Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells
We show that optical absorption in thin-film photovoltaic cells can be enhanced by inserting a tuned two-component aperiodic dielectric stack into the device structure. These coatings are a generalization and unification of the concepts of an anti-reflection coating used in solar cells and high-refl...
Saved in:
Published in | Optics express Vol. 16; no. 8; pp. 5385 - 5396 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
14.04.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We show that optical absorption in thin-film photovoltaic cells can be enhanced by inserting a tuned two-component aperiodic dielectric stack into the device structure. These coatings are a generalization and unification of the concepts of an anti-reflection coating used in solar cells and high-reflectivity distributed Bragg mirror used in resonant cavity-enhanced narrowband photodetectors. Optimized two-component coatings approach the physically realizable limit and optimally redistribute the spectral photon density-of-states to enhance the absorption of the active layer across its absorption spectrum. Specific designs for thin-film organic solar cells increase the photocurrent under AM1.5 illumination, averaged over all incident angles and polarizations, by up to 40%. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/oe.16.005385 |