Decision tree modeling using R
In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met...
Saved in:
Published in | Annals of translational medicine Vol. 4; no. 15; p. 275 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
China
AME Publishing Company
01.08.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building. |
---|---|
AbstractList | In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building. In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building. |
Author | Zhang, Zhongheng |
Author_xml | – sequence: 1 givenname: Zhongheng surname: Zhang fullname: Zhang, Zhongheng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27570769$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kE1LwzAYx4NM3Jw7exs7emn3JGnS5iLIfIWBIHoOaZrOSNvMphX89mZujil4ScKT_8vD7xQNGtcYhM4xxAQDTeeqq2MCmMfAYpwcoRGhwCKWUTE4eA_RxPs3AMAECwpwgoYkZSmkXIzQ9Npo661rZl1rzKx2halss5r1fnM-naHjUlXeTHb3GL3c3jwv7qPl493D4moZaSpoF-mC8YQkPCW85LnguSmwEGGCNQGiSwIgCpqkwqg8SNM8L8pMcS10gnMgjI7R5TZ33ee1KbRpulZVct3aWrWf0ikrf_809lWu3IdMRAY0wyHgYhfQuvfe-E7W1mtTVaoxrvcSZ5hRznjgNkbTw659yQ-UIJhvBbp13rem3EswyG_yMpCXG_ISmMRJcLA_Dm071QWsYVlb_ev7Alrohlo |
CitedBy_id | crossref_primary_10_1186_s12991_024_00534_w crossref_primary_10_1007_s12149_021_01631_6 crossref_primary_10_14202_vetworld_2021_2238_2243 crossref_primary_10_1590_0102_311x00100119 crossref_primary_10_3389_fmed_2019_00164 crossref_primary_10_1111_jocn_14491 crossref_primary_10_1299_jamdsm_2023jamdsm0057 crossref_primary_10_1111_cbdd_13663 crossref_primary_10_1007_s10980_020_01056_y crossref_primary_10_1038_s41612_024_00833_9 crossref_primary_10_1111_jebm_12418 crossref_primary_10_3390_fi12100167 crossref_primary_10_1016_j_compbiomed_2021_104461 crossref_primary_10_1038_s41598_022_25394_w crossref_primary_10_1186_s12864_020_6703_0 crossref_primary_10_1186_s12911_022_02095_y crossref_primary_10_3390_electronics10151747 crossref_primary_10_2139_ssrn_3949486 crossref_primary_10_1016_j_engappai_2024_109773 crossref_primary_10_1080_07328303_2019_1609018 crossref_primary_10_3390_f15060992 crossref_primary_10_3389_fneur_2022_791547 crossref_primary_10_1097_MD_0000000000021728 crossref_primary_10_3390_cancers15030613 |
ContentType | Journal Article |
Copyright | 2016 Annals of Translational Medicine. All rights reserved. 2016 Annals of Translational Medicine. |
Copyright_xml | – notice: 2016 Annals of Translational Medicine. All rights reserved. 2016 Annals of Translational Medicine. |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.21037/atm.2016.05.14 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2305-5839 |
EndPage | 275 |
ExternalDocumentID | PMC4980381 27570769 10_21037_atm_2016_05_14 |
Genre | Journal Article |
GroupedDBID | 53G AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BAWUL CITATION DIK HYE OK1 RPM NPM 7X8 5PM |
ID | FETCH-LOGICAL-c393t-cd564246726f6b96bed1994241c202cf2009d3479eabd567bbdf8a6c9c41b0253 |
ISSN | 2305-5839 |
IngestDate | Thu Aug 21 18:32:49 EDT 2025 Fri Jul 11 07:50:49 EDT 2025 Thu Apr 03 06:54:57 EDT 2025 Thu Apr 24 23:06:32 EDT 2025 Tue Jul 01 04:31:27 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 15 |
Keywords | conditional inference random forests R Machine learning decision trees recursive partitioning |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c393t-cd564246726f6b96bed1994241c202cf2009d3479eabd567bbdf8a6c9c41b0253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://atm.amegroups.com/article/viewFile/10459/pdf |
PMID | 27570769 |
PQID | 1815365610 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4980381 proquest_miscellaneous_1815365610 pubmed_primary_27570769 crossref_primary_10_21037_atm_2016_05_14 crossref_citationtrail_10_21037_atm_2016_05_14 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-00 2016-Aug 20160801 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-00 |
PublicationDecade | 2010 |
PublicationPlace | China |
PublicationPlace_xml | – name: China |
PublicationTitle | Annals of translational medicine |
PublicationTitleAlternate | Ann Transl Med |
PublicationYear | 2016 |
Publisher | AME Publishing Company |
Publisher_xml | – name: AME Publishing Company |
References | 25276398 - J Thorac Dis. 2014 Sep;6(9):E196-7 19968396 - Psychol Methods. 2009 Dec;14(4):323-48 26855945 - Ann Transl Med. 2016 Jan;4(1):9 |
References_xml | – reference: 25276398 - J Thorac Dis. 2014 Sep;6(9):E196-7 – reference: 19968396 - Psychol Methods. 2009 Dec;14(4):323-48 – reference: 26855945 - Ann Transl Med. 2016 Jan;4(1):9 |
SSID | ssj0001219300 |
Score | 2.1498084 |
Snippet | In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 275 |
SubjectTerms | Big-data Clinical Trial Column |
Title | Decision tree modeling using R |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27570769 https://www.proquest.com/docview/1815365610 https://pubmed.ncbi.nlm.nih.gov/PMC4980381 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46QXwR784bFXzwpbq2Sbo-ylREmIg4EF9KkyZO0E60e_HXe06adt1F0L2UkaaXnS9Nvu8k54SQk0AAbeM6Am3CpUtD6bntVGlXaMl8KpMWM4HC3Tt-06O3T-xptBWjiS7JxZn8nhlXMg-qUAa4YpTsP5CtbgoF8BvwhSMgDMc_YXxpN8jB5eKq2NQGlf_Q6P-HOu8c5UnOcXB6K12Ak1Prlf_4uT_IXvrKjmvWLeDxalFaXmZVqDuypjoXUB4MI66K7krNKLO9I603Ajar0_Vt3H6SY2S_xzETahEYWoPg491g4IcsbIU8Go0-1ZrA-26HRm2cuFwkSz6Qfr_meyk8ZkA2TUxR9aJFribzAufjj8ckz_ZZ44xjSkZMroat0YvHNbJqdYFzUYC8ThZUtkGWuxaeTXJUYu0g1k6JtWOwdh62SO_66rFz49q9LVwZREHuypSB8oNRCj4ULiIuVIpZmoFPSb_lS42TVilG-apEQNVQiFS3Ey4jST0BPDXYJo1skKld4iSUaQYVNQV12daB0ImQoBupl1BQ06xJzsr_H0ub-B33H3mLQQAa28VguxhtF7cYaMEmOa0u-Chynvxe9bg0aAz9Ek42JZkaDL9iYI4s4MjOm2SnMHB1sxKZJgnHTF9VwJzn42ey177JfW6byN7cV-6TldHnckAa-edQHQKvzMWRaW4_m6t15Q |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decision+tree+modeling+using+R&rft.jtitle=Annals+of+translational+medicine&rft.au=Zhang%2C+Zhongheng&rft.date=2016-08-01&rft.pub=AME+Publishing+Company&rft.issn=2305-5839&rft.eissn=2305-5839&rft.volume=4&rft.issue=15&rft_id=info:doi/10.21037%2Fatm.2016.05.14&rft_id=info%3Apmid%2F27570769&rft.externalDocID=PMC4980381 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2305-5839&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2305-5839&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2305-5839&client=summon |