Impact of biochar on water retention of two agricultural soils – A multi-scale analysis

The ability of soil to retain water under drought and other extreme hydrological events is critical to the sustainability of food production systems and preserving soil ecosystem services. We investigated the impact of biochar on water retention properties in California agricultural soils in a serie...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 340; pp. 185 - 191
Main Authors Wang, Daoyuan, Li, Chongyang, Parikh, Sanjai J., Scow, Kate M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ability of soil to retain water under drought and other extreme hydrological events is critical to the sustainability of food production systems and preserving soil ecosystem services. We investigated the impact of biochar on water retention properties in California agricultural soils in a series of column, lab incubation, and field studies. Results from studies based on similar variables (soil, biochar) were used to demonstrate the impact of biochar on soil-water relations at different scales. The influences of biochar type (softwood, 600–700 °C, low surface area; walnut shell, 900 °C, high surface area), application rate (0, 0.5, 1% wt.), and particle diameter (0–0.25, 0.25–0.5, 0.5–1, 1–2 mm) were investigated. Only the higher surface area biochar increased the field capacity of a sandy soil. Neither biochar, altered the field capacity of the higher clay content soil. The walnut shell biochar with 1–2 mm particle diameter was more effective at increasing field capacity in sandy soils compare to smaller biochar size fractions. Neither biochar affected the wilting point in either soil. Neutron imaging was used to explore potential mechanisms involved in water retention by observing the spatial and temporal distribution of water in and surrounding biochar particles (~ 2 mm diameter). After wetting, water retained in the internal pores of biochar was continuously released to surrounding space (~ 2.2 mm sphere) during a 7-day air drying at room temperature, suggesting that soil water retention is improved via the biochar's intraparticle structure. In the field trial, (6 yr., corn-tomato rotation), neither walnut shell biochar amendment (10 t/ ha, equivalent to 0.5% wt. in lab scale experiments) nor agricultural management practices (organic, conventional) altered the water retention capacity of a silty clay loam soil. These data suggest that biochars with a high pore volume can temporarily increase the field capacity and plant available water in a coarse-textured soil, until biochar internal pores are filled by clay and soil organic matter. Our results suggest that biochar can have a limited impact on soil water retention when biochar pore volume is low, or soil texture is fine. High dosage (≥10 t/ha) of high pore volume biochar with bulky particle size (≥1 mm) can improve water retention of coarse-textured soil with limited capacity of water storage and may improve soil's resilience during hydrological extremes. •High porosity biochar particles improved water retention of coarse-textured soils.•Water release from biochar particle to sand was observed using neutron imaging.•Biochar didn't impact soil water retention in a 6-year field trial (silty clay loam).
AbstractList The ability of soil to retain water under drought and other extreme hydrological events is critical to the sustainability of food production systems and preserving soil ecosystem services. We investigated the impact of biochar on water retention properties in California agricultural soils in a series of column, lab incubation, and field studies. Results from studies based on similar variables (soil, biochar) were used to demonstrate the impact of biochar on soil-water relations at different scales. The influences of biochar type (softwood, 600–700 °C, low surface area; walnut shell, 900 °C, high surface area), application rate (0, 0.5, 1% wt.), and particle diameter (0–0.25, 0.25–0.5, 0.5–1, 1–2 mm) were investigated. Only the higher surface area biochar increased the field capacity of a sandy soil. Neither biochar, altered the field capacity of the higher clay content soil. The walnut shell biochar with 1–2 mm particle diameter was more effective at increasing field capacity in sandy soils compare to smaller biochar size fractions. Neither biochar affected the wilting point in either soil. Neutron imaging was used to explore potential mechanisms involved in water retention by observing the spatial and temporal distribution of water in and surrounding biochar particles (~ 2 mm diameter). After wetting, water retained in the internal pores of biochar was continuously released to surrounding space (~ 2.2 mm sphere) during a 7-day air drying at room temperature, suggesting that soil water retention is improved via the biochar's intraparticle structure. In the field trial, (6 yr., corn-tomato rotation), neither walnut shell biochar amendment (10 t/ ha, equivalent to 0.5% wt. in lab scale experiments) nor agricultural management practices (organic, conventional) altered the water retention capacity of a silty clay loam soil. These data suggest that biochars with a high pore volume can temporarily increase the field capacity and plant available water in a coarse-textured soil, until biochar internal pores are filled by clay and soil organic matter. Our results suggest that biochar can have a limited impact on soil water retention when biochar pore volume is low, or soil texture is fine. High dosage (≥10 t/ha) of high pore volume biochar with bulky particle size (≥1 mm) can improve water retention of coarse-textured soil with limited capacity of water storage and may improve soil's resilience during hydrological extremes.
The ability of soil to retain water under drought and other extreme hydrological events is critical to the sustainability of food production systems and preserving soil ecosystem services. We investigated the impact of biochar on water retention properties in California agricultural soils in a series of column, lab incubation, and field studies. Results from studies based on similar variables (soil, biochar) were used to demonstrate the impact of biochar on soil-water relations at different scales. The influences of biochar type (softwood, 600–700 °C, low surface area; walnut shell, 900 °C, high surface area), application rate (0, 0.5, 1% wt.), and particle diameter (0–0.25, 0.25–0.5, 0.5–1, 1–2 mm) were investigated. Only the higher surface area biochar increased the field capacity of a sandy soil. Neither biochar, altered the field capacity of the higher clay content soil. The walnut shell biochar with 1–2 mm particle diameter was more effective at increasing field capacity in sandy soils compare to smaller biochar size fractions. Neither biochar affected the wilting point in either soil. Neutron imaging was used to explore potential mechanisms involved in water retention by observing the spatial and temporal distribution of water in and surrounding biochar particles (~ 2 mm diameter). After wetting, water retained in the internal pores of biochar was continuously released to surrounding space (~ 2.2 mm sphere) during a 7-day air drying at room temperature, suggesting that soil water retention is improved via the biochar's intraparticle structure. In the field trial, (6 yr., corn-tomato rotation), neither walnut shell biochar amendment (10 t/ ha, equivalent to 0.5% wt. in lab scale experiments) nor agricultural management practices (organic, conventional) altered the water retention capacity of a silty clay loam soil. These data suggest that biochars with a high pore volume can temporarily increase the field capacity and plant available water in a coarse-textured soil, until biochar internal pores are filled by clay and soil organic matter. Our results suggest that biochar can have a limited impact on soil water retention when biochar pore volume is low, or soil texture is fine. High dosage (≥10 t/ha) of high pore volume biochar with bulky particle size (≥1 mm) can improve water retention of coarse-textured soil with limited capacity of water storage and may improve soil's resilience during hydrological extremes. •High porosity biochar particles improved water retention of coarse-textured soils.•Water release from biochar particle to sand was observed using neutron imaging.•Biochar didn't impact soil water retention in a 6-year field trial (silty clay loam).
Author Scow, Kate M.
Parikh, Sanjai J.
Li, Chongyang
Wang, Daoyuan
Author_xml – sequence: 1
  givenname: Daoyuan
  surname: Wang
  fullname: Wang, Daoyuan
  email: dyuwang@ucdavis.edu
– sequence: 2
  givenname: Chongyang
  surname: Li
  fullname: Li, Chongyang
– sequence: 3
  givenname: Sanjai J.
  surname: Parikh
  fullname: Parikh, Sanjai J.
– sequence: 4
  givenname: Kate M.
  surname: Scow
  fullname: Scow, Kate M.
BookMark eNqFkE1OIzEQha0RSBPCXGHk5Ww62E63uy3NggjxEwmJzbBgZVXbFcaRux1sB8SOO3DDOQmOMmzYRHpSqaree4vvhByNYURCfnI244zLs_XsEYPFOMBMMK5mjBeJb2TCu1ZUUjTqiExYcVYtk_w7OUlpXdaWCTYhD8thAybTsKK9C-YvRBpG-gIZI42Yccyu7OWbXwKFx-jM1udtBE9TcD7Rf2_vdEGHcnRVMuCRwgj-Nbl0So5X4BP--D-n5P7q8s_FTXV7d728WNxWZq7mubJ93aNUXa9UzVTDmnZlUfGO141tbc9lD6y3dS1sDShB8dZ2rWywNUL2tZHzKfm1793E8LTFlPXgkkHvYcSwTVoIwbqadbwrVrm3mhhSirjSm-gGiK-aM71jqdf6k6XesdSMF4kS_P0laFyGHZocwfnD8fN9HAuHZ4dRJ-NwNGhdRJO1De5QxQfJN5gu
CitedBy_id crossref_primary_10_1016_j_jclepro_2020_122731
crossref_primary_10_1002_agj2_21040
crossref_primary_10_1016_j_jobab_2022_03_003
crossref_primary_10_1016_j_geoderma_2023_116591
crossref_primary_10_1007_s42773_024_00323_4
crossref_primary_10_3390_agronomy14092028
crossref_primary_10_1111_gcbb_12952
crossref_primary_10_1016_j_geoderma_2020_114734
crossref_primary_10_1021_acssusresmgt_4c00174
crossref_primary_10_3389_fsufs_2024_1384530
crossref_primary_10_1016_j_scitotenv_2020_138988
crossref_primary_10_1016_j_scitotenv_2021_152638
crossref_primary_10_1007_s42729_024_01791_0
crossref_primary_10_1007_s00344_022_10588_3
crossref_primary_10_1016_j_jclepro_2023_139443
crossref_primary_10_3389_fpls_2024_1438893
crossref_primary_10_3390_buildings9060141
crossref_primary_10_1371_journal_pone_0264620
crossref_primary_10_1016_j_scitotenv_2021_152772
crossref_primary_10_1016_j_jobe_2024_109272
crossref_primary_10_3390_polym16223102
crossref_primary_10_1016_j_stress_2024_100564
crossref_primary_10_1016_j_geoderma_2021_115097
crossref_primary_10_1186_s13765_023_00845_8
crossref_primary_10_7717_peerj_17883
crossref_primary_10_3390_w14213506
crossref_primary_10_1016_j_scitotenv_2022_158920
crossref_primary_10_1080_00103624_2024_2440069
crossref_primary_10_1111_ejss_13279
crossref_primary_10_3390_ma16041737
crossref_primary_10_1007_s40333_022_0060_6
crossref_primary_10_1016_j_catena_2024_108210
crossref_primary_10_1016_j_scitotenv_2024_174956
crossref_primary_10_3390_su141912267
crossref_primary_10_1007_s10811_021_02480_6
crossref_primary_10_1016_j_still_2020_104798
crossref_primary_10_1051_bioconf_202411905001
crossref_primary_10_2136_sssaj2019_07_0230
crossref_primary_10_3934_environsci_2019_5_379
crossref_primary_10_1007_s11368_019_02414_3
crossref_primary_10_1016_j_indcrop_2025_120762
crossref_primary_10_1016_j_jclepro_2024_143772
crossref_primary_10_1016_j_still_2023_105977
crossref_primary_10_1007_s11368_023_03505_y
crossref_primary_10_3390_agriculture11010044
crossref_primary_10_1007_s11368_020_02786_x
crossref_primary_10_1016_j_scitotenv_2020_138007
crossref_primary_10_1007_s42768_022_00114_2
crossref_primary_10_1016_j_catena_2025_108765
crossref_primary_10_1088_1755_1315_486_1_012133
crossref_primary_10_1007_s42773_020_00084_w
crossref_primary_10_3390_su16073025
crossref_primary_10_1016_j_jconhyd_2022_104128
crossref_primary_10_3390_w13162296
crossref_primary_10_11118_actaun_2022_002
crossref_primary_10_1016_j_biosystemseng_2020_01_006
crossref_primary_10_3390_agronomy13051412
crossref_primary_10_3390_agronomy11030489
crossref_primary_10_1016_j_clema_2022_100162
crossref_primary_10_1111_gcbb_12765
crossref_primary_10_3390_agronomy12020311
crossref_primary_10_1080_23249676_2023_2261368
crossref_primary_10_3390_app12031266
crossref_primary_10_3390_app15063392
crossref_primary_10_3390_agriculture10030062
crossref_primary_10_1021_acsabm_4c00727
crossref_primary_10_1007_s10333_022_00912_8
crossref_primary_10_1080_00103624_2020_1751193
crossref_primary_10_1016_j_scitotenv_2020_136857
crossref_primary_10_1590_1983_21252024v3711792rc
crossref_primary_10_1016_j_apsoil_2022_104591
crossref_primary_10_1016_j_jenvman_2024_122701
crossref_primary_10_1111_ejss_13497
crossref_primary_10_1016_j_ecoser_2023_101514
crossref_primary_10_1016_j_still_2024_106281
crossref_primary_10_37281_DRCSF_1_1_9
crossref_primary_10_5004_dwt_2020_25654
crossref_primary_10_46813_2020_129_060
crossref_primary_10_1016_j_still_2024_106320
crossref_primary_10_1007_s44279_024_00033_2
crossref_primary_10_1007_s13399_020_01137_7
crossref_primary_10_1007_s13399_020_00943_3
crossref_primary_10_1016_j_rser_2025_115581
crossref_primary_10_3389_fenvs_2023_1114752
crossref_primary_10_1039_D3LP00117B
crossref_primary_10_1002_cjce_23771
crossref_primary_10_1007_s42773_023_00233_x
crossref_primary_10_1002_ldr_4185
crossref_primary_10_1007_s42247_022_00442_3
crossref_primary_10_3390_horticulturae6030037
crossref_primary_10_1016_j_scitotenv_2022_155788
crossref_primary_10_1007_s10064_025_04153_x
crossref_primary_10_1080_23311932_2023_2256136
crossref_primary_10_1016_j_still_2022_105482
crossref_primary_10_1080_01904167_2023_2203169
crossref_primary_10_1007_s10343_023_00875_8
crossref_primary_10_1111_wej_12684
crossref_primary_10_1007_s10706_023_02447_z
crossref_primary_10_1007_s42729_021_00597_8
crossref_primary_10_1007_s42773_024_00381_8
crossref_primary_10_1016_j_still_2025_106554
crossref_primary_10_1007_s42773_020_00081_z
crossref_primary_10_1016_j_scitotenv_2022_158043
crossref_primary_10_1016_j_agwat_2024_108953
crossref_primary_10_3390_su142214722
crossref_primary_10_1002_jpln_201800538
crossref_primary_10_1016_j_catena_2021_105284
crossref_primary_10_1002_ldr_4853
crossref_primary_10_48130_grares_0024_0003
crossref_primary_10_1007_s42773_023_00226_w
crossref_primary_10_1016_j_scitotenv_2021_150304
crossref_primary_10_3390_w15101909
crossref_primary_10_1007_s00253_023_12519_y
crossref_primary_10_1007_s11738_022_03440_4
crossref_primary_10_3390_en13205270
crossref_primary_10_1016_j_jenvman_2023_118584
crossref_primary_10_1016_j_jhydrol_2022_128220
crossref_primary_10_1007_s42729_021_00414_2
crossref_primary_10_1016_j_catena_2022_106616
crossref_primary_10_1016_j_still_2021_105051
crossref_primary_10_1016_j_geoderma_2019_114055
crossref_primary_10_1016_j_still_2021_104992
crossref_primary_10_1016_j_still_2022_105337
crossref_primary_10_1016_j_jssas_2021_07_005
crossref_primary_10_1016_j_scitotenv_2019_133732
crossref_primary_10_1016_j_scitotenv_2023_166950
crossref_primary_10_1016_j_still_2023_105935
crossref_primary_10_1007_s42773_021_00104_3
crossref_primary_10_1088_1757_899X_603_2_022068
crossref_primary_10_3390_agronomy14102286
crossref_primary_10_1016_j_fcr_2024_109340
crossref_primary_10_1016_j_cej_2025_161496
crossref_primary_10_3390_su16166750
crossref_primary_10_3390_agronomy11122474
crossref_primary_10_1016_j_jclepro_2024_142237
crossref_primary_10_1080_00103624_2021_1919698
crossref_primary_10_1007_s40098_024_00875_z
crossref_primary_10_1016_j_chemosphere_2021_131986
crossref_primary_10_1016_j_envres_2023_116489
crossref_primary_10_3389_fenvs_2022_1053843
crossref_primary_10_1590_1983_40632023v5375742
crossref_primary_10_15243_jdmlm_2025_122_6991
crossref_primary_10_1016_j_biombioe_2024_107416
crossref_primary_10_1016_j_eti_2023_103229
crossref_primary_10_7717_peerj_12131
crossref_primary_10_1080_03650340_2019_1699240
crossref_primary_10_1002_ldr_5122
crossref_primary_10_3389_fenvs_2022_914766
crossref_primary_10_1002_bbb_2497
crossref_primary_10_1016_j_scitotenv_2022_158225
crossref_primary_10_1016_j_apsoil_2021_104134
crossref_primary_10_1007_s12649_025_02977_y
crossref_primary_10_1038_s41598_021_88856_7
crossref_primary_10_1111_sum_12997
crossref_primary_10_1016_j_ecoleng_2020_106084
crossref_primary_10_1016_j_scitotenv_2021_151259
crossref_primary_10_1016_j_cherd_2024_02_040
Cites_doi 10.1016/j.geoderma.2013.06.016
10.1071/SR10009
10.2136/sssaj1983.03615995004700040032x
10.1097/SS.0000000000000123
10.1016/j.geoderma.2010.05.013
10.1097/00010694-194808000-00003
10.1016/j.chemosphere.2016.01.043
10.1016/j.still.2015.08.002
10.1016/j.envpol.2018.07.078
10.1038/ncomms1053
10.1038/s41598-018-25039-x
10.1016/j.geoderma.2017.08.007
10.1016/j.jaap.2015.05.006
10.1016/j.geoderma.2016.07.019
10.1021/jf3049142
10.1016/j.geoderma.2015.03.022
10.1623/hysj.53.5.1043
10.1146/annurev.ns.21.120171.002003
10.1890/11-0026.1
10.1038/nclimate2657
10.1016/j.eja.2017.09.003
10.2136/sssaj2007.0302
10.1007/s11104-013-1980-x
10.1016/j.geoderma.2013.03.003
10.1021/ja01269a023
10.1016/j.biombioe.2013.12.010
10.1016/j.still.2016.03.002
10.1016/j.scitotenv.2011.05.011
10.2136/sssaj2011.0313
10.1016/j.advwatres.2013.12.004
10.1038/nature16467
10.1097/00010694-194312000-00001
10.1016/j.agee.2016.11.002
10.1016/j.geoderma.2017.05.027
10.1371/journal.pone.0179079
10.1016/j.jhazmat.2012.06.040
10.1016/j.geoderma.2016.06.028
10.1016/bs.agron.2016.10.001
10.2136/sssaj2005.0383
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2019.01.012
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 191
ExternalDocumentID 10_1016_j_geoderma_2019_01_012
S0016706118315829
GeographicLocations California
GeographicLocations_xml – name: California
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-c393t-db4be698b994095057fde918145d7db16ba0bd442d4ae6a917d8765e7c26b4c63
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 04:48:33 EDT 2025
Tue Jul 01 04:04:49 EDT 2025
Thu Apr 24 23:04:24 EDT 2025
Fri Feb 23 02:49:38 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Soil water retention
SW
PAW
PWP
WA
Water distribution
Biochar
FC
Neutron imaging
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c393t-db4be698b994095057fde918145d7db16ba0bd442d4ae6a917d8765e7c26b4c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S0016706118315829?via%3Dihub
PQID 2220840818
PQPubID 24069
PageCount 7
ParticipantIDs proquest_miscellaneous_2220840818
crossref_primary_10_1016_j_geoderma_2019_01_012
crossref_citationtrail_10_1016_j_geoderma_2019_01_012
elsevier_sciencedirect_doi_10_1016_j_geoderma_2019_01_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-15
PublicationDateYYYYMMDD 2019-04-15
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-15
  day: 15
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ren, Sun, Wang, Zhang, Zhu (bb0200) 2018; 242
Trenberth, Fasullo, Shepherd (bb0215) 2015; 5
Richards, Fireman (bb0210) 1943; 56
Joseph, Camps-Arbestain, Lin, Munroe, Chia, Hook, van Zwieten, Kimber, Cowie, Singh, Lehmann, Foidl, Smernik, Amonette (bb0090) 2010; 48
Liu, Dugan, Masiello, Gonnermann (bb0145) 2017; 12
Mia, Dijkstra, Singh (bb0160) 2017
Głąb, Palmowska, Zaleski, Gondek (bb0040) 2016; 281
Woolf, Amonette, Street-Perrott, Lehmann, Joseph (bb0230) 2010; 1
Burrell, Zehetner, Rampazzo, Wimmer, Soja (bb0025) 2016; 282
Gray, Johnson, Dragila, Kleber (bb0045) 2014; 61
Manzoni, Schimel, Porporato (bb0150) 2012; 93
Richards (bb0205) 1948; 66
Herath, Camps-Arbestain, Hedley (bb0075) 2013; 209–210
Cheng, Kang, Perfect, Voisin, Horita, Bilheux, Warren, Jacobson, Hussey (bb0030) 2012; 76
Laird, Fleming, Davis, Horton, Wang, Karlen (bb0115) 2010; 158
Lehmann, Joseph (bb0125) 2009
Dane, Hopmans (bb0035) 2002
Obia, Mulder, Martinsen, Cornelissen, Børresen (bb0175) 2016; 155
Knowles, Robinson, Contangelo, Clucas (bb0110) 2011; 409
Liang, Lehmann, Solomon, Kinyangi, Grossman, O'Neill, Skjemstad, Thies, Luizao, Petersen, Neves (bb0140) 2006; 70
Gu, Muthukumarappan, Julson (bb0055) 2011; 242
Lesk, Rowhani, Ramankutty (bb0135) 2016; 529
Lal (bb0120) 2016
Martin, Kookana, Van Zwieten, Krull (bb0155) 2012; 231–232
Hansen, Hauggaard-Nielsen, Petersen, Mikkelsen, Müller-Stöver (bb0060) 2016; 161
Hardie, Clothier, Bound, Oliver, Close (bb0065) 2014; 376
Ratliff, Ritchie, Cassel (bb0195) 1983; 47
Paetsch, Mueller, Kögel-Knabner, von Lützow, Girardin, Rumpel (bb0180) 2018; 8
ISO-15901-3 (bb0080) 2007
Lehmann, Joseph (bb0130) 2015
Mollinedo, Schumacher, Chintala (bb0165) 2015; 114
Wang, Fonte, Parikh, Six, Scow (bb0225) 2017; 303
Kerre, Willaert, Cornelis, Smolders (bb0105) 2017; 91
Aller, Rathke, Laird, Cruse, Hatfield (bb0010) 2017; 307
Berger (bb0015) 1971; 21
Tumlinson, Liu, Silk, Hopmans (bb0220) 2008; 72
Kameyama, Miyamoto, Iwata, Shiono (bb0095) 2016; 181
Abel, Peters, Trinks, Schonsky, Facklam, Wessolek (bb0005) 2013; 202–203
Jeffery, Meinders, Stoof, Bezemer, van de Voorde, Mommer, van Groenigen (bb0085) 2015; 251–252
Post, Conradt, Suckow, Krysanova, Wechsung, Hattermann (bb0185) 2008; 53
Griffin, Wang, Parikh, Scow (bb0050) 2017; 236
Mukome, Zhang, Silva, Six, Parikh (bb0170) 2013; 61
Rajapaksha, Chen, Tsang, Zhang, Vithanage, Mandal, Gao, Bolan, Ok (bb0190) 2016; 148
Brunauer, Emmett, Teller (bb0020) 1938; 60
Harvey, Herbert, Rhue, Kuo (bb0070) 2010; 240
Kang, Perfect, Cheng, Bilheux, Lee, Horita, Warren (bb0100) 2014; 65
Lal (10.1016/j.geoderma.2019.01.012_bb0120) 2016
Lehmann (10.1016/j.geoderma.2019.01.012_bb0130) 2015
Aller (10.1016/j.geoderma.2019.01.012_bb0010) 2017; 307
Manzoni (10.1016/j.geoderma.2019.01.012_bb0150) 2012; 93
Richards (10.1016/j.geoderma.2019.01.012_bb0210) 1943; 56
Herath (10.1016/j.geoderma.2019.01.012_bb0075) 2013; 209–210
Abel (10.1016/j.geoderma.2019.01.012_bb0005) 2013; 202–203
Richards (10.1016/j.geoderma.2019.01.012_bb0205) 1948; 66
Brunauer (10.1016/j.geoderma.2019.01.012_bb0020) 1938; 60
Liu (10.1016/j.geoderma.2019.01.012_bb0145) 2017; 12
Kang (10.1016/j.geoderma.2019.01.012_bb0100) 2014; 65
Mia (10.1016/j.geoderma.2019.01.012_bb0160) 2017
ISO-15901-3 (10.1016/j.geoderma.2019.01.012_bb0080) 2007
Obia (10.1016/j.geoderma.2019.01.012_bb0175) 2016; 155
Kerre (10.1016/j.geoderma.2019.01.012_bb0105) 2017; 91
Martin (10.1016/j.geoderma.2019.01.012_bb0155) 2012; 231–232
Lehmann (10.1016/j.geoderma.2019.01.012_bb0125) 2009
Trenberth (10.1016/j.geoderma.2019.01.012_bb0215) 2015; 5
Kameyama (10.1016/j.geoderma.2019.01.012_bb0095) 2016; 181
Lesk (10.1016/j.geoderma.2019.01.012_bb0135) 2016; 529
Liang (10.1016/j.geoderma.2019.01.012_bb0140) 2006; 70
Woolf (10.1016/j.geoderma.2019.01.012_bb0230) 2010; 1
Laird (10.1016/j.geoderma.2019.01.012_bb0115) 2010; 158
Griffin (10.1016/j.geoderma.2019.01.012_bb0050) 2017; 236
Gray (10.1016/j.geoderma.2019.01.012_bb0045) 2014; 61
Hansen (10.1016/j.geoderma.2019.01.012_bb0060) 2016; 161
Ren (10.1016/j.geoderma.2019.01.012_bb0200) 2018; 242
Berger (10.1016/j.geoderma.2019.01.012_bb0015) 1971; 21
Jeffery (10.1016/j.geoderma.2019.01.012_bb0085) 2015; 251–252
Rajapaksha (10.1016/j.geoderma.2019.01.012_bb0190) 2016; 148
Knowles (10.1016/j.geoderma.2019.01.012_bb0110) 2011; 409
Burrell (10.1016/j.geoderma.2019.01.012_bb0025) 2016; 282
Cheng (10.1016/j.geoderma.2019.01.012_bb0030) 2012; 76
Głąb (10.1016/j.geoderma.2019.01.012_bb0040) 2016; 281
Joseph (10.1016/j.geoderma.2019.01.012_bb0090) 2010; 48
Dane (10.1016/j.geoderma.2019.01.012_bb0035) 2002
Mollinedo (10.1016/j.geoderma.2019.01.012_bb0165) 2015; 114
Ratliff (10.1016/j.geoderma.2019.01.012_bb0195) 1983; 47
Gu (10.1016/j.geoderma.2019.01.012_bb0055) 2011; 242
Post (10.1016/j.geoderma.2019.01.012_bb0185) 2008; 53
Hardie (10.1016/j.geoderma.2019.01.012_bb0065) 2014; 376
Tumlinson (10.1016/j.geoderma.2019.01.012_bb0220) 2008; 72
Paetsch (10.1016/j.geoderma.2019.01.012_bb0180) 2018; 8
Mukome (10.1016/j.geoderma.2019.01.012_bb0170) 2013; 61
Harvey (10.1016/j.geoderma.2019.01.012_bb0070) 2010; 240
Wang (10.1016/j.geoderma.2019.01.012_bb0225) 2017; 303
References_xml – volume: 242
  start-page: 1880
  year: 2018
  end-page: 1886
  ident: bb0200
  article-title: Effect of aging in field soil on biochar's properties and its sorption capacity
  publication-title: Environ. Pollut.
– volume: 61
  start-page: 196
  year: 2014
  end-page: 205
  ident: bb0045
  article-title: Water uptake in biochars: the roles of porosity and hydrophobicity
  publication-title: Biomass Bioenergy
– volume: 61
  start-page: 2196
  year: 2013
  end-page: 2204
  ident: bb0170
  article-title: Use of chemical and physical characteristics to investigate trends in biochar feedstocks
  publication-title: J. Agric. Food Chem.
– volume: 202–203
  start-page: 183
  year: 2013
  end-page: 191
  ident: bb0005
  article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil
  publication-title: Geoderma
– volume: 281
  start-page: 11
  year: 2016
  end-page: 20
  ident: bb0040
  article-title: Effect of biochar application on soil hydrological properties and physical quality of sandy soil
  publication-title: Geoderma
– volume: 181
  start-page: 20
  year: 2016
  end-page: 28
  ident: bb0095
  article-title: Effects of biochar produced from sugarcane bagasse at different pyrolysis temperatures on water retention of a calcaric dark red soil
  publication-title: Soil Sci.
– volume: 242
  year: 2011
  ident: bb0055
  article-title: Adsorption properties of biochar-based activated carbon
  publication-title: Abstr. Pap. Am. Chem. Soc.
– volume: 161
  start-page: 1
  year: 2016
  end-page: 9
  ident: bb0060
  article-title: Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types
  publication-title: Soil Tillage Res.
– volume: 409
  start-page: 3206
  year: 2011
  end-page: 3210
  ident: bb0110
  article-title: Biochar for the mitigation of nitrate leaching from soil amended with biosolids
  publication-title: Sci. Total Environ.
– volume: 376
  start-page: 347
  year: 2014
  end-page: 361
  ident: bb0065
  article-title: Does biochar influence soil physical properties and soil water availability?
  publication-title: Plant Soil
– volume: 12
  year: 2017
  ident: bb0145
  article-title: Biochar particle size, shape, and porosity act together to influence soil water properties
  publication-title: PLoS One
– volume: 48
  start-page: 501
  year: 2010
  end-page: 515
  ident: bb0090
  article-title: An investigation into the reactions of biochar in soil
  publication-title: Aust. J. Soil Res.
– volume: 236
  start-page: 21
  year: 2017
  end-page: 29
  ident: bb0050
  article-title: Short-lived effects of walnut shell biochar on soils and crop yields in a long-term field experiment
  publication-title: Agric. Ecosyst. Environ.
– start-page: 1
  year: 2017
  end-page: 51
  ident: bb0160
  article-title: Chapter one - long-term aging of biochar: a molecular understanding with agricultural and environmental implications
  publication-title: Advances in Agronomy
– volume: 91
  start-page: 10
  year: 2017
  end-page: 15
  ident: bb0105
  article-title: Long-term presence of charcoal increases maize yield in Belgium due to increased soil water availability
  publication-title: Eur. J. Agron.
– volume: 21
  start-page: 335
  year: 1971
  end-page: 364
  ident: bb0015
  article-title: Neutron radiography
  publication-title: Annu. Rev. Nucl. Sci.
– volume: 529
  start-page: 84
  year: 2016
  ident: bb0135
  article-title: Influence of extreme weather disasters on global crop production
  publication-title: Nature
– volume: 158
  start-page: 443
  year: 2010
  end-page: 449
  ident: bb0115
  article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil
  publication-title: Geoderma
– volume: 56
  start-page: 395
  year: 1943
  end-page: 404
  ident: bb0210
  article-title: Pressure-plate apparatus for measuring moisture sorption and transmission by soils
  publication-title: Soil Sci.
– volume: 47
  start-page: 770
  year: 1983
  end-page: 775
  ident: bb0195
  article-title: Field-measured limits of soil water availability as related to laboratory-measured properties1
  publication-title: Soil Sci. Soc. Am. J.
– volume: 5
  start-page: 725
  year: 2015
  ident: bb0215
  article-title: Attribution of climate extreme events
  publication-title: Nat. Clim. Chang.
– volume: 303
  start-page: 110
  year: 2017
  end-page: 117
  ident: bb0225
  article-title: Biochar additions can enhance soil structure and the physical stabilization of C in aggregates
  publication-title: Geoderma
– volume: 307
  start-page: 114
  year: 2017
  end-page: 121
  ident: bb0010
  article-title: Impacts of fresh and aged biochars on plant available water and water use efficiency
  publication-title: Geoderma
– volume: 282
  start-page: 96
  year: 2016
  end-page: 102
  ident: bb0025
  article-title: Long-term effects of biochar on soil physical properties
  publication-title: Geoderma
– volume: 231–232
  start-page: 70
  year: 2012
  end-page: 78
  ident: bb0155
  article-title: Marked changes in herbicide sorption–desorption upon ageing of biochars in soil
  publication-title: J. Hazard. Mater.
– volume: 8
  start-page: 6852
  year: 2018
  ident: bb0180
  article-title: Effect of in-situ aged and fresh biochar on soil hydraulic conditions and microbial C use under drought conditions
  publication-title: Sci. Rep.
– year: 2009
  ident: bb0125
  article-title: Biochar for Environmental Management: Science and Technology
– volume: 66
  start-page: 105
  year: 1948
  end-page: 110
  ident: bb0205
  article-title: Porous plate apparatus for measuring moisture retention and transmission by soil
  publication-title: Soil Sci.
– volume: 60
  start-page: 309
  year: 1938
  end-page: 319
  ident: bb0020
  article-title: Adsorption of gases in multimolecular layers
  publication-title: J. Am. Chem. Soc.
– volume: 240
  year: 2010
  ident: bb0070
  article-title: Metal interactions at the biochar-water interface: energetics and composition-sorption relationship elucidated by flow adsorption micro-calorimetry
  publication-title: Abstr. Pap. Am. Chem. Soc.
– volume: 1
  year: 2010
  ident: bb0230
  article-title: Sustainable biochar to mitigate global climate change
  publication-title: Nat. Commun.
– volume: 76
  start-page: 1184
  year: 2012
  end-page: 1191
  ident: bb0030
  article-title: Average soil water retention curves measured by neutron radiography
  publication-title: Soil Sci. Soc. Am. J.
– volume: 65
  start-page: 1
  year: 2014
  end-page: 8
  ident: bb0100
  article-title: Multiple pixel-scale soil water retention curves quantified by neutron radiography
  publication-title: Adv. Water Resour.
– volume: 72
  start-page: 1234
  year: 2008
  end-page: 1242
  ident: bb0220
  article-title: Thermal neutron computed tomography of soil water and plant roots
  publication-title: Soil Sci. Soc. Am. J.
– start-page: 1
  year: 2007
  end-page: 26
  ident: bb0080
  article-title: Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption - part 3
  publication-title: Analysis of Micropores by Gas Adsorption
– volume: 114
  start-page: 100
  year: 2015
  end-page: 108
  ident: bb0165
  article-title: Influence of feedstocks and pyrolysis on biochar's capacity to modify soil water retention characteristics
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 53
  start-page: 1043
  year: 2008
  end-page: 1058
  ident: bb0185
  article-title: Integrated assessment of cropland soil carbon sensitivity to recent and future climate in the Elbe River basin
  publication-title: Hydrol. Sci. J.
– start-page: 175
  year: 2016
  end-page: 198
  ident: bb0120
  article-title: Biochar and soil carbon sequestration
  publication-title: Agricultural and Environmental Applications of Biochar: Advances and Barriers
– volume: 148
  start-page: 276
  year: 2016
  end-page: 291
  ident: bb0190
  article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification
  publication-title: Chemosphere
– volume: 93
  start-page: 930
  year: 2012
  end-page: 938
  ident: bb0150
  article-title: Responses of soil microbial communities to water stress: results from a meta-analysis
  publication-title: Ecology
– volume: 209–210
  start-page: 188
  year: 2013
  end-page: 197
  ident: bb0075
  article-title: Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol
  publication-title: Geoderma
– volume: 251–252
  start-page: 47
  year: 2015
  end-page: 54
  ident: bb0085
  article-title: Biochar application does not improve the soil hydrological function of a sandy soil
  publication-title: Geoderma
– volume: 155
  start-page: 35
  year: 2016
  end-page: 44
  ident: bb0175
  article-title: In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils
  publication-title: Soil Tillage Res.
– volume: 70
  start-page: 1719
  year: 2006
  end-page: 1730
  ident: bb0140
  article-title: Black carbon increases cation exchange capacity in soils
  publication-title: Soil Sci. Soc. Am. J.
– start-page: 675
  year: 2002
  end-page: 719
  ident: bb0035
  article-title: 3.3.2 Laboratory
  publication-title: Methods of Soil Analysis: Part 4 Physical Methods
– year: 2015
  ident: bb0130
  article-title: Biochar for Environmental Management: Science, Technology and Implementation
– volume: 209–210
  start-page: 188
  issue: 0
  year: 2013
  ident: 10.1016/j.geoderma.2019.01.012_bb0075
  article-title: Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.06.016
– volume: 48
  start-page: 501
  issue: 6–7
  year: 2010
  ident: 10.1016/j.geoderma.2019.01.012_bb0090
  article-title: An investigation into the reactions of biochar in soil
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR10009
– start-page: 1
  year: 2007
  ident: 10.1016/j.geoderma.2019.01.012_bb0080
  article-title: Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption - part 3
– volume: 47
  start-page: 770
  issue: 4
  year: 1983
  ident: 10.1016/j.geoderma.2019.01.012_bb0195
  article-title: Field-measured limits of soil water availability as related to laboratory-measured properties1
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1983.03615995004700040032x
– volume: 181
  start-page: 20
  issue: 1
  year: 2016
  ident: 10.1016/j.geoderma.2019.01.012_bb0095
  article-title: Effects of biochar produced from sugarcane bagasse at different pyrolysis temperatures on water retention of a calcaric dark red soil
  publication-title: Soil Sci.
  doi: 10.1097/SS.0000000000000123
– volume: 158
  start-page: 443
  issue: 3–4
  year: 2010
  ident: 10.1016/j.geoderma.2019.01.012_bb0115
  article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.05.013
– volume: 66
  start-page: 105
  issue: 2
  year: 1948
  ident: 10.1016/j.geoderma.2019.01.012_bb0205
  article-title: Porous plate apparatus for measuring moisture retention and transmission by soil
  publication-title: Soil Sci.
  doi: 10.1097/00010694-194808000-00003
– start-page: 175
  year: 2016
  ident: 10.1016/j.geoderma.2019.01.012_bb0120
  article-title: Biochar and soil carbon sequestration
– volume: 148
  start-page: 276
  year: 2016
  ident: 10.1016/j.geoderma.2019.01.012_bb0190
  article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.01.043
– volume: 155
  start-page: 35
  year: 2016
  ident: 10.1016/j.geoderma.2019.01.012_bb0175
  article-title: In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2015.08.002
– volume: 242
  start-page: 1880
  year: 2018
  ident: 10.1016/j.geoderma.2019.01.012_bb0200
  article-title: Effect of aging in field soil on biochar's properties and its sorption capacity
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.07.078
– volume: 1
  year: 2010
  ident: 10.1016/j.geoderma.2019.01.012_bb0230
  article-title: Sustainable biochar to mitigate global climate change
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1053
– volume: 8
  start-page: 6852
  issue: 1
  year: 2018
  ident: 10.1016/j.geoderma.2019.01.012_bb0180
  article-title: Effect of in-situ aged and fresh biochar on soil hydraulic conditions and microbial C use under drought conditions
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-25039-x
– volume: 307
  start-page: 114
  year: 2017
  ident: 10.1016/j.geoderma.2019.01.012_bb0010
  article-title: Impacts of fresh and aged biochars on plant available water and water use efficiency
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.08.007
– volume: 114
  start-page: 100
  year: 2015
  ident: 10.1016/j.geoderma.2019.01.012_bb0165
  article-title: Influence of feedstocks and pyrolysis on biochar's capacity to modify soil water retention characteristics
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2015.05.006
– volume: 282
  start-page: 96
  year: 2016
  ident: 10.1016/j.geoderma.2019.01.012_bb0025
  article-title: Long-term effects of biochar on soil physical properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.07.019
– volume: 242
  year: 2011
  ident: 10.1016/j.geoderma.2019.01.012_bb0055
  article-title: Adsorption properties of biochar-based activated carbon
  publication-title: Abstr. Pap. Am. Chem. Soc.
– volume: 61
  start-page: 2196
  year: 2013
  ident: 10.1016/j.geoderma.2019.01.012_bb0170
  article-title: Use of chemical and physical characteristics to investigate trends in biochar feedstocks
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf3049142
– volume: 251–252
  start-page: 47
  year: 2015
  ident: 10.1016/j.geoderma.2019.01.012_bb0085
  article-title: Biochar application does not improve the soil hydrological function of a sandy soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.03.022
– volume: 53
  start-page: 1043
  issue: 5
  year: 2008
  ident: 10.1016/j.geoderma.2019.01.012_bb0185
  article-title: Integrated assessment of cropland soil carbon sensitivity to recent and future climate in the Elbe River basin
  publication-title: Hydrol. Sci. J.
  doi: 10.1623/hysj.53.5.1043
– volume: 240
  year: 2010
  ident: 10.1016/j.geoderma.2019.01.012_bb0070
  article-title: Metal interactions at the biochar-water interface: energetics and composition-sorption relationship elucidated by flow adsorption micro-calorimetry
  publication-title: Abstr. Pap. Am. Chem. Soc.
– volume: 21
  start-page: 335
  issue: 1
  year: 1971
  ident: 10.1016/j.geoderma.2019.01.012_bb0015
  article-title: Neutron radiography
  publication-title: Annu. Rev. Nucl. Sci.
  doi: 10.1146/annurev.ns.21.120171.002003
– volume: 93
  start-page: 930
  issue: 4
  year: 2012
  ident: 10.1016/j.geoderma.2019.01.012_bb0150
  article-title: Responses of soil microbial communities to water stress: results from a meta-analysis
  publication-title: Ecology
  doi: 10.1890/11-0026.1
– volume: 5
  start-page: 725
  year: 2015
  ident: 10.1016/j.geoderma.2019.01.012_bb0215
  article-title: Attribution of climate extreme events
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate2657
– volume: 91
  start-page: 10
  year: 2017
  ident: 10.1016/j.geoderma.2019.01.012_bb0105
  article-title: Long-term presence of charcoal increases maize yield in Belgium due to increased soil water availability
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2017.09.003
– volume: 72
  start-page: 1234
  issue: 5
  year: 2008
  ident: 10.1016/j.geoderma.2019.01.012_bb0220
  article-title: Thermal neutron computed tomography of soil water and plant roots
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2007.0302
– start-page: 675
  year: 2002
  ident: 10.1016/j.geoderma.2019.01.012_bb0035
  article-title: 3.3.2 Laboratory
– volume: 376
  start-page: 347
  issue: 1
  year: 2014
  ident: 10.1016/j.geoderma.2019.01.012_bb0065
  article-title: Does biochar influence soil physical properties and soil water availability?
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1980-x
– year: 2015
  ident: 10.1016/j.geoderma.2019.01.012_bb0130
– volume: 202–203
  start-page: 183
  issue: 0
  year: 2013
  ident: 10.1016/j.geoderma.2019.01.012_bb0005
  article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.03.003
– volume: 60
  start-page: 309
  issue: 2
  year: 1938
  ident: 10.1016/j.geoderma.2019.01.012_bb0020
  article-title: Adsorption of gases in multimolecular layers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01269a023
– volume: 61
  start-page: 196
  year: 2014
  ident: 10.1016/j.geoderma.2019.01.012_bb0045
  article-title: Water uptake in biochars: the roles of porosity and hydrophobicity
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2013.12.010
– volume: 161
  start-page: 1
  year: 2016
  ident: 10.1016/j.geoderma.2019.01.012_bb0060
  article-title: Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2016.03.002
– volume: 409
  start-page: 3206
  issue: 17
  year: 2011
  ident: 10.1016/j.geoderma.2019.01.012_bb0110
  article-title: Biochar for the mitigation of nitrate leaching from soil amended with biosolids
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2011.05.011
– volume: 76
  start-page: 1184
  issue: 4
  year: 2012
  ident: 10.1016/j.geoderma.2019.01.012_bb0030
  article-title: Average soil water retention curves measured by neutron radiography
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2011.0313
– volume: 65
  start-page: 1
  year: 2014
  ident: 10.1016/j.geoderma.2019.01.012_bb0100
  article-title: Multiple pixel-scale soil water retention curves quantified by neutron radiography
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2013.12.004
– volume: 529
  start-page: 84
  year: 2016
  ident: 10.1016/j.geoderma.2019.01.012_bb0135
  article-title: Influence of extreme weather disasters on global crop production
  publication-title: Nature
  doi: 10.1038/nature16467
– volume: 56
  start-page: 395
  issue: 6
  year: 1943
  ident: 10.1016/j.geoderma.2019.01.012_bb0210
  article-title: Pressure-plate apparatus for measuring moisture sorption and transmission by soils
  publication-title: Soil Sci.
  doi: 10.1097/00010694-194312000-00001
– volume: 236
  start-page: 21
  issue: Supplement C
  year: 2017
  ident: 10.1016/j.geoderma.2019.01.012_bb0050
  article-title: Short-lived effects of walnut shell biochar on soils and crop yields in a long-term field experiment
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2016.11.002
– volume: 303
  start-page: 110
  year: 2017
  ident: 10.1016/j.geoderma.2019.01.012_bb0225
  article-title: Biochar additions can enhance soil structure and the physical stabilization of C in aggregates
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.05.027
– year: 2009
  ident: 10.1016/j.geoderma.2019.01.012_bb0125
– volume: 12
  issue: 6
  year: 2017
  ident: 10.1016/j.geoderma.2019.01.012_bb0145
  article-title: Biochar particle size, shape, and porosity act together to influence soil water properties
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0179079
– volume: 231–232
  start-page: 70
  issue: 0
  year: 2012
  ident: 10.1016/j.geoderma.2019.01.012_bb0155
  article-title: Marked changes in herbicide sorption–desorption upon ageing of biochars in soil
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.06.040
– volume: 281
  start-page: 11
  year: 2016
  ident: 10.1016/j.geoderma.2019.01.012_bb0040
  article-title: Effect of biochar application on soil hydrological properties and physical quality of sandy soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.06.028
– start-page: 1
  year: 2017
  ident: 10.1016/j.geoderma.2019.01.012_bb0160
  article-title: Chapter one - long-term aging of biochar: a molecular understanding with agricultural and environmental implications
  doi: 10.1016/bs.agron.2016.10.001
– volume: 70
  start-page: 1719
  issue: 5
  year: 2006
  ident: 10.1016/j.geoderma.2019.01.012_bb0140
  article-title: Black carbon increases cation exchange capacity in soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0383
SSID ssj0017020
Score 2.6150098
Snippet The ability of soil to retain water under drought and other extreme hydrological events is critical to the sustainability of food production systems and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 185
SubjectTerms agricultural management
agricultural soils
air drying
ambient temperature
application rate
Biochar
California
clay
coarse-textured soils
drought
ecosystem services
field capacity
field experimentation
food production
image analysis
Neutron imaging
neutrons
particle size
plant available water
production technology
sandy soils
silty clay loam soils
softwood
soil ecosystems
soil organic matter
soil texture
Soil water retention
surface area
walnut hulls
Water distribution
water holding capacity
water storage
wilting point
Title Impact of biochar on water retention of two agricultural soils – A multi-scale analysis
URI https://dx.doi.org/10.1016/j.geoderma.2019.01.012
https://www.proquest.com/docview/2220840818
Volume 340
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5FL3oQn_gsEbzGbrZJtjmWYmkVerJQT2Gzm5VK2ZU-6E38D_5Df4kz22xRQXoQ9rK7SVhmZuebITNfCLlx1sYicpJhFyMTKktZDMDAQpkAGgeZ5klZ5TtQvaG4H8lRjXSqXhgsq_S-f-XTS2_tnzS8NBuv4zH2-HIVARyBUXLZCrGJT4gIrfz2bV3mwaPAUzNyxXD0ty7hF9ARHjhW8g9xXdJ38vAvgPrlqkv86e6TPR840vbq2w5IzeWHZLf9PPXkGe6IPPXLlkdaZNSOC-ynokVOlxBNTukUg2NUAr6dLwsar2fCqrNiPJnRz_cP2qZliSGbge4cjT1lyTEZdu8eOz3mj05gIOLmnKVWWKd0y2oNCRwmIVnqNKC5kGmUWq5sHNhUiDAVsVMx5GwpuEXpoiRUViSqeUK28iJ3p4RKncGoRGaJEAI50DOEfKER2BJwqGdEVvIyiecVx-MtJqYqIHsxlZwNytkEHK7wjDTW815XzBobZ-hKHeaHjRhw_xvnXlf6M_AD4a5InLtiMTMQIAWQ5ULgcv6P9S_IDt7hPhOXl2RrPl24KwhX5rZe2mOdbLf7D73BF7NP6yI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtswDCa69LDtMKz7QbO_qsB21GI5khwddgjWFknb5ZQC3UmzbLlIUdhFnCLYZdg77FH2RnuSkY4cbAWKHooCPtmmIJAUPxLiD8B771wqE684VTFyqYucpwgMPFYZonFUGJE1Wb4TPTqRh6fqdAN-t7UwlFYZbP_KpjfWOrzpBW72LmczqvEVOkE4QqUUahCbkFl55L8vMW6rP433UMgf4vhgf_p5xMNoAY5b6C947qTz2gycMRjgkJNe5N4g2kmVJ7kT2qWRy6WMc5l6nWJMk6PZUD7JYu1kpvu47gPYlGguaGzCxx_rvBKRRKEXpNCctvdPWfI5KgVNOGsaHgnT9AsV8U2IeA0bGsA7eApPgqfKhitmbMGGL5_B4-HZPHTr8M_h67ipsWRVwdysogIuVpVsie7rnM3JGyep09fFsmLpmhJXravZRc3-_PzFhqzJaeQ1KotnaeiR8gJO7oWhL6FTVqXfBqZMgX9lqsiklNR0vSAfQxpC0gwteBdUyy-bhUbmNE_jwrYZa-e25bMlPttI4BN3obemu1y18riVwrTisP8ppUW8uZV2t5WfxRNL1zBp6aur2qJHFmFYjZ7SqzusvwMPR9Mvx_Z4PDl6DY_oC11yCfUGOov5lX-LvtLCvWt0k8G3-z4MfwGh1ybH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+biochar+on+water+retention+of+two+agricultural+soils+%E2%80%93+A+multi-scale+analysis&rft.jtitle=Geoderma&rft.au=Wang%2C+Daoyuan&rft.au=Li%2C+Chongyang&rft.au=Parikh%2C+Sanjai+J.&rft.au=Scow%2C+Kate+M.&rft.date=2019-04-15&rft.issn=0016-7061&rft.volume=340&rft.spage=185&rft.epage=191&rft_id=info:doi/10.1016%2Fj.geoderma.2019.01.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2019_01_012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon