Decision tree modeling using R

In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met...

Full description

Saved in:
Bibliographic Details
Published inAnnals of translational medicine Vol. 4; no. 15; p. 275
Main Author Zhang, Zhongheng
Format Journal Article
LanguageEnglish
Published China AME Publishing Company 01.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.
AbstractList In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.
In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.
Author Zhang, Zhongheng
Author_xml – sequence: 1
  givenname: Zhongheng
  surname: Zhang
  fullname: Zhang, Zhongheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27570769$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1LwzAYx4NM3Jw7exs7emn3JGnS5iLIfIWBIHoOaZrOSNvMphX89mZujil4ScKT_8vD7xQNGtcYhM4xxAQDTeeqq2MCmMfAYpwcoRGhwCKWUTE4eA_RxPs3AMAECwpwgoYkZSmkXIzQ9Npo661rZl1rzKx2halss5r1fnM-naHjUlXeTHb3GL3c3jwv7qPl493D4moZaSpoF-mC8YQkPCW85LnguSmwEGGCNQGiSwIgCpqkwqg8SNM8L8pMcS10gnMgjI7R5TZ33ee1KbRpulZVct3aWrWf0ikrf_809lWu3IdMRAY0wyHgYhfQuvfe-E7W1mtTVaoxrvcSZ5hRznjgNkbTw659yQ-UIJhvBbp13rem3EswyG_yMpCXG_ISmMRJcLA_Dm071QWsYVlb_ev7Alrohlo
CitedBy_id crossref_primary_10_1186_s12991_024_00534_w
crossref_primary_10_1007_s12149_021_01631_6
crossref_primary_10_14202_vetworld_2021_2238_2243
crossref_primary_10_1590_0102_311x00100119
crossref_primary_10_3389_fmed_2019_00164
crossref_primary_10_1111_jocn_14491
crossref_primary_10_1299_jamdsm_2023jamdsm0057
crossref_primary_10_1111_cbdd_13663
crossref_primary_10_1007_s10980_020_01056_y
crossref_primary_10_1038_s41612_024_00833_9
crossref_primary_10_1111_jebm_12418
crossref_primary_10_3390_fi12100167
crossref_primary_10_1016_j_compbiomed_2021_104461
crossref_primary_10_1038_s41598_022_25394_w
crossref_primary_10_1186_s12864_020_6703_0
crossref_primary_10_1186_s12911_022_02095_y
crossref_primary_10_3390_electronics10151747
crossref_primary_10_2139_ssrn_3949486
crossref_primary_10_1016_j_engappai_2024_109773
crossref_primary_10_1080_07328303_2019_1609018
crossref_primary_10_3390_f15060992
crossref_primary_10_3389_fneur_2022_791547
crossref_primary_10_1097_MD_0000000000021728
crossref_primary_10_3390_cancers15030613
ContentType Journal Article
Copyright 2016 Annals of Translational Medicine. All rights reserved. 2016 Annals of Translational Medicine.
Copyright_xml – notice: 2016 Annals of Translational Medicine. All rights reserved. 2016 Annals of Translational Medicine.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.21037/atm.2016.05.14
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2305-5839
EndPage 275
ExternalDocumentID PMC4980381
27570769
10_21037_atm_2016_05_14
Genre Journal Article
GroupedDBID 53G
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CITATION
DIK
HYE
OK1
RPM
NPM
7X8
5PM
ID FETCH-LOGICAL-c393t-cd564246726f6b96bed1994241c202cf2009d3479eabd567bbdf8a6c9c41b0253
ISSN 2305-5839
IngestDate Thu Aug 21 18:32:49 EDT 2025
Fri Jul 11 07:50:49 EDT 2025
Thu Apr 03 06:54:57 EDT 2025
Thu Apr 24 23:06:32 EDT 2025
Tue Jul 01 04:31:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 15
Keywords conditional inference
random forests
R
Machine learning
decision trees
recursive partitioning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c393t-cd564246726f6b96bed1994241c202cf2009d3479eabd567bbdf8a6c9c41b0253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://atm.amegroups.com/article/viewFile/10459/pdf
PMID 27570769
PQID 1815365610
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4980381
proquest_miscellaneous_1815365610
pubmed_primary_27570769
crossref_primary_10_21037_atm_2016_05_14
crossref_citationtrail_10_21037_atm_2016_05_14
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-00
2016-Aug
20160801
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-00
PublicationDecade 2010
PublicationPlace China
PublicationPlace_xml – name: China
PublicationTitle Annals of translational medicine
PublicationTitleAlternate Ann Transl Med
PublicationYear 2016
Publisher AME Publishing Company
Publisher_xml – name: AME Publishing Company
References 25276398 - J Thorac Dis. 2014 Sep;6(9):E196-7
19968396 - Psychol Methods. 2009 Dec;14(4):323-48
26855945 - Ann Transl Med. 2016 Jan;4(1):9
References_xml – reference: 25276398 - J Thorac Dis. 2014 Sep;6(9):E196-7
– reference: 19968396 - Psychol Methods. 2009 Dec;14(4):323-48
– reference: 26855945 - Ann Transl Med. 2016 Jan;4(1):9
SSID ssj0001219300
Score 2.1498084
Snippet In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 275
SubjectTerms Big-data Clinical Trial Column
Title Decision tree modeling using R
URI https://www.ncbi.nlm.nih.gov/pubmed/27570769
https://www.proquest.com/docview/1815365610
https://pubmed.ncbi.nlm.nih.gov/PMC4980381
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46QXwR784bFXzwpbq2Sbo-ylREmIg4EF9KkyZO0E60e_HXe06adt1F0L2UkaaXnS9Nvu8k54SQk0AAbeM6Am3CpUtD6bntVGlXaMl8KpMWM4HC3Tt-06O3T-xptBWjiS7JxZn8nhlXMg-qUAa4YpTsP5CtbgoF8BvwhSMgDMc_YXxpN8jB5eKq2NQGlf_Q6P-HOu8c5UnOcXB6K12Ak1Prlf_4uT_IXvrKjmvWLeDxalFaXmZVqDuypjoXUB4MI66K7krNKLO9I603Ajar0_Vt3H6SY2S_xzETahEYWoPg491g4IcsbIU8Go0-1ZrA-26HRm2cuFwkSz6Qfr_meyk8ZkA2TUxR9aJFribzAufjj8ckz_ZZ44xjSkZMroat0YvHNbJqdYFzUYC8ThZUtkGWuxaeTXJUYu0g1k6JtWOwdh62SO_66rFz49q9LVwZREHuypSB8oNRCj4ULiIuVIpZmoFPSb_lS42TVilG-apEQNVQiFS3Ey4jST0BPDXYJo1skKld4iSUaQYVNQV12daB0ImQoBupl1BQ06xJzsr_H0ub-B33H3mLQQAa28VguxhtF7cYaMEmOa0u-Chynvxe9bg0aAz9Ek42JZkaDL9iYI4s4MjOm2SnMHB1sxKZJgnHTF9VwJzn42ey177JfW6byN7cV-6TldHnckAa-edQHQKvzMWRaW4_m6t15Q
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decision+tree+modeling+using+R&rft.jtitle=Annals+of+translational+medicine&rft.au=Zhang%2C+Zhongheng&rft.date=2016-08-01&rft.pub=AME+Publishing+Company&rft.issn=2305-5839&rft.eissn=2305-5839&rft.volume=4&rft.issue=15&rft_id=info:doi/10.21037%2Fatm.2016.05.14&rft_id=info%3Apmid%2F27570769&rft.externalDocID=PMC4980381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2305-5839&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2305-5839&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2305-5839&client=summon