Observation of topological Hall effect in antiferromagnetic FeRh film
Noncollinear magnetic structures can give rise to peculiar Hall effects and hold promise for next-generation spintronic devices. We report the observation of the topological Hall effect (THE) through electrical transport measurements in antiferromagnetic B2-ordered FeRh thin films grown by sputterin...
Saved in:
Published in | Applied physics letters Vol. 115; no. 2 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
08.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Noncollinear magnetic structures can give rise to peculiar Hall effects and hold promise for next-generation spintronic devices. We report the observation of the topological Hall effect (THE) through electrical transport measurements in antiferromagnetic B2-ordered FeRh thin films grown by sputtering techniques on a MgO (001) substrate. Combining with the spin glass behavior below the metamagnetic transition temperature from ferromagnetism to antiferromagnetism, we ascribe THE to the emergence of noncollinear spin texture arising from the competitions among various exchange interactions in the antiferromagnetic state. This observation opens the possibility to discover the topological Hall effect in centrosymmetric antiferromagnets in contrast to the widely reported B20-type chiral magnets, promoting the application of antiferromagnets in spintronic devices. |
---|---|
AbstractList | Noncollinear magnetic structures can give rise to peculiar Hall effects and hold promise for next-generation spintronic devices. We report the observation of the topological Hall effect (THE) through electrical transport measurements in antiferromagnetic B2-ordered FeRh thin films grown by sputtering techniques on a MgO (001) substrate. Combining with the spin glass behavior below the metamagnetic transition temperature from ferromagnetism to antiferromagnetism, we ascribe THE to the emergence of noncollinear spin texture arising from the competitions among various exchange interactions in the antiferromagnetic state. This observation opens the possibility to discover the topological Hall effect in centrosymmetric antiferromagnets in contrast to the widely reported B20-type chiral magnets, promoting the application of antiferromagnets in spintronic devices. |
Author | Zhang, Sheng Wang, Dunhui Liu, Ronghua Xia, Siyu Cao, Qingqi Du, Youwei |
Author_xml | – sequence: 1 givenname: Sheng surname: Zhang fullname: Zhang, Sheng organization: 2Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, People's Republic of China – sequence: 2 givenname: Siyu surname: Xia fullname: Xia, Siyu organization: National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University – sequence: 3 givenname: Qingqi surname: Cao fullname: Cao, Qingqi organization: 2Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, People's Republic of China – sequence: 4 givenname: Dunhui surname: Wang fullname: Wang, Dunhui organization: 2Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, People's Republic of China – sequence: 5 givenname: Ronghua surname: Liu fullname: Liu, Ronghua organization: 2Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, People's Republic of China – sequence: 6 givenname: Youwei surname: Du fullname: Du, Youwei organization: 2Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, People's Republic of China |
BookMark | eNp9kNFKwzAUhoNMcJte-AYFrxS6ndM0bXMpY3PCYCB6HdI0mRldM9Ns4Ntb3VRQ8epw4Pu_w_kHpNe4RhNyiTBCyOgYRww4x4KekD5CnscUseiRPgDQOOMMz8igbdfdyhJK-2S6LFvt9zJY10TORMFtXe1WVsk6msu6jrQxWoXINpFsgjXae7eRq0YHq6KZfniOjK035-TUyLrVF8c5JE-z6eNkHi-Wd_eT20WsKKchrjggownkWGEOMi0wy5lUaQKSS5ZCwRINCnnFTAkKijJJURpWpXkBUCpNh-Tq4N1697LTbRBrt_NNd1IkCaNpwTHjHTU-UMq7tvXaCGXDx4fBS1sLBPHelUBx7KpLXP9IbL3dSP_6J3tzYNtP6xe8d_4bFNvK_Af_Nr8BD3uFPQ |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1002_adma_202102427 crossref_primary_10_1103_PhysRevB_108_094414 crossref_primary_10_1103_PhysRevMaterials_8_023401 crossref_primary_10_1088_1361_6528_aba210 crossref_primary_10_1021_acsami_4c21396 crossref_primary_10_1016_j_apsusc_2022_154870 crossref_primary_10_1103_PhysRevB_108_134402 crossref_primary_10_1021_acs_nanolett_4c05329 crossref_primary_10_1063_5_0238471 crossref_primary_10_1103_PhysRevB_108_144437 |
Cites_doi | 10.1088/1367-2630/18/8/085007 10.1103/PhysRevMaterials.2.034201 10.1063/1.4890032 10.1038/s41567-018-0049-4 10.1063/1.1850401 10.1103/PhysRevLett.102.186602 10.1038/nmat3870 10.1088/0022-3727/49/32/323002 10.1103/PhysRevB.92.094402 10.1038/nmat3861 10.1103/PhysRevB.96.134428 10.1063/1.4820583 10.1103/PhysRevB.89.064416 10.1103/PhysRevB.46.2864 10.1007/BF02872896 10.1063/1.1732175 10.1103/PhysRevB.82.184418 10.1098/rsta.2011.0405 10.1038/ncomms6959 10.1002/adma.201600889 10.1063/1.4983361 10.1088/1367-2630/15/1/013008 10.1038/s41467-017-00290-4 10.1103/PhysRevLett.87.116801 10.1038/s41598-017-00621-x 10.1063/1.5039921 10.1103/PhysRevB.74.045327 10.1038/nnano.2016.18 10.1103/PhysRevB.72.214432 10.1080/21663831.2017.1284697 10.1080/01411590412331316591 10.1063/1.4929695 10.1038/s41567-018-0064-5 10.1103/PhysRevB.91.245115 10.1103/PhysRevLett.76.3392 10.1038/s41598-017-13211-8 10.1063/1.4997498 10.1088/0031-8949/2012/T146/014020 10.1038/s41578-018-0036-5 10.1002/aelm.201800466 10.1038/ncomms9217 10.1063/1.4997901 10.1103/PhysRevLett.108.267201 10.1038/nnano.2013.243 10.1103/PhysRevLett.106.156603 10.1038/ncomms15703 10.1016/j.scriptamat.2017.09.024 10.1063/1.1658533 10.1063/1.369224 |
ContentType | Journal Article |
Copyright | Author(s) 2019 Author(s). Published under license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2019 Author(s). Published under license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/1.5099183 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_1_5099183 apl |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11774150; 51571108 funderid: http://doi.org/10.13039/501100001809 – fundername: Applied Basic Research Programes of Science and Technology Commission Foundation of Jiangsu Province grantid: BK20170627 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS EJD ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c393t-d901532071d170a481675ac420a9a540852e0c19d5fb0c08b241af5d47800bce3 |
ISSN | 0003-6951 |
IngestDate | Sun Jun 29 15:57:43 EDT 2025 Thu Apr 24 22:54:57 EDT 2025 Tue Jul 01 01:16:16 EDT 2025 Fri Jun 21 00:15:35 EDT 2024 Sun Jul 14 10:05:09 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Published under license by AIP Publishing. 0003-6951/2019/115(2)/022404/5/$30.00 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c393t-d901532071d170a481675ac420a9a540852e0c19d5fb0c08b241af5d47800bce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4487-4132 0000-0002-4053-3923 |
PQID | 2253489169 |
PQPubID | 2050678 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2253489169 crossref_citationtrail_10_1063_1_5099183 crossref_primary_10_1063_1_5099183 scitation_primary_10_1063_1_5099183 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190708 2019-07-08 |
PublicationDateYYYYMMDD | 2019-07-08 |
PublicationDate_xml | – month: 07 year: 2019 text: 20190708 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2019 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Yun, Ma, Su, Xing, Chen, Yao, Cai, Yuan, Han (c21) 2018 Cherifi, Ivanovskaya, Phillips, Zobelli, Infante, Jacquet, Garcia, Fusil, Briddon, Guiblin, Mougin, Unal, Kronast, Valencia, Dkhil, Barthelemy, Bibes (c30) 2014 Rana, Meshcheriakova, Kübler, Ernst, Karel, Hillebrand, Pippel, Werner, Nayak, Felser, Parkin (c13) 2016 Chen, Ma, Zhang, Bao, Wu, Liu, Nan (c31) 2017 Barker, Chantrell (c45) 2015 Swartzendruber (c27) 1984 Maat, Thiele, Fullerton (c29) 2005 Moruzzi, Marcus (c44) 1992 Mryasov (c50) 2005 Neubauer, Pfleiderer, Binz, Rosch, Ritz, Niklowitz, Böni (c5) 2009 Gomonay, Baltz, Brataas, Tserkovnyak (c4) 2018 Heeger (c33) 1970 Skomski, Kashyap, Zhou, Sellmyer (c49) 2005 Chen, Gao, Wu, Ma, Nan (c37) 2017 Liang, DeGrave, Stolt, Tokura, Jin (c12) 2015 Wang, Zhang, Xu, Peng, Ding, Wang, Hou, Zhang, Li, Liu, Wang, Cai, Wang, Li, Hu, Wu, Shen, Zhang (c18) 2016 Ludbrook, Dubuis, Puichaud, Ruck, Granville (c15) 2017 Liu, Zhang, Liu, Ding, Liu, Jafri, Hou, Wang, Ma, Wu (c14) 2017 Šmejkal, Mokrousov, Yan, MacDonald (c3) 2018 Feng, Yan, Liu (c51) 2019 Marti, Fina, Frontera, Liu, Wadley, He, Paull, Clarkson, Kudrnovský, Turek, Kuneš, Yi, Chu, Nelson, You, Arenholz, Salahuddin, Fontcuberta, Jungwirth, Ramesh (c23) 2014 Lewis, Marrows, Langridge (c26) 2016 Barua, Villacorta, Lewis (c28) 2013 Li, Ding, Wang, Zhang, Wang, Liu (c47) 2018 Huang, Chien (c7) 2012 van Driel, Coehoorn, Strijkers, Bruck, de Boer (c43) 1999 Kanazawa, Onose, Arima, Okuyama, Ohoyama, Wakimoto, Kakurai, Ishiwata, Tokura (c6) 2011 Nagaosa, Tokura (c8) 2013 Jungwirth, Marti, Wadley, Wunderlich (c2) 2016 Ahadi, Galletti, Stemmer (c20) 2017 Suzuki, Naito, Itoh, Taniyama (c34) 2015 Chen, Feng, Wang, Zhang, Zhong, Song, Jin, Zhang, Li, Jiang (c25) 2017 Liu, Burigu, Zhang, Jafri, Ma, Liu, Wang, Wu (c17) 2018 De Teresa, Ibarra, García, Blasco, Ritter, Algarabel, Marquina, del Moral (c46) 1996 Manna, Sun, Muechler, Kübler, Felser (c36) 2018 Wang, Xian, Wang, Liu, Ling, Zhang, Cao, Qu, Xiong (c16) 2017 Nagaosa, Tokura (c10) 2012 Yap, Qiu, Luo, Ying, Han, Laughlin, Zhu, Kanbe, Shige (c42) 2014 Muldawer, DeBergevin (c35) 1961 Metalidis, Bruno (c9) 2006 Gatel, Warot-Fonrose, Bizière, Rodriguez, Reyes, Cours, Castiella, Casanove (c40) 2017 Yokouchi, Kanazawa, Tsukazaki, Kozuka, Kawasaki, Ichikawa, Kagawa, Tokura (c48) 2014 Ceballos, Chen, Schneider, Bordel, Wang, Hellman (c32) 2017 de Vries, Loving, Mihai, Lewis, Heiman, Marrows (c22) 2013 Nagaosa, Yu, Tokura (c11) 2012 Shindou, Nagaosa (c38) 2001 Lee, Liu, Heron, Clarkson, Hong, Ko, Biegalski, Aschauer, Hsu, Nowakowski, Wu, Christen, Salahuddin, Bokor, Spaldin, Schlom, Ramesh (c24) 2015 Ohuchi, Kozuka, Uchida, Ueno, Tsukazaki, Kawasaki (c19) 2015 Fan, Kinane, Charlton, Dorner, Ali, de Vries, Brydson, Marrows, Hickey, Arena, Tanner, Nisbet, Langridge (c41) 2010 (2023061803312773300_c24) 2015; 6 (2023061803312773300_c4) 2018; 14 (2023061803312773300_c12) 2015; 6 (2023061803312773300_c16) 2017; 96 (2023061803312773300_c20) 2017; 111 (2023061803312773300_c44) 1992; 46 (2023061803312773300_c7) 2012; 108 (2023061803312773300_c22) 2013; 15 (2023061803312773300_c13) 2016; 18 (2023061803312773300_c5) 2009; 102 (2023061803312773300_c19) 2015; 91 (2023061803312773300_c51) 2019; 5 (2023061803312773300_c36) 2018; 3 (2023061803312773300_c14) 2017; 7 (2023061803312773300_c8) 2013; 8 (2023061803312773300_c27) 1984; 5 (2023061803312773300_c37) 2017; 5 (2023061803312773300_c25) 2017; 8 (2023061803312773300_c33) 1970; 41 (2023061803312773300_c46) 1996; 76 (2023061803312773300_c38) 2001; 87 (2023061803312773300_c35) 1961; 35 (2023061803312773300_c50) 2005; 78 (2023061803312773300_c3) 2018; 14 (2023061803312773300_c6) 2011; 106 (2023061803312773300_c48) 2014; 89 (2023061803312773300_c49) 2005; 97 (2023061803312773300_c15) 2017; 7 (2023061803312773300_c23) 2014; 13 (2023061803312773300_c9) 2006; 74 (2023061803312773300_c28) 2013; 103 (2023061803312773300_c43) 1999; 85 (2023061803312773300_c10) 2012; T146 (2023061803312773300_c30) 2014; 13 (2023061803312773300_c47) 2018; 113 (2023061803312773300_c34) 2015; 107 (2023061803312773300_c29) 2005; 72 (2023061803312773300_c1) 1970 (2023061803312773300_c40) 2017; 8 (2023061803312773300_c31) 2017; 121 (2023061803312773300_c18) 2016; 28 (2023061803312773300_c21) 2018; 2 (2023061803312773300_c42) 2014; 116 (2023061803312773300_c17) 2018; 143 (2023061803312773300_c32) 2017; 111 (2023061803312773300_c41) 2010; 82 (2023061803312773300_c11) 2012; 370 (2023061803312773300_c26) 2016; 49 (2023061803312773300_c45) 2015; 92 (2023061803312773300_c2) 2016; 11 |
References_xml | – start-page: 172403 year: 2017 ident: c20 publication-title: Appl. Phys. Lett. – start-page: 245115 year: 2015 ident: c19 publication-title: Phys. Rev. B – start-page: 515 year: 2017 ident: c14 publication-title: Sci. Rep. – start-page: 194101 year: 2017 ident: c31 publication-title: J. Appl. Phys. – start-page: 214432 year: 2005 ident: c29 publication-title: Phys. Rev. B – start-page: 043902 year: 2014 ident: c42 publication-title: J. Appl. Phys. – start-page: 6887 year: 2016 ident: c18 publication-title: Adv. Mater. – start-page: 197 year: 2005 ident: c50 publication-title: Phase Transitions – start-page: 085007 year: 2016 ident: c13 publication-title: New J. Phys. – start-page: 367 year: 2014 ident: c23 publication-title: Nat. Mater. – start-page: 094402 year: 2015 ident: c45 publication-title: Phys. Rev. B – start-page: 1904 year: 1961 ident: c35 publication-title: J. Chem. Phys. – start-page: 5806 year: 2012 ident: c11 publication-title: Philos. Trans. R. Soc., A – start-page: 4751 year: 1970 ident: c33 publication-title: J. Appl. Phys. – start-page: 5959 year: 2015 ident: c24 publication-title: Nat. Commun. – start-page: 186602 year: 2009 ident: c5 publication-title: Phys. Rev. Lett. – start-page: 267201 year: 2012 ident: c7 publication-title: Phys. Rev. Lett. – start-page: 014020 year: 2012 ident: c10 publication-title: Phys. Scr. – start-page: 244 year: 2018 ident: c36 publication-title: Nat. Rev. Mater. – start-page: 2864 year: 1992 ident: c44 publication-title: Phys. Rev. B – start-page: 082408 year: 2015 ident: c34 publication-title: Appl. Phys. Lett. – start-page: 1026 year: 1999 ident: c43 publication-title: J. Appl. Phys. – start-page: 013008 year: 2013 ident: c22 publication-title: New J. Phys. – start-page: 156603 year: 2011 ident: c6 publication-title: Phys. Rev. Lett. – start-page: 122 year: 2018 ident: c17 publication-title: Scr. Mater. – start-page: 102407 year: 2013 ident: c28 publication-title: Appl. Phys. Lett. – start-page: 213 year: 2018 ident: c4 publication-title: Nat. Phys. – start-page: 045327 year: 2006 ident: c9 publication-title: Phys. Rev. B – start-page: 15703 year: 2017 ident: c40 publication-title: Nat. Commun. – start-page: 231 year: 2016 ident: c2 publication-title: Nat. Nanotechnol. – start-page: 242 year: 2018 ident: c3 publication-title: Nat. Phys. – start-page: 899 year: 2013 ident: c8 publication-title: Nat. Nanotechnol. – start-page: 8217 year: 2015 ident: c12 publication-title: Nat. Commun. – start-page: 323002 year: 2016 ident: c26 publication-title: J. Phys. D: Appl. Phys. – start-page: 062406 year: 2018 ident: c47 publication-title: Appl. Phys. Lett. – start-page: 456 year: 1984 ident: c27 publication-title: Bull. Alloy Phase Diagrams – start-page: 449 year: 2017 ident: c25 publication-title: Nat. Commun. – start-page: 116801 year: 2001 ident: c38 publication-title: Phys. Rev. Lett. – start-page: 10B302 year: 2005 ident: c49 publication-title: J. Appl. Phys. – start-page: 1800466 year: 2019 ident: c51 publication-title: Adv. Electron. Mater. – start-page: 184418 year: 2010 ident: c41 publication-title: Phys. Rev. B – start-page: 064416 year: 2014 ident: c48 publication-title: Phys. Rev. B – start-page: 134428 year: 2017 ident: c16 publication-title: Phys. Rev. B – start-page: 329 year: 2017 ident: c37 publication-title: Mater. Res. Lett. – start-page: 034201 year: 2018 ident: c21 publication-title: Phys. Rev. Mater. – start-page: 172401 year: 2017 ident: c32 publication-title: Appl. Phys. Lett. – start-page: 345 year: 2014 ident: c30 publication-title: Nat. Mater. – start-page: 3392 year: 1996 ident: c46 publication-title: Phys. Rev. Lett. – start-page: 13620 year: 2017 ident: c15 publication-title: Sci. Rep. – volume: 18 start-page: 085007 year: 2016 ident: 2023061803312773300_c13 publication-title: New J. Phys. doi: 10.1088/1367-2630/18/8/085007 – volume: 2 start-page: 034201 year: 2018 ident: 2023061803312773300_c21 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.2.034201 – volume: 116 start-page: 043902 year: 2014 ident: 2023061803312773300_c42 publication-title: J. Appl. Phys. doi: 10.1063/1.4890032 – volume: 14 start-page: 213 year: 2018 ident: 2023061803312773300_c4 publication-title: Nat. Phys. doi: 10.1038/s41567-018-0049-4 – volume: 97 start-page: 10B302 year: 2005 ident: 2023061803312773300_c49 publication-title: J. Appl. Phys. doi: 10.1063/1.1850401 – volume: 102 start-page: 186602 year: 2009 ident: 2023061803312773300_c5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.186602 – volume: 13 start-page: 345 year: 2014 ident: 2023061803312773300_c30 publication-title: Nat. Mater. doi: 10.1038/nmat3870 – volume: 49 start-page: 323002 year: 2016 ident: 2023061803312773300_c26 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/49/32/323002 – volume: 92 start-page: 094402 year: 2015 ident: 2023061803312773300_c45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.094402 – volume: 13 start-page: 367 year: 2014 ident: 2023061803312773300_c23 publication-title: Nat. Mater. doi: 10.1038/nmat3861 – volume: 96 start-page: 134428 year: 2017 ident: 2023061803312773300_c16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.134428 – volume: 103 start-page: 102407 year: 2013 ident: 2023061803312773300_c28 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4820583 – volume: 89 start-page: 064416 year: 2014 ident: 2023061803312773300_c48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.064416 – volume: 46 start-page: 2864 year: 1992 ident: 2023061803312773300_c44 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.2864 – volume: 5 start-page: 456 year: 1984 ident: 2023061803312773300_c27 publication-title: Bull. Alloy Phase Diagrams doi: 10.1007/BF02872896 – volume: 35 start-page: 1904 year: 1961 ident: 2023061803312773300_c35 publication-title: J. Chem. Phys. doi: 10.1063/1.1732175 – volume: 82 start-page: 184418 year: 2010 ident: 2023061803312773300_c41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.184418 – volume: 370 start-page: 5806 year: 2012 ident: 2023061803312773300_c11 publication-title: Philos. Trans. R. Soc., A doi: 10.1098/rsta.2011.0405 – volume: 6 start-page: 5959 year: 2015 ident: 2023061803312773300_c24 publication-title: Nat. Commun. doi: 10.1038/ncomms6959 – volume: 28 start-page: 6887 year: 2016 ident: 2023061803312773300_c18 publication-title: Adv. Mater. doi: 10.1002/adma.201600889 – volume: 121 start-page: 194101 year: 2017 ident: 2023061803312773300_c31 publication-title: J. Appl. Phys. doi: 10.1063/1.4983361 – volume: 15 start-page: 013008 year: 2013 ident: 2023061803312773300_c22 publication-title: New J. Phys. doi: 10.1088/1367-2630/15/1/013008 – volume: 8 start-page: 449 year: 2017 ident: 2023061803312773300_c25 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00290-4 – start-page: 318 volume-title: Nobel Lectures in Physics 1963–1970 year: 1970 ident: 2023061803312773300_c1 – volume: 87 start-page: 116801 year: 2001 ident: 2023061803312773300_c38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.116801 – volume: 7 start-page: 515 year: 2017 ident: 2023061803312773300_c14 publication-title: Sci. Rep. doi: 10.1038/s41598-017-00621-x – volume: 113 start-page: 062406 year: 2018 ident: 2023061803312773300_c47 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5039921 – volume: 74 start-page: 045327 year: 2006 ident: 2023061803312773300_c9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.045327 – volume: 11 start-page: 231 year: 2016 ident: 2023061803312773300_c2 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.18 – volume: 72 start-page: 214432 year: 2005 ident: 2023061803312773300_c29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.214432 – volume: 5 start-page: 329 year: 2017 ident: 2023061803312773300_c37 publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2017.1284697 – volume: 78 start-page: 197 year: 2005 ident: 2023061803312773300_c50 publication-title: Phase Transitions doi: 10.1080/01411590412331316591 – volume: 107 start-page: 082408 year: 2015 ident: 2023061803312773300_c34 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4929695 – volume: 14 start-page: 242 year: 2018 ident: 2023061803312773300_c3 publication-title: Nat. Phys. doi: 10.1038/s41567-018-0064-5 – volume: 91 start-page: 245115 year: 2015 ident: 2023061803312773300_c19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.245115 – volume: 76 start-page: 3392 year: 1996 ident: 2023061803312773300_c46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.3392 – volume: 7 start-page: 13620 year: 2017 ident: 2023061803312773300_c15 publication-title: Sci. Rep. doi: 10.1038/s41598-017-13211-8 – volume: 111 start-page: 172403 year: 2017 ident: 2023061803312773300_c20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4997498 – volume: T146 start-page: 014020 year: 2012 ident: 2023061803312773300_c10 publication-title: Phys. Scr. doi: 10.1088/0031-8949/2012/T146/014020 – volume: 3 start-page: 244 year: 2018 ident: 2023061803312773300_c36 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-018-0036-5 – volume: 5 start-page: 1800466 year: 2019 ident: 2023061803312773300_c51 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800466 – volume: 6 start-page: 8217 year: 2015 ident: 2023061803312773300_c12 publication-title: Nat. Commun. doi: 10.1038/ncomms9217 – volume: 111 start-page: 172401 year: 2017 ident: 2023061803312773300_c32 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4997901 – volume: 108 start-page: 267201 year: 2012 ident: 2023061803312773300_c7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.267201 – volume: 8 start-page: 899 year: 2013 ident: 2023061803312773300_c8 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.243 – volume: 106 start-page: 156603 year: 2011 ident: 2023061803312773300_c6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.156603 – volume: 8 start-page: 15703 year: 2017 ident: 2023061803312773300_c40 publication-title: Nat. Commun. doi: 10.1038/ncomms15703 – volume: 143 start-page: 122 year: 2018 ident: 2023061803312773300_c17 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.09.024 – volume: 41 start-page: 4751 year: 1970 ident: 2023061803312773300_c33 publication-title: J. Appl. Phys. doi: 10.1063/1.1658533 – volume: 85 start-page: 1026 year: 1999 ident: 2023061803312773300_c43 publication-title: J. Appl. Phys. doi: 10.1063/1.369224 |
SSID | ssj0005233 |
Score | 2.3970456 |
Snippet | Noncollinear magnetic structures can give rise to peculiar Hall effects and hold promise for next-generation spintronic devices. We report the observation of... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Antiferromagnetism Applied physics Electromagnetism Ferromagnetism Hall effect Magnetism Magnets Spin glasses Substrates Thin films Topology Transition temperature |
Title | Observation of topological Hall effect in antiferromagnetic FeRh film |
URI | http://dx.doi.org/10.1063/1.5099183 https://www.proquest.com/docview/2253489169 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJwQ8IBggOrbJAh6QpmyO7TjJG9M-VCHG1zapb5HtOLTSlm5diwR_PefY-Sir0OAlqizHje7O59-d7wOht1RrUXBJAknCBAyUiAdJaFQgZKFULEwSV7kwJ5_E8Jx_GEWjXu99N7tkrnb1r5V5Jf_DVRgDvtos2X_gbLMoDMBv4C88gcPwvBOPP6vGp1rd9buGBxXZh_bK2QVrWJeGtDFBZjabXsrvpc1b3Dk238a2KtNlF57WmNT5O252LqpknwZ2t97lsfEnHoyOXLzt6eTnor3RqDywX-FcvJ60Pnv3MmDm8WLSdTdUGU4BSZZUKAtE6qvEGqc1SWydnV6R1mrVpWl6-aEr1TXgI-s52AXUkoauoc1ySew_jqomgLC6OhcsCzP_6j20RsFQoH20tn948vG0E-bDWN010X52XV1KsL3mf5cxSWtoPAAU4gIiOpjj7Al67I0FvO84_xT1TLmOHnVKSK6j-18cq56ho4404GmBO9KArTRgJw14UuJb0oCtNGArDc_R-fHR2cEw8E0yAs1SNg9yC-gYBaSYhzGRPAnBBJSaUyJTGdn6ddQQHaZ5VCiiSaIAsskiynkMpoLShr1A_XJampcICwX7VquIKKbB7KaS61zDnuUU1tPCDNC7mkxZTRjbyOQiu8WOAXrdTL1yZVNWTdqsaZ35XXWTwfnCeAJGSzpAbxr6_22RFbN-TGftjOwqLzbu8j2v0MNW4jdRfz5bmC2AnHO17aXqN4gbfuE |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observation+of+topological+Hall+effect+in+antiferromagnetic+FeRh+film&rft.jtitle=Applied+physics+letters&rft.au=Zhang%2C+Sheng&rft.au=Xia%2C+Siyu&rft.au=Cao%2C+Qingqi&rft.au=Wang%2C+Dunhui&rft.date=2019-07-08&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=115&rft.issue=2&rft_id=info:doi/10.1063%2F1.5099183&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_5099183 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |