Regnase-1 and Roquin Nonredundantly Regulate Th1 Differentiation Causing Cardiac Inflammation and Fibrosis
Regnase-1 and Roquin are RNA binding proteins that are essential for degradation of inflammatory mRNAs and maintenance of immune homeostasis. Although deficiency of either of the proteins leads to enhanced T cell activation, their functional relationship in T cells has yet to be clarified because of...
Saved in:
Published in | The Journal of immunology (1950) Vol. 199; no. 12; pp. 4066 - 4077 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association of Immunologists
15.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Regnase-1 and Roquin are RNA binding proteins that are essential for degradation of inflammatory mRNAs and maintenance of immune homeostasis. Although deficiency of either of the proteins leads to enhanced T cell activation, their functional relationship in T cells has yet to be clarified because of lethality upon mutation of both Regnase-1 and Roquin. By using a Regnase-1 conditional allele, we show that mutations of both Regnase-1 and Roquin in T cells leads to massive lymphocyte activation. In contrast, mutation of either Regnase-1 or Roquin affected T cell activation to a lesser extent than the double mutation, indicating that Regnase-1 and Roquin function nonredundantly in T cells. Interestingly, Regnase-1 and Roquin double-mutant mice suffered from severe inflammation and early formation of fibrosis, especially in the heart, along with the increased expression of Ifng, but not Il4 or Il17a. Consistently, mutation of both Regnase-1 and Roquin leads to a huge increase in the Th1, but not the Th2 or Th17, population in spleens compared with T cells with a single Regnase-1 or Roquin deficiency. Regnase-1 and Roquin are capable of repressing the expression of a group of mRNAs encoding factors involved in Th1 differentiation, such as Furin and Il12rb1, via their 3′ untranslated regions. Moreover, Regnase-1 is capable of repressing Roquin mRNA. This cross-regulation may contribute to the synergistic control of T cell activation/polarization. Collectively, our results demonstrate that Regnase-1 and Roquin maintain T cell immune homeostasis and regulate Th1 polarization synergistically. |
---|---|
AbstractList | Regnase-1 and Roquin are RNA binding proteins that are essential for degradation of inflammatory mRNAs and maintenance of immune homeostasis. Although deficiency of either of the proteins leads to enhanced T cell activation, their functional relationship in T cells has yet to be clarified because of lethality upon mutation of both Regnase-1 and Roquin. By using a Regnase-1 conditional allele, we show that mutations of both Regnase-1 and Roquin in T cells leads to massive lymphocyte activation. In contrast, mutation of either Regnase-1 or Roquin affected T cell activation to a lesser extent than the double mutation, indicating that Regnase-1 and Roquin function nonredundantly in T cells. Interestingly, Regnase-1 and Roquin double-mutant mice suffered from severe inflammation and early formation of fibrosis, especially in the heart, along with the increased expression of
, but not
or
Consistently, mutation of both Regnase-1 and Roquin leads to a huge increase in the Th1, but not the Th2 or Th17, population in spleens compared with T cells with a single Regnase-1 or Roquin deficiency. Regnase-1 and Roquin are capable of repressing the expression of a group of mRNAs encoding factors involved in Th1 differentiation, such as
and
, via their 3' untranslated regions. Moreover, Regnase-1 is capable of repressing Roquin mRNA. This cross-regulation may contribute to the synergistic control of T cell activation/polarization. Collectively, our results demonstrate that Regnase-1 and Roquin maintain T cell immune homeostasis and regulate Th1 polarization synergistically. Regnase-1 and Roquin are RNA binding proteins that are essential for degradation of inflammatory mRNAs and maintenance of immune homeostasis. Although deficiency of either of the proteins leads to enhanced T cell activation, their functional relationship in T cells has yet to be clarified because of lethality upon mutation of both Regnase-1 and Roquin. By using a Regnase-1 conditional allele, we show that mutations of both Regnase-1 and Roquin in T cells leads to massive lymphocyte activation. In contrast, mutation of either Regnase-1 or Roquin affected T cell activation to a lesser extent than the double mutation, indicating that Regnase-1 and Roquin function nonredundantly in T cells. Interestingly, Regnase-1 and Roquin double-mutant mice suffered from severe inflammation and early formation of fibrosis, especially in the heart, along with the increased expression of Ifng, but not Il4 or Il17a. Consistently, mutation of both Regnase-1 and Roquin leads to a huge increase in the Th1, but not the Th2 or Th17, population in spleens compared with T cells with a single Regnase-1 or Roquin deficiency. Regnase-1 and Roquin are capable of repressing the expression of a group of mRNAs encoding factors involved in Th1 differentiation, such as Furin and Il12rb1, via their 3′ untranslated regions. Moreover, Regnase-1 is capable of repressing Roquin mRNA. This cross-regulation may contribute to the synergistic control of T cell activation/polarization. Collectively, our results demonstrate that Regnase-1 and Roquin maintain T cell immune homeostasis and regulate Th1 polarization synergistically. Regnase-1 and Roquin are RNA binding proteins that are essential for degradation of inflammatory mRNAs and maintenance of immune homeostasis. Although deficiency of either of the proteins leads to enhanced T cell activation, their functional relationship in T cells has yet to be clarified because of lethality upon mutation of both Regnase-1 and Roquin. By using a Regnase-1 conditional allele, we show that mutations of both Regnase-1 and Roquin in T cells leads to massive lymphocyte activation. In contrast, mutation of either Regnase-1 or Roquin affected T cell activation to a lesser extent than the double mutation, indicating that Regnase-1 and Roquin function nonredundantly in T cells. Interestingly, Regnase-1 and Roquin double-mutant mice suffered from severe inflammation and early formation of fibrosis, especially in the heart, along with the increased expression of Ifng, but not Il4 or Il17a Consistently, mutation of both Regnase-1 and Roquin leads to a huge increase in the Th1, but not the Th2 or Th17, population in spleens compared with T cells with a single Regnase-1 or Roquin deficiency. Regnase-1 and Roquin are capable of repressing the expression of a group of mRNAs encoding factors involved in Th1 differentiation, such as Furin and Il12rb1, via their 3' untranslated regions. Moreover, Regnase-1 is capable of repressing Roquin mRNA. This cross-regulation may contribute to the synergistic control of T cell activation/polarization. Collectively, our results demonstrate that Regnase-1 and Roquin maintain T cell immune homeostasis and regulate Th1 polarization synergistically.Regnase-1 and Roquin are RNA binding proteins that are essential for degradation of inflammatory mRNAs and maintenance of immune homeostasis. Although deficiency of either of the proteins leads to enhanced T cell activation, their functional relationship in T cells has yet to be clarified because of lethality upon mutation of both Regnase-1 and Roquin. By using a Regnase-1 conditional allele, we show that mutations of both Regnase-1 and Roquin in T cells leads to massive lymphocyte activation. In contrast, mutation of either Regnase-1 or Roquin affected T cell activation to a lesser extent than the double mutation, indicating that Regnase-1 and Roquin function nonredundantly in T cells. Interestingly, Regnase-1 and Roquin double-mutant mice suffered from severe inflammation and early formation of fibrosis, especially in the heart, along with the increased expression of Ifng, but not Il4 or Il17a Consistently, mutation of both Regnase-1 and Roquin leads to a huge increase in the Th1, but not the Th2 or Th17, population in spleens compared with T cells with a single Regnase-1 or Roquin deficiency. Regnase-1 and Roquin are capable of repressing the expression of a group of mRNAs encoding factors involved in Th1 differentiation, such as Furin and Il12rb1, via their 3' untranslated regions. Moreover, Regnase-1 is capable of repressing Roquin mRNA. This cross-regulation may contribute to the synergistic control of T cell activation/polarization. Collectively, our results demonstrate that Regnase-1 and Roquin maintain T cell immune homeostasis and regulate Th1 polarization synergistically. |
Author | Hia, Fabian Suzuki, Yutaka Uehata, Takuya Yoshinaga, Masanori Tsujimura, Tohru Takeuchi, Osamu Nakatsuka, Yoshinari Cui, Xiaotong Tomonaga, Keizo Mino, Takashi Yamasoba, Daichi |
Author_xml | – sequence: 1 givenname: Xiaotong surname: Cui fullname: Cui, Xiaotong – sequence: 2 givenname: Takashi surname: Mino fullname: Mino, Takashi – sequence: 3 givenname: Masanori surname: Yoshinaga fullname: Yoshinaga, Masanori – sequence: 4 givenname: Yoshinari surname: Nakatsuka fullname: Nakatsuka, Yoshinari – sequence: 5 givenname: Fabian orcidid: 0000-0002-7209-4312 surname: Hia fullname: Hia, Fabian – sequence: 6 givenname: Daichi surname: Yamasoba fullname: Yamasoba, Daichi – sequence: 7 givenname: Tohru surname: Tsujimura fullname: Tsujimura, Tohru – sequence: 8 givenname: Keizo orcidid: 0000-0003-0405-7103 surname: Tomonaga fullname: Tomonaga, Keizo – sequence: 9 givenname: Yutaka surname: Suzuki fullname: Suzuki, Yutaka – sequence: 10 givenname: Takuya surname: Uehata fullname: Uehata, Takuya – sequence: 11 givenname: Osamu surname: Takeuchi fullname: Takeuchi, Osamu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29127149$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kb1PwzAQxS0EgvKxM6FILCwpZ8ex6xEVCkgIJFTm6GI74CpxwE4G_nsMbRmQmN5wv3d6d--Q7PreW0JOKUw5cHW5cl03-r6dUgmUUbpDJrQsIRcCxC6ZADCWUynkATmMcQUAAhjfJwdMUSYpVxOyeravHqPNaYbeZM_9x-h89tj7YM3oDfqh_cwSM7Y42Gz5RrNr1zQ2WD84HFzvszmO0fnXpME41Nm9b1rsuvXwe-fC1aGPLh6TvQbbaE82ekReFjfL-V3-8HR7P796yHWhiiE3pSpA6brmpq4FFiVqZIVA0AqwRIOSQS3lTHNV1ILaEiwVRhpOmTYCTXFELtZ730O6xsah6lzUtm3R236MFVWiYJJxIRN6_gdd9WPwKV2iZinOrJQ8UWcbaqw7a6r34DoMn9X2iwmANaDToTHY5hehUH0XVW2LqjZFJYv4Y9Fu-PnZENC1_xu_AAV3mqA |
CitedBy_id | crossref_primary_10_1002_tox_24196 crossref_primary_10_1093_intimm_dxab048 crossref_primary_10_2183_pjab_94_017 crossref_primary_10_1002_eji_202049055 crossref_primary_10_1016_j_semcancer_2022_03_017 crossref_primary_10_1080_15476286_2020_1795584 crossref_primary_10_1093_nar_gky908 crossref_primary_10_3389_fimmu_2021_727861 crossref_primary_10_1016_j_cyto_2022_155993 crossref_primary_10_1007_s11357_023_00909_z crossref_primary_10_3389_fphys_2020_582347 crossref_primary_10_1016_j_ejphar_2024_177101 crossref_primary_10_1186_s41232_024_00326_5 crossref_primary_10_1093_nar_gkac609 crossref_primary_10_1002_cti2_1073 crossref_primary_10_1016_j_bbadva_2021_100017 crossref_primary_10_1126_science_adl0370 crossref_primary_10_1126_scitranslmed_abo2137 crossref_primary_10_1002_prp2_590 crossref_primary_10_1007_s12272_023_01429_2 crossref_primary_10_3389_fimmu_2022_839762 crossref_primary_10_1083_jcb_201708075 crossref_primary_10_2217_fvl_2020_0068 crossref_primary_10_1620_tjem_2023_J077 crossref_primary_10_1002_wrna_1658 crossref_primary_10_1155_2018_4396351 crossref_primary_10_3389_fimmu_2022_835005 crossref_primary_10_1084_jem_20190347 crossref_primary_10_1016_j_yjmcc_2019_03_012 crossref_primary_10_3389_fimmu_2018_01794 crossref_primary_10_1111_imr_12932 crossref_primary_10_1016_j_cca_2023_117752 crossref_primary_10_1038_s41590_021_01064_3 crossref_primary_10_3389_fimmu_2021_717324 crossref_primary_10_1002_cti2_1063 crossref_primary_10_1038_s41422_022_00752_5 crossref_primary_10_1183_13993003_00018_2020 crossref_primary_10_1111_imr_13021 crossref_primary_10_1146_annurev_immunol_101819_075147 crossref_primary_10_1111_imr_13023 |
Cites_doi | 10.1038/nature11981 10.1038/nri1412 10.1016/j.cell.2013.04.016 10.1038/ncomms11032 10.1038/nsmb.2857 10.18632/oncotarget.11106 10.1038/ni.2137 10.1038/ni1538 10.1093/nar/gkw1092 10.1038/nsmb.2855 10.1038/nature03555 10.3109/01902149509050842 10.1038/nature07210 10.1038/ncomms6701 10.1016/j.immuni.2013.01.011 10.1002/humu.22380 10.1038/ni.2884 10.1371/journal.pone.0049841 10.1016/j.molcel.2014.03.030 10.1038/cdd.2017.31 10.1016/j.celrep.2014.10.044 10.1016/j.immuni.2013.10.022 10.1016/j.cell.2010.01.022 10.1038/ni.1902 10.4049/jimmunol.161.7.3400 10.1038/ncomms14680 10.1016/S1074-7613(04)00107-4 10.1016/j.cell.2015.04.029 10.1038/ni.1771 10.1107/S2053230X15011887 10.1016/j.cell.2013.04.034 10.1038/cmi.2012.18 10.1096/fasebj.30.1_supplement.306.7 10.1016/j.immuni.2008.12.015 10.1016/S0091-6749(99)70518-X 10.1038/nri2685 10.1038/nature06253 10.1038/nature07924 10.1189/jlb.2A0514-257RR 10.1016/j.immuni.2015.07.021 10.1182/blood-2005-09-3824 10.1146/annurev-immunol-030409-101212 10.1038/nri3800 10.1016/j.immuni.2012.12.004 10.1038/ni.3031 10.1016/j.jhep.2014.08.038 10.1002/eji.200425221 10.4049/jimmunol.1102432 10.1038/ncomms8367 10.1161/CIRCHEARTFAILURE.115.002225 10.1038/ni.3008 |
ContentType | Journal Article |
Copyright | Copyright © 2017 by The American Association of Immunologists, Inc. Copyright American Association of Immunologists Dec 15, 2017 |
Copyright_xml | – notice: Copyright © 2017 by The American Association of Immunologists, Inc. – notice: Copyright American Association of Immunologists Dec 15, 2017 |
DBID | AAYXX CITATION NPM 7QP 7QR 7T5 7TK 7TM 7U9 8FD FR3 H94 M7N P64 RC3 7X8 |
DOI | 10.4049/jimmunol.1701211 |
DatabaseName | CrossRef PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Genetics Abstracts CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1550-6606 |
EndPage | 4077 |
ExternalDocumentID | 29127149 10_4049_jimmunol_1701211 |
Genre | Journal Article |
GroupedDBID | --- -~X .55 0R~ 18M 2WC 34G 39C 53G 5GY 5RE 5VS 5WD 79B 85S AARDX AAYXX ABCQX ABDFA ABEJV ABGNP ABJNI ABOCM ABPPZ ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADIPN ADNWM AENEX AETEA AFHIN AFOSN AFRAH AGORE AHMMS AHWXS AIZAD ALMA_UNASSIGNED_HOLDINGS ARBBW BAWUL BCRHZ BTFSW CITATION D0L DIK DU5 E3Z EBS EJD F5P FRP GX1 IH2 K-O KQ8 L7B OCZFY OK1 OWPYF P0W P2P PQQKQ R.V RHI ROX RZQ SJN TR2 TWZ W8F WH7 WOQ X7M XSW XTH YHG NPM RHF YIN 7QP 7QR 7T5 7TK 7TM 7U9 8FD FR3 H94 KOP M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c393t-d59309cbb4dbb6a35aca236a0c90a5ada720b778c493b61e50e16d7d412cd6ad3 |
ISSN | 0022-1767 1550-6606 |
IngestDate | Fri Jul 11 01:46:44 EDT 2025 Fri Jul 25 20:02:17 EDT 2025 Wed Feb 19 02:41:39 EST 2025 Thu Apr 24 22:52:04 EDT 2025 Tue Jul 01 05:29:48 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights Copyright © 2017 by The American Association of Immunologists, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c393t-d59309cbb4dbb6a35aca236a0c90a5ada720b778c493b61e50e16d7d412cd6ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0405-7103 0000-0002-7209-4312 |
PMID | 29127149 |
PQID | 1983938574 |
PQPubID | 105689 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1963272467 proquest_journals_1983938574 pubmed_primary_29127149 crossref_primary_10_4049_jimmunol_1701211 crossref_citationtrail_10_4049_jimmunol_1701211 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-15 |
PublicationDateYYYYMMDD | 2017-12-15 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Baltimore |
PublicationTitle | The Journal of immunology (1950) |
PublicationTitleAlternate | J Immunol |
PublicationYear | 2017 |
Publisher | American Association of Immunologists |
Publisher_xml | – name: American Association of Immunologists |
References | Chen (2025030614552753700_r15) 2012; 9 Sakurai (2025030614552753700_r51) 2015; 71 Vinuesa (2025030614552753700_r4) 2005; 435 van de Vosse (2025030614552753700_r43) 2013; 34 Janowski (2025030614552753700_r22) 2016; 7 Garg (2025030614552753700_r14) 2015; 43 Jeltsch (2025030614552753700_r18) 2014; 15 Chang (2025030614552753700_r31) 2012; 189 Matsushita (2025030614552753700_r3) 2009; 458 Kanehisa (2025030614552753700_r26) 2017; 45 Kafasla (2025030614552753700_r2) 2014; 15 Gurujeyalakshmi (2025030614552753700_r32) 1995; 21 Zhu (2025030614552753700_r28) 2010; 28 Herbert (2025030614552753700_r35) 2004; 20 Ortutay (2025030614552753700_r29) 2015; 98 Pesu (2025030614552753700_r40) 2006; 108 Tan (2025030614552753700_r10) 2014; 21 Gewies (2025030614552753700_r19) 2014; 9 Chang (2025030614552753700_r27) 2014; 15 Schuetz (2025030614552753700_r49) 2014; 5 Li (2025030614552753700_r20) 2012; 7 Pesu (2025030614552753700_r41) 2008; 455 Iwasaki (2025030614552753700_r9) 2011; 12 Vogel (2025030614552753700_r17) 2013; 38 Wen (2025030614552753700_r25) 2017; 24 Dinarello (2025030614552753700_r47) 1999; 103 Takeuchi (2025030614552753700_r8) 2010; 140 Mino (2025030614552753700_r12) 2015; 161 Yosef (2025030614552753700_r30) 2013; 496 Cordova (2025030614552753700_r42) 2016; 7 Feinberg (2025030614552753700_r44) 2004; 34 Yu (2025030614552753700_r5) 2007; 450 Nevers (2025030614552753700_r38) 2016; 30 Yoshimoto (2025030614552753700_r46) 1998; 161 Murakawa (2025030614552753700_r50) 2015; 6 Pratama (2025030614552753700_r16) 2013; 38 Fielding (2025030614552753700_r24) 2014; 40 Wynn (2025030614552753700_r34) 2004; 4 Kano (2025030614552753700_r45) 2008; 9 Langhans (2025030614552753700_r33) 2015; 62 Leppek (2025030614552753700_r11) 2013; 153 Kawagoe (2025030614552753700_r23) 2009; 10 Nevers (2025030614552753700_r37) 2015; 8 Glasmacher (2025030614552753700_r6) 2010; 11 Kallikourdis (2025030614552753700_r39) 2017; 8 Schlundt (2025030614552753700_r48) 2014; 21 Chovatiya (2025030614552753700_r7) 2014; 54 Uehata (2025030614552753700_r13) 2013; 153 Epelman (2025030614552753700_r36) 2015; 15 Anderson (2025030614552753700_r1) 2010; 10 Linterman (2025030614552753700_r21) 2009; 30 |
References_xml | – volume: 496 start-page: 461 year: 2013 ident: 2025030614552753700_r30 article-title: Dynamic regulatory network controlling TH17 cell differentiation publication-title: Nature doi: 10.1038/nature11981 – volume: 4 start-page: 583 year: 2004 ident: 2025030614552753700_r34 article-title: Fibrotic disease and the TH1/TH2 paradigm publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1412 – volume: 153 start-page: 869 year: 2013 ident: 2025030614552753700_r11 article-title: Roquin promotes constitutive mRNA decay via a conserved class of stem-loop recognition motifs publication-title: Cell doi: 10.1016/j.cell.2013.04.016 – volume: 7 start-page: 11032 year: 2016 ident: 2025030614552753700_r22 article-title: Roquin recognizes a non-canonical hexaloop structure in the 3′-UTR of Ox40 publication-title: Nat. Commun. doi: 10.1038/ncomms11032 – volume: 21 start-page: 679 year: 2014 ident: 2025030614552753700_r10 article-title: The ROQ domain of Roquin recognizes mRNA constitutive-decay element and double-stranded RNA publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2857 – volume: 7 start-page: 54392 year: 2016 ident: 2025030614552753700_r42 article-title: Myeloid cell expressed proprotein convertase FURIN attenuates inflammation publication-title: Oncotarget doi: 10.18632/oncotarget.11106 – volume: 12 start-page: 1167 year: 2011 ident: 2025030614552753700_r9 article-title: The IκB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR–IL-1R by controlling degradation of regnase-1 publication-title: Nat. Immunol. doi: 10.1038/ni.2137 – volume: 9 start-page: 34 year: 2008 ident: 2025030614552753700_r45 article-title: The contribution of transcription factor IRF1 to the interferon-gamma-interleukin 12 signaling axis and TH1 versus TH-17 differentiation of CD4+ T cells publication-title: Nat. Immunol. doi: 10.1038/ni1538 – volume: 45 start-page: D353 issue: D1 year: 2017 ident: 2025030614552753700_r26 article-title: KEGG: new perspectives on genomes, pathways, diseases and drugs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1092 – volume: 21 start-page: 671 year: 2014 ident: 2025030614552753700_r48 article-title: Structural basis for RNA recognition in roquin-mediated post-transcriptional gene regulation publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2855 – volume: 435 start-page: 452 year: 2005 ident: 2025030614552753700_r4 article-title: A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity publication-title: Nature doi: 10.1038/nature03555 – volume: 21 start-page: 791 year: 1995 ident: 2025030614552753700_r32 article-title: Molecular mechanisms of antifibrotic effect of interferon gamma in bleomycin-mouse model of lung fibrosis: downregulation of TGF-beta and procollagen I and III gene expression publication-title: Exp. Lung Res. doi: 10.3109/01902149509050842 – volume: 455 start-page: 246 year: 2008 ident: 2025030614552753700_r41 article-title: T-cell-expressed proprotein convertase furin is essential for maintenance of peripheral immune tolerance publication-title: Nature doi: 10.1038/nature07210 – volume: 5 start-page: 5701 year: 2014 ident: 2025030614552753700_r49 article-title: Roquin binding to target mRNAs involves a winged helix-turn-helix motif publication-title: Nat. Commun. doi: 10.1038/ncomms6701 – volume: 38 start-page: 669 year: 2013 ident: 2025030614552753700_r16 article-title: Roquin-2 shares functions with its paralog Roquin-1 in the repression of mRNAs controlling T follicular helper cells and systemic inflammation publication-title: Immunity doi: 10.1016/j.immuni.2013.01.011 – volume: 34 start-page: 1329 year: 2013 ident: 2025030614552753700_r43 article-title: IL-12Rβ1 deficiency: mutation update and description of the IL12RB1 variation database publication-title: Hum. Mutat. doi: 10.1002/humu.22380 – volume: 15 start-page: 492 year: 2014 ident: 2025030614552753700_r2 article-title: Post-transcriptional coordination of immunological responses by RNA-binding proteins publication-title: Nat. Immunol. doi: 10.1038/ni.2884 – volume: 7 start-page: e49841 year: 2012 ident: 2025030614552753700_r20 article-title: MCPIP1 down-regulates IL-2 expression through an ARE-independent pathway publication-title: PLoS One doi: 10.1371/journal.pone.0049841 – volume: 54 start-page: 281 year: 2014 ident: 2025030614552753700_r7 article-title: Stress, inflammation, and defense of homeostasis publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.03.030 – volume: 24 start-page: 997 year: 2017 ident: 2025030614552753700_r25 article-title: Interactions between Th1 cells and Tregs affect regulation of hepatic fibrosis in biliary atresia through the IFN-γ/STAT1 pathway publication-title: Cell Death Differ. doi: 10.1038/cdd.2017.31 – volume: 9 start-page: 1292 year: 2014 ident: 2025030614552753700_r19 article-title: Uncoupling Malt1 threshold function from paracaspase activity results in destructive autoimmune inflammation publication-title: Cell Reports doi: 10.1016/j.celrep.2014.10.044 – volume: 40 start-page: 40 year: 2014 ident: 2025030614552753700_r24 article-title: Interleukin-6 signaling drives fibrosis in unresolved inflammation publication-title: Immunity doi: 10.1016/j.immuni.2013.10.022 – volume: 140 start-page: 805 year: 2010 ident: 2025030614552753700_r8 article-title: Pattern recognition receptors and inflammation publication-title: Cell doi: 10.1016/j.cell.2010.01.022 – volume: 11 start-page: 725 year: 2010 ident: 2025030614552753700_r6 article-title: Roquin binds inducible costimulator mRNA and effectors of mRNA decay to induce microRNA-independent post-transcriptional repression publication-title: Nat. Immunol. doi: 10.1038/ni.1902 – volume: 161 start-page: 3400 year: 1998 ident: 2025030614552753700_r46 article-title: IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-γ production publication-title: J. Immunol. doi: 10.4049/jimmunol.161.7.3400 – volume: 8 start-page: 14680 year: 2017 ident: 2025030614552753700_r39 article-title: T cell costimulation blockade blunts pressure overload-induced heart failure publication-title: Nat. Commun. doi: 10.1038/ncomms14680 – volume: 20 start-page: 623 year: 2004 ident: 2025030614552753700_r35 article-title: Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology publication-title: Immunity doi: 10.1016/S1074-7613(04)00107-4 – volume: 161 start-page: 1058 year: 2015 ident: 2025030614552753700_r12 article-title: Regnase-1 and Roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms publication-title: Cell doi: 10.1016/j.cell.2015.04.029 – volume: 10 start-page: 965 year: 2009 ident: 2025030614552753700_r23 article-title: TANK is a negative regulator of Toll-like receptor signaling and is critical for the prevention of autoimmune nephritis publication-title: Nat. Immunol. doi: 10.1038/ni.1771 – volume: 71 start-page: 1048 year: 2015 ident: 2025030614552753700_r51 article-title: Structure of human Roquin-2 and its complex with constitutive-decay element RNA publication-title: Acta Crystallogr. F Struct. Biol. Commun. doi: 10.1107/S2053230X15011887 – volume: 153 start-page: 1036 year: 2013 ident: 2025030614552753700_r13 article-title: Malt1-induced cleavage of regnase-1 in CD4(+) helper T cells regulates immune activation publication-title: Cell doi: 10.1016/j.cell.2013.04.034 – volume: 9 start-page: 375 year: 2012 ident: 2025030614552753700_r15 article-title: The development and function of follicular helper T cells in immune responses publication-title: Cell. Mol. Immunol. doi: 10.1038/cmi.2012.18 – volume: 30 start-page: 306.7 year: 2016 ident: 2025030614552753700_r38 article-title: Th1 effector T cells induce cardiac fibroblasts transition to myofibroblasts and contribute to pressure overload induced cardiac fibrosis publication-title: FASEB J. doi: 10.1096/fasebj.30.1_supplement.306.7 – volume: 30 start-page: 228 year: 2009 ident: 2025030614552753700_r21 article-title: Roquin differentiates the specialized functions of duplicated T cell costimulatory receptor genes CD28 and ICOS publication-title: Immunity doi: 10.1016/j.immuni.2008.12.015 – volume: 103 start-page: 11 year: 1999 ident: 2025030614552753700_r47 article-title: IL-18: a TH1-inducing, proinflammatory cytokine and new member of the IL-1 family publication-title: J. Allergy Clin. Immunol. doi: 10.1016/S0091-6749(99)70518-X – volume: 10 start-page: 24 year: 2010 ident: 2025030614552753700_r1 article-title: Post-transcriptional regulons coordinate the initiation and resolution of inflammation publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2685 – volume: 450 start-page: 299 year: 2007 ident: 2025030614552753700_r5 article-title: Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA publication-title: Nature doi: 10.1038/nature06253 – volume: 458 start-page: 1185 year: 2009 ident: 2025030614552753700_r3 article-title: Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay publication-title: Nature doi: 10.1038/nature07924 – volume: 98 start-page: 73 year: 2015 ident: 2025030614552753700_r29 article-title: Proprotein convertase FURIN regulates T cell receptor-induced transactivation publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.2A0514-257RR – volume: 43 start-page: 475 year: 2015 ident: 2025030614552753700_r14 article-title: MCPIP1 endoribonuclease activity negatively regulates interleukin-17-mediated signaling and inflammation publication-title: Immunity doi: 10.1016/j.immuni.2015.07.021 – volume: 108 start-page: 983 year: 2006 ident: 2025030614552753700_r40 article-title: Proprotein convertase furin is preferentially expressed in T helper 1 cells and regulates interferon gamma publication-title: Blood doi: 10.1182/blood-2005-09-3824 – volume: 28 start-page: 445 year: 2010 ident: 2025030614552753700_r28 article-title: Differentiation of effector CD4 T cell populations (*) publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-030409-101212 – volume: 15 start-page: 117 year: 2015 ident: 2025030614552753700_r36 article-title: Role of innate and adaptive immune mechanisms in cardiac injury and repair publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3800 – volume: 38 start-page: 655 year: 2013 ident: 2025030614552753700_r17 article-title: Roquin paralogs 1 and 2 redundantly repress the Icos and Ox40 costimulator mRNAs and control follicular helper T cell differentiation publication-title: Immunity doi: 10.1016/j.immuni.2012.12.004 – volume: 15 start-page: 1104 year: 2014 ident: 2025030614552753700_r27 article-title: Molecular regulation of effector and memory T cell differentiation publication-title: Nat. Immunol. doi: 10.1038/ni.3031 – volume: 62 start-page: 398 year: 2015 ident: 2025030614552753700_r33 article-title: Regulatory CD4+ T cells modulate the interaction between NK cells and hepatic stellate cells by acting on either cell type publication-title: J. Hepatol. doi: 10.1016/j.jhep.2014.08.038 – volume: 34 start-page: 3276 year: 2004 ident: 2025030614552753700_r44 article-title: Bacillus Calmette Guerin triggers the IL-12/IFN-γ axis by an IRAK-4– and NEMO-dependent, non-cognate interaction between monocytes, NK, and T lymphocytes publication-title: Eur. J. Immunol. doi: 10.1002/eji.200425221 – volume: 189 start-page: 701 year: 2012 ident: 2025030614552753700_r31 article-title: Breakdown in repression of IFN-γ mRNA leads to accumulation of self-reactive effector CD8+ T cells publication-title: J. Immunol. doi: 10.4049/jimmunol.1102432 – volume: 6 start-page: 7367 year: 2015 ident: 2025030614552753700_r50 article-title: RC3H1 post-transcriptionally regulates A20 mRNA and modulates the activity of the IKK/NF-κB pathway publication-title: Nat. Commun. doi: 10.1038/ncomms8367 – volume: 8 start-page: 776 year: 2015 ident: 2025030614552753700_r37 article-title: Left ventricular T-cell recruitment contributes to the pathogenesis of heart failure publication-title: Circ Heart Fail doi: 10.1161/CIRCHEARTFAILURE.115.002225 – volume: 15 start-page: 1079 year: 2014 ident: 2025030614552753700_r18 article-title: Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote T(H)17 differentiation publication-title: Nat. Immunol. doi: 10.1038/ni.3008 |
SSID | ssj0006024 |
Score | 2.4362636 |
Snippet | Regnase-1 and Roquin are RNA binding proteins that are essential for degradation of inflammatory mRNAs and maintenance of immune homeostasis. Although... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 4066 |
SubjectTerms | Cell activation Fibrosis Furin Heart diseases Helper cells Homeostasis Inflammation Interleukin 1 Interleukin 4 Lethality Lymphocytes Lymphocytes T mRNA Mutation Polarization RNA-binding protein T cell receptors |
Title | Regnase-1 and Roquin Nonredundantly Regulate Th1 Differentiation Causing Cardiac Inflammation and Fibrosis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29127149 https://www.proquest.com/docview/1983938574 https://www.proquest.com/docview/1963272467 |
Volume | 199 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEGgvCMatMFCQ4AFV2XxJ7OQRVasGrEVCqdS3yHbSUTYl05o-wBv_nONL0nYqaPASVbHjpP6-nIudcw5Cb5lQpOB0HoJuNQ5KQsJEqijEtOSaJHOhmQlwHk_46TT6NItnvd6vzeiSRh3pnzvjSv4HVTgHuJoo2X9AthsUTsBvwBeOgDAcb4Xx1_K8Ai0UEhdmCDJ-UQ0mNfQ2sWEwZ5fGwrbF5stB9o2AgHPlUBoHyGAoV27j3_JEg7SYA0NcNKMdcwTedL1cLDdt2HU0mUs4YSJMXCand3a_DG-sLgxX9muB2ULWYGSed_AubMXvQSYvTDGntegxC2LSrfWO5VJW9XXXOIG-zXJ1YRt9T9_qVy1AExIaurjNVtDG4LZy7NNg7zjXSmdXP6mlId0QtmCL8F1aIAKvx2gB__-PTMp56kX6VsLtyZd8ND07y7OTWXYH3aXgaViv_OPnTplz7Ooit4_mdrrNHY5vjr9t2fzBXbFmS_YQPfA4BR8ceR6hXlkdoHuuAumPA3R_7L-teIy-d2wKAPnAsSnYZlPQsikANgU32BR4NgWeTcEmm-yYLZueoOnoJBuehr4SR6hZypqwiFOGU61UVCjFJYullpRxiXWKZSwLKShWQiQ6SpnipIxxSXghiohQXXBZsKdor6qr8jkK8NxUJNA4TaiIeElVAs1C67kmsVZc9NFxO4u59mnqTbWUyxzcVTPveTvvuZ_3PnrfXXHlUrT8pe9hC0zuX-RlTlLwElgSi6iP3nTNIGbN3pmsynpl-nBGBY3MAz5zgHY3oymhgkTpi1tc_RLtr1-HQ7TXXK_KV2DWNuq1Jd5vl0CmqQ |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regnase-1+and+Roquin+Nonredundantly+Regulate+Th1+Differentiation+Causing+Cardiac+Inflammation+and+Fibrosis&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Cui%2C+Xiaotong&rft.au=Mino%2C+Takashi&rft.au=Yoshinaga%2C+Masanori&rft.au=Nakatsuka%2C+Yoshinari&rft.date=2017-12-15&rft.issn=1550-6606&rft.eissn=1550-6606&rft.volume=199&rft.issue=12&rft.spage=4066&rft_id=info:doi/10.4049%2Fjimmunol.1701211&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon |