 end-page: 1242 ident: bb0220 article-title: Thermal neutron computed tomography of soil water and plant roots publication-title: Soil Sci. Soc. Am. J. – start-page: 1 year: 2007 end-page: 26 ident: bb0080 article-title: Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption - part 3 publication-title: Analysis of Micropores by Gas Adsorption – volume: 114 start-page: 100 year: 2015 end-page: 108 ident: bb0165 article-title: Influence of feedstocks and pyrolysis on biochar's capacity to modify soil water retention characteristics publication-title: J. Anal. Appl. Pyrolysis – volume: 53 start-page: 1043 year: 2008 end-page: 1058 ident: bb0185 article-title: Integrated assessment of cropland soil carbon sensitivity to recent and future climate in the Elbe River basin publication-title: Hydrol. Sci. J. – start-page: 175 year: 2016 end-page: 198 ident: bb0120 article-title: Biochar and soil carbon sequestration publication-title: Agricultural and Environmental Applications of Biochar: Advances and Barriers – volume: 148 start-page: 276 year: 2016 end-page: 291 ident: bb0190 article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification publication-title: Chemosphere – volume: 93 start-page: 930 year: 2012 end-page: 938 ident: bb0150 article-title: Responses of soil microbial communities to water stress: results from a meta-analysis publication-title: Ecology – volume: 209–210 start-page: 188 year: 2013 end-page: 197 ident: bb0075 article-title: Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol publication-title: Geoderma – volume: 251–252 start-page: 47 year: 2015 end-page: 54 ident: bb0085 article-title: Biochar application does not improve the soil hydrological function of a sandy soil publication-title: Geoderma – volume: 155 start-page: 35 year: 2016 end-page: 44 ident: bb0175 article-title: In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils publication-title: Soil Tillage Res. – volume: 70 start-page: 1719 year: 2006 end-page: 1730 ident: bb0140 article-title: Black carbon increases cation exchange capacity in soils publication-title: Soil Sci. Soc. Am. J. – start-page: 675 year: 2002 end-page: 719 ident: bb0035 article-title: 3.3.2 Laboratory publication-title: Methods of Soil Analysis: Part 4 Physical Methods – year: 2015 ident: bb0130 article-title: Biochar for Environmental Management: Science, Technology and Implementation – volume: 209–210 start-page: 188 issue: 0 year: 2013 ident: 10.1016/j.geoderma.2019.01.012_bb0075 article-title: Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol publication-title: Geoderma doi: 10.1016/j.geoderma.2013.06.016 – volume: 48 start-page: 501 issue: 6–7 year: 2010 ident: 10.1016/j.geoderma.2019.01.012_bb0090 article-title: An investigation into the reactions of biochar in soil publication-title: Aust. J. Soil Res. doi: 10.1071/SR10009 – start-page: 1 year: 2007 ident: 10.1016/j.geoderma.2019.01.012_bb0080 article-title: Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption - part 3 – volume: 47 start-page: 770 issue: 4 year: 1983 ident: 10.1016/j.geoderma.2019.01.012_bb0195 article-title: Field-measured limits of soil water availability as related to laboratory-measured properties1 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1983.03615995004700040032x – volume: 181 start-page: 20 issue: 1 year: 2016 ident: 10.1016/j.geoderma.2019.01.012_bb0095 article-title: Effects of biochar produced from sugarcane bagasse at different pyrolysis temperatures on water retention of a calcaric dark red soil publication-title: Soil Sci. doi: 10.1097/SS.0000000000000123 – volume: 158 start-page: 443 issue: 3–4 year: 2010 ident: 10.1016/j.geoderma.2019.01.012_bb0115 article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil publication-title: Geoderma doi: 10.1016/j.geoderma.2010.05.013 – volume: 66 start-page: 105 issue: 2 year: 1948 ident: 10.1016/j.geoderma.2019.01.012_bb0205 article-title: Porous plate apparatus for measuring moisture retention and transmission by soil publication-title: Soil Sci. doi: 10.1097/00010694-194808000-00003 – start-page: 175 year: 2016 ident: 10.1016/j.geoderma.2019.01.012_bb0120 article-title: Biochar and soil carbon sequestration – volume: 148 start-page: 276 year: 2016 ident: 10.1016/j.geoderma.2019.01.012_bb0190 article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.01.043 – volume: 155 start-page: 35 year: 2016 ident: 10.1016/j.geoderma.2019.01.012_bb0175 article-title: In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils publication-title: Soil Tillage Res. doi: 10.1016/j.still.2015.08.002 – volume: 242 start-page: 1880 year: 2018 ident: 10.1016/j.geoderma.2019.01.012_bb0200 article-title: Effect of aging in field soil on biochar's properties and its sorption capacity publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.07.078 – volume: 1 year: 2010 ident: 10.1016/j.geoderma.2019.01.012_bb0230 article-title: Sustainable biochar to mitigate global climate change publication-title: Nat. Commun. doi: 10.1038/ncomms1053 – volume: 8 start-page: 6852 issue: 1 year: 2018 ident: 10.1016/j.geoderma.2019.01.012_bb0180 article-title: Effect of in-situ aged and fresh biochar on soil hydraulic conditions and microbial C use under drought conditions publication-title: Sci. Rep. doi: 10.1038/s41598-018-25039-x – volume: 307 start-page: 114 year: 2017 ident: 10.1016/j.geoderma.2019.01.012_bb0010 article-title: Impacts of fresh and aged biochars on plant available water and water use efficiency publication-title: Geoderma doi: 10.1016/j.geoderma.2017.08.007 – volume: 114 start-page: 100 year: 2015 ident: 10.1016/j.geoderma.2019.01.012_bb0165 article-title: Influence of feedstocks and pyrolysis on biochar's capacity to modify soil water retention characteristics publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2015.05.006 – volume: 282 start-page: 96 year: 2016 ident: 10.1016/j.geoderma.2019.01.012_bb0025 article-title: Long-term effects of biochar on soil physical properties publication-title: Geoderma doi: 10.1016/j.geoderma.2016.07.019 – volume: 242 year: 2011 ident: 10.1016/j.geoderma.2019.01.012_bb0055 article-title: Adsorption properties of biochar-based activated carbon publication-title: Abstr. Pap. Am. Chem. Soc. – volume: 61 start-page: 2196 year: 2013 ident: 10.1016/j.geoderma.2019.01.012_bb0170 article-title: Use of chemical and physical characteristics to investigate trends in biochar feedstocks publication-title: J. Agric. Food Chem. doi: 10.1021/jf3049142 – volume: 251–252 start-page: 47 year: 2015 ident: 10.1016/j.geoderma.2019.01.012_bb0085 article-title: Biochar application does not improve the soil hydrological function of a sandy soil publication-title: Geoderma doi: 10.1016/j.geoderma.2015.03.022 – volume: 53 start-page: 1043 issue: 5 year: 2008 ident: 10.1016/j.geoderma.2019.01.012_bb0185 article-title: Integrated assessment of cropland soil carbon sensitivity to recent and future climate in the Elbe River basin publication-title: Hydrol. Sci. J. doi: 10.1623/hysj.53.5.1043 – volume: 240 year: 2010 ident: 10.1016/j.geoderma.2019.01.012_bb0070 article-title: Metal interactions at the biochar-water interface: energetics and composition-sorption relationship elucidated by flow adsorption micro-calorimetry publication-title: Abstr. Pap. Am. Chem. Soc. – volume: 21 start-page: 335 issue: 1 year: 1971 ident: 10.1016/j.geoderma.2019.01.012_bb0015 article-title: Neutron radiography publication-title: Annu. Rev. Nucl. Sci. doi: 10.1146/annurev.ns.21.120171.002003 – volume: 93 start-page: 930 issue: 4 year: 2012 ident: 10.1016/j.geoderma.2019.01.012_bb0150 article-title: Responses of soil microbial communities to water stress: results from a meta-analysis publication-title: Ecology doi: 10.1890/11-0026.1 – volume: 5 start-page: 725 year: 2015 ident: 10.1016/j.geoderma.2019.01.012_bb0215 article-title: Attribution of climate extreme events publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate2657 – volume: 91 start-page: 10 year: 2017 ident: 10.1016/j.geoderma.2019.01.012_bb0105 article-title: Long-term presence of charcoal increases maize yield in Belgium due to increased soil water availability publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2017.09.003 – volume: 72 start-page: 1234 issue: 5 year: 2008 ident: 10.1016/j.geoderma.2019.01.012_bb0220 article-title: Thermal neutron computed tomography of soil water and plant roots publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2007.0302 – start-page: 675 year: 2002 ident: 10.1016/j.geoderma.2019.01.012_bb0035 article-title: 3.3.2 Laboratory – volume: 376 start-page: 347 issue: 1 year: 2014 ident: 10.1016/j.geoderma.2019.01.012_bb0065 article-title: Does biochar influence soil physical properties and soil water availability? publication-title: Plant Soil doi: 10.1007/s11104-013-1980-x – year: 2015 ident: 10.1016/j.geoderma.2019.01.012_bb0130 – volume: 202–203 start-page: 183 issue: 0 year: 2013 ident: 10.1016/j.geoderma.2019.01.012_bb0005 article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil publication-title: Geoderma doi: 10.1016/j.geoderma.2013.03.003 – volume: 60 start-page: 309 issue: 2 year: 1938 ident: 10.1016/j.geoderma.2019.01.012_bb0020 article-title: Adsorption of gases in multimolecular layers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01269a023 – volume: 61 start-page: 196 year: 2014 ident: 10.1016/j.geoderma.2019.01.012_bb0045 article-title: Water uptake in biochars: the roles of porosity and hydrophobicity publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2013.12.010 – volume: 161 start-page: 1 year: 2016 ident: 10.1016/j.geoderma.2019.01.012_bb0060 article-title: Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types publication-title: Soil Tillage Res. doi: 10.1016/j.still.2016.03.002 – volume: 409 start-page: 3206 issue: 17 year: 2011 ident: 10.1016/j.geoderma.2019.01.012_bb0110 article-title: Biochar for the mitigation of nitrate leaching from soil amended with biosolids publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2011.05.011 – volume: 76 start-page: 1184 issue: 4 year: 2012 ident: 10.1016/j.geoderma.2019.01.012_bb0030 article-title: Average soil water retention curves measured by neutron radiography publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2011.0313 – volume: 65 start-page: 1 year: 2014 ident: 10.1016/j.geoderma.2019.01.012_bb0100 article-title: Multiple pixel-scale soil water retention curves quantified by neutron radiography publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2013.12.004 – volume: 529 start-page: 84 year: 2016 ident: 10.1016/j.geoderma.2019.01.012_bb0135 article-title: Influence of extreme weather disasters on global crop production publication-title: Nature doi: 10.1038/nature16467 – volume: 56 start-page: 395 issue: 6 year: 1943 ident: 10.1016/j.geoderma.2019.01.012_bb0210 article-title: Pressure-plate apparatus for measuring moisture sorption and transmission by soils publication-title: Soil Sci. doi: 10.1097/00010694-194312000-00001 – volume: 236 start-page: 21 issue: Supplement C year: 2017 ident: 10.1016/j.geoderma.2019.01.012_bb0050 article-title: Short-lived effects of walnut shell biochar on soils and crop yields in a long-term field experiment publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2016.11.002 – volume: 303 start-page: 110 year: 2017 ident: 10.1016/j.geoderma.2019.01.012_bb0225 article-title: Biochar additions can enhance soil structure and the physical stabilization of C in aggregates publication-title: Geoderma doi: 10.1016/j.geoderma.2017.05.027 – year: 2009 ident: 10.1016/j.geoderma.2019.01.012_bb0125 – volume: 12 issue: 6 year: 2017 ident: 10.1016/j.geoderma.2019.01.012_bb0145 article-title: Biochar particle size, shape, and porosity act together to influence soil water properties publication-title: PLoS One doi: 10.1371/journal.pone.0179079 – volume: 231–232 start-page: 70 issue: 0 year: 2012 ident: 10.1016/j.geoderma.2019.01.012_bb0155 article-title: Marked changes in herbicide sorption–desorption upon ageing of biochars in soil publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.06.040 – volume: 281 start-page: 11 year: 2016 ident: 10.1016/j.geoderma.2019.01.012_bb0040 article-title: Effect of biochar application on soil hydrological properties and physical quality of sandy soil publication-title: Geoderma doi: 10.1016/j.geoderma.2016.06.028 – start-page: 1 year: 2017 ident: 10.1016/j.geoderma.2019.01.012_bb0160 article-title: Chapter one - long-term aging of biochar: a molecular understanding with agricultural and environmental implications doi: 10.1016/bs.agron.2016.10.001 – volume: 70 start-page: 1719 issue: 5 year: 2006 ident: 10.1016/j.geoderma.2019.01.012_bb0140 article-title: Black carbon increases cation exchange capacity in soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0383 |
SSID | ssj0017020 |
Score | 2.6150098 |
Snippet | The ability of soil to retain water under drought and other extreme hydrological events is critical to the sustainability of food production systems and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 185 |
SubjectTerms | agricultural management agricultural soils air drying ambient temperature application rate Biochar California clay coarse-textured soils drought ecosystem services field capacity field experimentation food production image analysis Neutron imaging neutrons particle size plant available water production technology sandy soils silty clay loam soils softwood soil ecosystems soil organic matter soil texture Soil water retention surface area walnut hulls Water distribution water holding capacity water storage wilting point |
Title | Impact of biochar on water retention of two agricultural soils – A multi-scale analysis |
URI | https://dx.doi.org/10.1016/j.geoderma.2019.01.012 https://www.proquest.com/docview/2220840818 |
Volume | 340 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5FL3oQn_gsEbzGbrZJtjmWYmkVerJQT2Gzm5VK2ZU-6E38D_5Df4kz22xRQXoQ9rK7SVhmZuebITNfCLlx1sYicpJhFyMTKktZDMDAQpkAGgeZ5klZ5TtQvaG4H8lRjXSqXhgsq_S-f-XTS2_tnzS8NBuv4zH2-HIVARyBUXLZCrGJT4gIrfz2bV3mwaPAUzNyxXD0ty7hF9ARHjhW8g9xXdJ38vAvgPrlqkv86e6TPR840vbq2w5IzeWHZLf9PPXkGe6IPPXLlkdaZNSOC-ynokVOlxBNTukUg2NUAr6dLwsar2fCqrNiPJnRz_cP2qZliSGbge4cjT1lyTEZdu8eOz3mj05gIOLmnKVWWKd0y2oNCRwmIVnqNKC5kGmUWq5sHNhUiDAVsVMx5GwpuEXpoiRUViSqeUK28iJ3p4RKncGoRGaJEAI50DOEfKER2BJwqGdEVvIyiecVx-MtJqYqIHsxlZwNytkEHK7wjDTW815XzBobZ-hKHeaHjRhw_xvnXlf6M_AD4a5InLtiMTMQIAWQ5ULgcv6P9S_IDt7hPhOXl2RrPl24KwhX5rZe2mOdbLf7D73BF7NP6yI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtswDCa69LDtMKz7QbO_qsB21GI5khwddgjWFknb5ZQC3UmzbLlIUdhFnCLYZdg77FH2RnuSkY4cbAWKHooCPtmmIJAUPxLiD8B771wqE684VTFyqYucpwgMPFYZonFUGJE1Wb4TPTqRh6fqdAN-t7UwlFYZbP_KpjfWOrzpBW72LmczqvEVOkE4QqUUahCbkFl55L8vMW6rP433UMgf4vhgf_p5xMNoAY5b6C947qTz2gycMRjgkJNe5N4g2kmVJ7kT2qWRy6WMc5l6nWJMk6PZUD7JYu1kpvu47gPYlGguaGzCxx_rvBKRRKEXpNCctvdPWfI5KgVNOGsaHgnT9AsV8U2IeA0bGsA7eApPgqfKhitmbMGGL5_B4-HZPHTr8M_h67ipsWRVwdysogIuVpVsie7rnM3JGyep09fFsmLpmhJXravZRc3-_PzFhqzJaeQ1KotnaeiR8gJO7oWhL6FTVqXfBqZMgX9lqsiklNR0vSAfQxpC0gwteBdUyy-bhUbmNE_jwrYZa-e25bMlPttI4BN3obemu1y18riVwrTisP8ppUW8uZV2t5WfxRNL1zBp6aur2qJHFmFYjZ7SqzusvwMPR9Mvx_Z4PDl6DY_oC11yCfUGOov5lX-LvtLCvWt0k8G3-z4MfwGh1ybH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+biochar+on+water+retention+of+two+agricultural+soils+%E2%80%93+A+multi-scale+analysis&rft.jtitle=Geoderma&rft.au=Wang%2C+Daoyuan&rft.au=Li%2C+Chongyang&rft.au=Parikh%2C+Sanjai+J.&rft.au=Scow%2C+Kate+M.&rft.date=2019-04-15&rft.issn=0016-7061&rft.volume=340&rft.spage=185&rft.epage=191&rft_id=info:doi/10.1016%2Fj.geoderma.2019.01.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2019_01_012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |