Elevated Expression of IL-33 and TSLP in the Airways of Human Asthmatics In Vivo: A Potential Biomarker of Severe Refractory Disease
The epithelial cytokines IL-33, thymic stromal lymphopoietin (TSLP), and IL-25 have been implicated in asthma pathogenesis because they promote Th2-type cytokine synthesis, but their expression is relatively poorly documented in “real-life” human asthma. Using bronchoalveolar lavage fluid (BALF), we...
Saved in:
Published in | The Journal of immunology (1950) Vol. 200; no. 7; pp. 2253 - 2262 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association of Immunologists
01.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The epithelial cytokines IL-33, thymic stromal lymphopoietin (TSLP), and IL-25 have been implicated in asthma pathogenesis because they promote Th2-type cytokine synthesis, but their expression is relatively poorly documented in “real-life” human asthma. Using bronchoalveolar lavage fluid (BALF), we measured airway concentrations of these mediators and compared them with those of Th1- and Th2-type cytokines, airway infiltration of neutrophils and eosinophils, and lung function in a large group of asthmatic patients with a range of disease severity (n = 70) and control subjects (n = 30). The median BALF concentrations of IL-33, TSLP, IL-4, IL-5, IL-13, and IL-12p70, but not IL-25, IL-2, or IFN-γ, were significantly elevated in asthmatics compared with controls (p < 0.05). The concentrations of IL-33 and TSLP, but not IL-25, correlated inversely with the lung function (forced expiratory volume in the first second) of asthmatics (IL-33: r = −0.488, p < 0.0001; TSLP: r = −0.565, p < 0.0001) independently of corticosteroid therapy. When divided according to disease severity and corticosteroid therapy, all subgroups of asthmatics had elevated median numbers of eosinophils in BALF, whereas the patients with more severe disease who were treated with corticosteroids had higher numbers of neutrophils compared with milder asthmatics not so treated and control subjects (p < 0.05). The data implicate TSLP and IL-33 in the pathogenesis of asthma that is characterized by persistent airway inflammation and impaired lung function despite intensive corticosteroid therapy, highlighting them as potential molecular targets. |
---|---|
AbstractList | The epithelial cytokines IL-33, thymic stromal lymphopoietin (TSLP), and IL-25 have been implicated in asthma pathogenesis because they promote Th2-type cytokine synthesis, but their expression is relatively poorly documented in "real-life" human asthma. Using bronchoalveolar lavage fluid (BALF), we measured airway concentrations of these mediators and compared them with those of Th1- and Th2-type cytokines, airway infiltration of neutrophils and eosinophils, and lung function in a large group of asthmatic patients with a range of disease severity (
= 70) and control subjects (
= 30). The median BALF concentrations of IL-33, TSLP, IL-4, IL-5, IL-13, and IL-12p70, but not IL-25, IL-2, or IFN-γ, were significantly elevated in asthmatics compared with controls (
< 0.05). The concentrations of IL-33 and TSLP, but not IL-25, correlated inversely with the lung function (forced expiratory volume in the first second) of asthmatics (IL-33:
= -0.488,
< 0.0001; TSLP:
= -0.565,
< 0.0001) independently of corticosteroid therapy. When divided according to disease severity and corticosteroid therapy, all subgroups of asthmatics had elevated median numbers of eosinophils in BALF, whereas the patients with more severe disease who were treated with corticosteroids had higher numbers of neutrophils compared with milder asthmatics not so treated and control subjects (
< 0.05). The data implicate TSLP and IL-33 in the pathogenesis of asthma that is characterized by persistent airway inflammation and impaired lung function despite intensive corticosteroid therapy, highlighting them as potential molecular targets. The epithelial cytokines IL-33, thymic stromal lymphopoietin (TSLP), and IL-25 have been implicated in asthma pathogenesis because they promote Th2-type cytokine synthesis, but their expression is relatively poorly documented in “real-life” human asthma. Using bronchoalveolar lavage fluid (BALF), we measured airway concentrations of these mediators and compared them with those of Th1- and Th2-type cytokines, airway infiltration of neutrophils and eosinophils, and lung function in a large group of asthmatic patients with a range of disease severity (n = 70) and control subjects (n = 30). The median BALF concentrations of IL-33, TSLP, IL-4, IL-5, IL-13, and IL-12p70, but not IL-25, IL-2, or IFN-γ, were significantly elevated in asthmatics compared with controls (p < 0.05). The concentrations of IL-33 and TSLP, but not IL-25, correlated inversely with the lung function (forced expiratory volume in the first second) of asthmatics (IL-33: r = −0.488, p < 0.0001; TSLP: r = −0.565, p < 0.0001) independently of corticosteroid therapy. When divided according to disease severity and corticosteroid therapy, all subgroups of asthmatics had elevated median numbers of eosinophils in BALF, whereas the patients with more severe disease who were treated with corticosteroids had higher numbers of neutrophils compared with milder asthmatics not so treated and control subjects (p < 0.05). The data implicate TSLP and IL-33 in the pathogenesis of asthma that is characterized by persistent airway inflammation and impaired lung function despite intensive corticosteroid therapy, highlighting them as potential molecular targets. The epithelial cytokines IL-33, thymic stromal lymphopoietin (TSLP), and IL-25 have been implicated in asthma pathogenesis because they promote Th2-type cytokine synthesis, but their expression is relatively poorly documented in "real-life" human asthma. Using bronchoalveolar lavage fluid (BALF), we measured airway concentrations of these mediators and compared them with those of Th1- and Th2-type cytokines, airway infiltration of neutrophils and eosinophils, and lung function in a large group of asthmatic patients with a range of disease severity (n = 70) and control subjects (n = 30). The median BALF concentrations of IL-33, TSLP, IL-4, IL-5, IL-13, and IL-12p70, but not IL-25, IL-2, or IFN-γ, were significantly elevated in asthmatics compared with controls (p < 0.05). The concentrations of IL-33 and TSLP, but not IL-25, correlated inversely with the lung function (forced expiratory volume in the first second) of asthmatics (IL-33: r = -0.488, p < 0.0001; TSLP: r = -0.565, p < 0.0001) independently of corticosteroid therapy. When divided according to disease severity and corticosteroid therapy, all subgroups of asthmatics had elevated median numbers of eosinophils in BALF, whereas the patients with more severe disease who were treated with corticosteroids had higher numbers of neutrophils compared with milder asthmatics not so treated and control subjects (p < 0.05). The data implicate TSLP and IL-33 in the pathogenesis of asthma that is characterized by persistent airway inflammation and impaired lung function despite intensive corticosteroid therapy, highlighting them as potential molecular targets.The epithelial cytokines IL-33, thymic stromal lymphopoietin (TSLP), and IL-25 have been implicated in asthma pathogenesis because they promote Th2-type cytokine synthesis, but their expression is relatively poorly documented in "real-life" human asthma. Using bronchoalveolar lavage fluid (BALF), we measured airway concentrations of these mediators and compared them with those of Th1- and Th2-type cytokines, airway infiltration of neutrophils and eosinophils, and lung function in a large group of asthmatic patients with a range of disease severity (n = 70) and control subjects (n = 30). The median BALF concentrations of IL-33, TSLP, IL-4, IL-5, IL-13, and IL-12p70, but not IL-25, IL-2, or IFN-γ, were significantly elevated in asthmatics compared with controls (p < 0.05). The concentrations of IL-33 and TSLP, but not IL-25, correlated inversely with the lung function (forced expiratory volume in the first second) of asthmatics (IL-33: r = -0.488, p < 0.0001; TSLP: r = -0.565, p < 0.0001) independently of corticosteroid therapy. When divided according to disease severity and corticosteroid therapy, all subgroups of asthmatics had elevated median numbers of eosinophils in BALF, whereas the patients with more severe disease who were treated with corticosteroids had higher numbers of neutrophils compared with milder asthmatics not so treated and control subjects (p < 0.05). The data implicate TSLP and IL-33 in the pathogenesis of asthma that is characterized by persistent airway inflammation and impaired lung function despite intensive corticosteroid therapy, highlighting them as potential molecular targets. |
Author | Li, Yun Corrigan, Chris J Wang, Wei Huang, Kewu Li, Yan Lv, Zhe Chen, Yan Ying, Sun |
Author_xml | – sequence: 1 givenname: Yan orcidid: 0000-0001-6061-2170 surname: Li fullname: Li, Yan – sequence: 2 givenname: Wei surname: Wang fullname: Wang, Wei – sequence: 3 givenname: Zhe surname: Lv fullname: Lv, Zhe – sequence: 4 givenname: Yun surname: Li fullname: Li, Yun – sequence: 5 givenname: Yan surname: Chen fullname: Chen, Yan – sequence: 6 givenname: Kewu surname: Huang fullname: Huang, Kewu – sequence: 7 givenname: Chris J surname: Corrigan fullname: Corrigan, Chris J – sequence: 8 givenname: Sun orcidid: 0000-0003-4052-2498 surname: Ying fullname: Ying, Sun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29453280$$D View this record in MEDLINE/PubMed |
BookMark | eNp10c9v0zAUB3ALDbFucOeELHHhkvEc_0jMrYzCKlViYoNr5CYvmktiF9sp9M4fjqu1l0mcfPDn-2S_7wU5c94hIa8ZXAkQ-v3GjuPk_HDFKmBCymdkxqSEQilQZ2QGUJYFq1R1Ti5i3ACAglK8IOelFpKXNczI38WAO5Owo4s_24AxWu-o7-lyVXBOjevo_d3qllpH0wPSuQ2_zT4ewM00GkfnMT2MJtk20qWjP-zOf6BzeusTumTNQD9aP5rwE8Mhcoc7DEi_YR9Mm3zY0082oon4kjzvzRDx1fG8JN8_L-6vb4rV1y_L6_mqaLnmqejEWhuoZbXuawEVM1r0CMgkgq76ulNCd_mqkqKstS5FCxK4kMp0peAMgF-Sd49zt8H_mjCmZrSxxWEwDv0UmzIbEBKqKtO3T-jGT8Hl12XFlBScK53Vm6Oa1iN2zTbY_N19c9pvBuoRtMHHGLBvWpvyvrxLwdihYdAcimxORTbHInMQngRPs_8b-Qd7y6BS |
CitedBy_id | crossref_primary_10_1097_MCP_0000000000000615 crossref_primary_10_5415_apallergy_0000000000000157 crossref_primary_10_1016_j_immuni_2019_03_012 crossref_primary_10_1111_all_14760 crossref_primary_10_37349_eaa_2024_00060 crossref_primary_10_1016_j_coi_2020_10_004 crossref_primary_10_1038_s41467_023_40820_x crossref_primary_10_3390_ijms22073592 crossref_primary_10_3389_fimmu_2020_01062 crossref_primary_10_1016_j_alit_2022_12_001 crossref_primary_10_1111_all_14491 crossref_primary_10_1007_s12325_023_02659_y crossref_primary_10_1016_j_mucimm_2024_07_007 crossref_primary_10_1111_resp_13711 crossref_primary_10_1002_jcph_2433 crossref_primary_10_1016_j_eng_2020_06_029 crossref_primary_10_1016_j_crimmu_2022_03_002 crossref_primary_10_1016_j_jaip_2024_10_045 crossref_primary_10_1080_14728222_2020_1783242 crossref_primary_10_1183_16000617_0144_2022 crossref_primary_10_2147_JAA_S275039 crossref_primary_10_4049_jimmunol_1800709 crossref_primary_10_1093_infdis_jiaa340 crossref_primary_10_3390_biomedicines11082104 crossref_primary_10_3390_ijms241512514 crossref_primary_10_3390_v12050521 crossref_primary_10_1146_annurev_immunol_110119_091711 crossref_primary_10_1152_ajplung_00378_2023 crossref_primary_10_1186_s40733_021_00078_w crossref_primary_10_15406_jlprr_2020_07_00238 crossref_primary_10_1111_cei_13135 crossref_primary_10_1165_rcmb_2018_0186ED crossref_primary_10_1111_all_15473 crossref_primary_10_3389_fped_2022_971073 crossref_primary_10_3390_ijms19123956 crossref_primary_10_1111_all_15197 crossref_primary_10_3390_biom13030564 crossref_primary_10_3389_fimmu_2023_1149203 crossref_primary_10_1016_j_jaci_2024_06_008 crossref_primary_10_1111_all_14425 crossref_primary_10_1136_thorax_2022_219192 crossref_primary_10_1016_j_jaci_2023_11_915 crossref_primary_10_1111_cea_13313 crossref_primary_10_1080_01902148_2019_1611972 crossref_primary_10_1080_13543784_2019_1672657 crossref_primary_10_1186_s12931_020_01505_x crossref_primary_10_3390_life12101562 crossref_primary_10_3904_kjim_2020_022 crossref_primary_10_4168_aair_2020_12_3_381 crossref_primary_10_1016_j_heliyon_2024_e37935 crossref_primary_10_1038_s41385_020_0266_x crossref_primary_10_3390_jof8020159 crossref_primary_10_1007_s10753_024_01983_x crossref_primary_10_3389_fimmu_2021_677848 crossref_primary_10_1016_j_jped_2023_08_004 crossref_primary_10_1038_s41598_021_86179_1 crossref_primary_10_1152_ajplung_00435_2022 crossref_primary_10_3390_jcm9113667 crossref_primary_10_1007_s00408_019_00301_9 crossref_primary_10_3390_cells11071105 crossref_primary_10_1016_j_celrep_2021_108974 crossref_primary_10_3389_fimmu_2018_01595 crossref_primary_10_3390_ijms26031227 crossref_primary_10_1111_all_14318 crossref_primary_10_1038_s41573_023_00750_1 crossref_primary_10_3390_molecules23071665 crossref_primary_10_1038_s41598_024_79226_0 crossref_primary_10_1016_j_rmra_2021_11_289 crossref_primary_10_1186_s12931_020_01513_x crossref_primary_10_1111_sji_12820 crossref_primary_10_1016_j_rmed_2022_106757 crossref_primary_10_1016_j_otc_2021_04_003 crossref_primary_10_1126_scisignal_adg6360 crossref_primary_10_1016_j_aller_2019_06_006 crossref_primary_10_1016_j_mucimm_2024_12_001 crossref_primary_10_1016_j_pupt_2022_102184 crossref_primary_10_1111_all_13997 crossref_primary_10_3390_ijms22094369 crossref_primary_10_1111_cea_13374 crossref_primary_10_4155_bio_2021_0172 crossref_primary_10_1183_13993003_00347_2024 crossref_primary_10_2147_JAA_S378062 crossref_primary_10_1007_s13258_020_01000_z crossref_primary_10_1038_s41598_020_57755_8 crossref_primary_10_1002_eji_202250106 crossref_primary_10_3390_cimb46070398 crossref_primary_10_1016_j_prrv_2021_04_002 crossref_primary_10_1016_j_alit_2020_01_001 crossref_primary_10_3390_ijms232214466 crossref_primary_10_1016_j_jaci_2020_02_037 crossref_primary_10_1183_16000617_0084_2023 crossref_primary_10_3390_biomedicines9091108 crossref_primary_10_1146_annurev_physiol_020518_114630 crossref_primary_10_3389_fmolb_2021_655285 crossref_primary_10_1111_imm_13849 crossref_primary_10_1016_j_cellsig_2019_109523 crossref_primary_10_3389_fimmu_2019_00821 crossref_primary_10_1016_j_jaci_2020_08_007 crossref_primary_10_1016_j_mam_2021_100969 crossref_primary_10_1016_j_coi_2021_03_004 crossref_primary_10_1080_17476348_2020_1756779 crossref_primary_10_1016_j_jaci_2025_01_017 crossref_primary_10_1111_all_16242 crossref_primary_10_1186_s12865_024_00644_w crossref_primary_10_3389_fimmu_2022_975914 crossref_primary_10_1080_01902148_2019_1646841 crossref_primary_10_1007_s11882_024_01186_2 crossref_primary_10_1016_j_imbio_2021_152124 crossref_primary_10_1002_ajim_23276 crossref_primary_10_4110_in_2022_22_e11 crossref_primary_10_1113_JP284686 crossref_primary_10_3389_fimmu_2022_1080855 crossref_primary_10_1038_s41423_025_01261_2 crossref_primary_10_1016_j_bcp_2020_114292 crossref_primary_10_1177_03000605241246740 crossref_primary_10_1016_j_cell_2021_02_016 crossref_primary_10_4168_aair_2022_14_5_505 crossref_primary_10_3389_falgy_2021_718267 crossref_primary_10_1016_j_jacig_2022_04_001 crossref_primary_10_1183_13993003_02782_2021 crossref_primary_10_3390_biology13080627 crossref_primary_10_1172_JCI153397 crossref_primary_10_1016_j_cellimm_2020_104098 crossref_primary_10_1097_MS9_0000000000002107 crossref_primary_10_1016_j_biopha_2024_116596 crossref_primary_10_1016_j_cellimm_2021_104395 crossref_primary_10_1183_13993003_02288_2023 crossref_primary_10_3389_fdsfr_2023_1291471 crossref_primary_10_1016_j_coph_2019_04_010 crossref_primary_10_1016_j_jksus_2022_102271 crossref_primary_10_3389_fimmu_2021_637948 crossref_primary_10_1126_scitranslmed_abl8146 crossref_primary_10_3390_biom14040401 crossref_primary_10_1016_j_molimm_2024_10_004 crossref_primary_10_1136_jim_2020_001752 crossref_primary_10_1111_all_15609 crossref_primary_10_1371_journal_pone_0217807 crossref_primary_10_1002_alr_23308 crossref_primary_10_1080_17476348_2023_2262920 |
Cites_doi | 10.1016/j.jaci.2014.12.1950 10.1038/ni.2617 10.1164/rccm.201403-0505OC 10.1111/imr.12187 10.1111/cea.12298 10.1038/ni1247 10.1084/jem.20130351 10.1016/S0140-6736(15)00157-9 10.1111/imm.12465 10.1056/NEJMoa1704064 10.1038/nri3349 10.1016/j.jaci.2014.12.1918 10.1186/s12890-017-0380-z 10.1164/rccm.200805-666OC 10.4049/jimmunol.0802387 10.1038/nri.2016.95 10.1016/j.chest.2016.10.038 10.1016/j.jaci.2011.08.031 10.1159/000444017 10.1111/cea.12718 10.4049/jimmunol.174.12.8183 10.1111/cea.12125 10.1016/j.clim.2013.12.003 10.1517/14728222.2014.915314 10.1136/thoraxjnl-2012-202003 10.4049/jimmunol.1002503 10.4049/jimmunol.181.4.2790 10.1016/j.chest.2016.10.042 10.1016/j.jim.2011.06.033 10.1183/09031936.00107811 10.1016/j.clim.2008.07.015 10.1038/ncomms3675 10.1056/NEJMoa1402895 10.4049/jimmunol.0901575 10.1016/j.jaci.2014.06.023 10.1016/j.jaci.2007.07.051 10.1016/j.jaci.2013.04.012 10.1016/j.jaci.2017.03.032 10.1016/j.imlet.2016.08.004 10.1073/pnas.1014241108 10.1371/journal.pone.0051268 |
ContentType | Journal Article |
Copyright | Copyright © 2018 by The American Association of Immunologists, Inc. Copyright American Association of Immunologists Apr 1, 2018 |
Copyright_xml | – notice: Copyright © 2018 by The American Association of Immunologists, Inc. – notice: Copyright American Association of Immunologists Apr 1, 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7T5 7TK 7TM 7U9 8FD FR3 H94 M7N P64 RC3 7X8 |
DOI | 10.4049/jimmunol.1701455 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Genetics Abstracts MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1550-6606 |
EndPage | 2262 |
ExternalDocumentID | 29453280 10_4049_jimmunol_1701455 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .55 0R~ 18M 2WC 34G 39C 53G 5GY 5RE 5VS 5WD 79B 85S AARDX AAYXX ABCQX ABDFA ABEJV ABGNP ABJNI ABOCM ABPPZ ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADIPN ADNWM AENEX AETEA AFHIN AFOSN AFRAH AGORE AHMMS AHWXS AIZAD ALMA_UNASSIGNED_HOLDINGS ARBBW BAWUL BCRHZ BTFSW CITATION D0L DIK DU5 E3Z EBS EJD F5P FRP GX1 IH2 K-O KOP KQ8 L7B OCZFY OK1 OWPYF P0W P2P PQQKQ R.V RHI ROX RZQ SJN TR2 TWZ W8F WH7 WOQ X7M XSW XTH YHG CGR CUY CVF ECM EIF NPM 7QP 7QR 7T5 7TK 7TM 7U9 8FD FR3 H94 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c393t-d4b9a0857bf84071a94fe0e15e097f8d649dbf8754289924c0503456ad2431003 |
ISSN | 0022-1767 1550-6606 |
IngestDate | Thu Jul 10 18:20:29 EDT 2025 Fri Jul 25 19:49:10 EDT 2025 Mon Jul 21 05:48:07 EDT 2025 Tue Jul 01 05:27:53 EDT 2025 Thu Apr 24 23:09:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights Copyright © 2018 by The American Association of Immunologists, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c393t-d4b9a0857bf84071a94fe0e15e097f8d649dbf8754289924c0503456ad2431003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4052-2498 0000-0001-6061-2170 |
PMID | 29453280 |
PQID | 2016543369 |
PQPubID | 105689 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2003045077 proquest_journals_2016543369 pubmed_primary_29453280 crossref_citationtrail_10_4049_jimmunol_1701455 crossref_primary_10_4049_jimmunol_1701455 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 20180401 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Baltimore |
PublicationTitle | The Journal of immunology (1950) |
PublicationTitleAlternate | J Immunol |
PublicationYear | 2018 |
Publisher | American Association of Immunologists |
Publisher_xml | – name: American Association of Immunologists |
References | Gregory (2025030610141855800_r35) 2013; 68 Lei (2025030610141855800_r9) 2011; 186 Berraïes (2025030610141855800_r27) 2016; 178 Saglani (2025030610141855800_r33) 2013; 132 Walker (2025030610141855800_r4) 2013; 13 Salimi (2025030610141855800_r8) 2013; 210 Préfontaine (2025030610141855800_r31) 2009; 183 Lee (2025030610141855800_r19) 2017; 17 Corren (2025030610141855800_r29) 2017; 377 Yao (2025030610141855800_r10) 2014; 44 Licona-Limón (2025030610141855800_r5) 2013; 14 Ballantyne (2025030610141855800_r13) 2007; 120 Glück (2025030610141855800_r37) 2016; 169 Cheng (2025030610141855800_r38) 2014; 190 Corrigan (2025030610141855800_r16) 2011; 108 Moldaver (2025030610141855800_r2) 2017; 151 Mitchell (2025030610141855800_r3) 2017; 151 Ketelaar (2025030610141855800_r34) 2016; 46 Smith (2025030610141855800_r40) 2015; 135 Dabitao (2025030610141855800_r21) 2011; 372 Zhou (2025030610141855800_r23) 2005; 6 Hallstrand (2025030610141855800_r7) 2014; 151 Gauvreau (2025030610141855800_r28) 2014; 370 Fang (2025030610141855800_r20) 2012; 39 Shi (2025030610141855800_r24) 2008; 129 Liu (2025030610141855800_r18) 2018; 141 DeKruyff (2025030610141855800_r6) 2014; 260 Chung (2025030610141855800_r1) 2015; 386 Ying (2025030610141855800_r25) 2005; 174 Li (2025030610141855800_r11) 2015; 145 Liew (2025030610141855800_r30) 2016; 16 Chen (2025030610141855800_r12) 2013; 8 Seys (2025030610141855800_r39) 2013; 43 Kurowska-Stolarska (2025030610141855800_r17) 2009; 183 Shikotra (2025030610141855800_r26) 2012; 129 Kabata (2025030610141855800_r41) 2013; 4 Kearley (2025030610141855800_r14) 2009; 179 Ying (2025030610141855800_r15) 2008; 181 Watson (2025030610141855800_r22) 2014; 18 Traister (2025030610141855800_r32) 2015; 135 Bleck (2025030610141855800_r36) 2015; 136 |
References_xml | – volume: 136 start-page: 619 year: 2015 ident: 2025030610141855800_r36 article-title: Coexpression of type 2 immune targets in sputum-derived epithelial and dendritic cells from asthmatic subjects. [Published erratum appears in 2016 J. Allergy Clin. Immunol. 137: 649.] publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2014.12.1950 – volume: 14 start-page: 536 year: 2013 ident: 2025030610141855800_r5 article-title: TH2, allergy and group 2 innate lymphoid cells publication-title: Nat. Immunol. doi: 10.1038/ni.2617 – volume: 190 start-page: 639 year: 2014 ident: 2025030610141855800_r38 article-title: Epithelial interleukin-25 is a key mediator in Th2-high, corticosteroid-responsive asthma publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201403-0505OC – volume: 260 start-page: 235 year: 2014 ident: 2025030610141855800_r6 article-title: Innate immunity in the lung regulates the development of asthma publication-title: Immunol. Rev. doi: 10.1111/imr.12187 – volume: 44 start-page: 765 year: 2014 ident: 2025030610141855800_r10 article-title: Direct comparison of the dynamics of IL-25- and ‘allergen’-induced airways inflammation, remodelling and hypersensitivity in a murine asthma model publication-title: Clin. Exp. Allergy doi: 10.1111/cea.12298 – volume: 6 start-page: 1047 year: 2005 ident: 2025030610141855800_r23 article-title: Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice publication-title: Nat. Immunol. doi: 10.1038/ni1247 – volume: 210 start-page: 2939 year: 2013 ident: 2025030610141855800_r8 article-title: A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis publication-title: J. Exp. Med. doi: 10.1084/jem.20130351 – volume: 386 start-page: 1086 year: 2015 ident: 2025030610141855800_r1 article-title: Targeting the interleukin pathway in the treatment of asthma publication-title: Lancet doi: 10.1016/S0140-6736(15)00157-9 – volume: 145 start-page: 508 year: 2015 ident: 2025030610141855800_r11 article-title: Distinct sustained structural and functional effects of IL-33 and IL-25 on the airways in a murine asthma surrogate publication-title: Immunology doi: 10.1111/imm.12465 – volume: 377 start-page: 936 year: 2017 ident: 2025030610141855800_r29 article-title: Tezepelumab in adults with uncontrolled asthma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1704064 – volume: 13 start-page: 75 year: 2013 ident: 2025030610141855800_r4 article-title: Innate lymphoid cells--how did we miss them? publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3349 – volume: 135 start-page: 1594 year: 2015 ident: 2025030610141855800_r40 article-title: Thymic stromal lymphopoietin and IL-33 modulate migration of hematopoietic progenitor cells in patients with allergic asthma publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2014.12.1918 – volume: 17 start-page: 39 year: 2017 ident: 2025030610141855800_r19 article-title: Upregulation of interleukin-33 and thymic stromal lymphopoietin levels in the lungs of idiopathic pulmonary fibrosis publication-title: BMC Pulm. Med. doi: 10.1186/s12890-017-0380-z – volume: 179 start-page: 772 year: 2009 ident: 2025030610141855800_r14 article-title: Resolution of allergic inflammation and airway hyperreactivity is dependent upon disruption of the T1/ST2-IL-33 pathway publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.200805-666OC – volume: 183 start-page: 5094 year: 2009 ident: 2025030610141855800_r31 article-title: Increased expression of IL-33 in severe asthma: evidence of expression by airway smooth muscle cells publication-title: J. Immunol. doi: 10.4049/jimmunol.0802387 – volume: 16 start-page: 676 year: 2016 ident: 2025030610141855800_r30 article-title: Interleukin-33 in health and disease publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.95 – volume: 151 start-page: 1122 year: 2017 ident: 2025030610141855800_r2 article-title: An update on lymphocyte subtypes in asthma and airway disease publication-title: Chest doi: 10.1016/j.chest.2016.10.038 – volume: 129 start-page: 104 year: 2012 ident: 2025030610141855800_r26 article-title: Increased expression of immunoreactive thymic stromal lymphopoietin in patients with severe asthma publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2011.08.031 – volume: 169 start-page: 51 year: 2016 ident: 2025030610141855800_r37 article-title: Increased levels of interleukin-33 and thymic stromal lymphopoietin in exhaled breath condensate in chronic bronchial asthma publication-title: Int. Arch. Allergy Immunol. doi: 10.1159/000444017 – volume: 46 start-page: 884 year: 2016 ident: 2025030610141855800_r34 article-title: The challenge of measuring IL-33 in serum using commercial ELISA: lessons from asthma publication-title: Clin. Exp. Allergy doi: 10.1111/cea.12718 – volume: 174 start-page: 8183 year: 2005 ident: 2025030610141855800_r25 article-title: Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity publication-title: J. Immunol. doi: 10.4049/jimmunol.174.12.8183 – volume: 43 start-page: 1009 year: 2013 ident: 2025030610141855800_r39 article-title: Sputum cytokine mapping reveals an ‘IL-5, IL-17A, IL-25-high’ pattern associated with poorly controlled asthma publication-title: Clin. Exp. Allergy doi: 10.1111/cea.12125 – volume: 151 start-page: 1 year: 2014 ident: 2025030610141855800_r7 article-title: Airway epithelial regulation of pulmonary immune homeostasis and inflammation publication-title: Clin. Immunol. doi: 10.1016/j.clim.2013.12.003 – volume: 18 start-page: 771 year: 2014 ident: 2025030610141855800_r22 article-title: Thymic stromal lymphopoietin: a central regulator of allergic asthma publication-title: Expert Opin. Ther. Targets doi: 10.1517/14728222.2014.915314 – volume: 68 start-page: 82 year: 2013 ident: 2025030610141855800_r35 article-title: IL-25 drives remodelling in allergic airways disease induced by house dust mite publication-title: Thorax doi: 10.1136/thoraxjnl-2012-202003 – volume: 186 start-page: 2254 year: 2011 ident: 2025030610141855800_r9 article-title: Thymic stromal lymphopoietin interferes with airway tolerance by suppressing the generation of antigen-specific regulatory T cells publication-title: J. Immunol. doi: 10.4049/jimmunol.1002503 – volume: 181 start-page: 2790 year: 2008 ident: 2025030610141855800_r15 article-title: Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease publication-title: J. Immunol. doi: 10.4049/jimmunol.181.4.2790 – volume: 151 start-page: 1338 year: 2017 ident: 2025030610141855800_r3 article-title: Epithelial-derived cytokines in asthma publication-title: Chest doi: 10.1016/j.chest.2016.10.042 – volume: 372 start-page: 71 year: 2011 ident: 2025030610141855800_r21 article-title: Multiplex measurement of proinflammatory cytokines in human serum: comparison of the Meso Scale Discovery electrochemiluminescence assay and the Cytometric Bead Array publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2011.06.033 – volume: 39 start-page: 458 year: 2012 ident: 2025030610141855800_r20 article-title: Resistin-like molecule-β is a human airway remodelling mediator publication-title: Eur. Respir. J. doi: 10.1183/09031936.00107811 – volume: 129 start-page: 202 year: 2008 ident: 2025030610141855800_r24 article-title: Local blockade of TSLP receptor alleviated allergic disease by regulating airway dendritic cells publication-title: Clin. Immunol. doi: 10.1016/j.clim.2008.07.015 – volume: 4 start-page: 2675 year: 2013 ident: 2025030610141855800_r41 article-title: Thymic stromal lymphopoietin induces corticosteroid resistance in natural helper cells during airway inflammation publication-title: Nat. Commun. doi: 10.1038/ncomms3675 – volume: 370 start-page: 2102 year: 2014 ident: 2025030610141855800_r28 article-title: Effects of an anti-TSLP antibody on allergen-induced asthmatic responses publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1402895 – volume: 183 start-page: 6469 year: 2009 ident: 2025030610141855800_r17 article-title: IL-33 amplifies alternatively activated macrophage polarization and chemokines production leading to pathological inflammation in the lungs publication-title: J. Immunol. doi: 10.4049/jimmunol.0901575 – volume: 135 start-page: 92 year: 2015 ident: 2025030610141855800_r32 article-title: Phenotypic and genotypic association of epithelial IL1RL1 to human TH2-like asthma publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2014.06.023 – volume: 120 start-page: 1324 year: 2007 ident: 2025030610141855800_r13 article-title: Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2007.07.051 – volume: 132 start-page: 676 year: 2013 ident: 2025030610141855800_r33 article-title: IL-33 promotes airway remodeling in pediatric patients with severe steroid-resistant asthma publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2013.04.012 – volume: 141 start-page: 257 year: 2018 ident: 2025030610141855800_r18 article-title: Steroid resistance of airway type 2 innate lymphoid cells from patients with severe asthma: the role of thymic stromal lymphopoietin publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2017.03.032 – volume: 178 start-page: 85 year: 2016 ident: 2025030610141855800_r27 article-title: Increased expression of thymic stromal lymphopoietin in induced sputum from asthmatic children publication-title: Immunol. Lett. doi: 10.1016/j.imlet.2016.08.004 – volume: 108 start-page: 1579 year: 2011 ident: 2025030610141855800_r16 article-title: T-helper cell type 2 (Th2) memory T cell-potentiating cytokine IL-25 has the potential to promote angiogenesis in asthma publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1014241108 – volume: 8 start-page: e51268 year: 2013 ident: 2025030610141855800_r12 article-title: Neutralization of TSLP inhibits airway remodeling in a murine model of allergic asthma induced by chronic exposure to house dust mite publication-title: PLoS One doi: 10.1371/journal.pone.0051268 |
SSID | ssj0006024 |
Score | 2.5906827 |
Snippet | The epithelial cytokines IL-33, thymic stromal lymphopoietin (TSLP), and IL-25 have been implicated in asthma pathogenesis because they promote Th2-type... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 2253 |
SubjectTerms | Adrenal Cortex Hormones - therapeutic use Alveoli Asthma Asthma - diagnosis Asthma - drug therapy Asthma - pathology Biomarkers - metabolism Bronchoalveolar Lavage Fluid - chemistry Bronchoalveolar Lavage Fluid - cytology Bronchus Corticosteroids Cytokines Cytokines - metabolism Eosinophils - cytology Humans Interleukin 12 Interleukin 13 Interleukin 2 Interleukin 4 Interleukin 5 Interleukin-33 - metabolism Leukocyte Count Leukocytes (eosinophilic) Leukocytes (neutrophilic) Lung - pathology Lungs Lymphocytes T Neutrophils Neutrophils - cytology Pathogenesis Respiratory function Respiratory tract Respiratory tract diseases Th1 Cells - immunology Th2 Cells - immunology Thymic stromal lymphopoietin Thymus γ-Interferon |
Title | Elevated Expression of IL-33 and TSLP in the Airways of Human Asthmatics In Vivo: A Potential Biomarker of Severe Refractory Disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29453280 https://www.proquest.com/docview/2016543369 https://www.proquest.com/docview/2003045077 |
Volume | 200 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIhCXCsorpaBFggNCbv1Y21luAQU1kKJKTWk5WWt7rRq1dpU4gXBD4oczs7t-EFEEXKLIu7YVf58nMzuz3xDyzEEFERe3KIc8sVjsCUuEsbASCJ0z8LBFrHS6Dz4E-8fs3al_2ut97-4uqeLd5Ntv95X8D6pwDHDFXbL_gGxzUTgA3wFf-ASE4fOvMB6dy6VAl3H01dSzKudvPLE8T2UFpkeTw7qScZjPvojVvF25H86rMyXYOgcr8fJjviz1NvXDssISIsDudV5eYPmOyiQcSXg-2OUhm6kePStU7mySO59b1nV83Bx3n2iVp-cql2Z3Vh4mqpDgU0vPE7N2fSLzZs5SZU_O5NpJi6K7XOEMOlUu0phYHwLWwA66NljLldZkC7sW1dViwuumnkFog6be_JBd1JVnWvG3g_zlhYLe5cz3XN0yak1eux66Rq67EGmoqHz8vvkzD8CH0dltvOHe-u1QS9pc4FfH5opoRXkt09tk00BBh5o7d0hPFlvkhm5AutoiNw9MacVd8qMmE23JRMuMKjJRIBNFMtG8oEAmasiEExSZaEsmOi4okukVHdKGSrShEp6iqURbKlFDpXvk-O1o-mbfMi064GXmXmWlLOYCmyTE2QCXBgRnmbSl40ubh9kgDRhPYQjbLENg77IE5YfAZxepyzC15N0nG0VZyIeEioTbjGW-FzgpkxwsnCP9bCCzxAYzEsd9slc_3ygx-vXYRuU8gjgWwYlqcCIDTp-8aM641Notf5i7U0MWmTd8Hrlqr5_nBbxPnjbDYH8xqSYKWS5wjio2sMOwTx5oqJub1dTYvnLkEbnVviQ7ZKOaLeRj8HKr-Ini4U8iC6Re |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elevated+Expression+of+IL-33+and+TSLP+in+the+Airways+of+Human+Asthmatics+In+Vivo%3A+A+Potential+Biomarker+of+Severe+Refractory+Disease&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Li%2C+Yan&rft.au=Wang%2C+Wei&rft.au=Lv%2C+Zhe&rft.au=Li%2C+Yun&rft.date=2018-04-01&rft.eissn=1550-6606&rft.volume=200&rft.issue=7&rft.spage=2253&rft_id=info:doi/10.4049%2Fjimmunol.1701455&rft_id=info%3Apmid%2F29453280&rft.externalDocID=29453280 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon |